String Matching

Inge Li Gortz

String Matching

e String matching problem:
e string T (text) and string P (pattern) over an alphabet 2.
¢ |T|=n, [Pl =m.

e Report all starting positions of occurrences of P in T.

P=ababaca
IT=bacbababababacab

Strings
[sufixors |

- €. empty string
- prefix/suffix: v=xy: s Il
* X prefix of v, if y # € X Is a proper prefix of v [Prefors |

* y suffix of v, if y # € X is a proper suffix of v.
« Example: S = aabca,
« The suffixes of S are: aabca, abca, bca, ca and a.

« The strings abca, beca, ca and a are proper suffixes of S.

String Matching

e Knuth-Morris-Pratt (KMP)

¢ Finite automaton

A naive string matching algorithm

blajc|/blal|blalblalblalbla|c|a|b
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca
ababaca

ababaca

Improving the naive algorithm

P=aaababa

T=|aaak)aa3})abak)acak)b
aaababa

Improving the naive algorithm

P=aaababa

T= aaab 2

aaababa
aaaaabhbhbaha

Improving the naive algorithm

P=aaababa

T= aaab aa a

aaababa

aaababa
aaababa

Improving the naive algorithm

P=aaababa

T=aaabaaaabab a

aaababa
aaababa
aaababa
aaaaaaakbbébhbaa

Improving the naive algorithm

P=aaababa

T=aaabaaaabab a

aaababa
aaababa

aaababa
If we matched 5 characters aaababa

from T and then fail:
compare failed character to
2nd character in P

If we matched 3 characters If we matched all characters
from T and then fail: from T:
compare failed character to compare next character to

3nd character in P 2nd character in P

Improving the naive algorithm

P=aaababa

matched

#matched

if fail
compare to

If we matched 5 characters
from T and then fail:
compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:
compare failed character to
3nd character in P

If we matched all characters
from T:
compare next character to
2nd character in P

Improving the naive algorithm

P=aaababa

matched

#matched

if fail
compare to

If we matched 5 characters
from T and then fail:
compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:
compare failed character to
3nd character in P

If we matched all characters
from T:
compare next character to
2nd character in P

Improving the naive algorithm

P=aaababa

matched

#matched

if fail
compare to

If we matched 5 characters
from T and then fail:
compare failed character to
2nd character in P

If we matched 3 characters
from T and then fail:
compare failed character to
3nd character in P

If we matched all characters
from T:
compare next character to
2nd character in P

KMP and m-array

e KMP: P = aaababa.

matched

#matched

starting state

-

In state i after reading character j of T:
P[1...i] is the longest prefix of P that is a
suffix of T[1..]]

accepting state

KMP and m-array

e KMP: P = aaababa.

matched

#matched

e Matching:

T=|alaabaaababaa

KMP

e KMP: Can be seen as finite automaton with failure links:

e Failure link: longest prefix of P that is a proper suffix of what we have matched until
NOW.

e |n state i after reading T[j]: P[1..] is the longest prefix of P that is a suffix of T[1...]].

e (Can follow several failure links when matching one character:

T=|albabaa

KMP Analysis

* Analysis. |[T| =n, |P| =m.
- How many times can we follow a forward edge?
- How many backward edges can we follow (compare to forward edges)?
- Total number of edges we follow?

« What else do we use time for?

KMP Analysis

« Lemma. The running time of KMP matching is O(n).
- Each time we follow a forward edge we read a new character of T.
- #backward edges followed < #forward edges followed < n.

 If in the start state and the character read in T does not match the forward
edge, we stay there.

- Total time = #non-matched characters in start state + #forward edges
followed + #backward edges followed < 2n.

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of ‘abalb’

o—»o—o’ibo—oababaﬁ@ao

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

- Computing failure links: Use KMP matching algorithm. -
SN

longest prefix of P that is a suffix of ‘bab' P

.a.b“a;b%a@ C@a' -

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

- Computing failure links: Use KMP matching algorithm. -
s.

longest prefix of P that is a suffix of ‘bab' P

.a.b“a;b¥a® C@a' -

Can be found by using KMP to match ‘bab’

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links
that are already computed).

- Failure link: longest prefix of P that is a proper suffix of what we have
matched until now.

P=|albabaca

Rabin-Karp

Fingerprinting

Rabin-Karp

e Fingerprint: construct randomized fingerprint for P and each substring of T
of length m.

e Assume (wlog.) binary alphabet.
m ™m

F(P)=Y 2™ "P[j F(T,) =Y 2" "T[s+i—1]
1=1 1=1
Pl1 0 1 T(1 01 01 1 0 10

F(P) = 221 + 210 + 201 = 5

Rabin-Karp

e Fingerprint: construct randomized fingerprint for P and each substring of T
of length m.

e Assume (wlog.) binary alphabet.
m ™m

F(P)=Y 2™ "P[j F(T,) =Y 2" "T[s+i—1]
1=1 1=1
Pl1 0 1 T|1 0 110 1 1 0 1 O

F(P) =221 + 210 + 201 =5 F(T+) =

Rabin-Karp

e Fingerprint: construct randomized fingerprint for P and each substring of T
of length m.

e Assume (wlog.) binary alphabet.

F(P)=Y 2™ "P[j F(T,) =Y 2™ 'T[s+1i— 1]
1=1 1=1
P{1 0 1 T{1/0/1j0 1 1 0 1|0

F(P) =221 + 210 + 201 =5 F(T1) =221 + 21:0 + 201 = 5

Rabin-Karp

F(P) = Z 2t Pli]
P{1 0 1

F(P) = 221 +21:0 + 201 = 5

F(T) =221 + 210 + 201 = 5

Rabin-Karp

F(P) = Z 2t Pli]
P{1 0 1

F(P) = 221 +21:0 + 201 = 5

F(T) =221 + 210 + 201 = 5
F(To) = 22:0 + 211 + 200 = 2

Rabin-Karp

F(P)="Y 2"""PJi] F(T,) =Y 2™ 'T[s+1i— 1]
1=1 1=1

Pl1 0 1 T 1011 0 111/0 1 O

F(P) =221 + 210+ 201 =5 F(T1) =221 +21:0 + 201 = 5

F(To) = 22:0 + 211 + 200 = 2
F(Ts) =221 + 21:0 + 201 = 5

Rabin-Karp

F(P)="Y 2"""PJi] F(T,) =Y 2™ 'T[s+1i— 1]
1=1 1=1
Pl1 0 1 T/1.0/110 1 110 1 0
F(P) =221 + 210+ 201 =5 F(T1) =221 +21:0 + 201 = 5
F(To) =220 + 21-1 + 20:0 = 2
F(Ta) =221 + 21:0 + 20-1 = 5
)

F(T4) =220+ 211 + 201 =3

Rabin-Karp

F(P)="Y 2"""PJi] F(T,) =Y 2™ 'T[s+1i— 1]
1=1 1=1

P{1 0 1 T/1.0/1 0|1 1 0|1 O

F(P) =221 + 210+ 201 =5 F(T1) =221 +21:0 + 201 = 5

)
F(To) =220+ 211 +20:0=2
F(Tg) =221 +21-0+20-1 =5
F(T4) =220 + 211 + 201 =3
F(Ts) =221 + 211 + 200 =6

Rabin-Karp

F(P)="Y 2"""PJi] F(T,) =Y 2™ 'T[s+1i— 1]
1=1 1=1

Pl1 0 1 T[1]a|1]|o]1[1]0[1]0

F(P) = 221 + 21:0 + 201 = 5 F(T1) = 221 + 210 4 201 = 5

22:0+2111+200=2
221+ 210+ 201 =5
22:0+ 211+ 201 =3
221+ 2111 +20-:0=0
221+ 210+ 201 =5
22:0+2111+200=2

F(To

F(Ts
P occurs in T at position s 4

)
)
)
PN F(T4)
)
)
)

F(P) = F(Ts) F(Ts
F(Te
F(T7

Rabin-Karp

F(P)="Y 2"""PJi] F(T,) =Y 2™ 'T[s+1i— 1]
1=1 1=1

Pl1 0 1 T[1]a|1]|o]1[1]0[1]0

F(P) = 221 + 21:0 + 201 = 5 F(T1) = 221 + 210 + 201 = 5

22:0+2111+200=2
221 +21:0+ 201 =5
22:0+ 211+ 201 =3
221+ 2111 +20-:0=0
221 +21-0+ 201 =5
22:0+2111+200=2

F(To

F(Ts
P occurs in T at position s 4

)
)
)
PN F(T4)
)
)
)

F(P) = F(Ts) F(Ts
F(Te
F(T7

Rabin-Karp

F(P)="Y 2"""PJi] F(T,) =Y 2™ 'T[s+1i— 1]
1=1 1=1

Pl1 0 1 T[1]a|1]|o]1[1]0[1]0

F(P) = 221 + 21:0 + 201 = 5 F(T1) = 221 + 210 4 201 = 5

P occurs in T at position s
<
F(P) = F(Ts)

Rabin-Karp

F(P)="Y 2"""PJi] F(T,) =Y 2™ 'T[s+1i— 1]
1=1 1=1
Pl1 0 1 T1]ol1]ol1[1]0[1]0
F(P) = 221 + 21:0 + 201 = 5 F(T1) = 221 + 21:0 + 201 = 5
F(T2) =

P occurs in T at position s
<
F(P) = F(Ts)

Rabin-Karp

F(P) = Z 2t Pli]
P{1 0 1

F(P) = 221 +21:0 + 201 = 5

P occurs in T at position s
<
F(P) = F(Ts)

F(T) =221 + 210+ 201 =5
F(To) = (F(T4) - 22:1)-2 4+ 20-0 = 2

Rabin-Karp

F(P)="Y 2"""PJi] F(T,) =Y 2™ 'T[s+1i— 1]
1=1 1=1

P{1 0 1 T 1011 0 111/0 1 O

F(P) =221 + 210+ 201 =5 F(T1) =221 +21:0 + 201 = 5

F(To) = (F(T1) - 22-1)-2 + 200 = 2
F(Ts) = (F(T2) - 22:0)-2 + 201 = 5

P occurs in T at position s
<
F(P) = F(Ts)

Rabin-Karp
e Can compute F(Ts+1) from F(Ts):
F(Tsi1)=2-F(Ts) —2mT[s| + T[s + m + 1]

e m large: Numbers too big to calculate in constant time.

e Solution: randomization. Choose prime p < n’m randomly.

F,(P)=F(P) modp="Y 2" "P[i] mod p
1=1

Fp(Ty) = F(T,) modp=Y 2" "T[s+i—1] mod p
1=1

Rabin-Karp

e Can compute Fp(Ts+1) from Fp(TS) in constant time:

Fpy(Ts41) =2+ (Fp(Ts) mod p) — (2™ mod p) - T[s] +T[s+m — 1] mod p

o P matches T at position s = F,(P) = F,(T).
e Opposite not true.

e p random prime < n’m = probability of false match < 2.53/m.

Rabin-Karp

¢ Rabin-Karp:
e Choose random prime < n2m.
e Compute Fp(P).
e For each position s in T compute Fp(Ts) and compare to Fp(P). If Fp(P) = Fp(Ts)
declare probable match or check explicitly.

e Time: ©O(Mm + n) randomized Monte Carlo algorithm (with errors).

e Can verify all candidate matches in O(n) time.

¢ | as Vegas algorithm (no errors, expected running time) with expected running
time O(n):

e Run algorithm
o \/erify

e Rerun if errors.

