String Matching

Inge Li Gørtz

CLRS 32

String Matching

- String matching problem:
- string T (text) and string P (pattern) over an alphabet Σ.
- $|\mathrm{T}|=\mathrm{n},|\mathrm{P}|=\mathrm{m}$.
- Report all starting positions of occurrences of P in T.

```
P=ababaca
T=b a c b a b a b a b a b a c a b
```


String Matching

- Knuth-Morris-Pratt (KMP)
- Finite automaton

A naive string matching algorithm

a b a b a c a

$a b a b a c a$
ababaca
$a b a b a c a$
$a b a b a c a$
$a b a b a c a$
a b a b a c a
$a b a b a c a$
$a b a b a c a$
ababaca

Improving the naive algorithm
$P=a a a b a b a$
$T=a$ a a b a a a b a b a b a c a b b a a a b a b a

Improving the naive algorithm
Improving the naive algorithm

```
P= a a ababa
T= a a a b a a ab a b a b ac a b b
    a a a b a b a
        a a a a a b a a a a
```

Improving the naive algorithm
$P=a a a b a b a$
$T=a \operatorname{a} b a \operatorname{a} a b a b a a$ $a \operatorname{a} a b a b a$
a a a b a b a
a a ababa
a a a a a a a ada a

Improving the naive algorithm

$P=a a a b a b a$

matched		a	a	a	b	a	b	a
\#matched	0	1	2	3	4	5	6	7
iffail compare to				3		2		2

If we matched 3 characters from P and then fail: compare failed character to 3nd character in P

If we matched all characters
compare next character to 2nd character in P

Improving the naive algorithm

$$
P=a a a b a b a
$$

$T=a \operatorname{a} b a \operatorname{a} a b a b a$
 $a \operatorname{a} a b a b a$
a a a b a b a
a a a b a b a

If we matched 5 characters from P and then fail:
from P and then fail:
compare failed character to
2nd character in P

Improving the naive algorithm

$$
P=a a a b a b a
$$

If we matched 5 characters from T and then fail: ompare failed character 2nd character in P

> If we matched 3 characters from T and then fail: compare failed character to 3nd character in P

If we matched all characters from T :
mpare next character to 2nd character in P

Improving the naive algorithm

$P=a a a b a b a$

matched		a	a	a	b	a	b	a
\#matched	0	1	2	3	4	5	6	7
if fail compare to	1	1	2	3	1	2	1	2

If we matched 5 characters If we matched 5 character
from T and then fail: ompare failed character 2nd character in P

If we matched 3 characters from T and then fail: compare failed character to 3nd character in P

If we matched all characters

$$
\text { from } \mathrm{T}:
$$

$$
\begin{aligned}
& \text { enext character to } \\
& \text { character in } P \text { ? }
\end{aligned}
$$

Improving the naive algorithm

- KMP: P = aaababa.

matched		a	a	a	b	a	b	a
\#matched	0	1	2	3	4	5	6	7
if fail go to	0	0	1	2	0	1	0	1

- Matching:

KMP

- KMP: Can be seen as finite automaton with failure links:
- Failure link: longest prefix of P that is a proper suffix of what we have matched unt now.
- In state i after reading T[j]: $P[1 . . \mathrm{i}]$ is the longest prefix of P that is a suffix of $T[1 \ldots . . j]$.
- Can follow several failure links when matching one character:

$T=a b a b a a$

KMP Analysis

- Analysis. $|\mathrm{T}|=\mathrm{n},|\mathrm{P}|=\mathrm{m}$.
- How many times can we follow a forward edge?
- How many backward edges can we follow (compare to forward edges)?
- Total number of edges we follow?
-What else do we use time for?

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of 'abab'

KMP Analysis

- Lemma. The running time of KMP matching is $\mathrm{O}(\mathrm{n})$.
- Each time we follow a forward edge we read a new character of T.
- \#backward edges followed \leq \#forward edges followed $\leq n$.
- If in the start state and the character read in T does not match the forward edge, we stay there.
- Total time = \#non-matched characters in start state + \#forward edges followed + \#backward edges followed $\leq 2 n$.

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.
longest prefix of P that is a suffix of 'bab'

Computation of failure links

- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a suffix of 'bab'

Can be found by using KMP to match 'bab'

KMP

- Computing π : As KMP matching algorithm (only need π values that are already computed).
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$:
- Lemma. Total number of comparisons of characters in KMP is at most $2 n$.
- Corollary. Total number of comparisons of characters in the preprocessing of KMP is at most 2 m .

Computation of failure links

- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have matched until now.

KMP

- Computing π : As KMP matching algorithm (only need π values that are already computed).
- Running time: $\mathrm{O}(\mathrm{n}+\mathrm{m})$:
- Lemma. Total number of comparisons of characters in KMP is at most 2 n .
- Corollary. Total number of comparisons of characters in the preprocessing of KMP is at most $2 m$.

Finite Automaton

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $\mathrm{P}=$ ababaca.

$$
\text { read ' } a \text { '? longest prefix of } P \text { that is a proper suffix of ' } a a^{\prime}=\mathrm{a} a \text { ' }
$$

Matched until now: $a \mathrm{~b}$ a a
$P: a b a b a c a$

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=$ ababaca.


```
read ' \(c\) '? longest prefix of P that is a proper suffix of 'ac' \(=\) ' '
Matched until now: a c
P: a b a b a c a
```


Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $\mathrm{P}=$ ababaca.

read ' c '? longest prefix of P that is a proper suffix of 'abc' = ' '

Matched until now: a b c
P: a b a b a c a

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

read 'b'? longest prefix of P that is a proper suffix of 'abb' = ' '

Matched until now: $a \operatorname{b}$
P: a b a b a c a

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\}$. $P=$ ababaca.

read ' a '? longest prefix of P that is a proper suffix of ' $a b a a$ ' $=$ ' a '

Matched until now:
 a b a a

P: a b a b a c a

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

read 'c'? Iongest prefix of P that is a proper suffix of 'abac' = ' '

Matched until now: a b a c
P: $a b a b a c a$

Finite Automaton

- Finite automaton: alphabet $\Sigma=\{a, b, c\} . P=a b a b a c a$.

$T=b a c b a b a b a b a b a c a b$

Finite Automaton

- Finite automaton:
- Q: finite set of states
- $q_{0} \in \mathrm{Q}$: start state
- $A \subseteq Q$: set of accepting states
- Σ : finite input alphabet
- δ : transition function
- Matching time: $\mathrm{O}(\mathrm{n})$

- Preprocessing time: $O\left(m^{3}|\Sigma|\right)$. Can be done in $O(m|\Sigma|)$ using KMP.
- Total time: $\mathrm{O}(\mathrm{n}+\mathrm{m}|\Sigma|)$

