String Matching

Inge Li Gørtz

CLRS 32

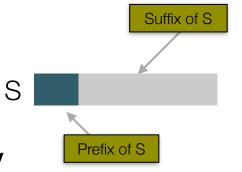
String Matching

- String matching problem:
 - string T (text) and string P (pattern) over an alphabet Σ .
 - |T| = n, |P| = m.
 - Report all starting positions of occurrences of P in T.

P = a b a b a c a
T = b a c b a b a b a b a c a b

Strings

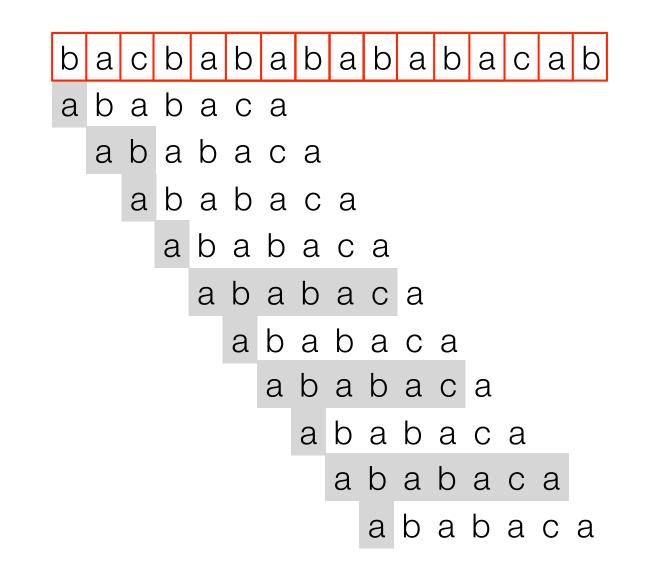
- ε: empty string
- prefix/suffix: v=xy:
 - x prefix of v, if $y \neq \varepsilon x$ is a proper prefix of v
 - y suffix of v, if $y \neq \varepsilon x$ is a proper suffix of v.
- Example: S = aabca
 - The suffixes of S are: aabca, abca, bca, ca and a.
 - The strings abca, bca, ca and a are proper suffixes of S.

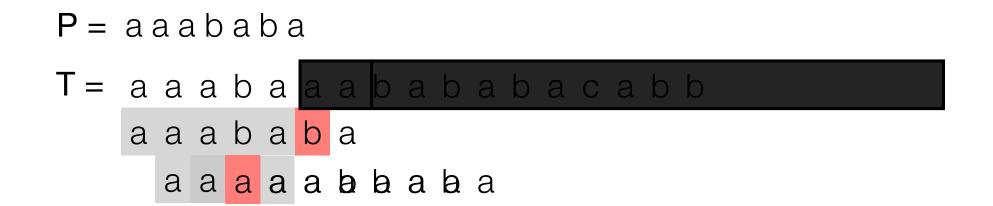


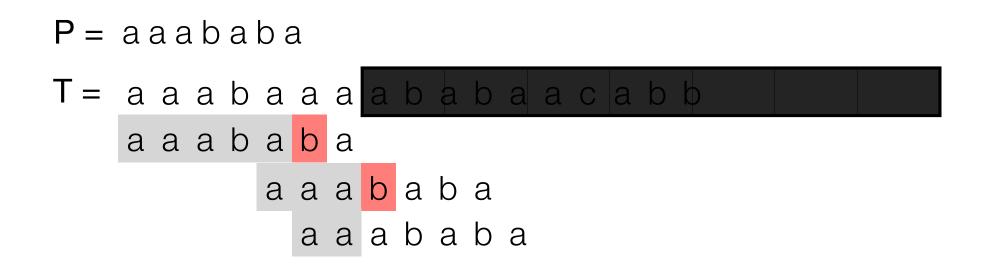
String Matching

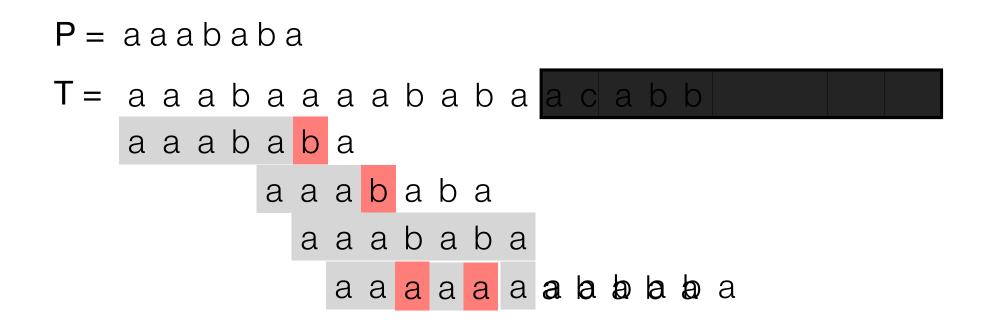
- Knuth-Morris-Pratt (KMP)
- Finite automaton

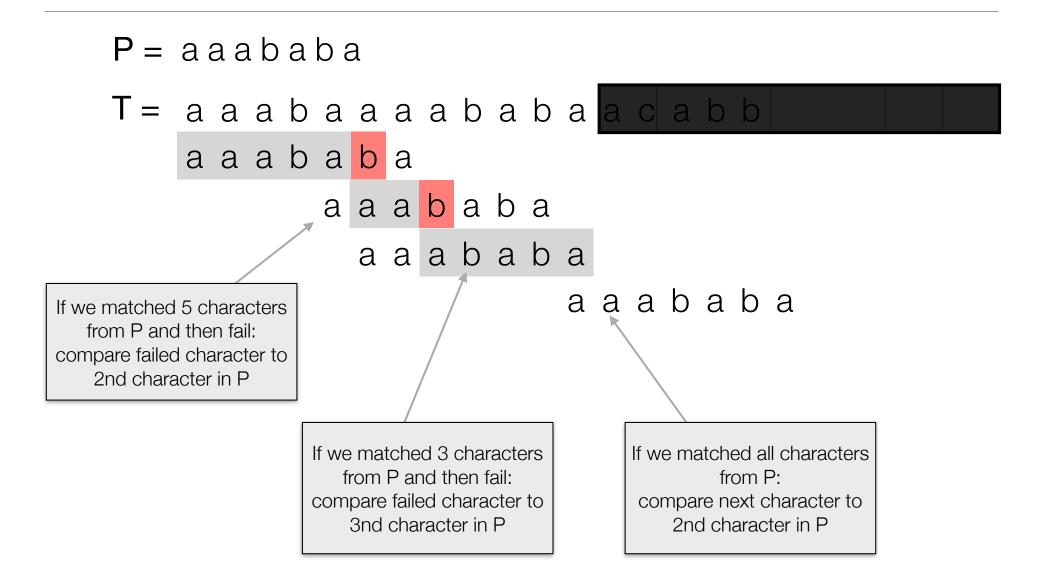
A naive string matching algorithm









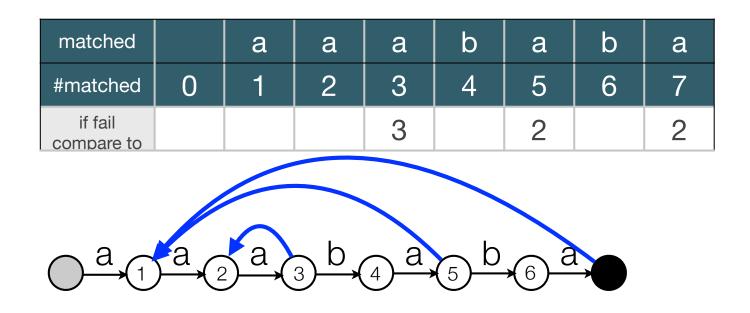


P = aaababa

matched		а	а	а	b	а	b	а
#matched	0	1	2	3	4	5	6	7
if fail compare to				3		2		2

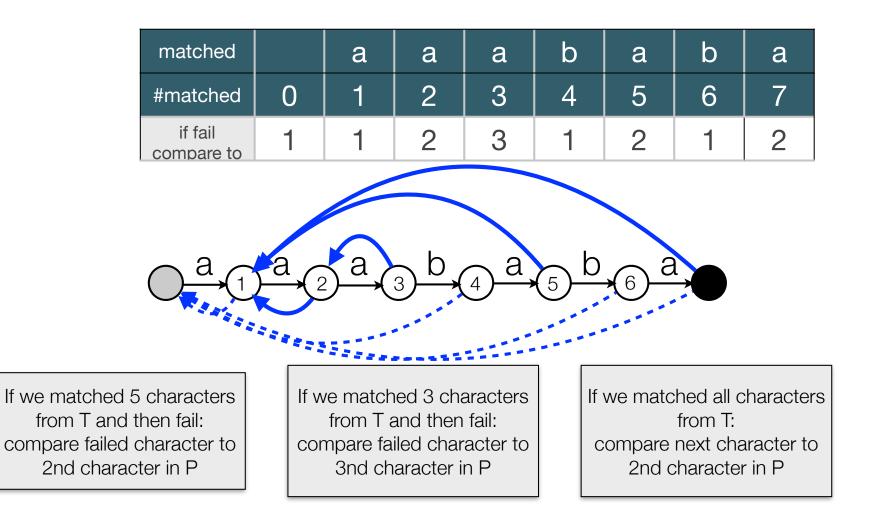
If we matched 5 characters from P and then fail: compare failed character to 2nd character in P If we matched 3 characters from P and then fail: compare failed character to 3nd character in P If we matched all characters from P: compare next character to 2nd character in P

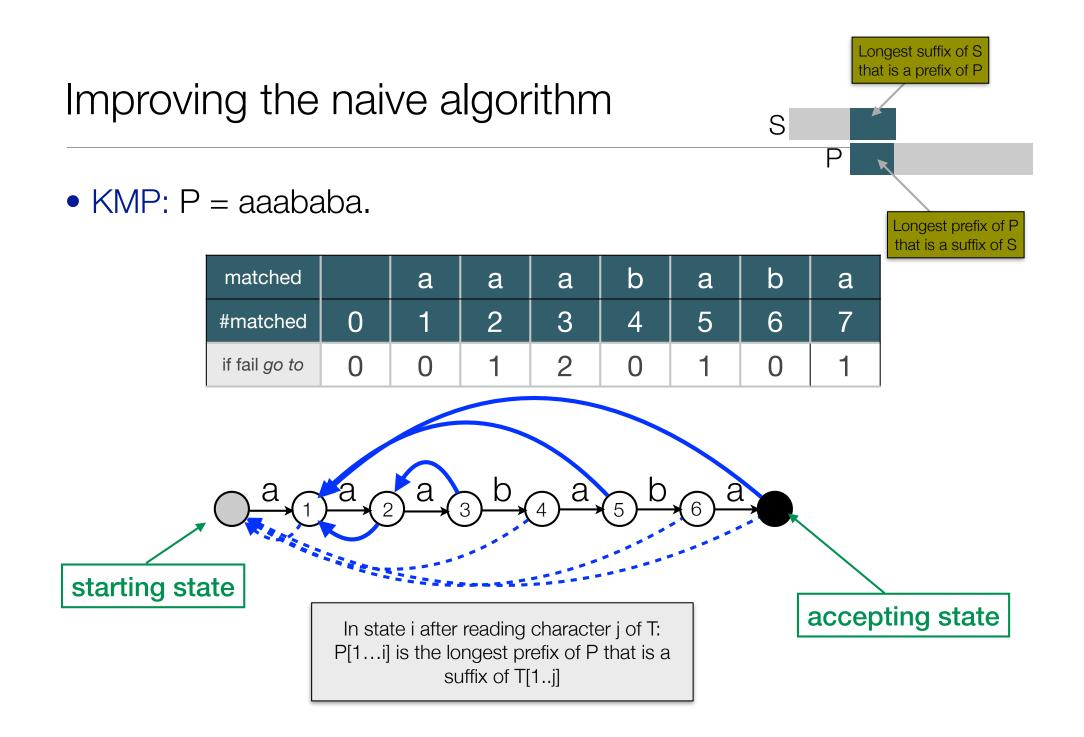
P = aaababa



If we matched 5 characters from T and then fail: compare failed character to 2nd character in P If we matched 3 characters from T and then fail: compare failed character to 3nd character in P If we matched all characters from T: compare next character to 2nd character in P

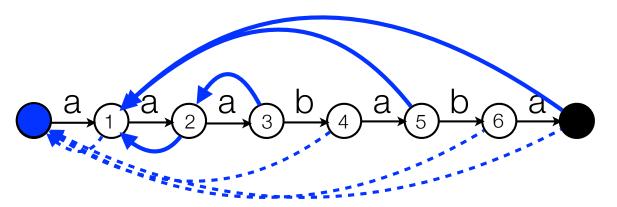
P = aaababa





• KMP: P = aaababa.

matched		а	а	а	b	а	b	а
#matched	0	1	2	3	4	5	6	7
if fail go to	0	0	1	2	0	1	0	1

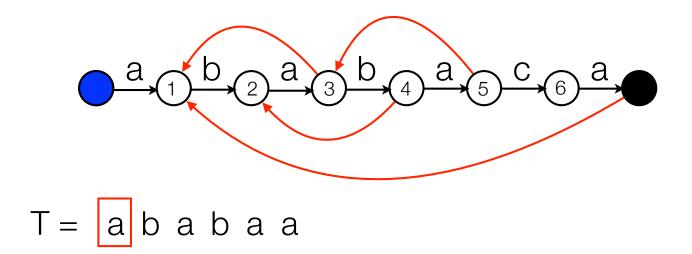


• Matching:

T = a a a b a a a b a b a a

KMP

- KMP: Can be seen as finite automaton with *failure links*:
 - Failure link: longest prefix of P that is a proper suffix of what we have matched until now.
 - In state i after reading T[j]: P[1..i] is the longest prefix of P that is a suffix of T[1...j].
 - Can follow several failure links when matching one character:



KMP Analysis

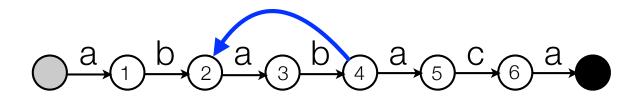
- Analysis. |T| = n, |P| = m.
 - How many times can we follow a forward edge?
 - How many backward edges can we follow (compare to forward edges)?
 - Total number of edges we follow?
 - What else do we use time for?

KMP Analysis

- Lemma. The running time of KMP matching is O(n).
 - Each time we follow a forward edge we read a new character of T.
 - #backward edges followed \leq #forward edges followed \leq n.
 - If in the start state and the character read in T does not match the forward edge, we stay there.
 - Total time = #non-matched characters in start state + #forward edges followed + #backward edges followed ≤ 2n.

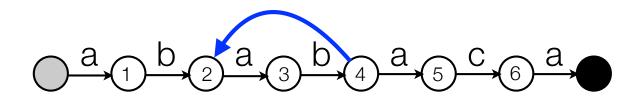
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a proper suffix of 'abab'



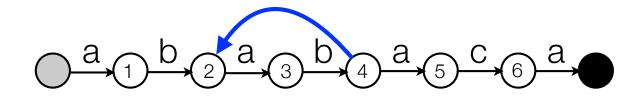
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.
- Computing failure links: Use KMP matching algorithm.

longest prefix of P that is a suffix of 'bab'

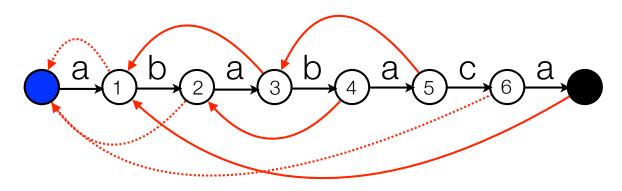


- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.
- Computing failure links: Use KMP matching algorithm.

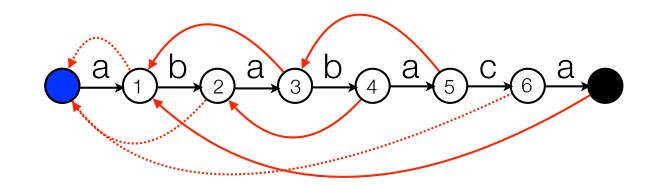
longest prefix of P that is a suffix of 'bab'



Can be found by using KMP to match 'bab'



- Computing failure links: As KMP matching algorithm (only need failure links that are already computed).
- Failure link: longest prefix of P that is a proper suffix of what we have *matched* until now.



$$P = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 \\ b & a & b & a & c & a \end{bmatrix}$$

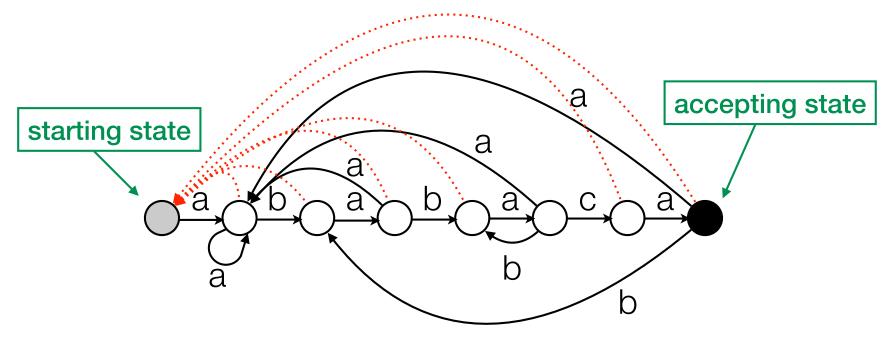
Need to match: a, ab, aba, abab, ababa, ababac, ababaca

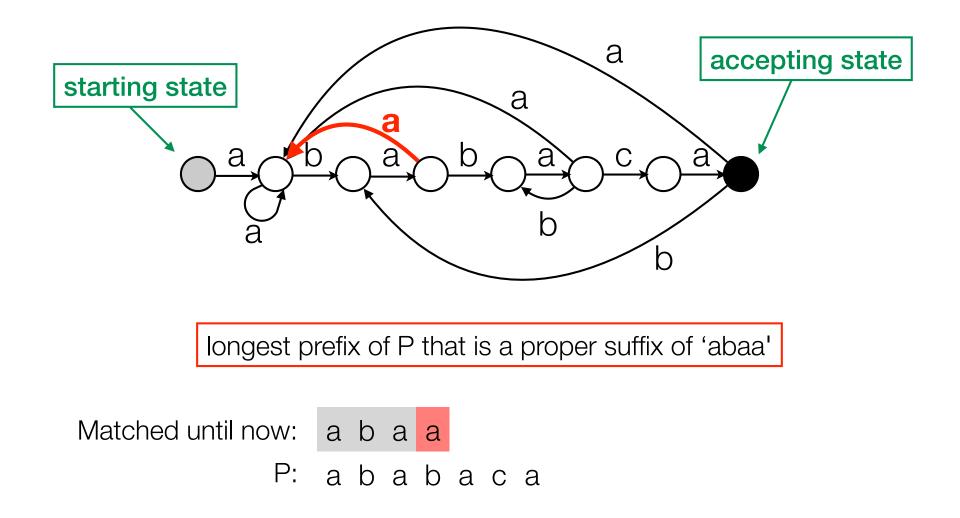
KMP

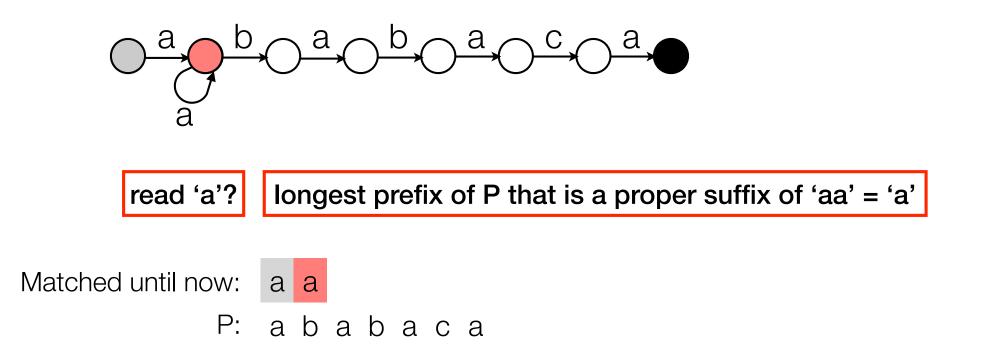
- Computing π: As KMP matching algorithm (only need π values that are already computed).
- Running time: O(n + m):
 - Lemma. Total number of comparisons of characters in KMP is at most 2n.
 - Corollary. Total number of comparisons of characters in the preprocessing of KMP is at most 2m.

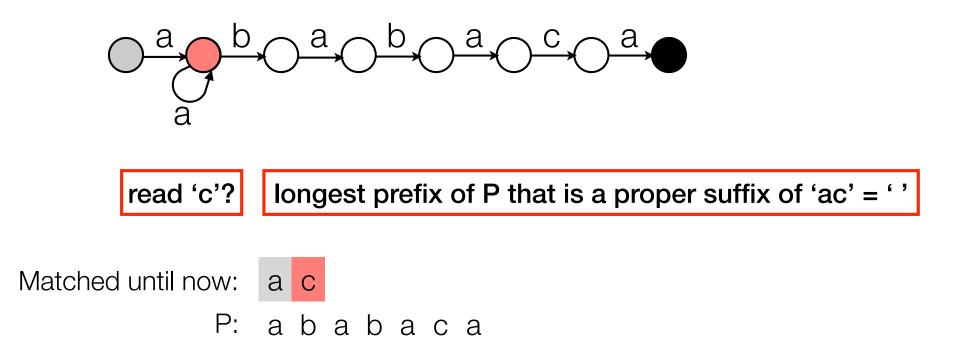
KMP

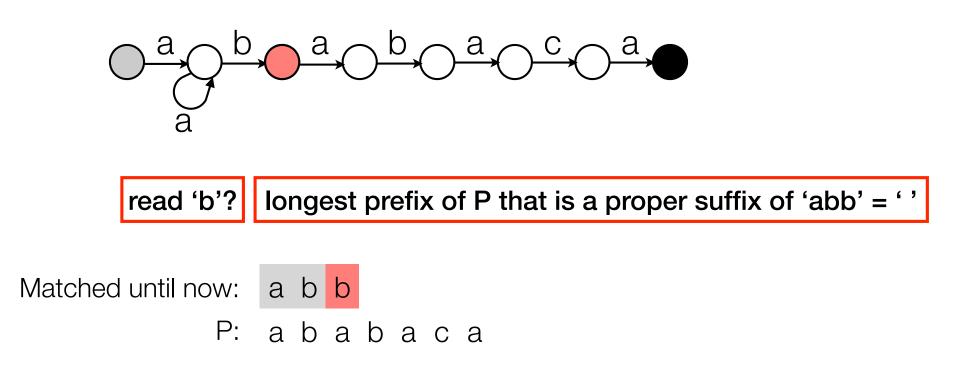
- Computing π: As KMP matching algorithm (only need π values that are already computed).
- Running time: O(n + m):
 - Lemma. Total number of comparisons of characters in KMP is at most 2n.
 - Corollary. Total number of comparisons of characters in the preprocessing of KMP is at most 2m.

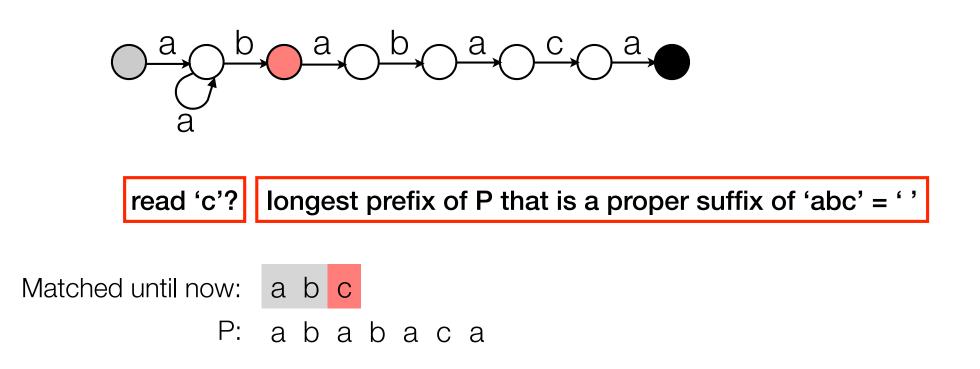


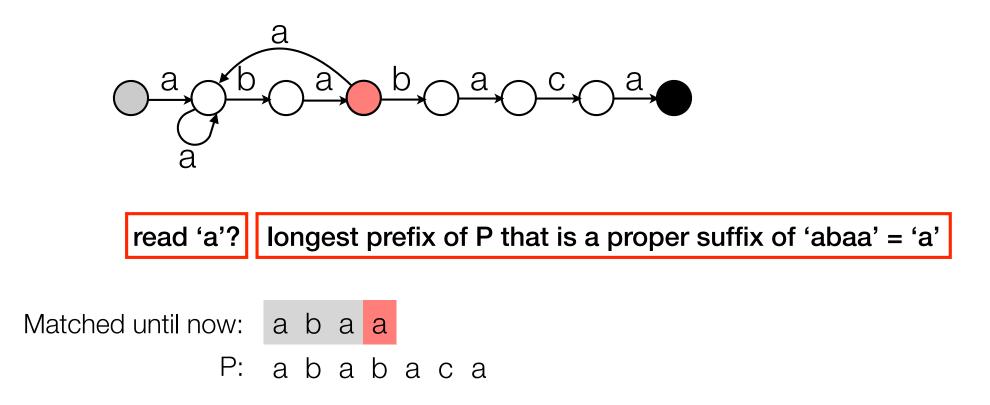


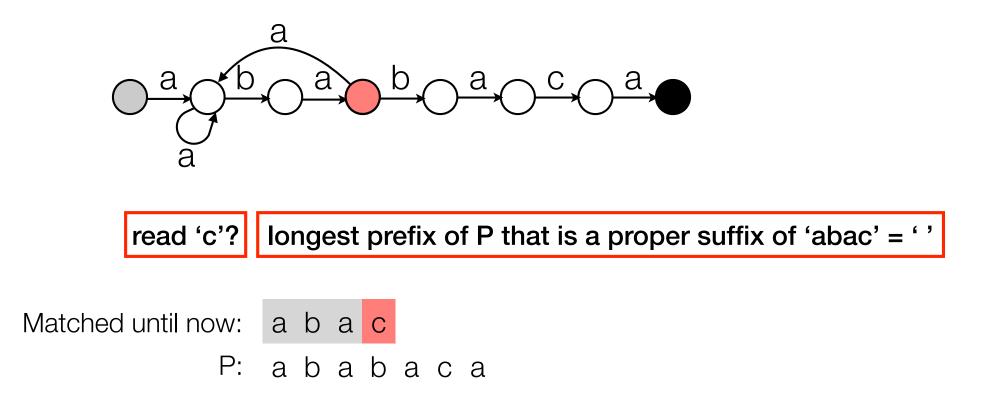




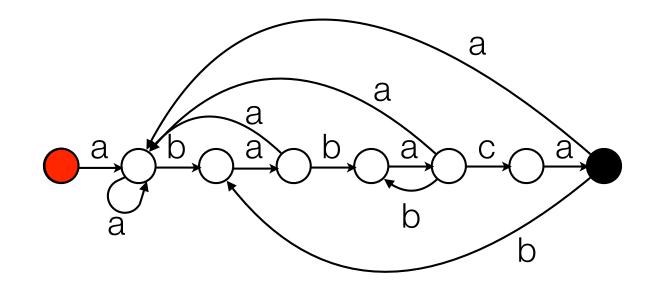






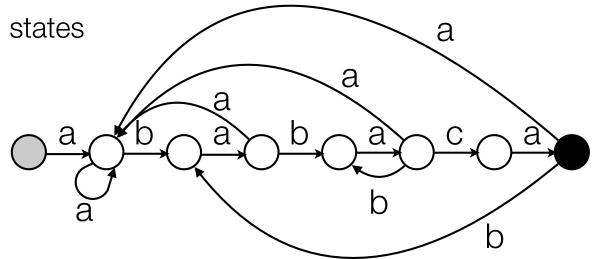


• Finite automaton: alphabet $\Sigma = \{a, b, c\}$. P = ababaca.



T = bacbabababacab

- Finite automaton:
 - Q: finite set of states
 - $q_0 \in Q$: start state
 - A ⊆ Q: set of accepting states
 - Σ: finite input alphabet
 - δ: transition function



- Matching time: O(n)
- Preprocessing time: $O(m^3|\Sigma|)$. Can be done in $O(m|\Sigma|)$ using KMP.
- Total time: $O(n + m|\Sigma|)$