Network Flow II

Inge Li Gørtz

KT 7.3. 7.5. 7.6

Today

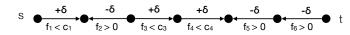
- Applications
- Finding good augmenting paths. Edmonds-Karp and scaling algorithm.

Network Flow

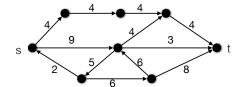
- Network flow:
 - graph G=(V,E).
 - · Special vertices s (source) and t (sink).
 - Every edge e has a capacity $c(e) \ge 0$.
 - · Flow:
 - capacity constraint: every edge e has a flow $0 \le f(e) \le c(e)$.
 - flow conservation: for all $u \neq s$, t: flow into u equals flow out of u.

$$\sum_{v:(v,u)\in E} f(v,u) = \sum_{v:(u,v)\in E} f(u,v)$$

· Value of flow f is the sum of flows out of s minus sum of flows into s:

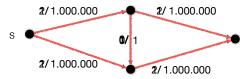

$$v(f) = \sum_{v:(s,v) \in E} f(e) - \sum_{v:(v,s) \in E} f(e) = f^{out}(s) - f^{in}(s)$$

· Maximum flow problem: find s-t flow of maximum value


.

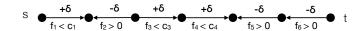
Ford-Fulkerson

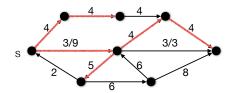
- Find (any) augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - · forward edges have leftover capacity
 - · backwards edges have positive flow



- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ
- · To find augmenting path use DFS or BFS:

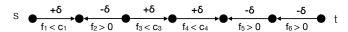
Ford-Fulkerson


- · Integral capacities:
 - Each augmenting path increases flow with at least 1.
 - At most v(f) iterations
 - Find augmenting path via DFS/BFS: O(m)
 - Total running time: O(v(f) m)
- Lemma. If all the capacities are integers, then there is a maximum flow where the flow on every edge is an integer.
- Bad example for Ford-Fulkerson:

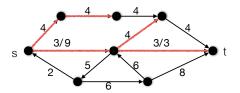

5

Edmonds-Karp

- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - · forward edges have leftover capacity
 - · backwards edges have positive flow



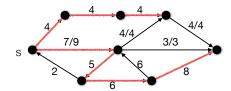
- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ
- To find augmenting path use BFS:



Edmonds-Karp

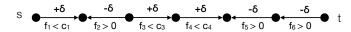
- Find shortest augmenting path and use it.
- · Augmenting path (definition different than in CLRS): s-t path where
 - · forward edges have leftover capacity
 - · backwards edges have positive flow


- Can add extra flow: min(c_1 f_1 , f_2 , c_3 f_3 , c_4 f_4 , f_5 , f_6) = δ
- To find augmenting path use BFS:

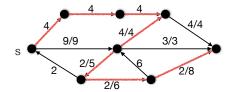

٠

Edmonds-Karp

- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - · forward edges have leftover capacity
 - · backwards edges have positive flow



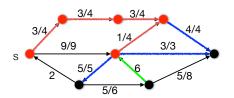
- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ
- To find augmenting path use BFS:



Edmonds-Karp

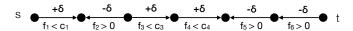
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - · forward edges have leftover capacity
 - · backwards edges have positive flow

- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ
- To find augmenting path use BFS:

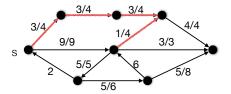


9

11

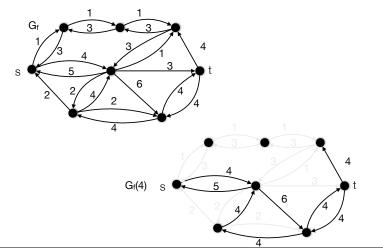

Find a minimum cut

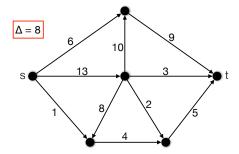
- When there are no more augmenting s-t paths:
- · Find all augmenting paths from s.
- The nodes S that can be reached by these augmenting paths form the left side of a minimum cut.
 - edges out of S have c_e = f_e.
 - edges into S have fe = 0.
 - · Capacity of the cut equals the flow.



Edmonds-Karp

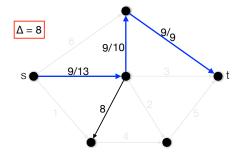
- Find shortest augmenting path and use it.
- Augmenting path (definition different than in CLRS): s-t path where
 - · forward edges have leftover capacity
 - · backwards edges have positive flow


- Can add extra flow: min(c₁ f₁, f₂, c₃ f₃, c₄ f₄, f₅, f₆) = δ
- To find augmenting path use BFS:

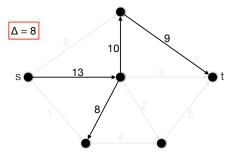

10

Scaling algorithm

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Example: $\Delta = 4$

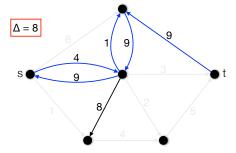

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"

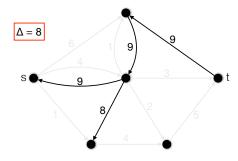
13


Scaling algorithm

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"

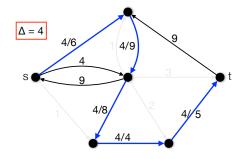
Scaling algorithm


- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"

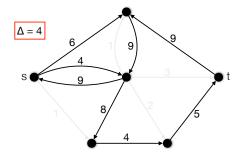

14

Scaling algorithm

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"

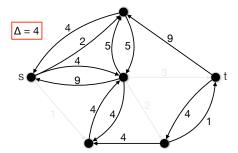

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

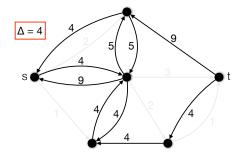
17


Scaling algorithm

- · Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

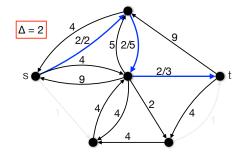
Scaling algorithm


- · Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

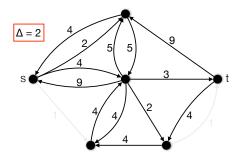

18

Scaling algorithm

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

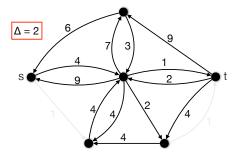

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

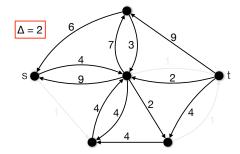
21


Scaling algorithm

- · Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

Scaling algorithm


- · Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

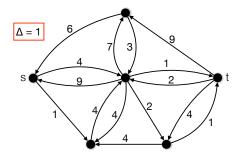

22

Scaling algorithm

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

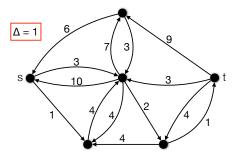

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

25

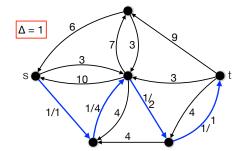

Scaling algorithm

- · Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

Scaling algorithm


- · Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

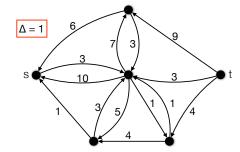
26


Scaling algorithm

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

.

- Scaling parameter Δ
- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

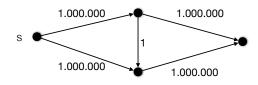

29

31

• Scaling parameter Δ

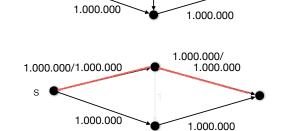
Scaling algorithm

- Only consider edges with capacity at least Δ in residual graph $G_f(\Delta)$.
- Start with Δ = "highest power of 2 \leq largest capacity out of s"
- When no more augmenting paths in $G_f(\Delta)$: $\Delta = \Delta/2$ (new phase).

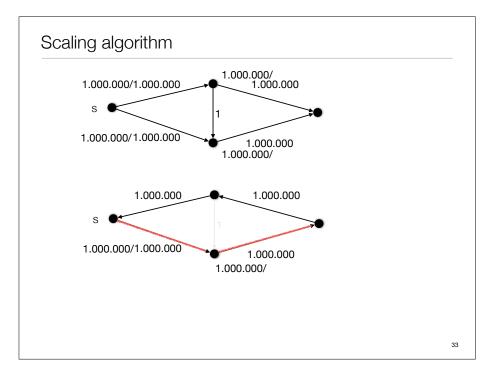


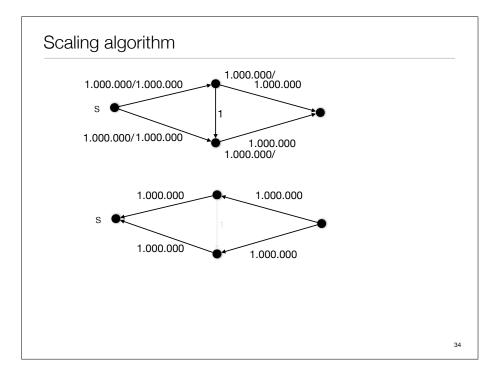
• Stop when no more augmenting paths in G_f(1).

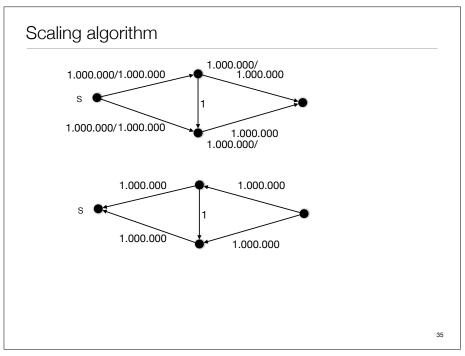
30

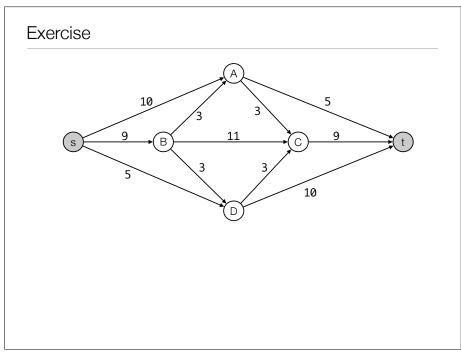

32

Scaling algorithm




Scaling algorithm


1.000.000/1.000.000



1.000.000/

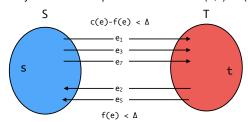
- Running time: O(m² log C), where C is the largest capacity out of s.
- Lemma 1. Number of scaling phases: 1 + ⌈ lg C ⌉
- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \le v(f) + m\Delta$.
- Lemma 3. The number of augmentations in a scaling phase is at most 2m.
 - First phase: can use each edge out of s in at most one augmenting path.
 - · f flow at the end of previous phase.
 - Used $\Delta' = 2\Delta$ in last round.
 - Lemma 2: $v(f^*) \le v(f) + m\Delta' = v(f) + 2m\Delta$.
 - "Leftover flow" to be found $\leq 2m\Delta$.
 - Each agumentation in a Δ -scaling phase augments flow with at least Δ .

37

Maximum flow algorithms

• Edmonds-Karp: O(m²n)

· Scaling: O(m² log C)


• Ford-Fulkerson O(m v(f)).

• Preflow-push O(n3)

• Other algorithms: O(mn log n) or O(min(n^{2/3}, m^{1/2})m log n log U).

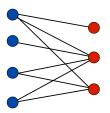
Scaling algorithm

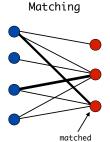
- Lemma 2. Let f the flow when Δ -scaling phase ends, and let f*be the maximum flow. Then $v(f^*) \leq v(f) + m\Delta$.
- By the end of the phase there is a cut $c(S,T) \le v(f) + m\Delta$.

$$c(S,T) = c(e_1) + c(e_3) + c(e_7)$$

$$v(f) = f(e_1) + f(e_3) + f(e_7) - f(e_2) - f(e_5)$$

$$c(S,T) - v(f) = c(e_1) + c(e_3) + c(e_7) - f(e_1) - f(e_3) - f(e_7) + f(e_2) + f(e_5)$$

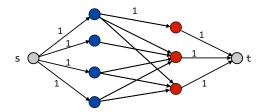

$$= c(e_1) - f(e_1) + c(e_3) - f(e_3) + c(e_7) - f(e_7) + f(e_2) + f(e_5)$$


$$< \Delta + \Delta + \Delta + \Delta + \Delta = 5\Delta$$

3

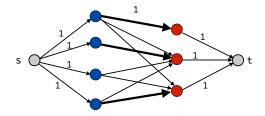
Maximum Bipartite Matching

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- · Maximum matching: matching of maximum cardinality.
- · Applications:
 - · planes to routes
 - · jobs to workers/machines

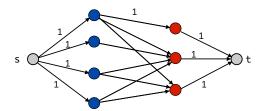


40

Maximum Bipartite Matching

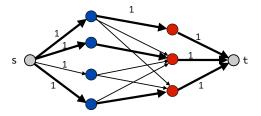

- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- · Maximum matching: matching of maximum cardinality.
- · Solve via flow:

41


Maximum Bipartite Matching

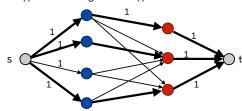
- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- · Maximum matching: matching of maximum cardinality.
- · Solve via flow:
 - Matching M => flow of value |M|

Maximum Bipartite Matching


- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- · Maximum matching: matching of maximum cardinality.
- · Solve via flow:
 - Matching M => flow of value |M|

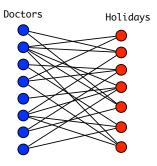
42

Maximum Bipartite Matching


- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- · Maximum matching: matching of maximum cardinality.
- · Solve via flow:
 - Matching M => flow of value |M|

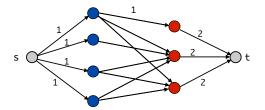
4

Maximum Bipartite Matching


- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- · Maximum matching: matching of maximum cardinality.
- · Solve via flow:
 - Matching M => flow of value |M|
 - Flow of value v(f) => matching of size v(f)

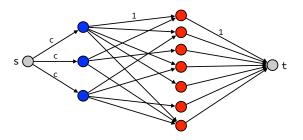
45

Scheduling of doctors


 X doctors, Y holidays, each doctor should work at at most 1 holiday, each doctor is available at some of the holidays.

· Same problem, but each doctor should work at most c holidays?

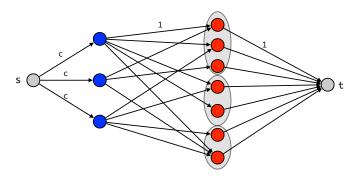
Maximum Bipartite Matching


- Bipartite graph: Can color vertices red and blue such that all edges have a red and a blue endpoint.
- Matching: Subset of edges M ⊆ E such that no edges in M share an endpoint.
- · Maximum matching: matching of maximum cardinality.
- · Solve via flow:
- · Can generalize to general matchings

46

Scheduling of doctors

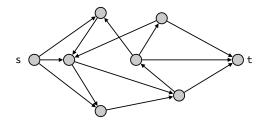
 X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.



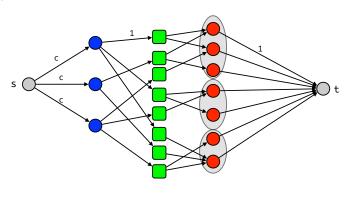
 Same problem, but each doctor should work at most one day in each vacation period?

48

Scheduling of doctors

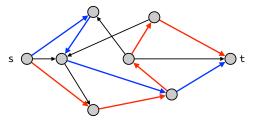

- X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.
- Same problem, but each doctor should work at most one day in each vacation period?

49


Edge Disjoint paths

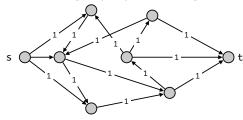
- Problem: Find maximum number of edge-disjoint paths from s to t.
- Two paths are edge-disjoint if they have no edge in common.

Scheduling of doctors


- X doctors, Y holidays, each doctor should work at at most c holidays, each doctor is available at some of the holidays.
- Same problem, but each doctor should work at most one day in each vacation period?

50

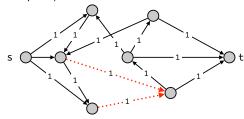
Edge Disjoint paths


- Edge-disjoint path problem. Find the maximum number of edge-disjoint paths from s to t.
- Two paths are edge-disjoint if they have no edge in common.

51

Edge Disjoint Paths

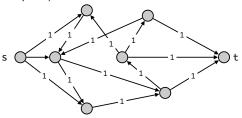
· Reduction to max flow: assign capacity 1 to each edge.



- Thm. Max number of edge-disjoint s-t paths is equal to the value of a maximum flow.
 - Suppose there are k edge-disjoint paths: then there is a flow of k (let all edges on the paths have flow 1).
 - Other way (graph theory course).
- Ford-Fulkerson: v(f) ≤ n (no multiple edges and therefore at most n edges out of s) => running time O(nm).

53

Network Connectivity


 Network connectivity. Find minimum number of edges whose removal disconnects t from s (destroys all s-t paths).

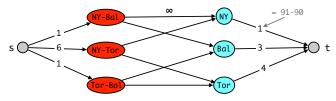
- · Set all capacities to 1 and find minimum cut.
- Thm. (Menger) The maximum number of edge-disjoint s-t paths is equal to the minimum number of edges whose removal disconnects t from s.

Network Connectivity

 Network connectivity. Find minimum number of edges whose removal disconnects t from s (destroys all s-t paths).

54

Baseball elimination


Team	Wins	Games left	Against			
			NY	Bal	Tor	Bos
New York	92	2	-	1	1	0
Baltimore	91	3	1	-	1	1
Toronto	91	3	1	1	-	1
Boston	90	2	0	1	1	-

- Question: Can Boston finish in first place (or in tie of first place)?
- No: Boston must win both its remaining 2 and NY must loose. But then Baltimore and Toronto both beat NY so winner of Baltimore-Toronto will get 93 points.
- Other argument: Boston can finish with at most 92. Cumulatively the other three teams have 274 wins currently and their 3 games against each other will give another 3 points => 277. 277/3 = 92,33333 => one of them must win > 92.

Baseball elimination

	Team	Wins	Games left	Against			
				NY	Bal	Tor	Bos
	New York	90	11	-	1	6	4
	Baltimore	88	6	1	-	1	4
	Toronto	87	11	6	1	-	4
	Boston	79	12	4	4	4	-

• Question: Can Boston finish in first place (or in tie of first place)?


Boston can get at most 79 + 12 = 91 points

• Boston is eliminated ⇔ max s-t flow < 8.

57

Node capacities

· Capacities on nodes.

