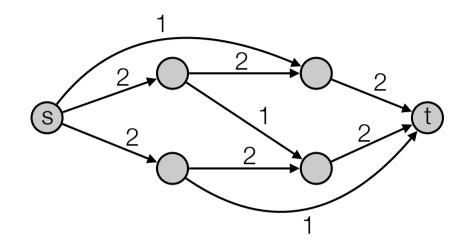
Network Flow II

Inge Li Gørtz

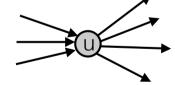
Network Flow

- Network flow:
 - graph G=(V,E).
 - Special vertices s (source) and t (sink).
 - Every edge e has a capacity c(e) ≥ 0.
 - Flow:



- capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
- flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

$$\sum_{v:(v,u)\in E} f(v,u) = \sum_{v:(u,v)\in E} f(u,v)$$



Value of flow f is the sum of flows out of s minus sum of flows into s:

$$v(f) = \sum_{v:(s,v)\in E} f(e) - \sum_{v:(v,s)\in E} f(e) = f^{out}(s) - f^{in}(s)$$

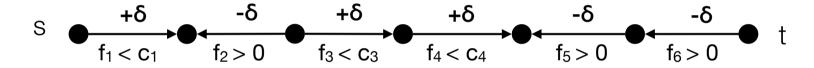
Maximum flow problem: find s-t flow of maximum value

Today

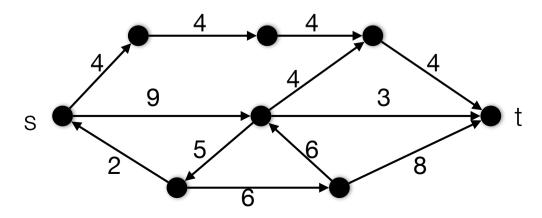
Applications

- Bipartite matching: Hospital have to schedule doctors for the holidays.
 - Doctors have constraints on how many and on which holidays they can work.
 - Hospital needs a certain amount on doctors at work.
- Disjoint paths:
- Finding good augmenting paths. Edmonds-Karp and scaling algorithm.

- Find (any) augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ
- To find augmenting path use DFS or BFS:



• Integral capacities:

- Integral capacities:
 - Each augmenting path increases flow with at least 1.

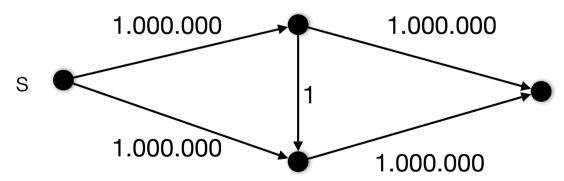
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations

- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)

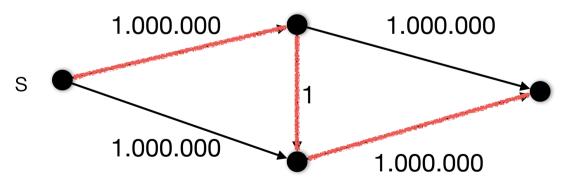
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.

- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.

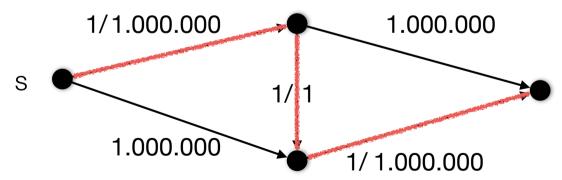
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



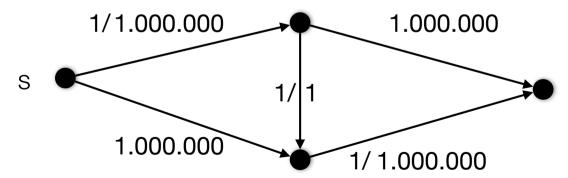
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



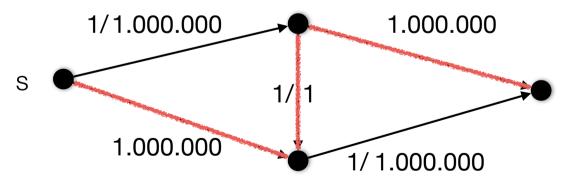
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



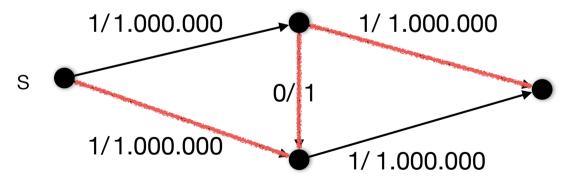
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



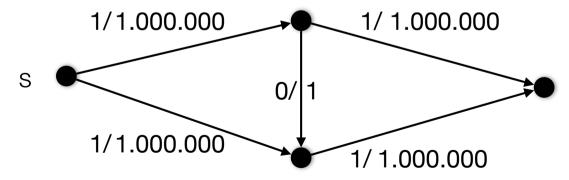
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



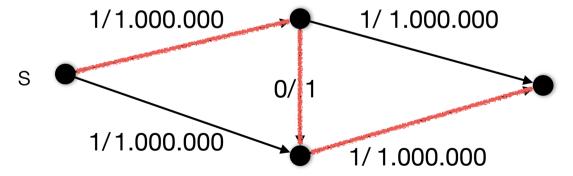
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



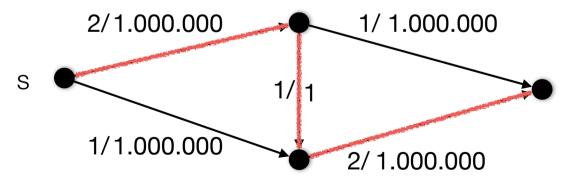
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



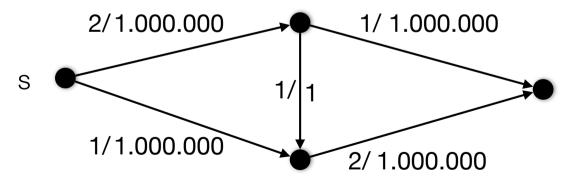
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



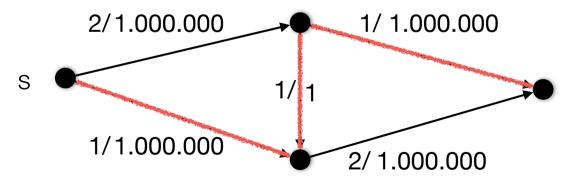
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



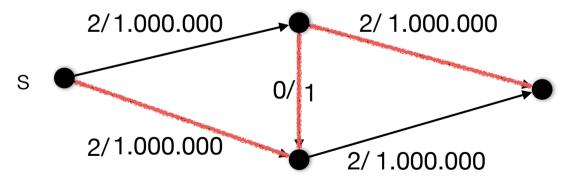
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



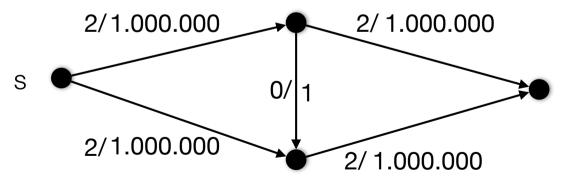
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



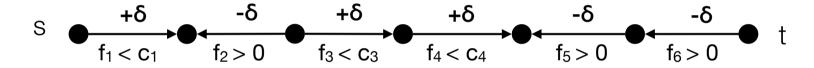
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



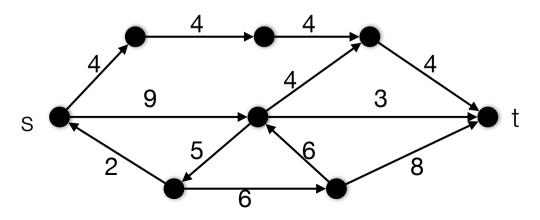
- Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

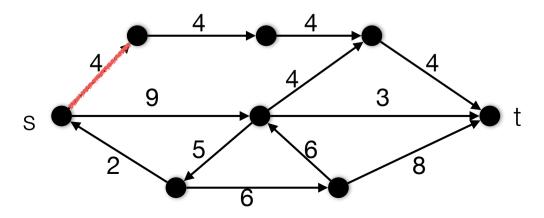


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



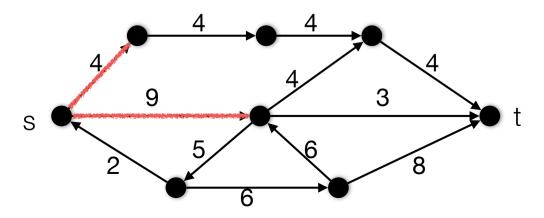
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: $min(c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6) = \delta$
- To find augmenting path use *BFS*:



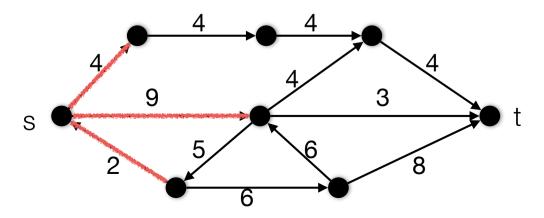
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: $min(c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6) = \delta$
- To find augmenting path use *BFS*:



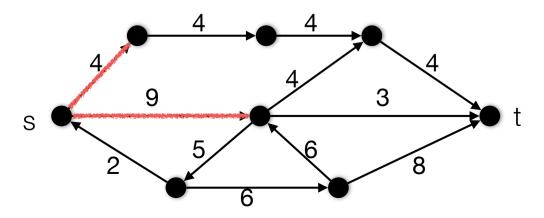
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: $min(c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6) = \delta$
- To find augmenting path use *BFS*:

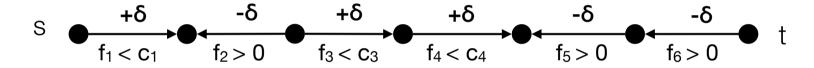


- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

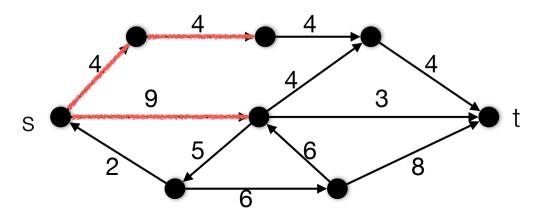
- Can add extra flow: $min(c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6) = \delta$
- To find augmenting path use *BFS*:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

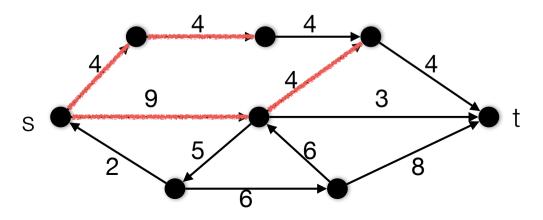


- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ
- To find augmenting path use *BFS*:



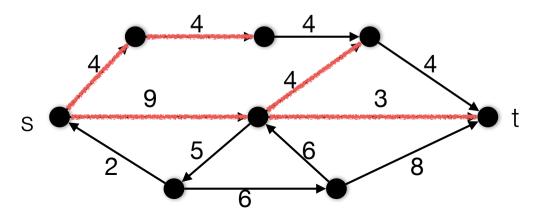
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: $min(c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6) = \delta$
- To find augmenting path use *BFS*:



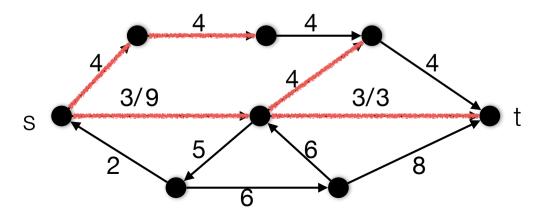
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:

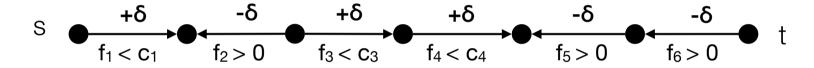


- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

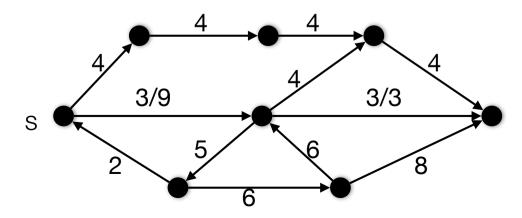
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



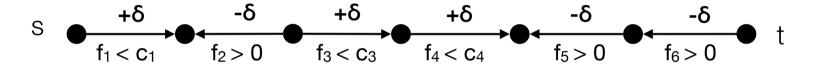
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



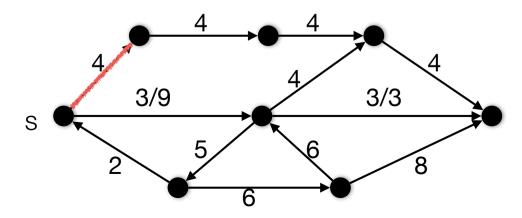
- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ
- To find augmenting path use *BFS*:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

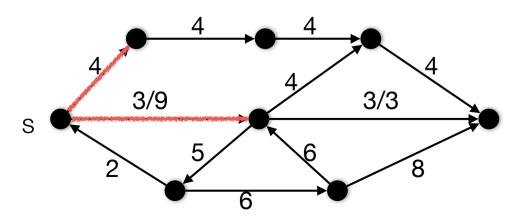


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:

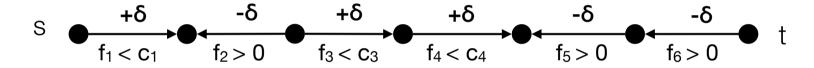


- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

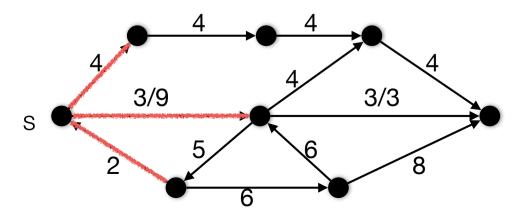
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

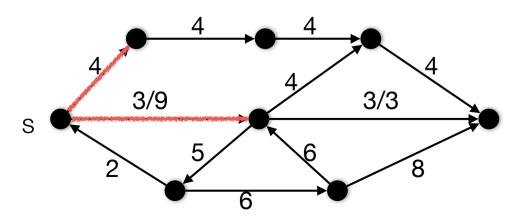


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:

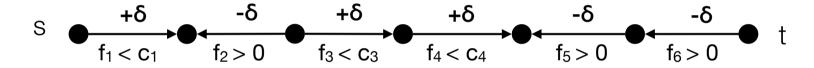


- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

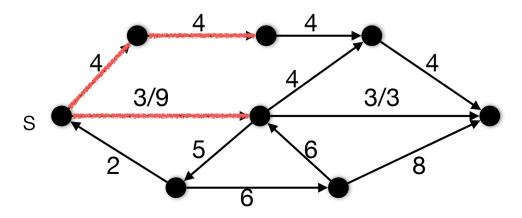
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

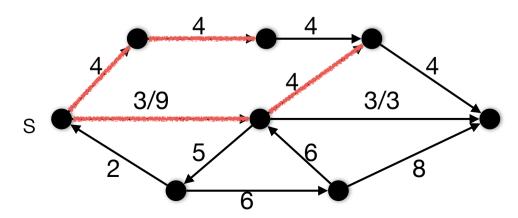


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



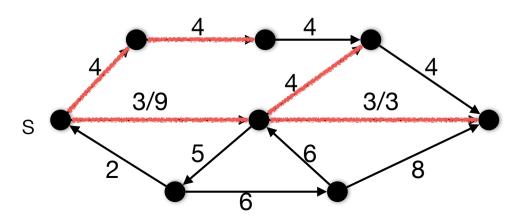
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



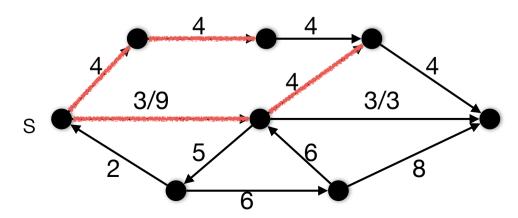
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:

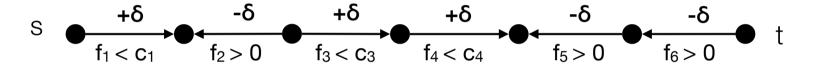


- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

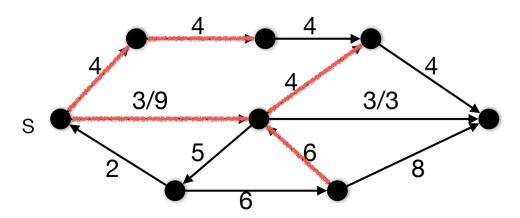
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

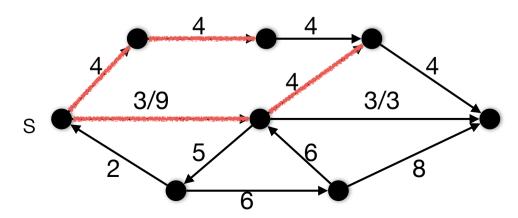


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



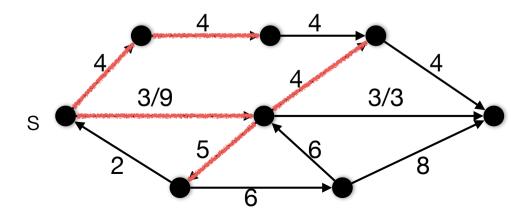
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



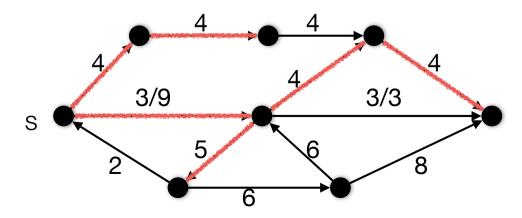
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: $min(c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6) = \delta$
- To find augmenting path use *BFS*:

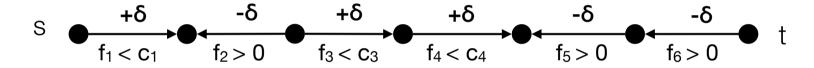


- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

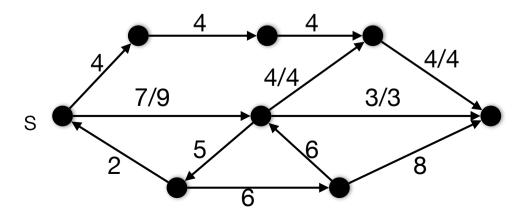
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



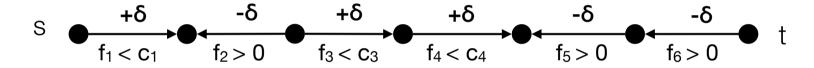
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



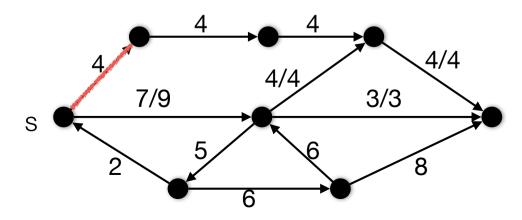
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



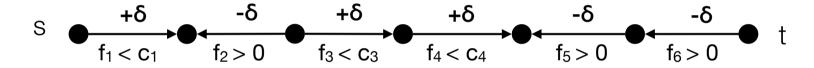
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



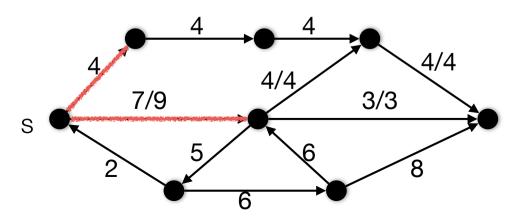
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



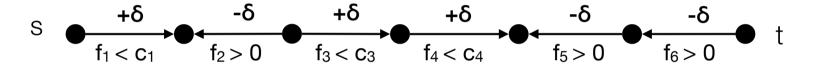
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



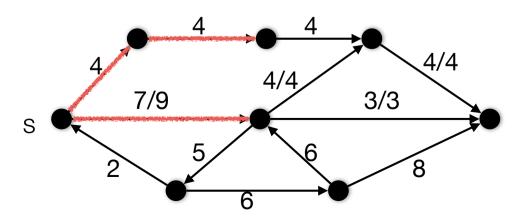
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

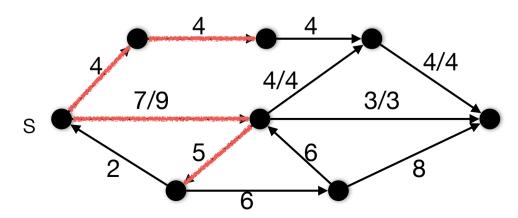


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:

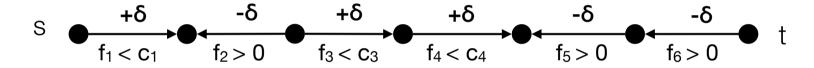


- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

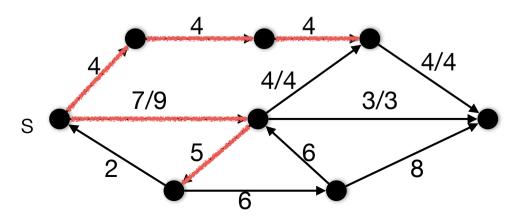
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



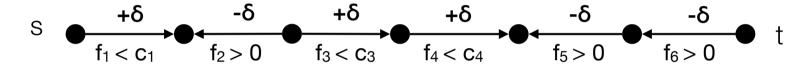
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



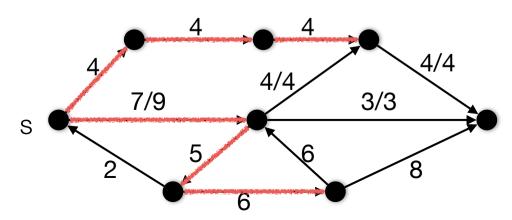
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

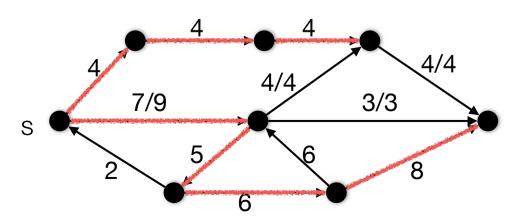


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:

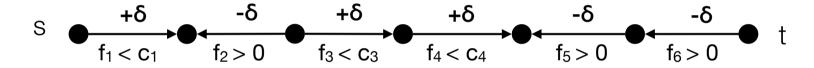


- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

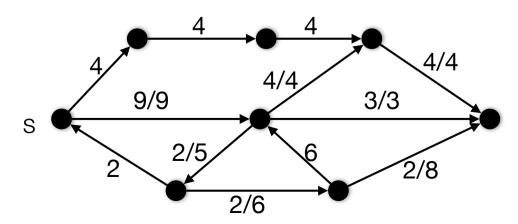
- Can add extra flow: $min(c_1 f_1, f_2, c_3 f_3, c_4 f_4, f_5, f_6) = \delta$
- To find augmenting path use *BFS*:



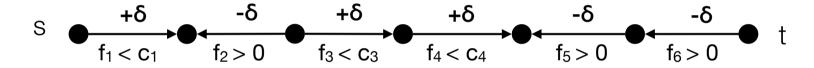
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



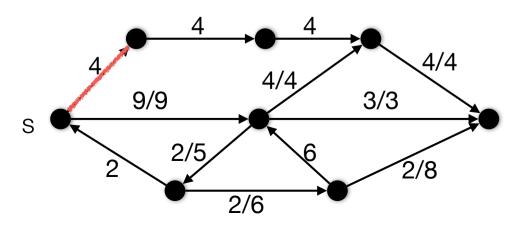
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

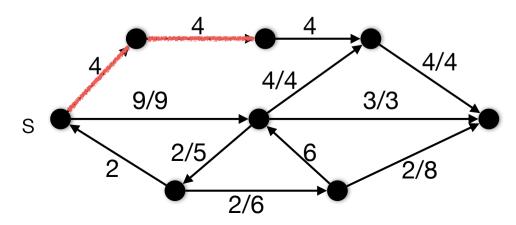


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:

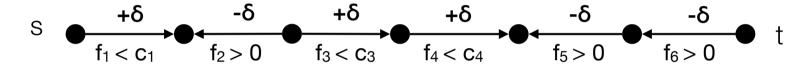


- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

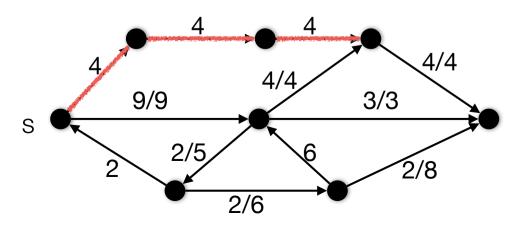
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



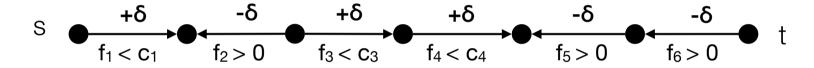
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



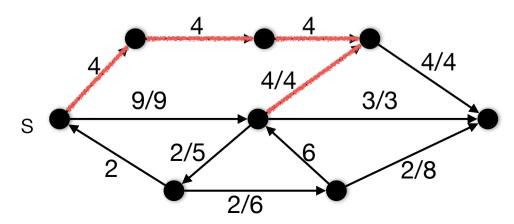
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



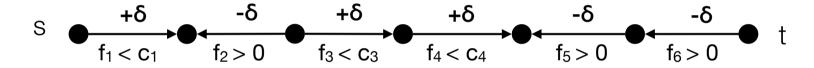
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow



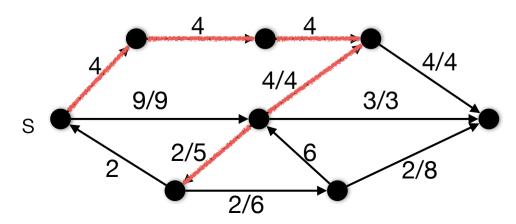
- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ
- To find augmenting path use BFS:



- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

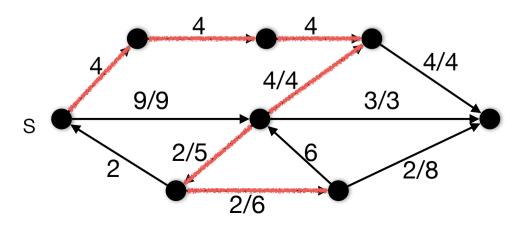


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



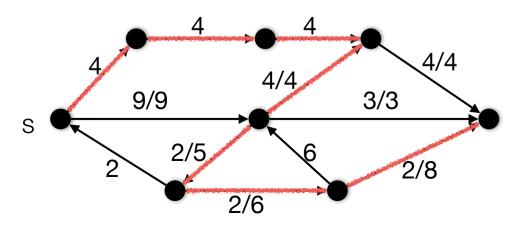
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



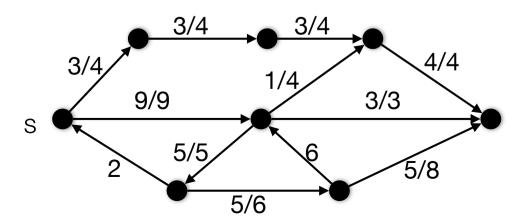
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



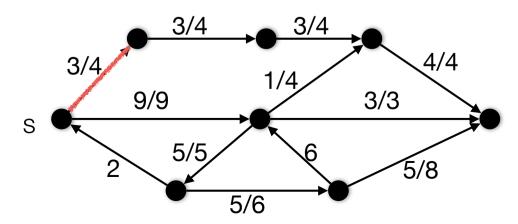
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



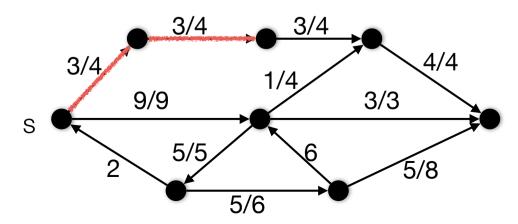
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:



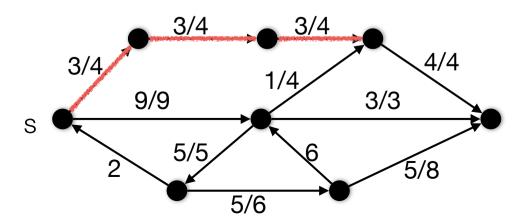
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



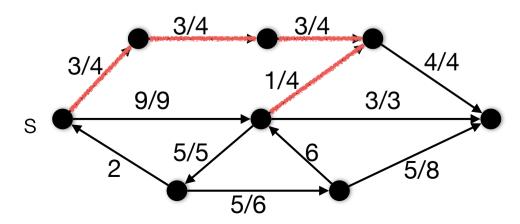
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

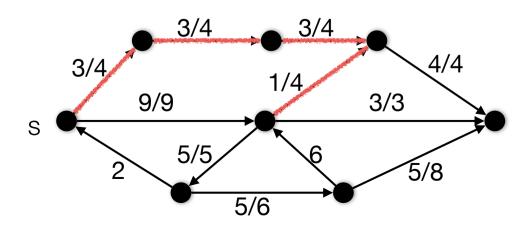
- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:



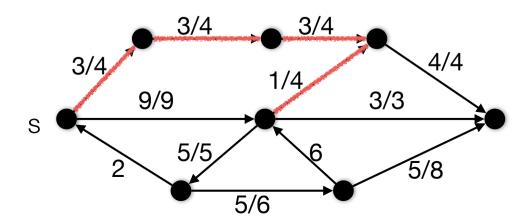
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - forward edges have leftover capacity
 - backwards edges have positive flow

- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use *BFS*:

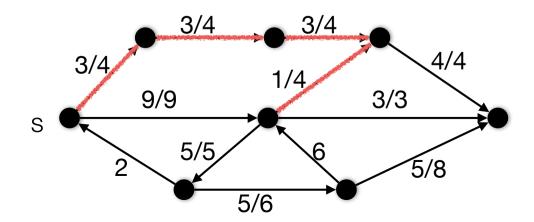




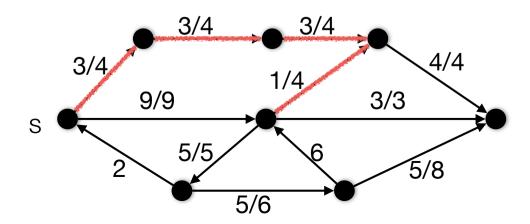
• When there are no more augmenting s-t paths:



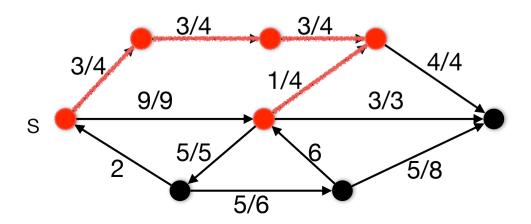
- When there are no more augmenting s-t paths:
- Find all augmenting paths from s.



- When there are no more augmenting s-t paths:
- Find all augmenting paths from s.
- The nodes S that can be reached by these augmenting paths form the left side of a minimum cut.

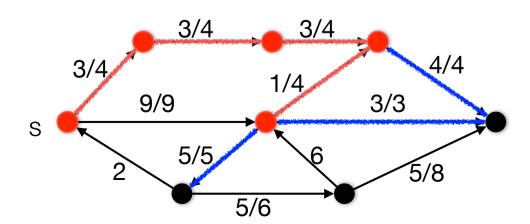


- When there are no more augmenting s-t paths:
- Find all augmenting paths from s.
- The nodes S that can be reached by these augmenting paths form the left side of a minimum cut.



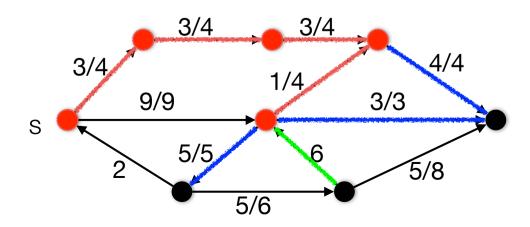
Find a minimum cut

- When there are no more augmenting s-t paths:
- Find all augmenting paths from s.
- The nodes S that can be reached by these augmenting paths form the left side of a minimum cut.
 - edges out of S have c_e = f_e.



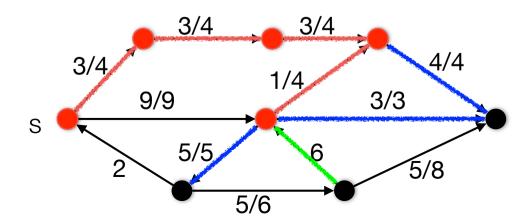
Find a minimum cut

- When there are no more augmenting s-t paths:
- Find all augmenting paths from s.
- The nodes S that can be reached by these augmenting paths form the left side of a minimum cut.
 - edges out of S have c_e = f_e.
 - edges into S have f_e = 0.



Find a minimum cut

- When there are no more augmenting s-t paths:
- Find all augmenting paths from s.
- The nodes S that can be reached by these augmenting paths form the left side of a minimum cut.
 - edges out of S have c_e = f_e.
 - edges into S have f_e = 0.
 - Capacity of the cut equals the flow.

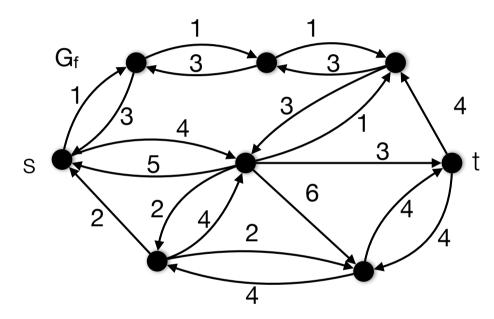


• Scaling parameter Δ

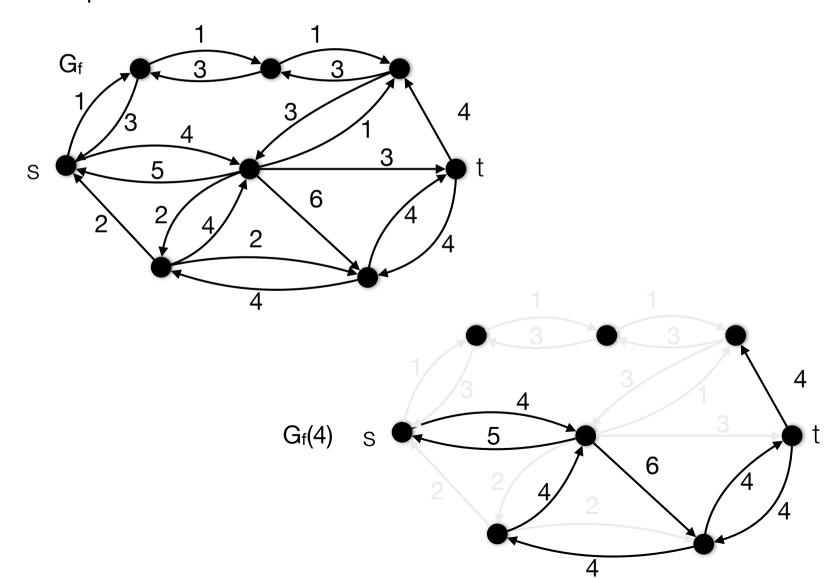
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Example: $\Delta = 4$

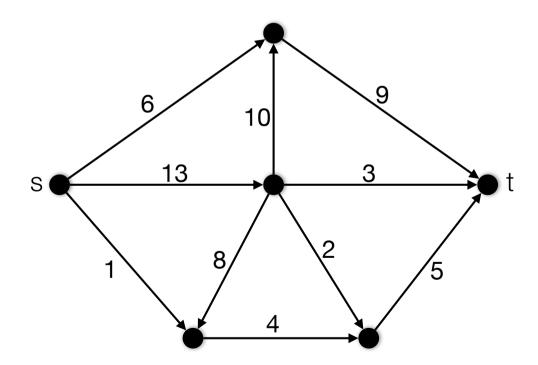
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Example: $\Delta = 4$



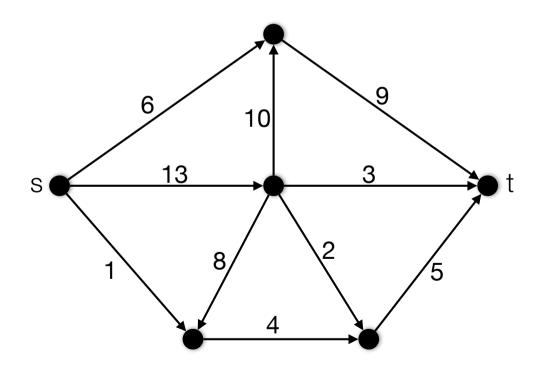
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Example: $\Delta = 4$



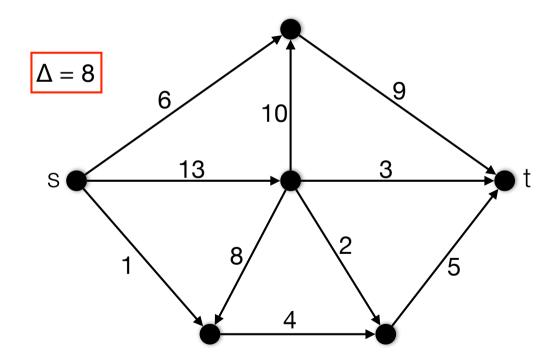
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.



- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"



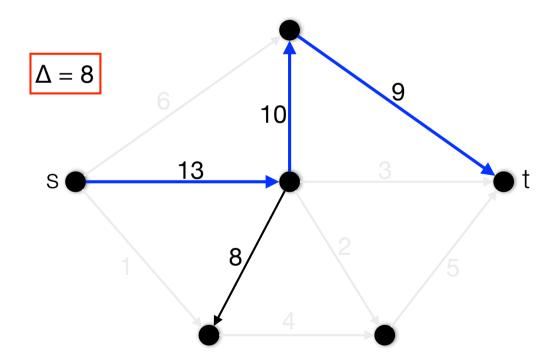
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"



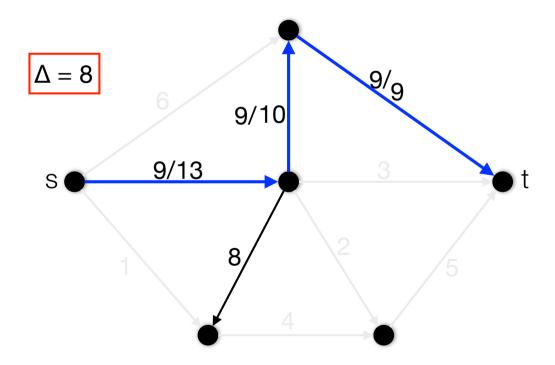
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"



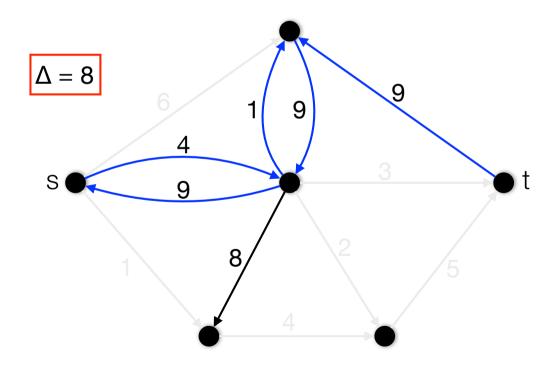
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"



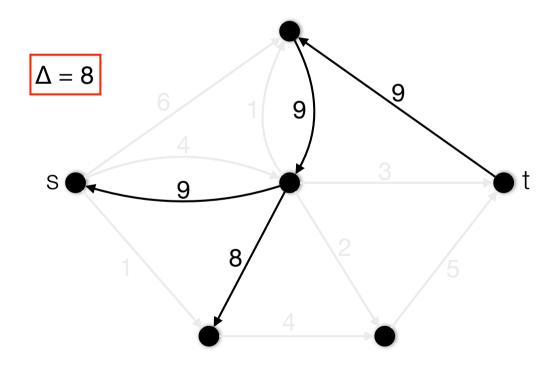
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"



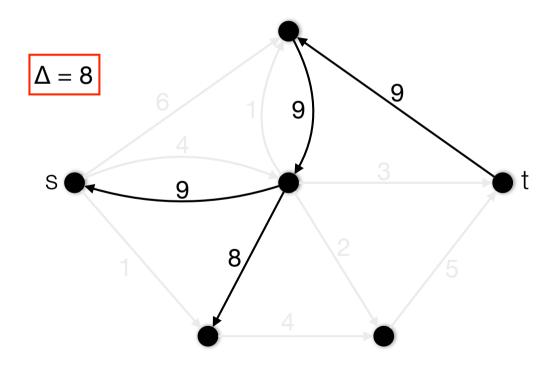
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"



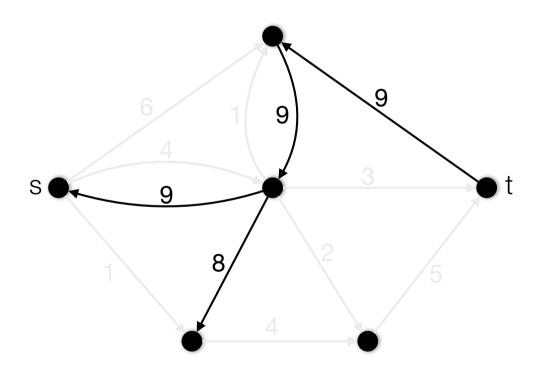
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"



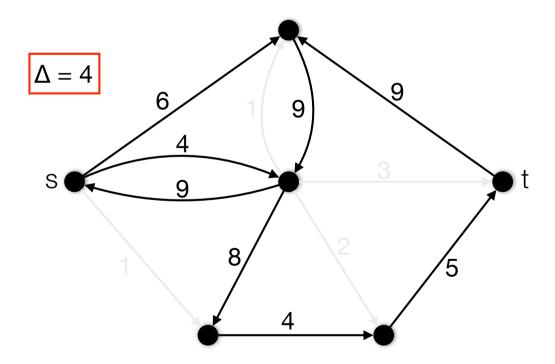
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



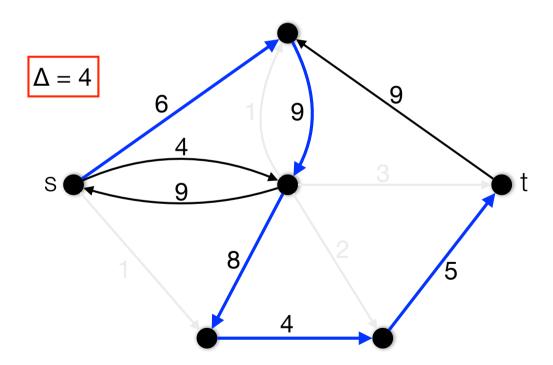
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



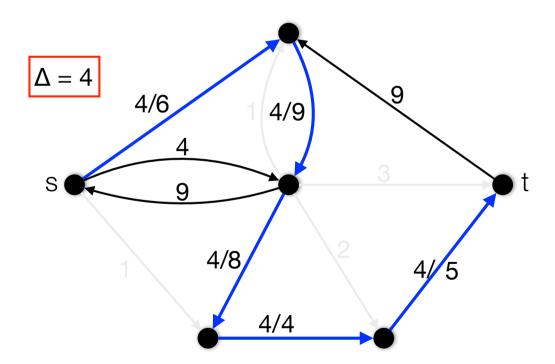
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



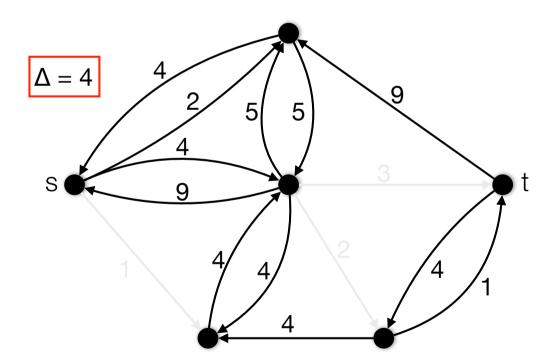
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



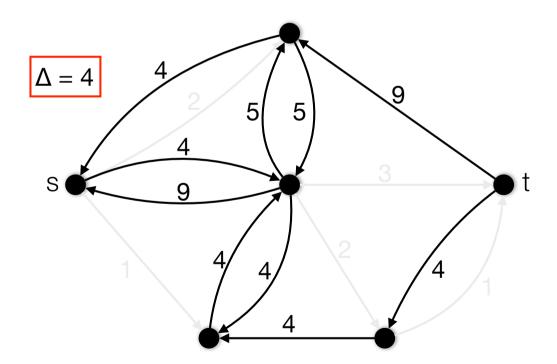
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



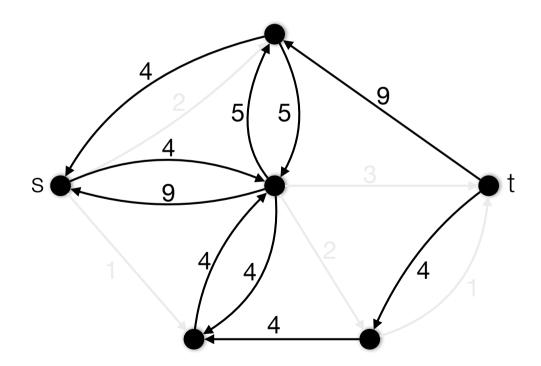
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



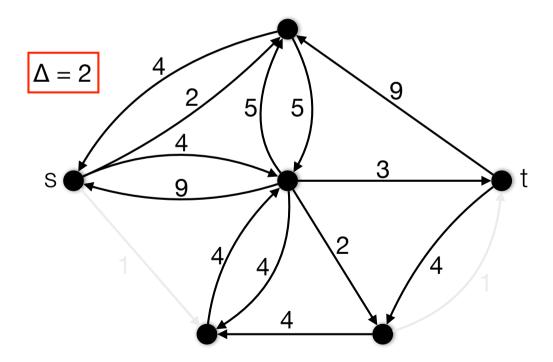
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



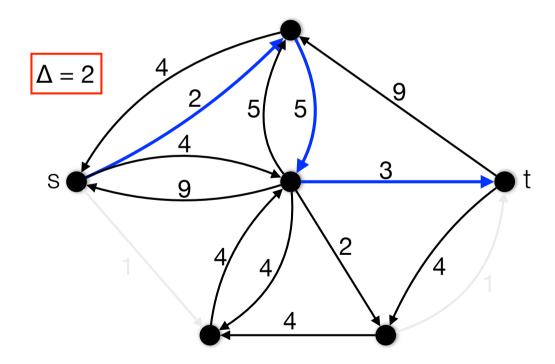
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



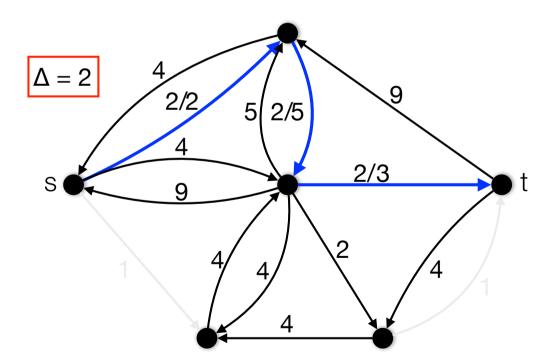
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



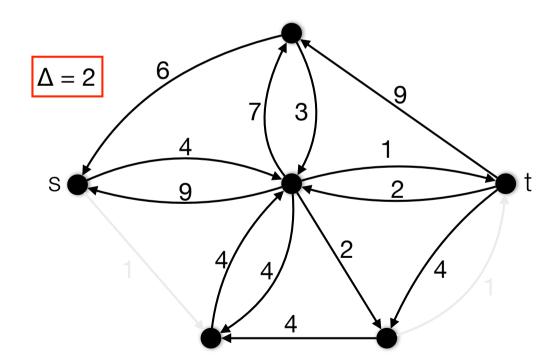
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



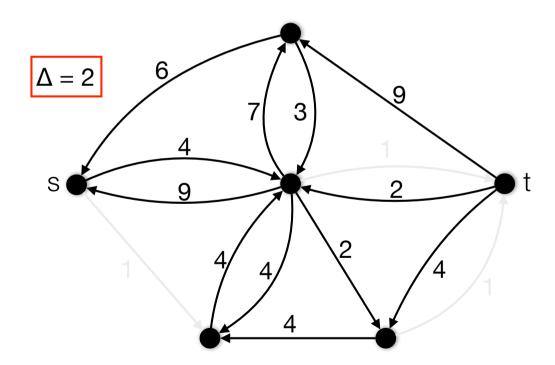
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



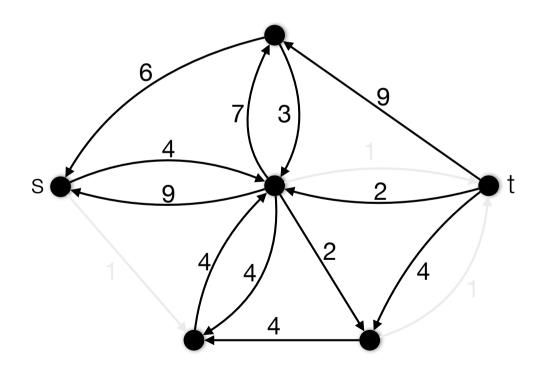
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



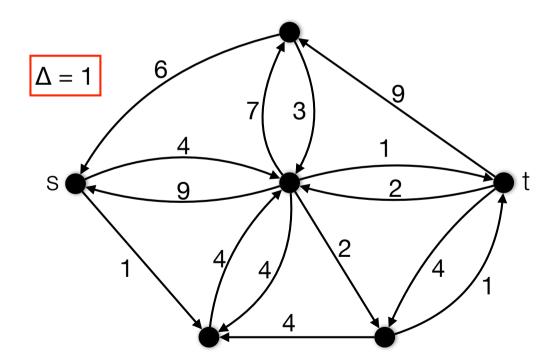
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



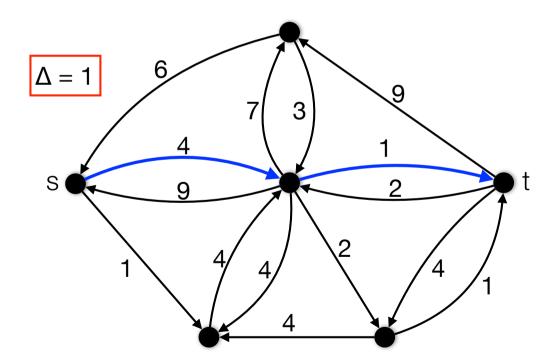
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



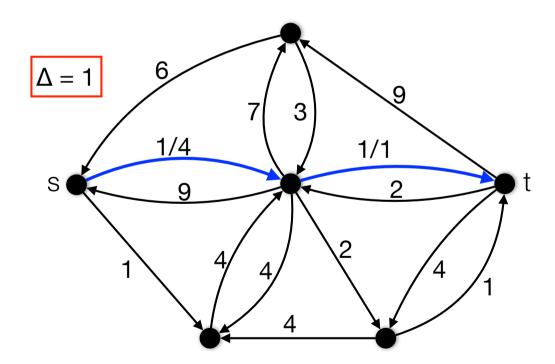
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



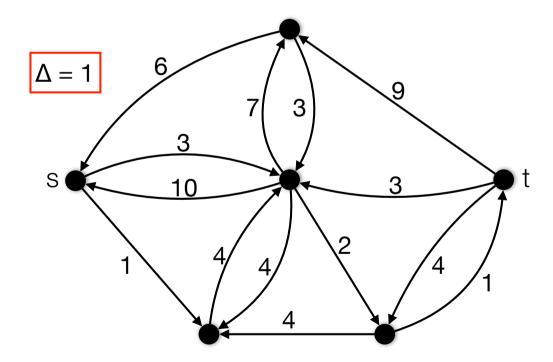
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



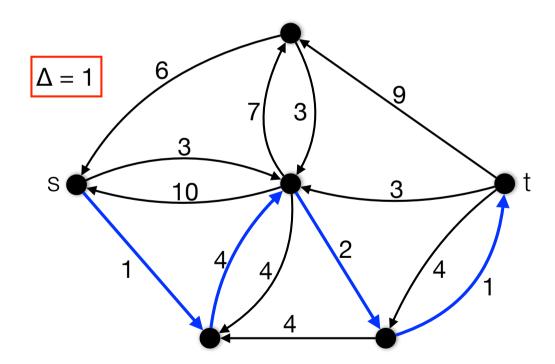
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



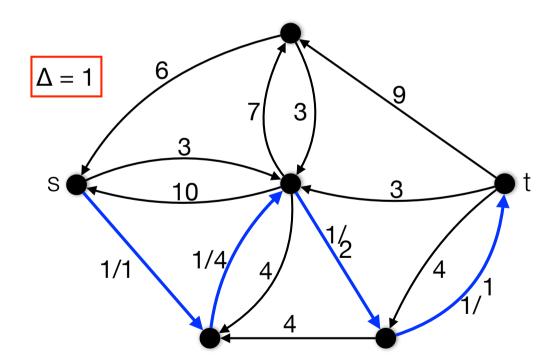
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



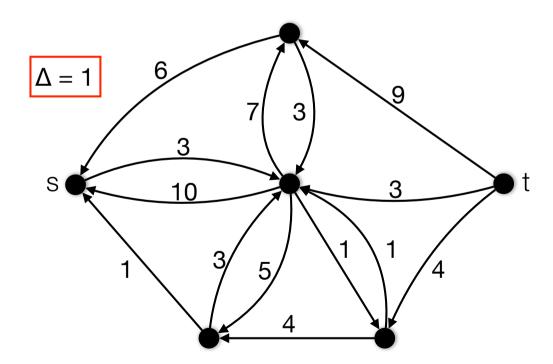
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



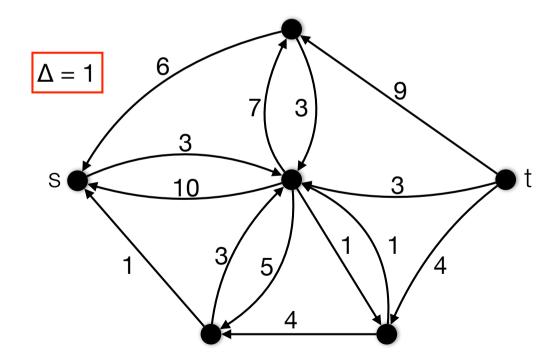
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).



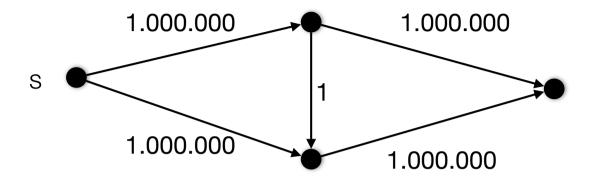
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

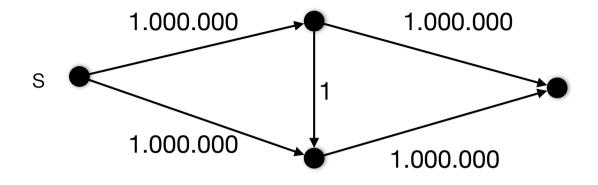


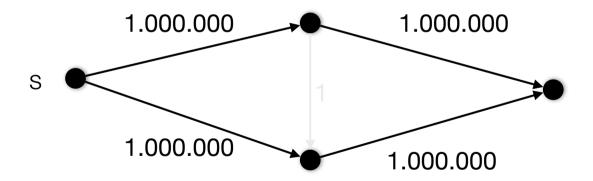
- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

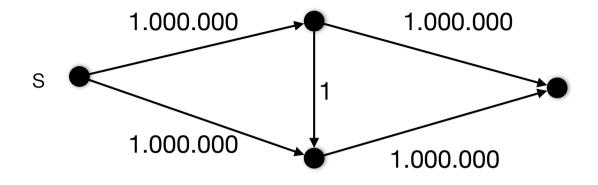


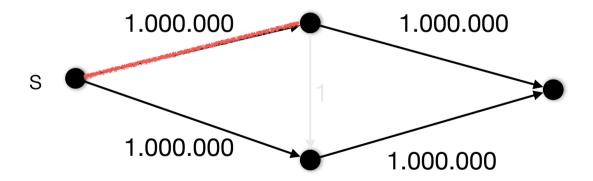
Stop when no more augmenting paths in G_f(1).

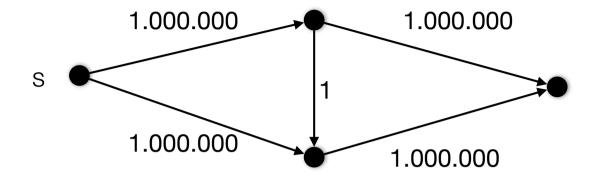


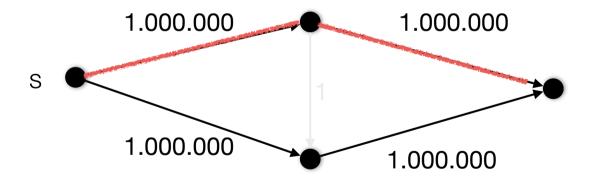


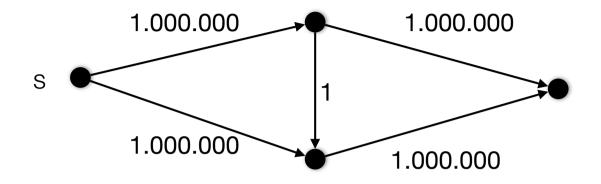


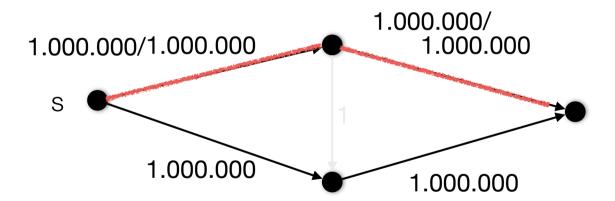


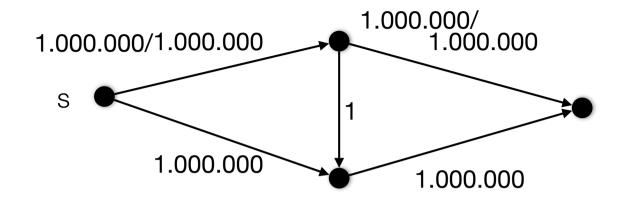


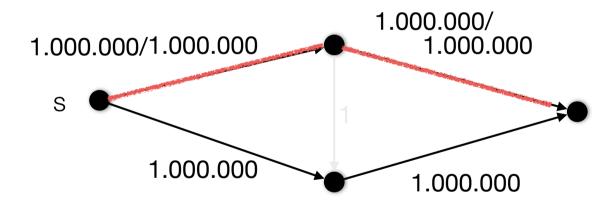


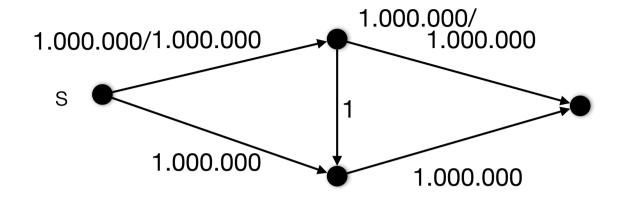


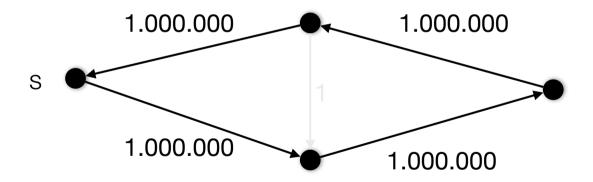


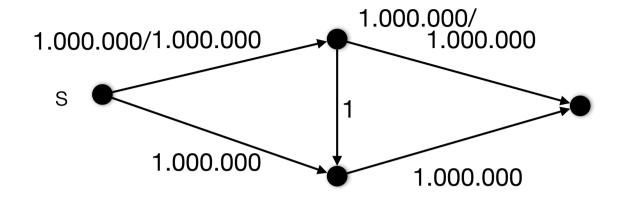


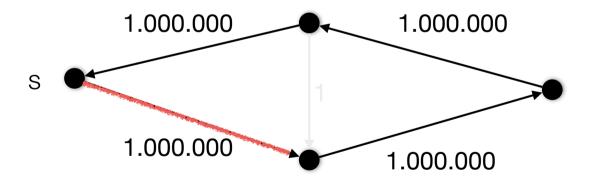


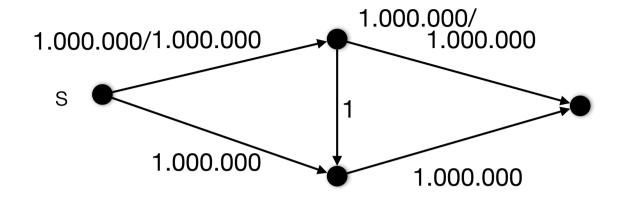


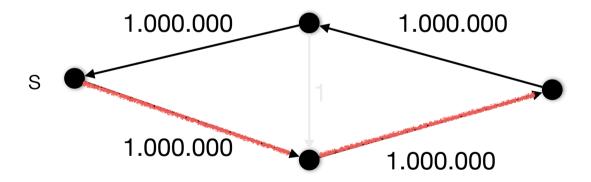


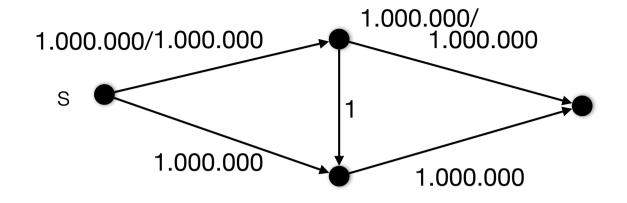


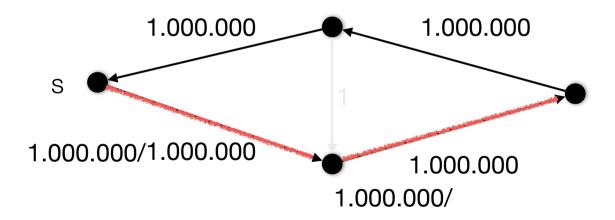


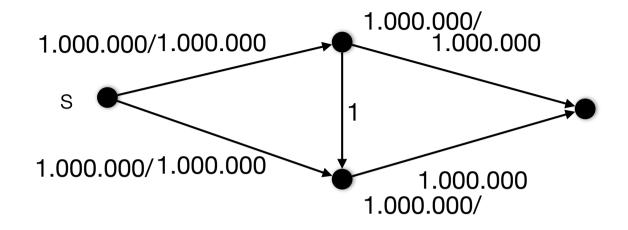


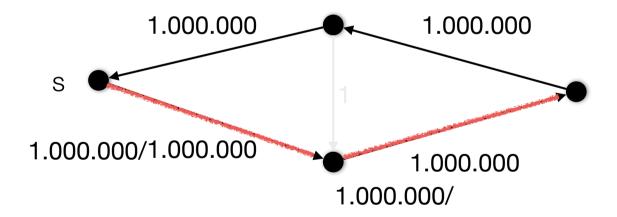


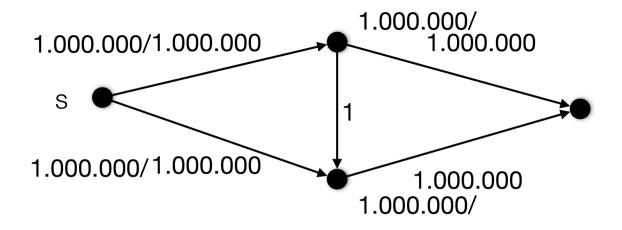


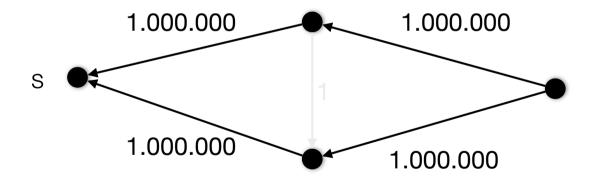


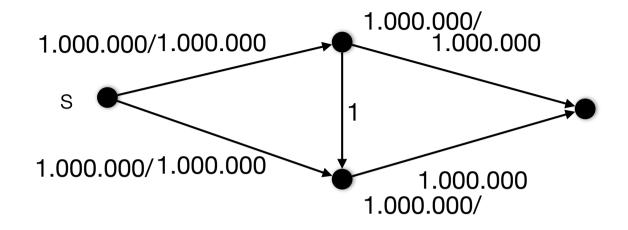


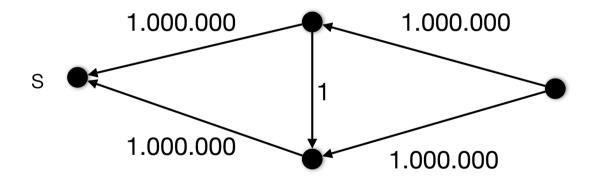






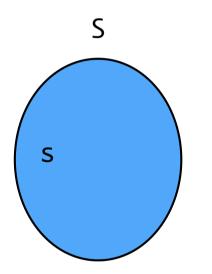


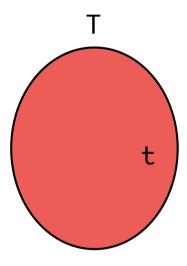




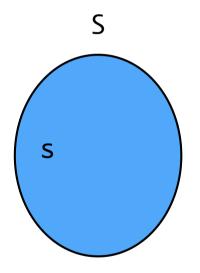
- Running time: O(m² log C), where C is the largest capacity out of s.
- Lemma 1. Number of scaling phases: 1 + ⌈log C⌉
- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- Lemma 3. The number of augmentations in a scaling phase is at most 2m.
 - First phase: can use each edge out of s in at most one augmenting path.
 - f flow at the end of previous phase.
 - Used $\Delta' = 2\Delta$ in last round.
 - Lemma 2: $v(f^*) \le v(f) + m\Delta' = v(f) + 2m\Delta$.
 - "Leftover flow" to be found ≤ 2mΔ.
 - Each agumentation in a Δ -scaling phase augments flow with at least Δ .

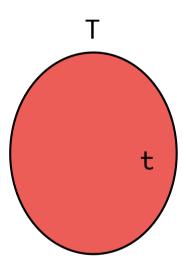
• Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.



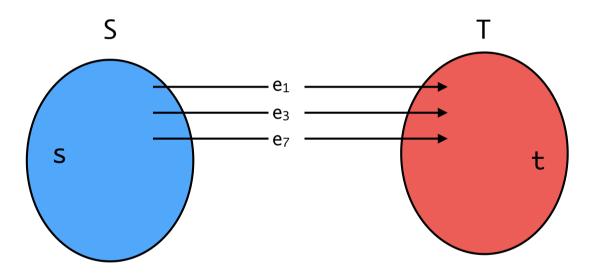


- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.

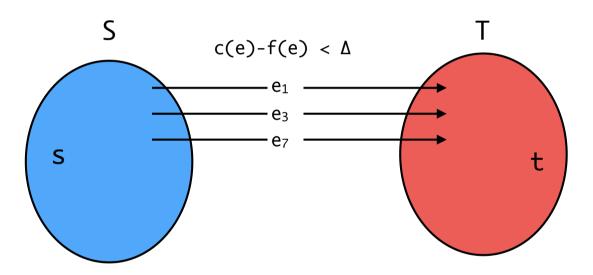




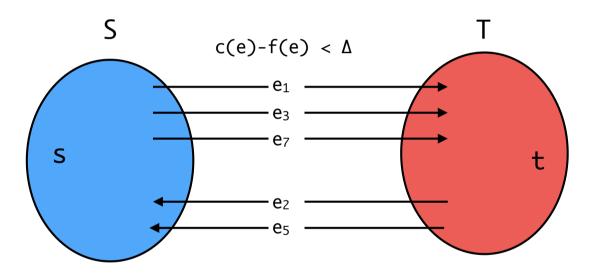
- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.



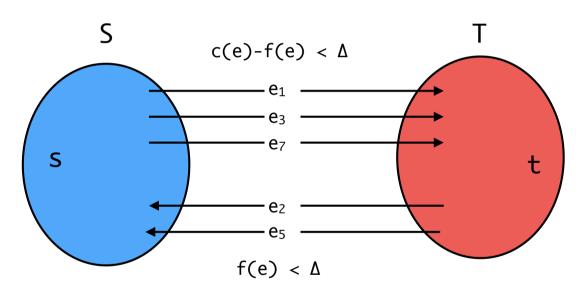
- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.



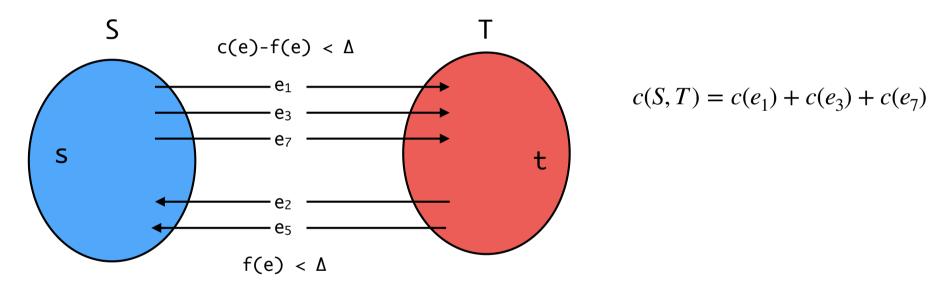
- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.



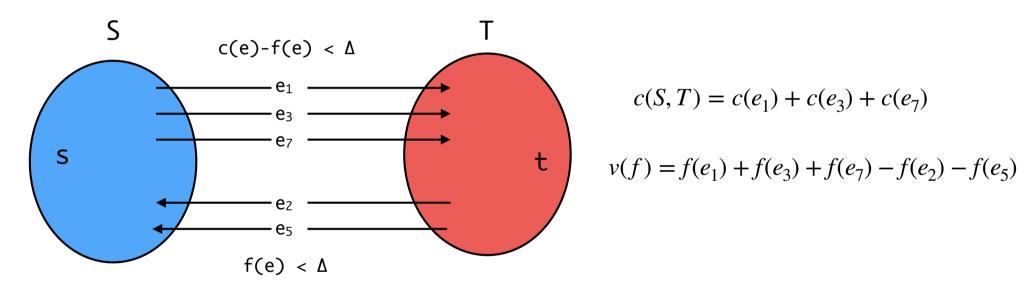
- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.



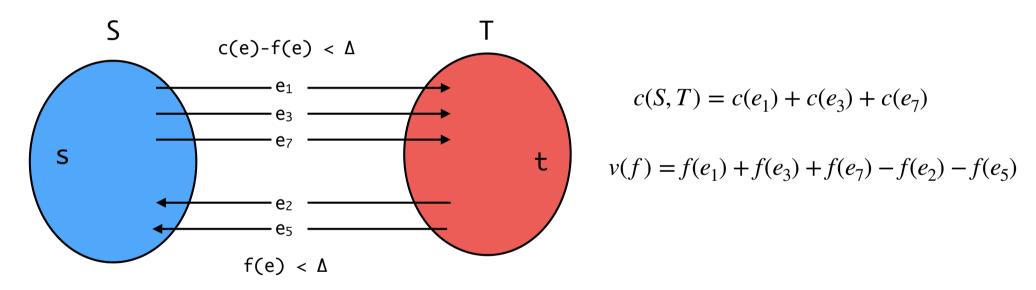
- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.



- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.

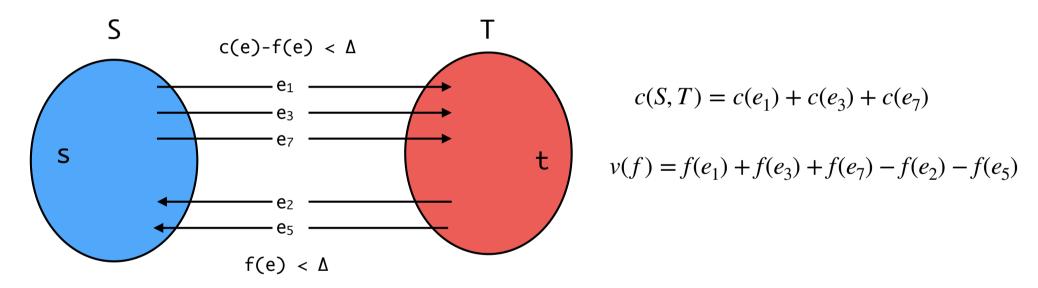


- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.



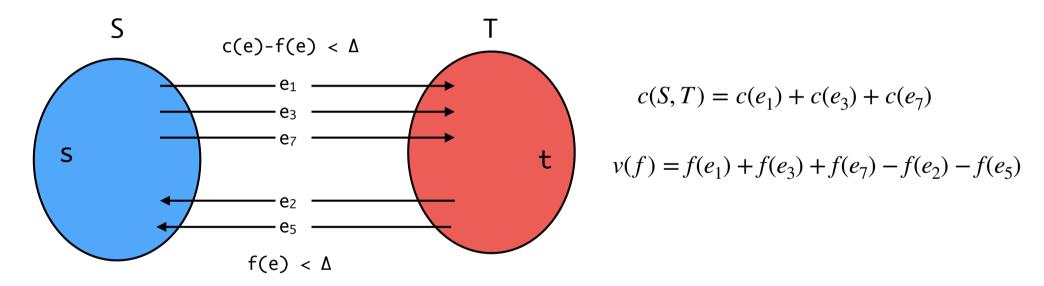
$$c(S,T) - v(f) = c(e_1) + c(e_3) + c(e_7) - f(e_1) - f(e_3) - f(e_7) + f(e_7) + f(e_5)$$

- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.



$$c(S,T) - v(f) = c(e_1) + c(e_3) + c(e_7) - f(e_1) - f(e_3) - f(e_7) + f(e_2) + f(e_5)$$
$$= c(e_1) - f(e_1) + c(e_3) - f(e_3) + c(e_7) - f(e_7) + f(e_2) + f(e_5)$$

- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.



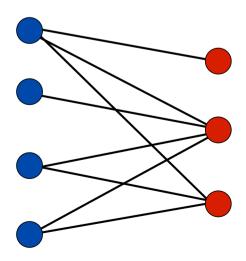
$$\begin{split} c(S,T) - v(f) &= c(e_1) + c(e_3) + c(e_7) - f(e_1) - f(e_3) - f(e_7) + f(e_2) + f(e_5) \\ &= c(e_1) - f(e_1) + c(e_3) - f(e_3) + c(e_7) - f(e_7) + f(e_2) + f(e_5) \\ &\leq \Delta + \Delta + \Delta + \Delta + \Delta + \Delta = 5\Delta \end{split}$$

Maximum flow algorithms

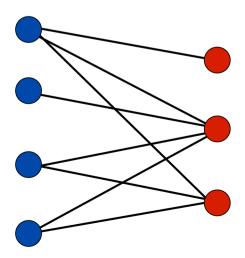
- Edmonds-Karp: O(m²n)
- Scaling: O(m² log C)
- Ford-Fulkerson O(m v(f)).
- Preflow-push O(n³)
- Other algorithms: O(mn log n) or O(min(n^{2/3}, m^{1/2})m log n log U).

• Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.

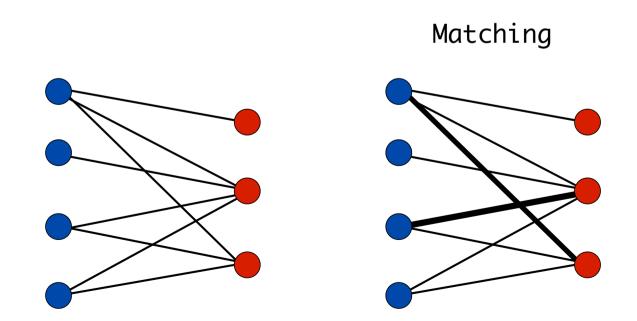
• Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.



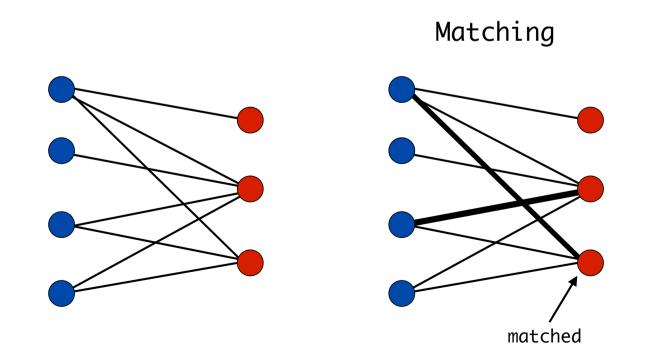
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.



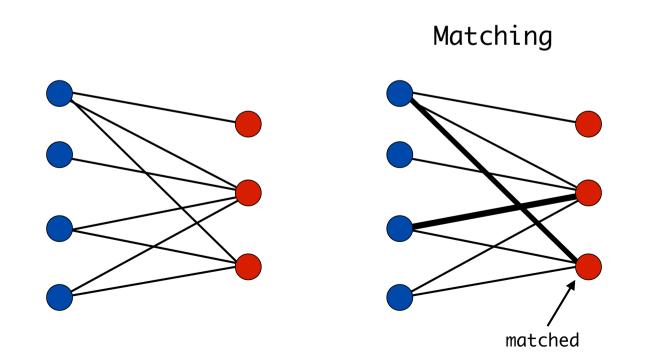
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.



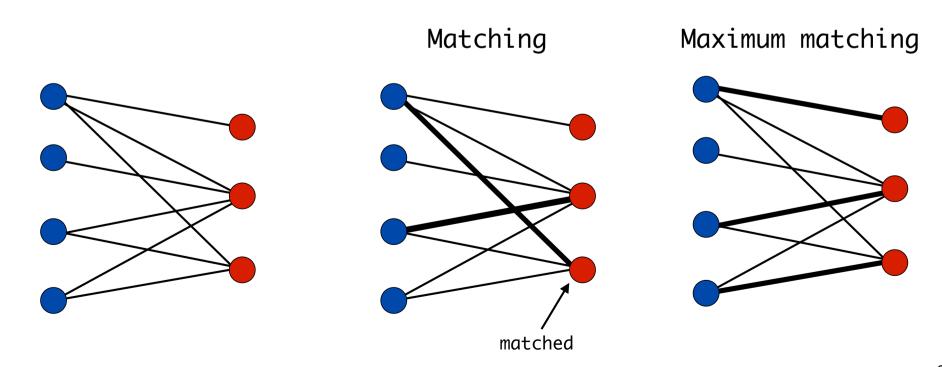
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.



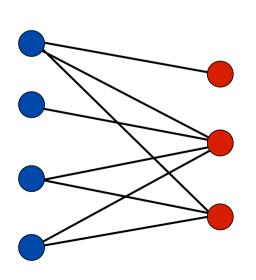
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.

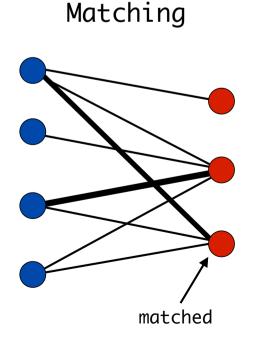


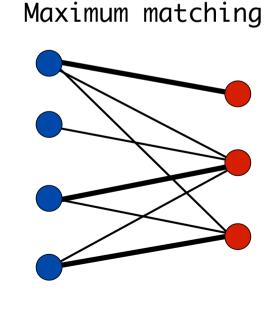
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.



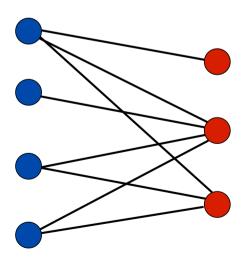
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- · Applications:
 - planes to routes
 - jobs to workers/machines



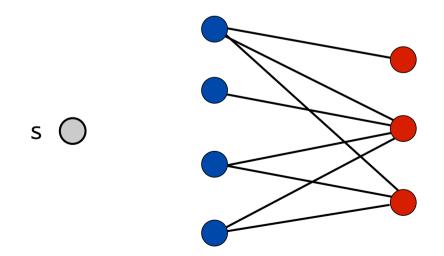




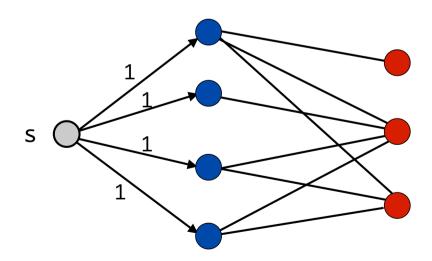
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:



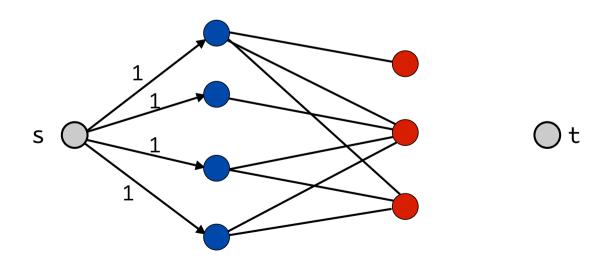
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:



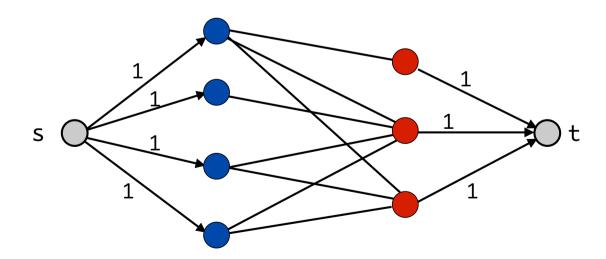
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:



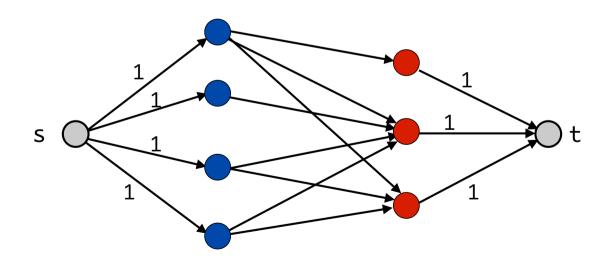
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:



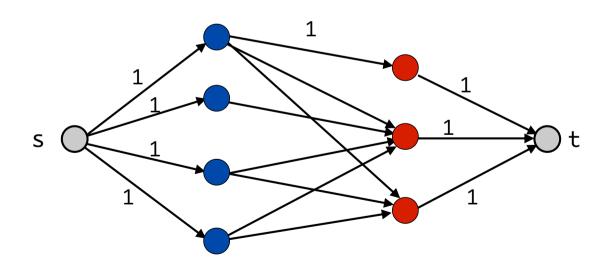
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:



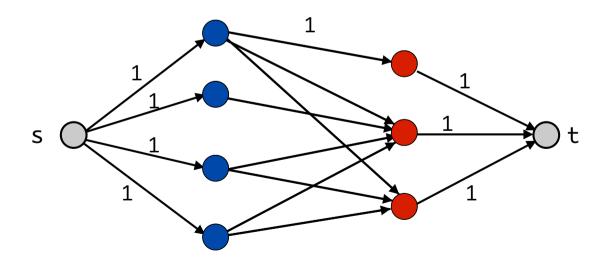
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:



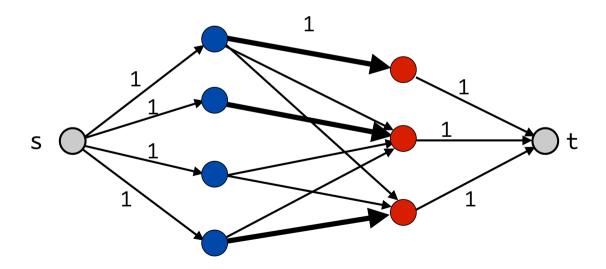
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:



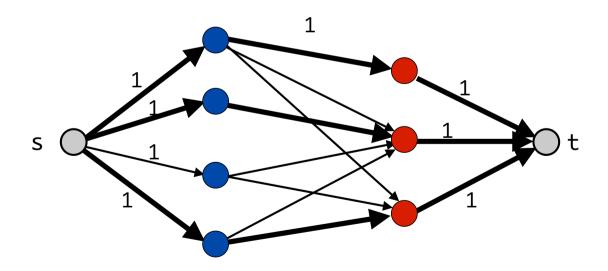
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
 - Matching M => flow of value |M|



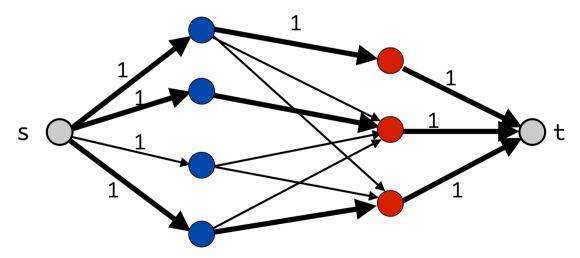
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
 - Matching M => flow of value |M|



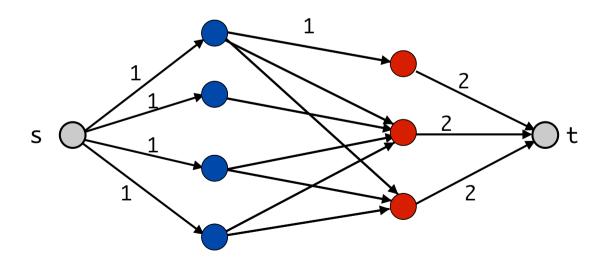
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
 - Matching M => flow of value |M|

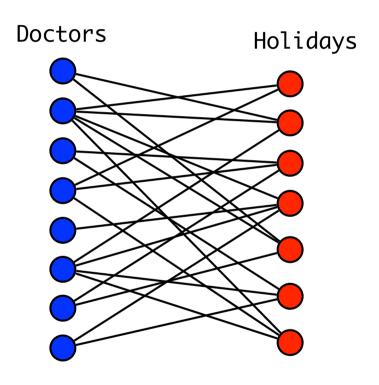


- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
 - Matching M => flow of value |M|
 - Flow of value v(f) => matching of size v(f)

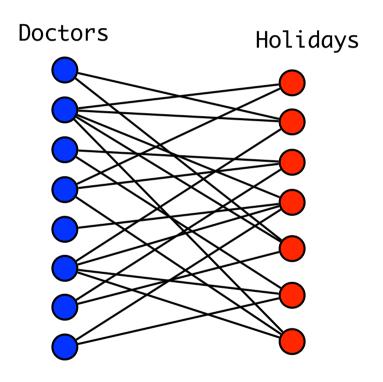


- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- Maximum matching: matching of maximum cardinality.
- Solve via flow:
- Can generalize to general matchings

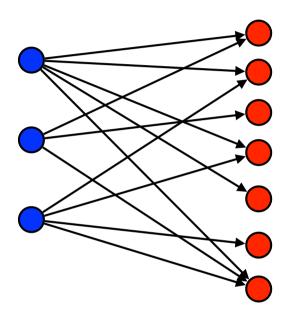


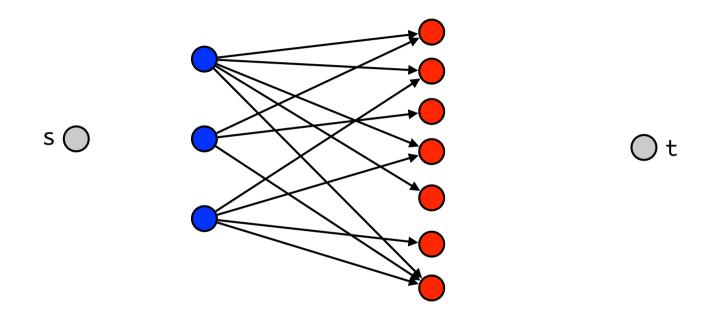


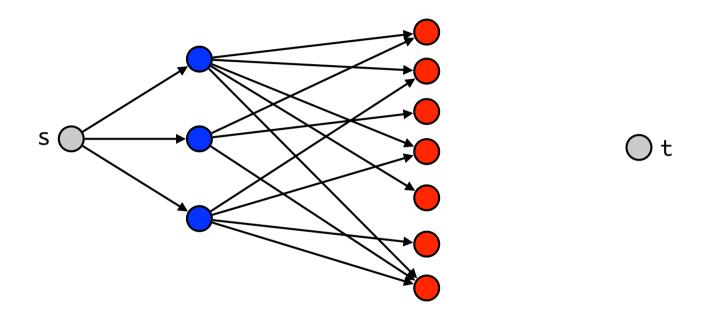
• X doctors, Y holidays, each doctor should work at at most 1 holiday, each doctor is available at some of the holidays.

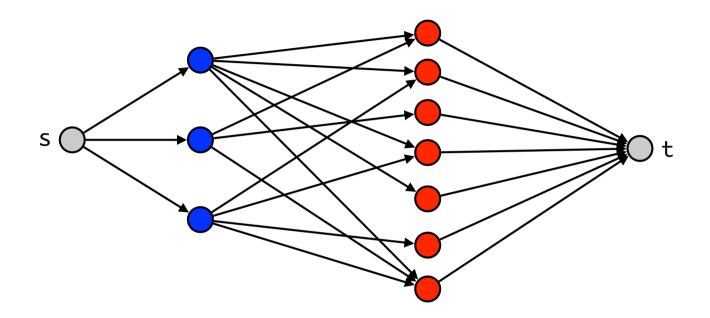


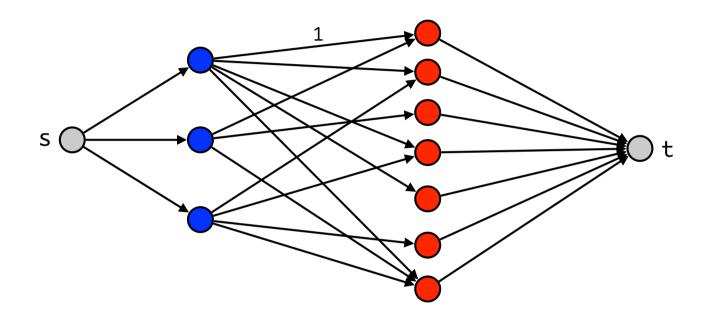
Same problem, but each doctor should work at most c holidays?

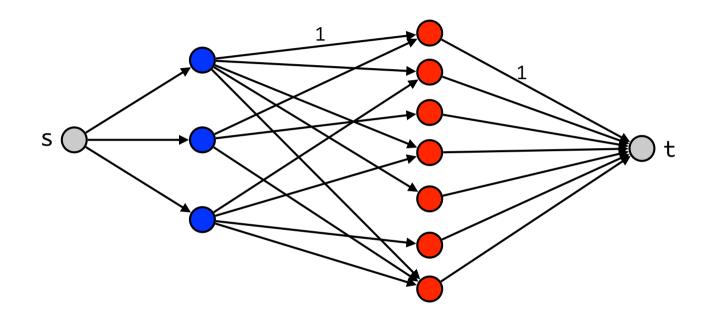


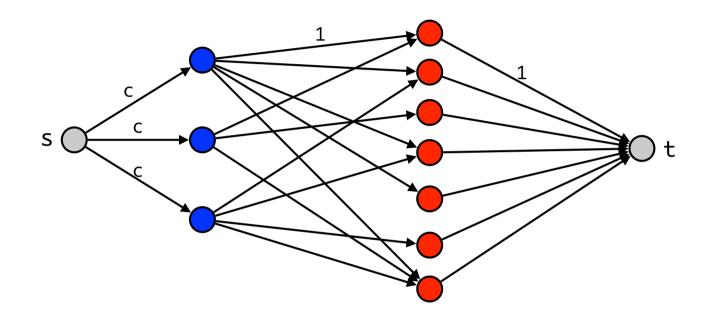




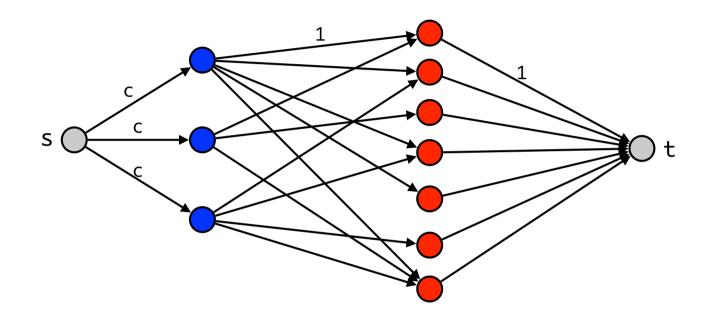






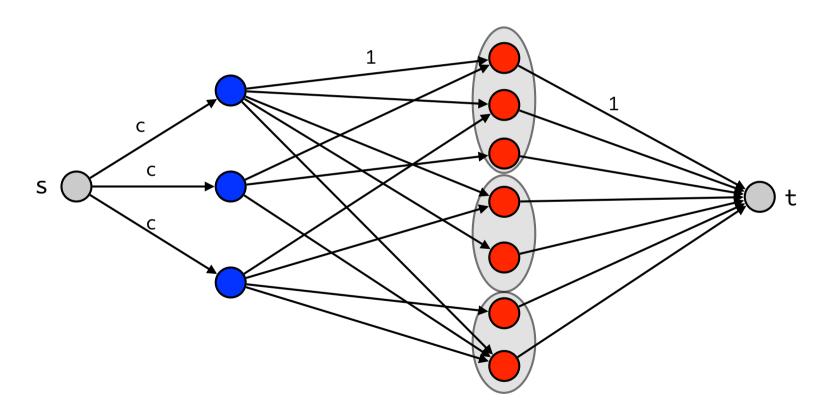


• X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.

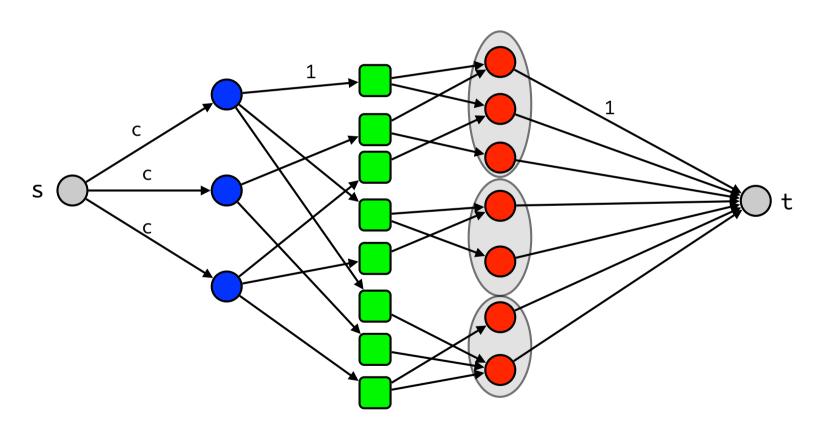


 Same problem, but each doctor should work at most one day in each vacation period?

- X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.
- Same problem, but each doctor should work at most one day in each vacation period?

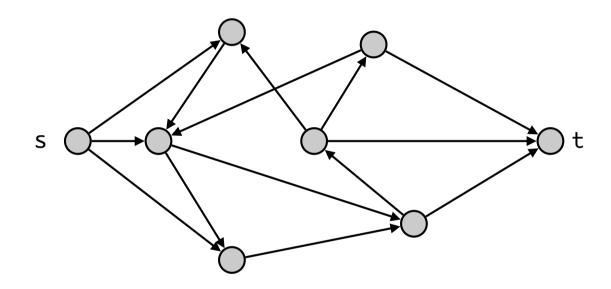


- X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.
- Same problem, but each doctor should work at most one day in each vacation period?



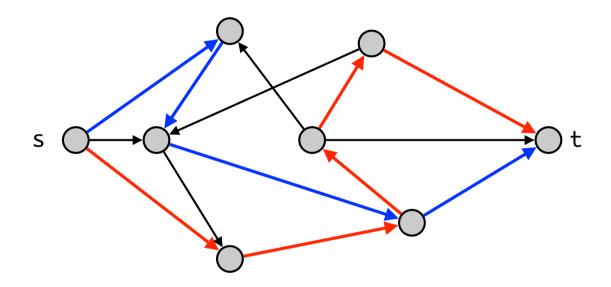
Edge Disjoint paths

- Problem: Find maximum number of edge-disjoint paths from s to t.
- Two paths are edge-disjoint if they have no edge in common.



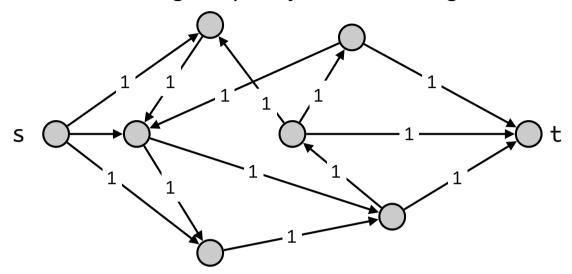
Edge Disjoint paths

- Edge-disjoint path problem. Find the maximum number of edge-disjoint paths from s to t.
- Two paths are edge-disjoint if they have no edge in common.



Edge Disjoint Paths

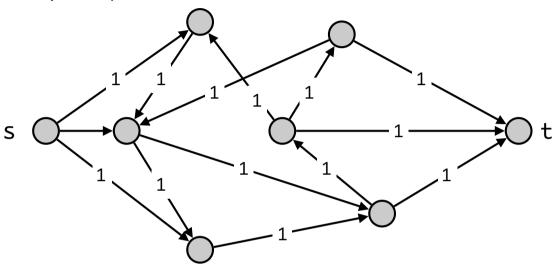
• Reduction to max flow: assign capacity 1 to each edge.



- Thm. Max number of edge-disjoint s-t paths is equal to the value of a maximum flow.
 - Suppose there are k edge-disjoint paths: then there is a flow of k (let all edges on the paths have flow 1).
 - Other way (graph theory course).
- Ford-Fulkerson: $v(f) \le n$ (no multiple edges and therefore at most n edges out of s) => running time O(nm).

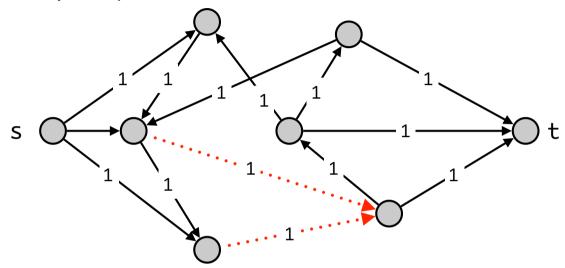
Network Connectivity

• Network connectivity. Find minimum number of paths whose removal disconnects t from s (destroys all s-t paths).



Network Connectivity

 Network connectivity. Find minimum number of paths whose removal disconnects t from s (destroys all s-t paths).



- Set all capacities to 1 and find minimum cut.
- Thm. (Menger) The maximum number of edge-disjoint s-t paths is equal to the minimum number of edges whose removal disconnects t from s.

Node capacities

• Capacities on nodes.

