Randomized algorithms II

Inge Li Gørtz

Randomized algorithms

- Last week

- Contention resolution
- Global minimum cut
- Today
- Expectation of random variables
- Guessing cards
- Three examples:
- Median/Select.
- Quick-sort

Random variables

- A random variable is an entity that can assume different values
- The values are selected "randomly"; i.e., the process is governed by a probability distribution.
- Examples: Let X be the random variable "number shown by dice".
- X can take the values $1,2,3,4,5,6$.
- If it is a fair dice then the probability that $X=1$ is $1 / 6$:
- $P[X=1]=1 / 6$.
- $P[X=2]=1 / 6$.
- ...

Expected values

- Let X be a random variable with values in $\left\{x_{1}, \ldots x_{n}\right\}$, where x_{i} are numbers.
- The expected value (expectation) of X is defined as

$$
E[X]=\sum_{j=1}^{n} x_{j} \cdot \operatorname{Pr}\left[X=x_{j}\right]
$$

- The expectation is the theoretical average.
- Example:
- $X=$ random variable "number shown by dice"
$E[X]=\sum_{j=1}^{6} j \cdot \operatorname{Pr}[X=j]=(1+2+3+4+5+6) \cdot \frac{1}{6}=3.5$

Properties of expectation

- If we repeatedly perform independent trials of an experiment, each of which succeeds with probability $p>0$, then the expected number of trials we need to perform until the first succes is $1 / p$.
- If X is a $0 / 1$ random variable, $E[X]=\operatorname{Pr}[X=1]$.
- Linearity of expectation: For two random variables X and Y we have

$$
E[X+Y]=E[X]+E[Y]
$$

Waiting for a first succes

- Coin flips. Coin is heads with probability p and tails with probability $1-p$. How many independent flips X until first heads?
- Probability of $X=j$? (first succes is in round j)

$$
\operatorname{Pr}[X=j]=(1-p)^{j-1} \cdot p
$$

- Expected value of X

$$
\begin{aligned}
E[X] & =\sum_{j=1}^{\infty} j \cdot \operatorname{Pr}[X=j] \\
& =\sum_{j=1}^{\infty} j \cdot(1-p)^{j-1} \cdot p \\
& =\frac{p}{1-p} \sum_{j=1}^{\infty} j \cdot(1-p)^{j} \\
& =\frac{p}{1-p} \cdot \frac{1-p}{p^{2}}=\frac{1}{p}
\end{aligned}
$$

$$
\begin{aligned}
& \sum_{k=0}^{\infty} k \cdot x^{k}=\frac{x}{(1-x)^{2}} \\
& \text { for }|x|<1
\end{aligned}
$$

Guessing cards

- Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.
- Memoryless guessing. Can't remember what's been turned over already. Guess a card from full deck uniformly at random.
- Claim. The expected number of correct guesses is 1 .
- $X_{i}=1$ if $i^{t h}$ guess correct and zero otherwise.
- $X=$ the correct number of guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 / n$.
- $E[X]=E\left[X_{1}+\cdots+X_{n}\right]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]=1 / n+\cdots+1 / n=1$.

Guessing cards

- Game. Shuffle a deck of n cards; turn them over one at a time; try to guess each card.
- Guessing with memory. Guess a card uniformly at random from cards not yet seen.
- Claim. The expected number of correct guesses is $\Theta(\log n)$.
- $X_{i}=1$ if $i^{\text {th }}$ guess correct and zero otherwise.
- $X=$ the correct number of guesses $=X_{1}+\ldots+X_{n}$.
- $E\left[X_{i}\right]=\operatorname{Pr}\left[X_{i}=1\right]=1 /(n-i+1)$.
$\cdot E[X]=E\left[X_{1}\right]+\cdots+E\left[X_{n}\right]=1 / n+\cdots+1 / 2+1 / 1=H_{n}$.

Coupon collector

- Coupon collector. Each box of cereal contains a coupon. There are n different types of coupons. Assuming all boxes are equally likely to contain each coupon, how many boxes before you have at least 1 coupon of each type?
- Claim. The expected number of steps is $\Theta(n \log n)$.
- Phase $j=$ time between j and $j+1$ distinct coupons.
- $X_{j}=$ number of steps you spend in phase j.
- $X=$ number of steps in total $=X_{0}+X_{1}+\cdots+X_{n-1}$.
- $E\left[X_{j}\right]=n /(n-j)$
- The expected number of steps:

$$
E[X]=E\left[\sum_{j=0}^{n-1} X_{j}\right]=\sum_{j=0}^{n-1} E\left[X_{j}\right]=\sum_{j=0}^{n-1} n /(n-j)=n \cdot \sum_{i=1}^{n} 1 / i=n \cdot H_{n}
$$

Select

- Given n numbers $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$
- Median: number that is in the middle position if in sorted order.
- Select(S,k): Return the kth smallest number in S .
- $\operatorname{Min}(S)=\operatorname{Select}(S, 1), \operatorname{Max}(S)=\operatorname{Select}(S, n), \operatorname{Median}=\operatorname{Select}(S, n / 2)$.
- Assume the numbers are distinct.

```
Select(S, k) {
    Choose a pivot s E S uniformly at random.
    For each element e in s
        if e<s pute in S'
    if |s'| = k-1 then return s
    if |s'| \geqk then call Select(S', k
    if |s'| < k then call Select(\mp@subsup{S}{}{\prime}},\mp@code{k
```


Select

```
Select(s,k) {
    Choose a pivot s E s uniformly at random.
    For each element e in S
        if e<s sute in s,
    if }|\mp@subsup{s}{}{\prime}|=k-1 then return 
    if }|\mp@subsup{S}{}{\prime}|\geqk\mathrm{ then call Select(S',k)
    if }|\mp@subsup{\mathbf{s}}{}{\prime}|<k\mathrm{ then call Select(('',
```

- Worst case running time: $T(n)=c n+c(n-1)+c(n-2)+\cdots=\Theta\left(n^{2}\right)$.
- If there is at least an ε fraction of elements both larger and smaller than s :

$$
\begin{aligned}
T(n) & =c n+(1-\varepsilon) c n+(1-\varepsilon)^{2} c n+\cdots \\
& =\left(1+(1-\varepsilon)+(1-\varepsilon)^{2}+\cdots\right) c n \\
& \leq c n / \varepsilon
\end{aligned}
$$

- Limit number of bad pivots.
- Intuition: A fairly large fraction of elements are "well-centered" => random pivot likely to be good.

Select

- Phase j: Size of set at most $n(3 / 4)^{j}$ and at least $n(3 / 4)^{j+1}$.
- Central element: $\geq 1 / 4$ of the elements in current S are smaller and $\geq 1 / 4$ are larger.

- If pivot central: size of set shrinks by at least a factor $3 / 4 \Rightarrow$ current phase ends.
- At least half the elements are central $\Rightarrow \quad \operatorname{Pr}[\mathrm{s}$ is central $]=1 / 2$.
- Expected number of iterations before a central pivot is found $=2$

$$
\Rightarrow \text { expected number of iterations in phase } \mathrm{j} \text { at most } 2 .
$$

- X : number of steps taken by algorithm. X_{j} : number of steps in phase j.
- Then $X=X_{1}+X_{2}+\ldots$
- $E\left[X_{j}\right]=2 c n(3 / 4)^{j}$.
- Expected running time:

$$
E[X]=\sum_{j} E\left[X_{j} \leq \sum_{j} 2 c n\left(\frac{3}{4}\right)^{j}=2 c n \sum_{j}\left(\frac{3}{4}\right)^{j} \leq 8 c n\right.
$$

Select

- Phase j: Size of set at most $n(3 / 4)^{j}$ and at least $n(3 / 4)^{j+1}$. |S| phase

64
 0

Cut-off phases: $64,48,36,27,21, \ldots$

Quicksort

Quicksort

- Given n numbers $S=\left\{a_{1}, a_{2}, \ldots, a_{n}\right\}$ return the sorted list.
- Assume the numbers are distinct.

```
Quicksort(A,P,r) {
    if |S| < 1 return S
    else
    Choose a pivot s E S uniformly at random.
    For each element e in S
        if e<s put e in S'
    L = Quicksort(S'(S')
    Return the sorted list Los`R
}
```


Quicksort: Analysis

- Expected number of comparisons: $E[X]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]$.
- Since $X_{i j}$ indicator variable: $E\left[X_{i j}\right]=\operatorname{Pr}\left[X_{i j}=1\right]$
- a_{i} and a_{j} compared \Leftrightarrow

$$
a_{i} \text { or } a_{j} \text { is the first pivot chosen from } Z_{i j}=\left\{a_{i}, \ldots, a_{j}\right\}
$$

- Pivot chosen independently uniformly at random \Rightarrow
all elements from $Z_{i j}$ equally likely to be chosen as first pivot from this set.
- We have $\operatorname{Pr}\left[X_{i j}=1\right]=2 /(j-i+1)$
- Thus

$$
\begin{aligned}
E[X] & =\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \operatorname{Pr}\left[X_{i j}=1\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} \frac{2}{j-i+1} \\
& =\sum_{i=1}^{n-1} \sum_{k=2}^{n-i+1} \frac{2}{k}<\sum_{i=1}^{n-1} \sum_{k=1}^{n} \frac{2}{k}=\sum_{i=1}^{n-1} O(\log n)=O(n \log n)
\end{aligned}
$$

Quicksort: Analysis

- Worst case: $\Omega\left(n^{2}\right)$ comparisons
- Best case: O(n log n)
- Enumerate elements such that $a_{1} \leq a_{2} \leq \cdots \leq a_{n}$
- Indicator random variable for all pairs $i<j$:

$$
X_{i j}= \begin{cases}1 & \text { if } a_{i} \text { and } a_{j} \text { compared by algorithm } \\ 0 & \text { otherwise }\end{cases}
$$

- $X=$ total number of comparisons:

$$
X=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}
$$

- Expected number of comparisons:

$$
E[X]=E\left[\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} X_{i j}\right]=\sum_{i=1}^{n-1} \sum_{j=i+1}^{n} E\left[X_{i j}\right]
$$

