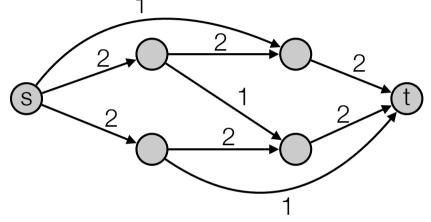
Inge Li Gørtz

• Truck company: Wants to send as many trucks as possible from s to t. Limit

of number of trucks on each road.

• Example 1:

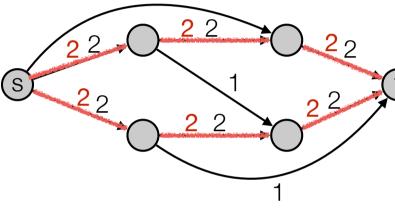


• Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

of fluffiber of trucks off eac

• Example 1:

Solution 1: 4 trucks

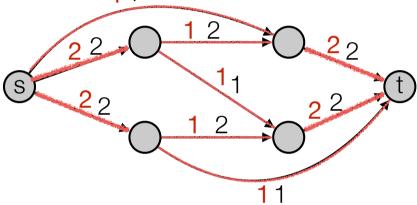


 Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

• Example 1:

Solution 1: 4 trucks

Solution 2: 5 trucks



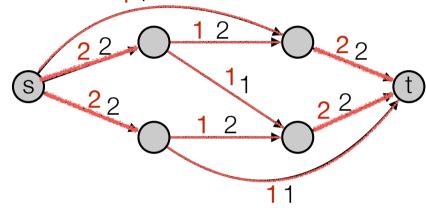
 Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

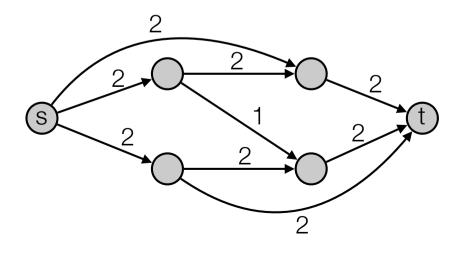
• Example 1:

Solution 1: 4 trucks

Solution 2: 5 trucks

• Example 2:





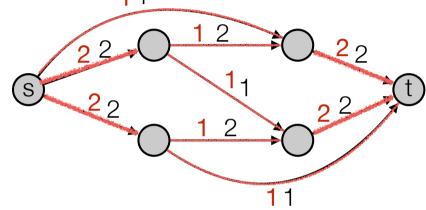
 Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

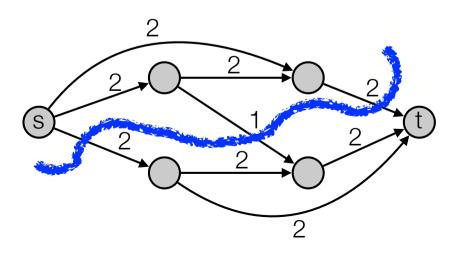
• Example 1:

Solution 1: 4 trucks

Solution 2: 5 trucks

• Example 2:





 Truck company: Wants to send as many trucks as possible from s to t. Limit of number of trucks on each road.

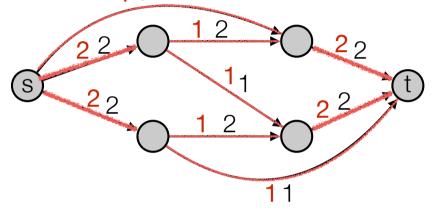
• Example 1:

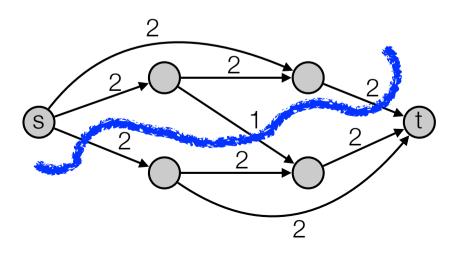
Solution 1: 4 trucks

Solution 2: 5 trucks

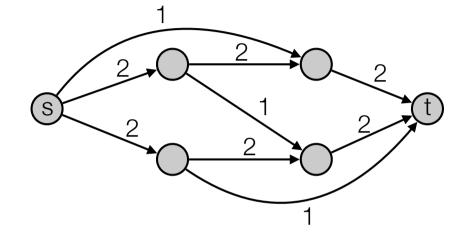
• Example 2:

• 5 trucks (need to cross river).



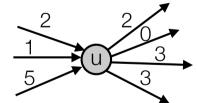


- Network flow:
  - graph G=(V,E).
  - Special vertices s (source) and t (sink).
  - Every edge (u,v) has a capacity c(u,v) ≥ 0.
  - Flow:



- capacity constraint: every edge e has a flow  $0 \le f(u,v) \le c(u,v)$ .
- flow conservation: for all u ≠ s, t: flow into u equals flow out of u.

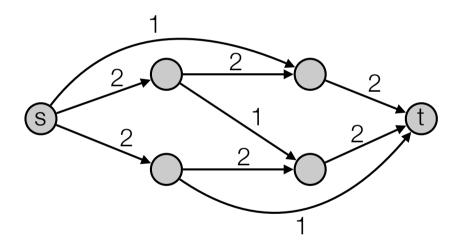
$$\sum_{v:(v,u)\in E} f(v,u) = \sum_{v:(u,v)\in E} f(u,v)$$

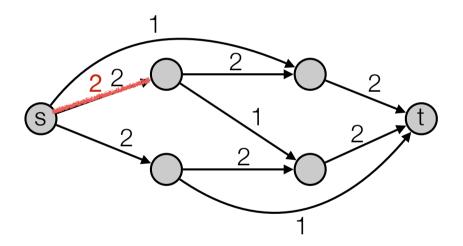


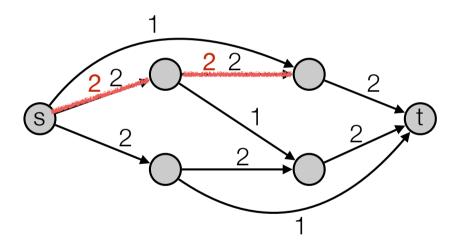
Value of flow f is the sum of flows out of s minus sum of flows into s:

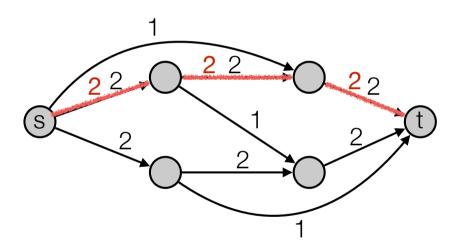
$$|f| = \sum_{v:(s,v)\in E} f(s,v) - \sum_{v:(v,s)\in E} f(v,s)$$

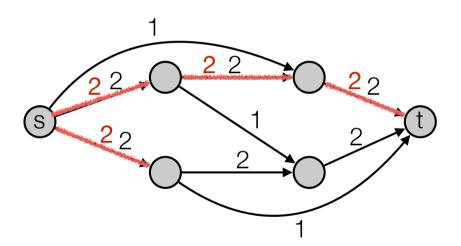
· Maximum flow problem: find s-t flow of maximum value

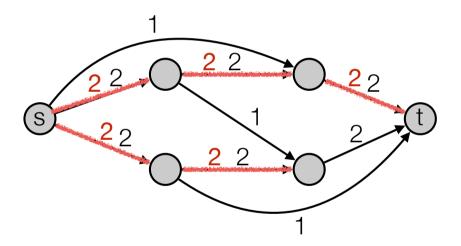


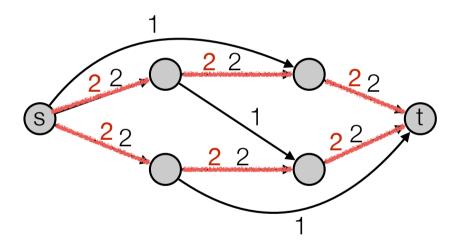




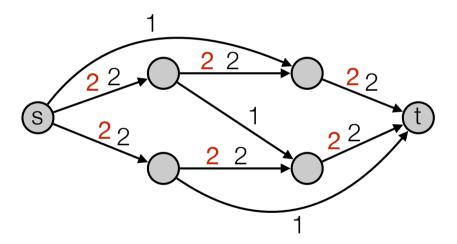




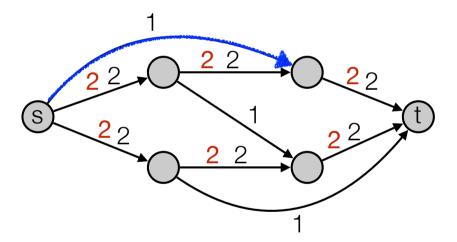




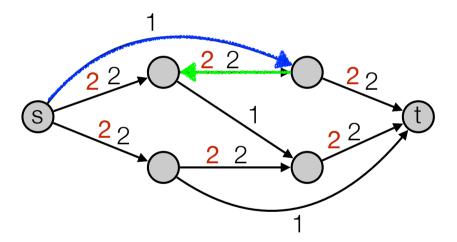
- Find path where we can send more flow.
- Send flow back (cancel flow).



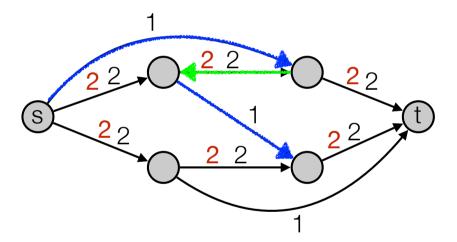
- Find path where we can send more flow.
- Send flow back (cancel flow).



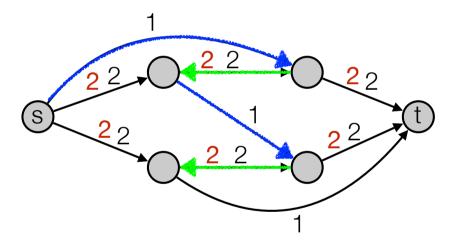
- Find path where we can send more flow.
- Send flow back (cancel flow).



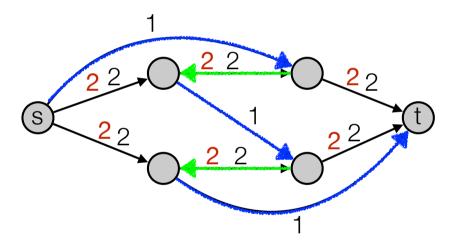
- Find path where we can send more flow.
- Send flow back (cancel flow).



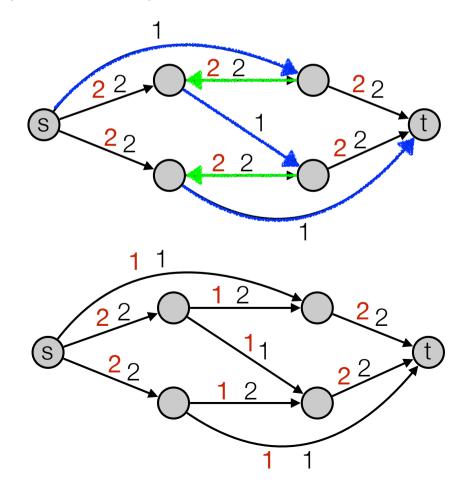
- Find path where we can send more flow.
- Send flow back (cancel flow).



- Find path where we can send more flow.
- Send flow back (cancel flow).

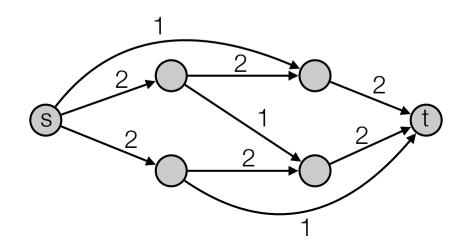


- Find path where we can send more flow.
- Send flow back (cancel flow).

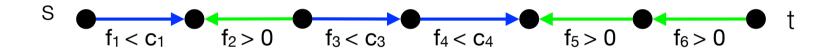


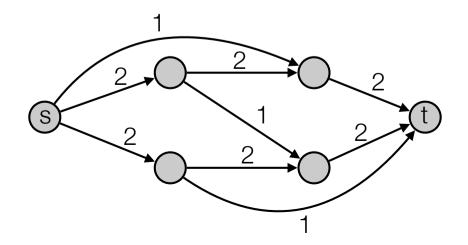
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



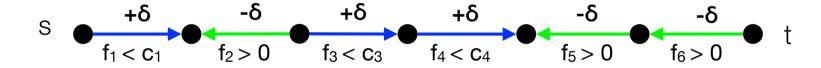


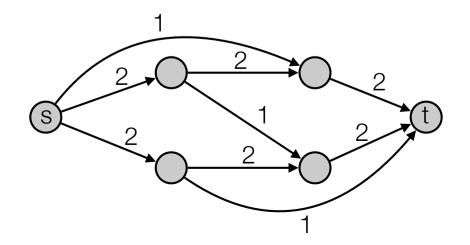
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



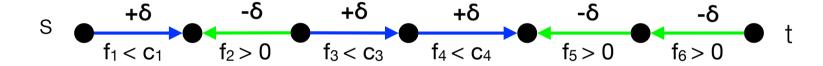


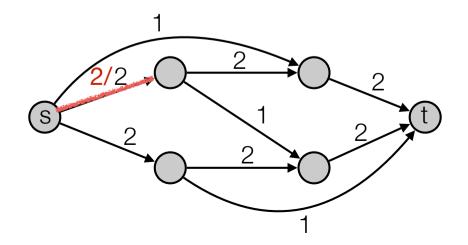
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



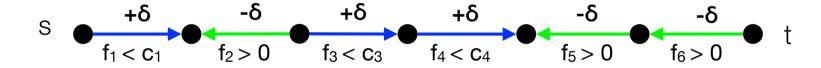


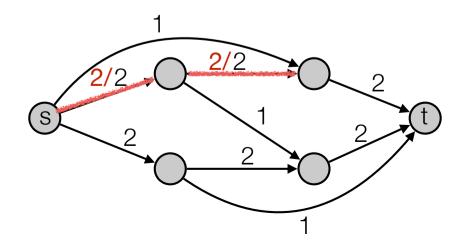
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



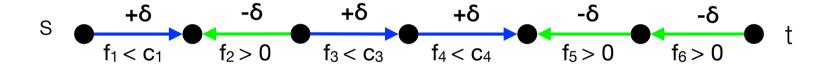


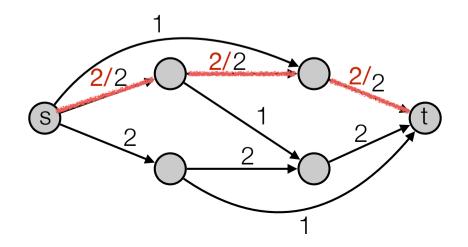
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



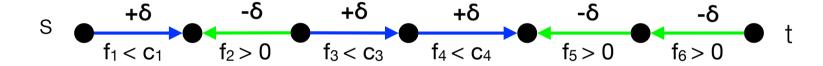


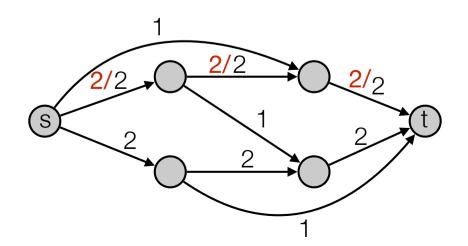
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



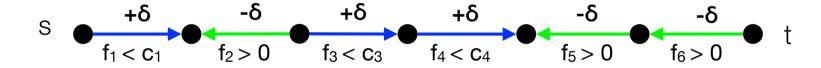


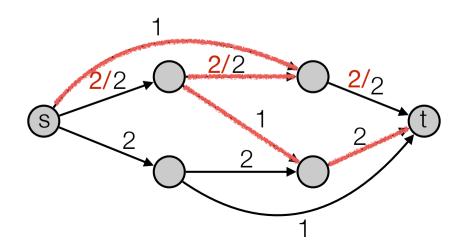
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



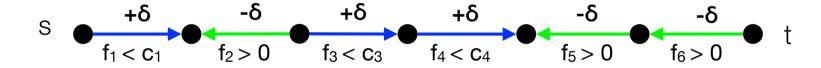


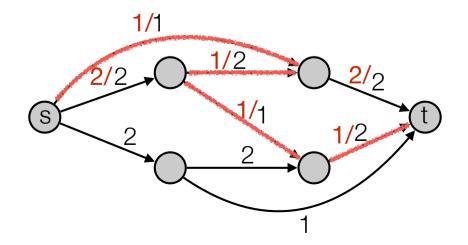
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



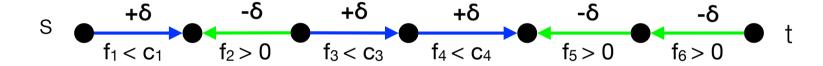


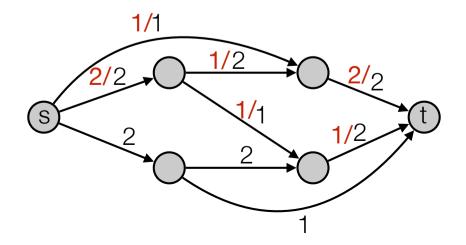
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



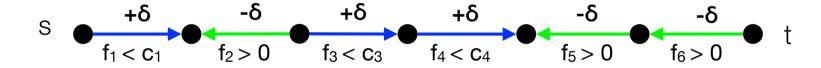


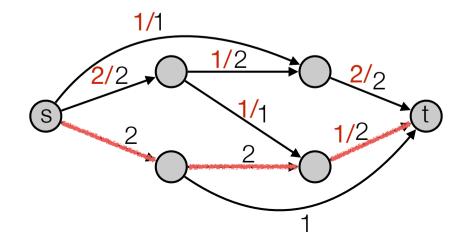
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



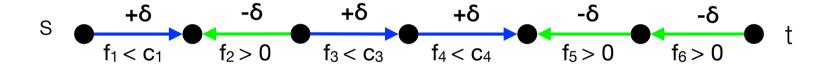


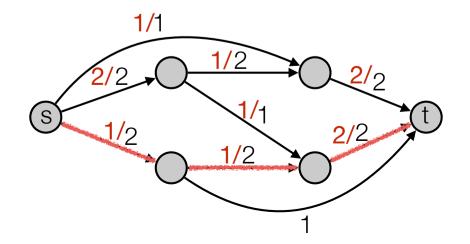
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



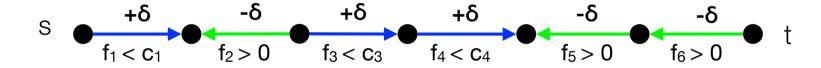


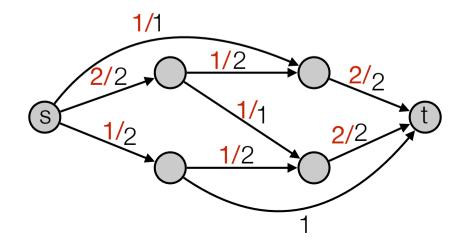
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



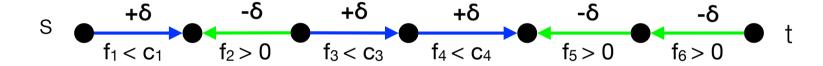


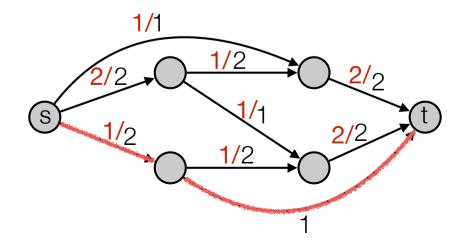
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



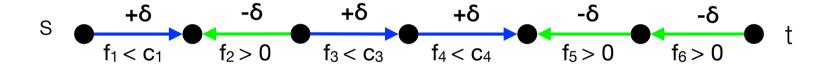


- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow

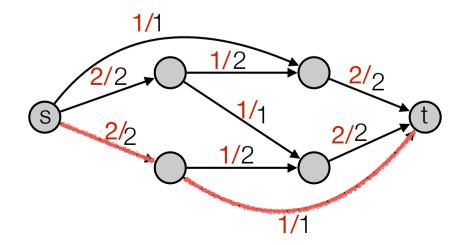




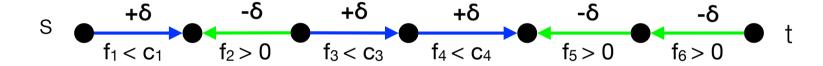
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



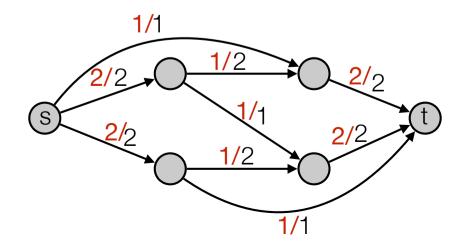
• Can add extra flow:  $min(c_1 - f_1, f_2, c_3 - f_3, c_4 - f_4, f_5, f_6) = \delta$ .



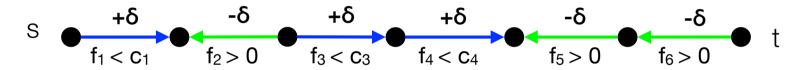
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



• Can add extra flow:  $min(c_1 - f_1, f_2, c_3 - f_3, c_4 - f_4, f_5, f_6) = \delta$ .

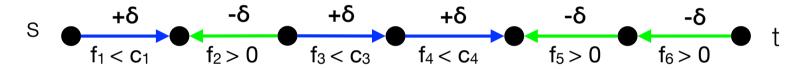


- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



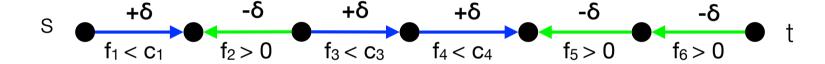
- Can add extra flow: min(c<sub>1</sub> f<sub>1</sub>, f<sub>2</sub>, c<sub>3</sub> f<sub>3</sub>, c<sub>4</sub> f<sub>4</sub>, f<sub>5</sub>, f<sub>6</sub>) =  $\delta$
- Ford-Fulkerson:

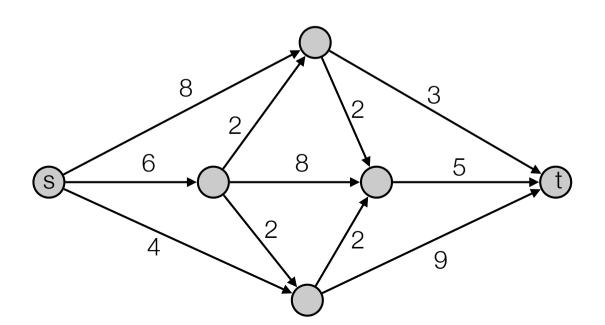
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



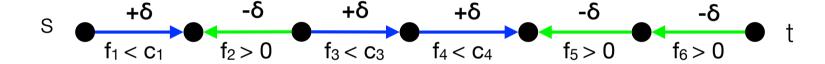
- Can add extra flow: min( $c_1$   $f_1$ ,  $f_2$ ,  $c_3$   $f_3$ ,  $c_4$   $f_4$ ,  $f_5$ ,  $f_6$ ) =  $\delta$
- Ford-Fulkerson:
  - Find augmenting path, use it
  - Find augmenting path, use it
  - Find augmenting path, use it
  - •

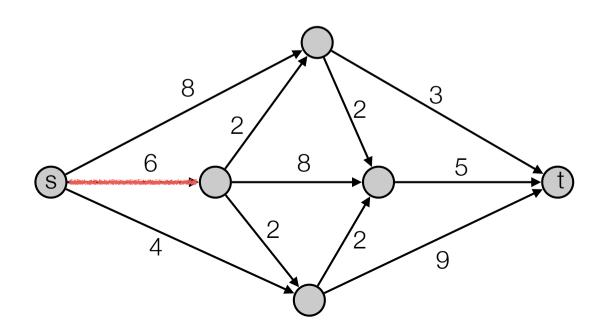
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



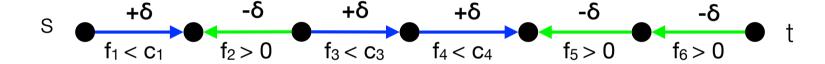


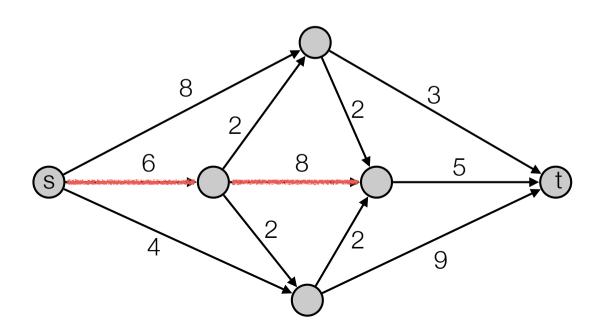
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



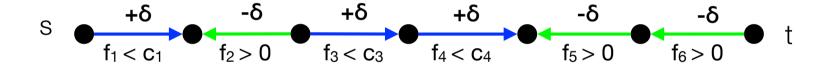


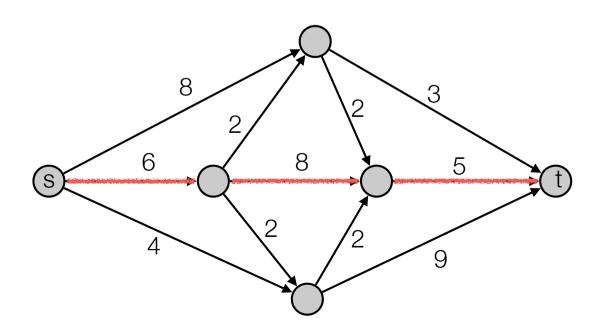
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



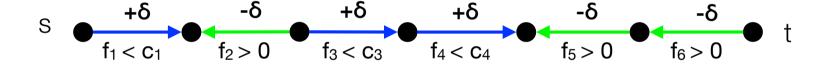


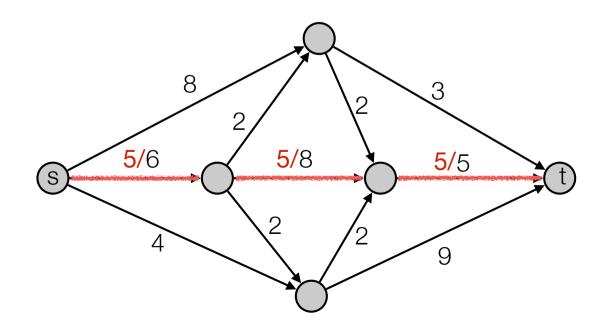
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



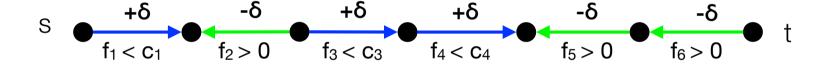


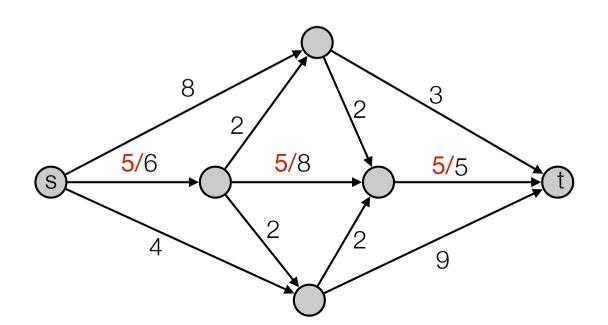
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



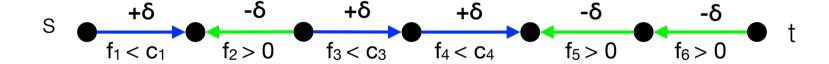


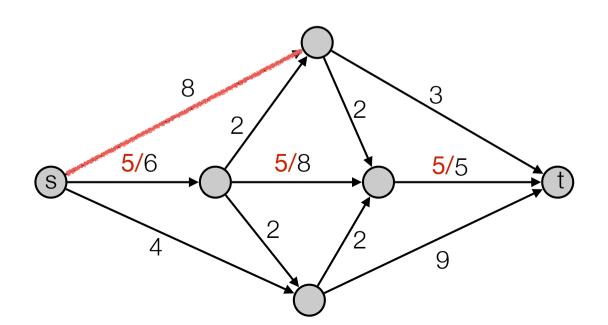
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



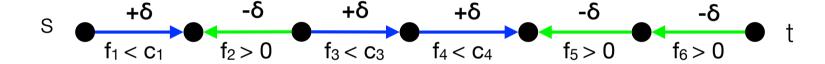


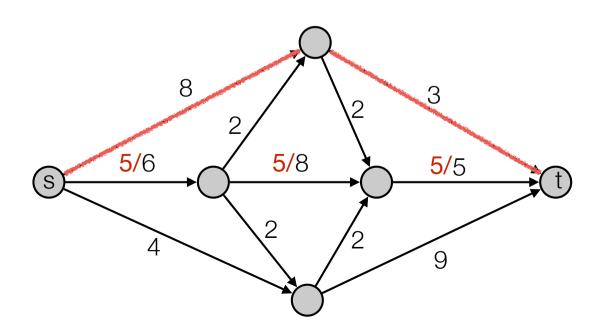
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



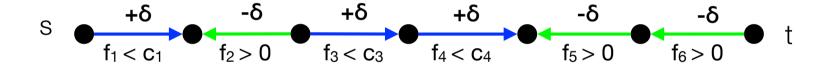


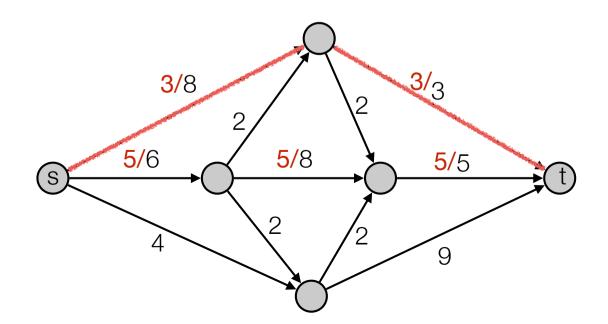
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



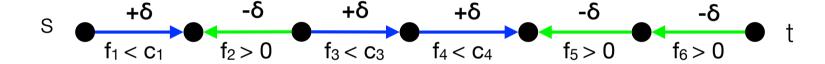


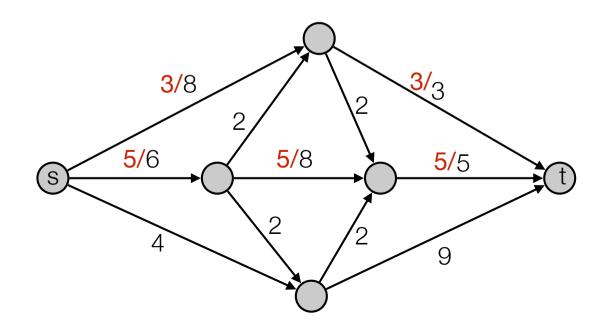
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



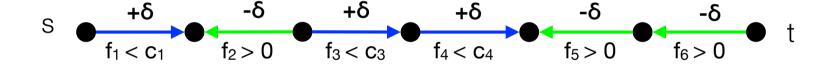


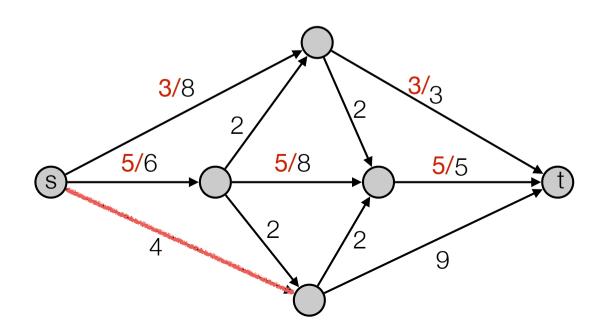
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



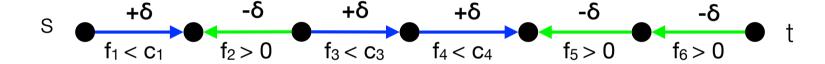


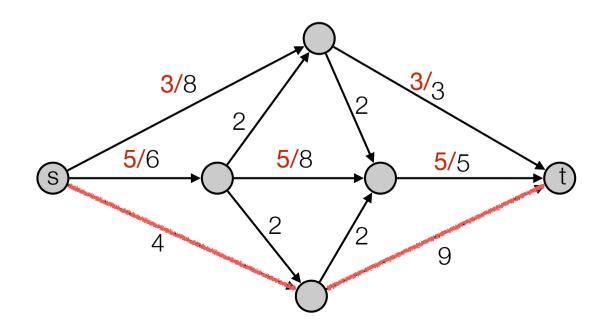
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



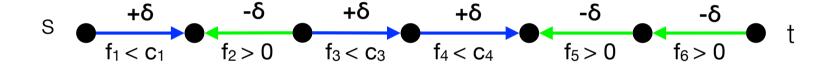


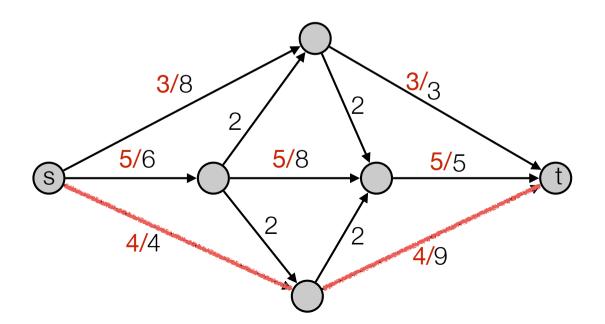
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



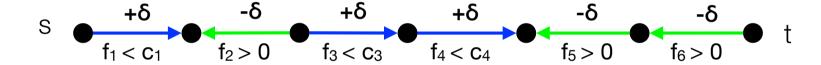


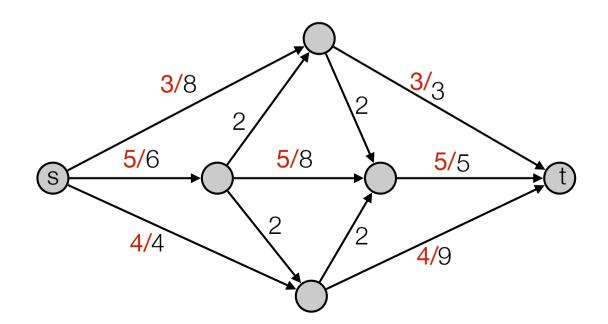
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



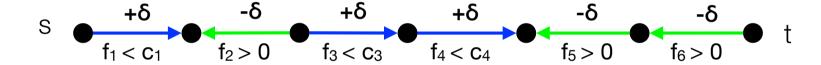


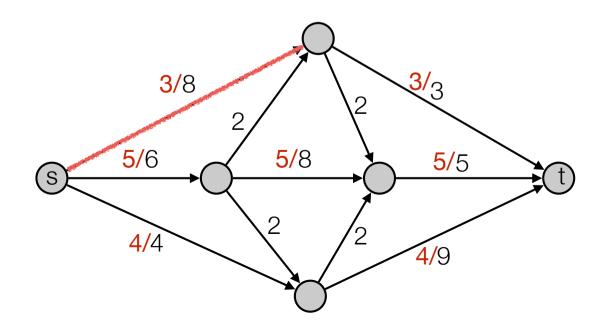
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



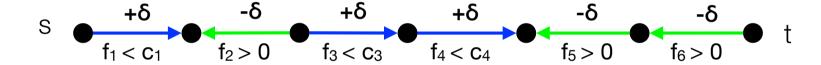


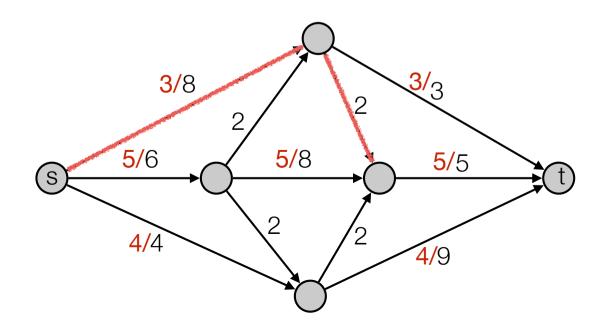
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



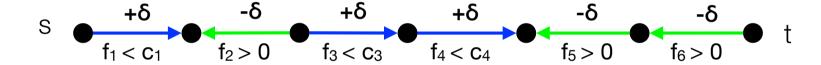


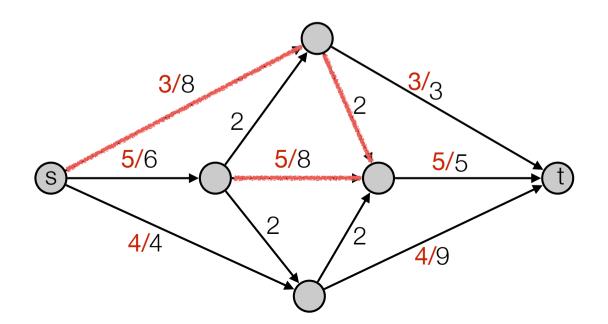
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



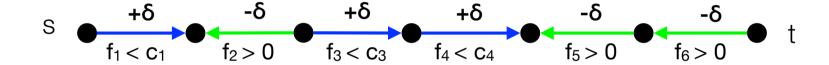


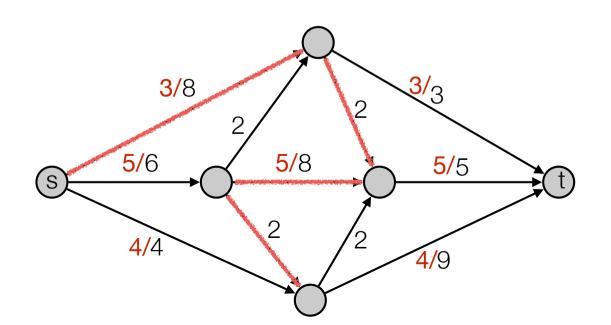
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



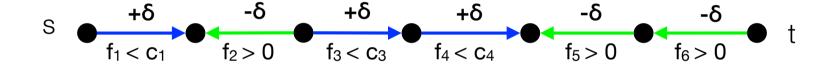


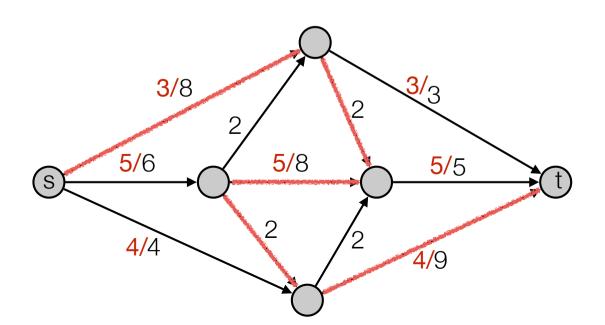
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



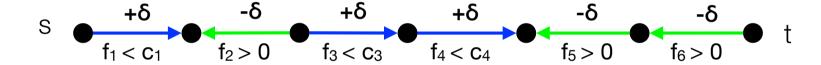


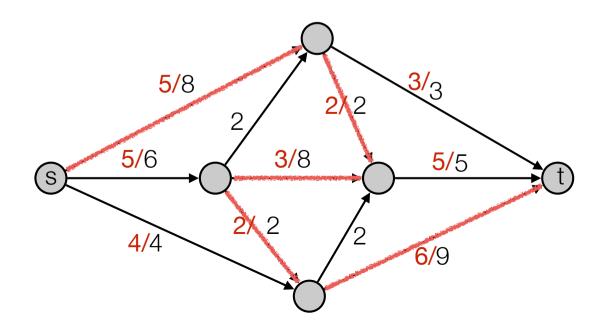
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow



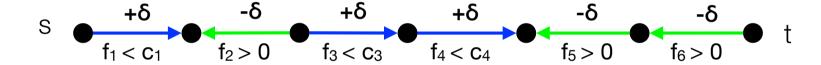


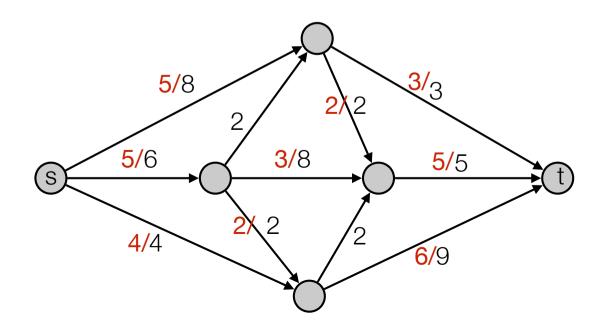
- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow





- Augmenting path (definition different than in CLRS): s-t path where
  - forward edges have leftover capacity
  - backwards edges have positive flow





- Assume integral weights
- Number of iterations:

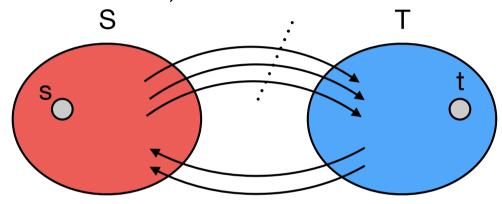
- Assume integral weights
- Number of iterations:
  - Always increment flow by at least 1: #iterations ≤ max flow value f\*

- Assume integral weights
- Number of iterations:
  - Always increment flow by at least 1: #iterations ≤ max flow value f\*
- Time for one iteration:

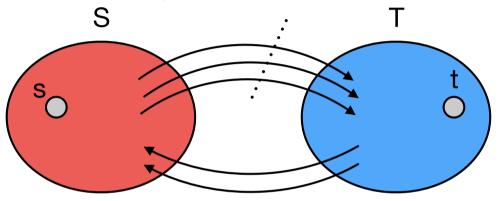
- Assume integral weights
- Number of iterations:
  - Always increment flow by at least 1: #iterations ≤ max flow value f\*
- Time for one iteration:
  - Can find augmenting path in linear time: One iteration takes O(m) time.

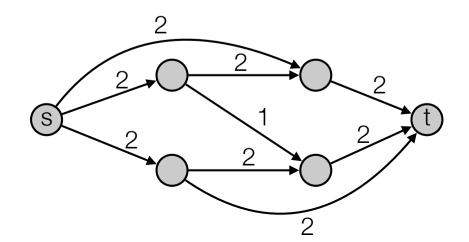
- Assume integral weights
- Number of iterations:
  - Always increment flow by at least 1: #iterations ≤ max flow value f\*
- Time for one iteration:
  - Can find augmenting path in linear time: One iteration takes O(m) time.
- Total running time = O(|f\*| m).

• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .

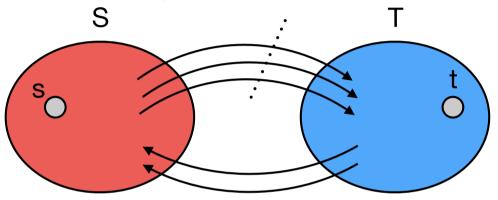


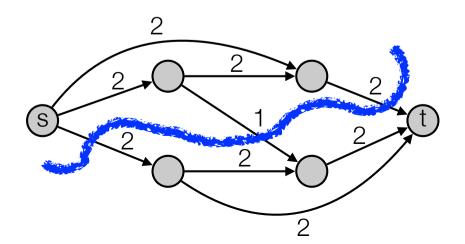
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



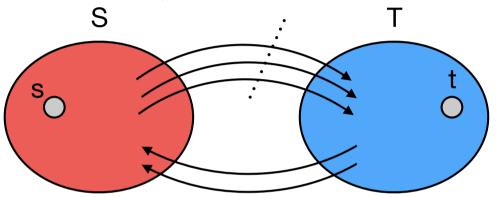


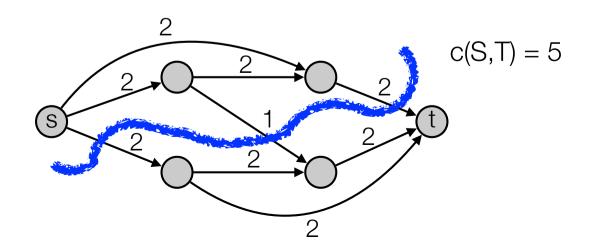
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



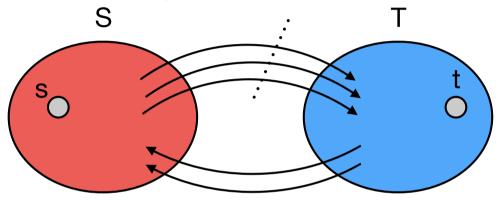


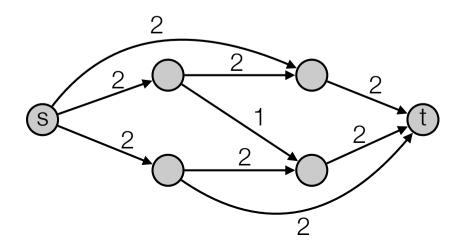
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



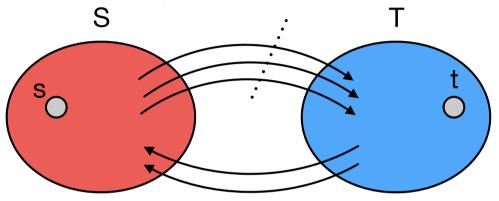


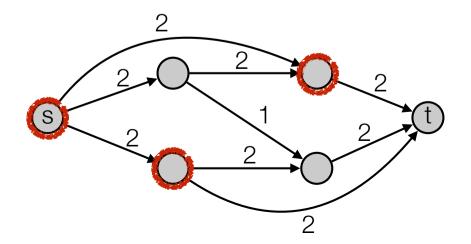
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



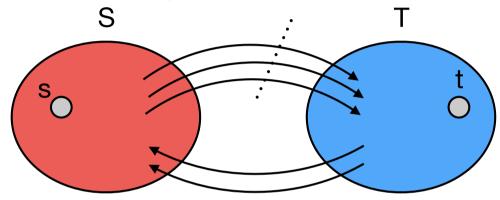


• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .

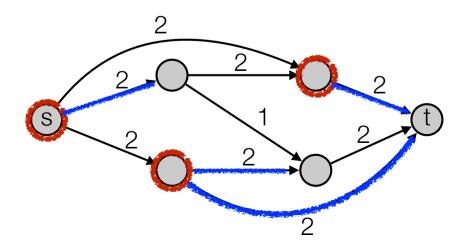




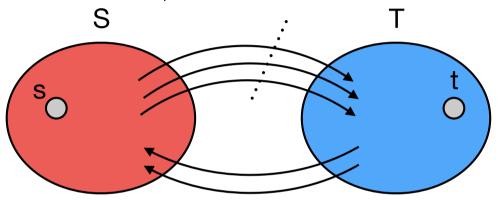
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



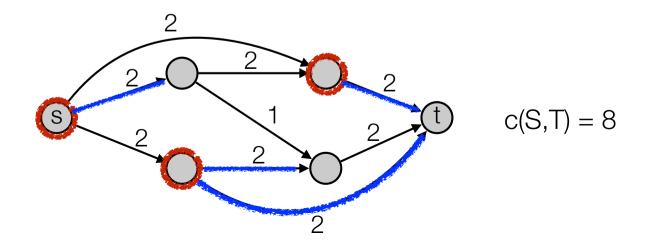
• Capacity of cut: total capacity of edges going from S to T.



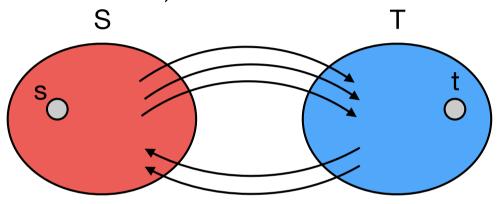
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .

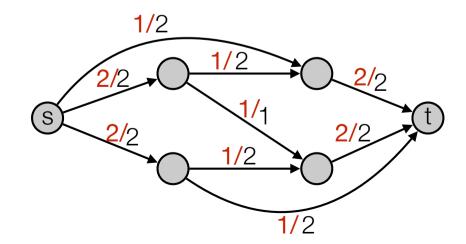


• Capacity of cut: total capacity of edges going from S to T.

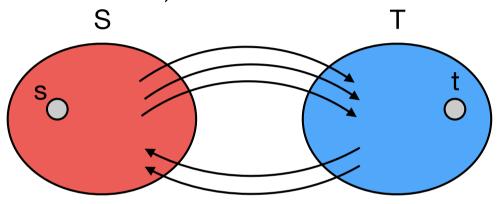


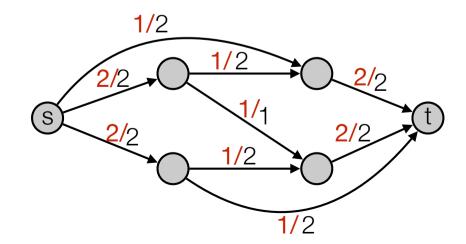
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



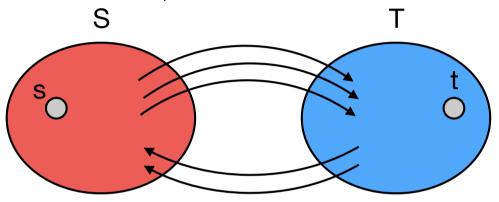


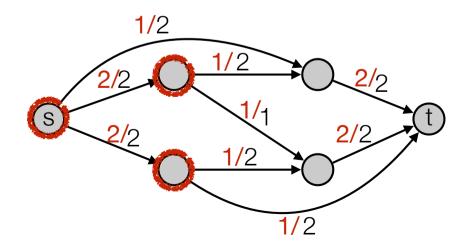
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



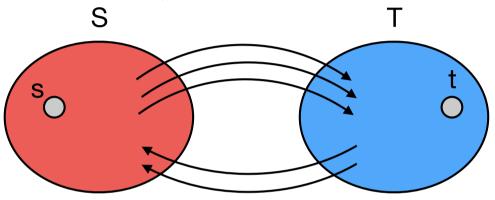


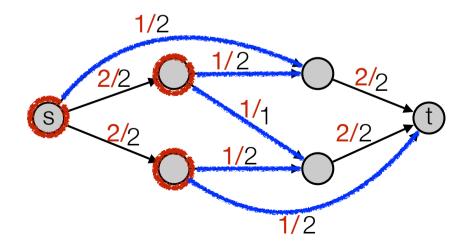
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



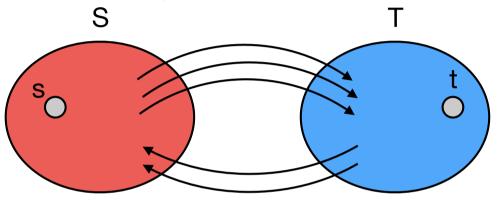


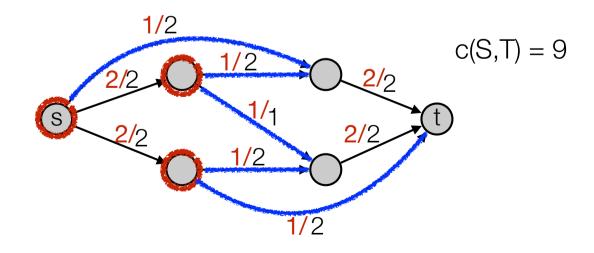
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .





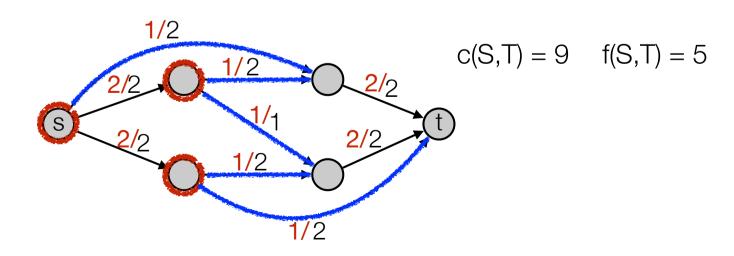
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



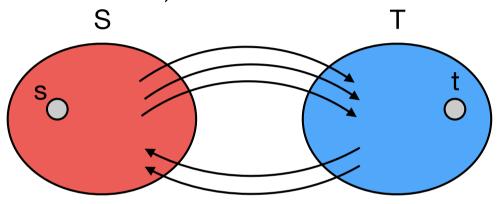


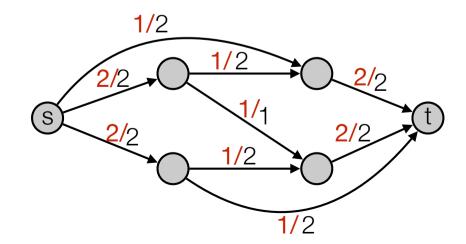
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



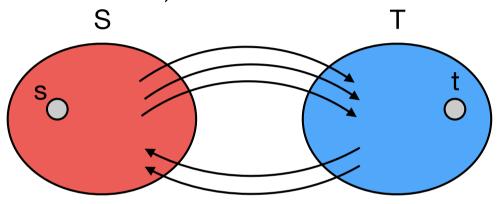


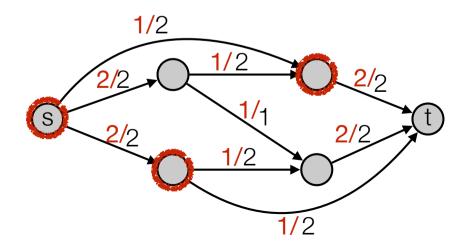
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



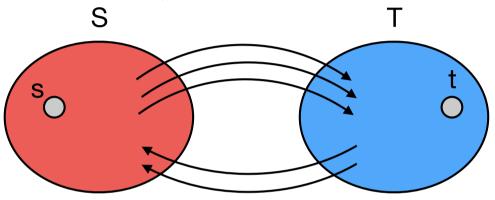


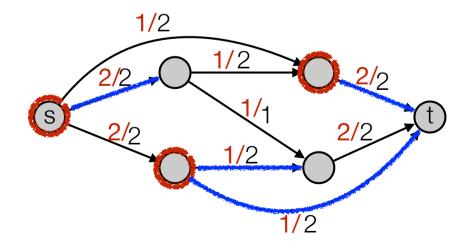
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



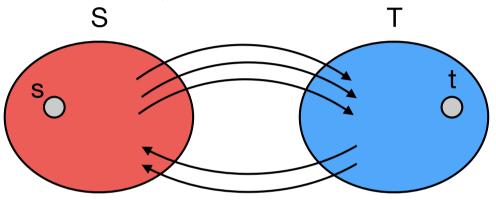


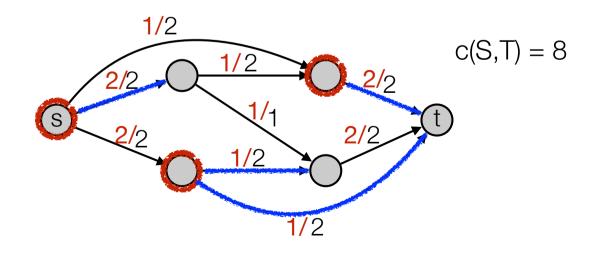
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



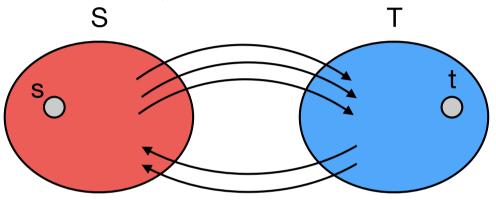


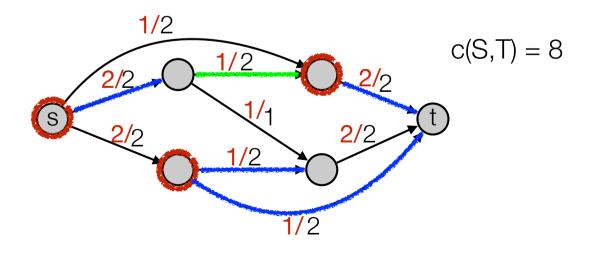
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



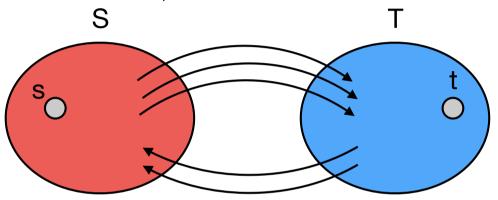


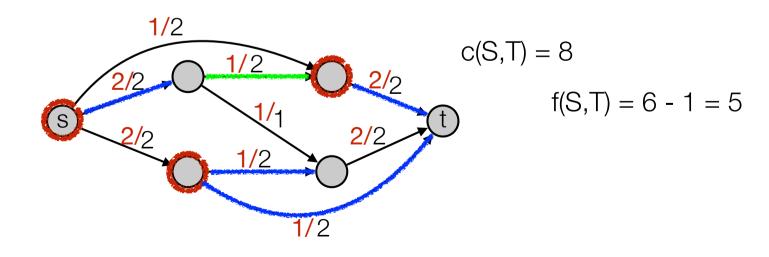
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



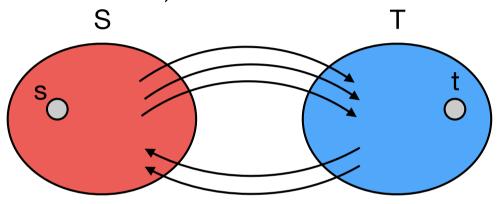


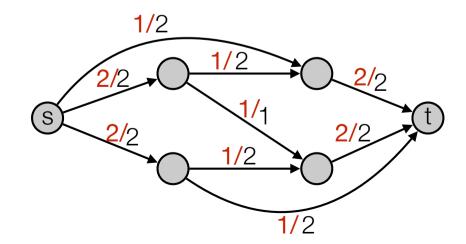
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



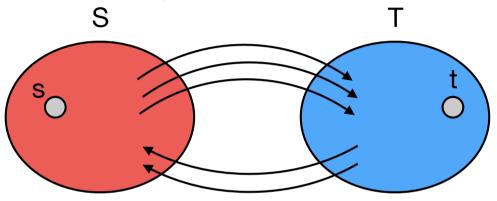


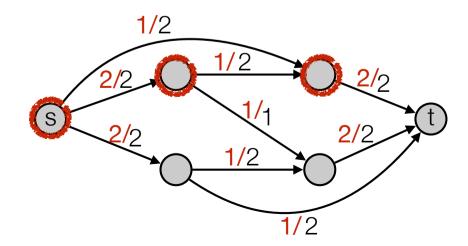
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



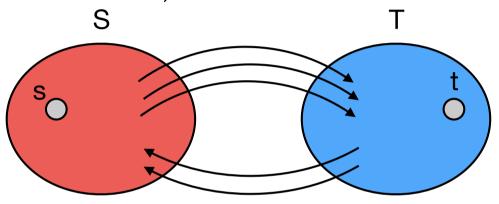


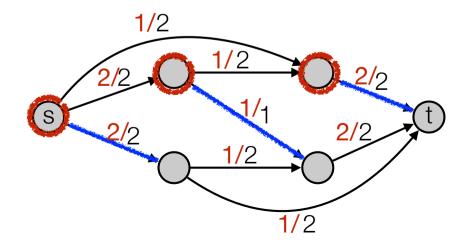
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



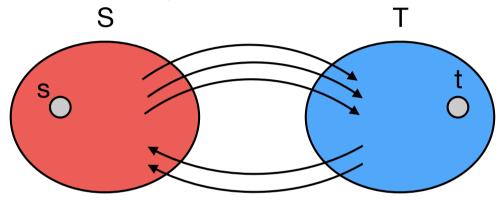


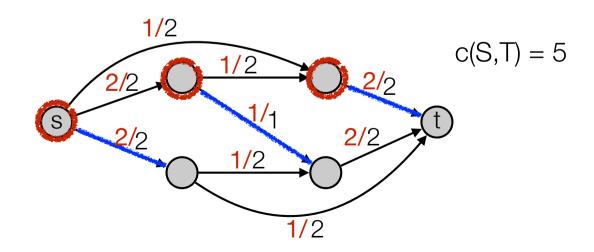
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



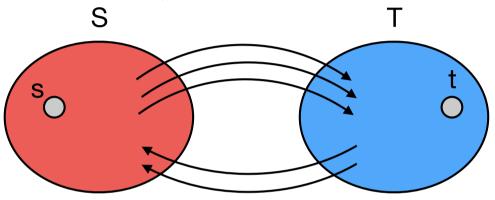


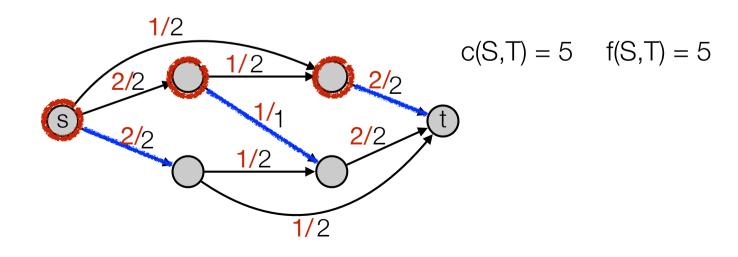
• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .



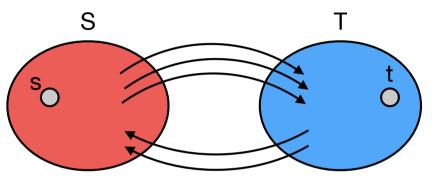


• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .

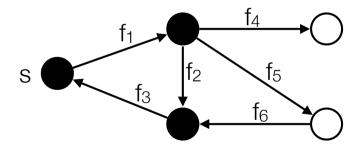


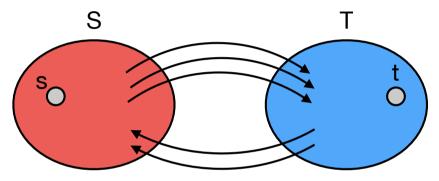


• Cut: Partition of vertices into S and T, such that  $s \in S$  and  $t \in T$ .

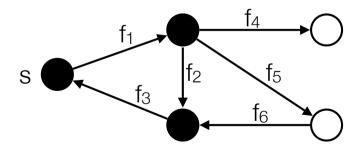


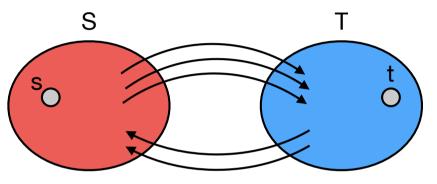
• Capacity of cut: total capacity of edges going from S to T.



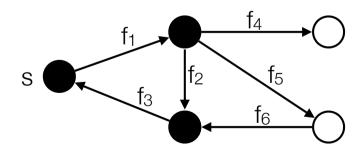


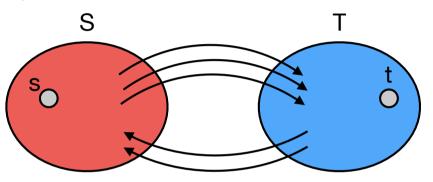
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.



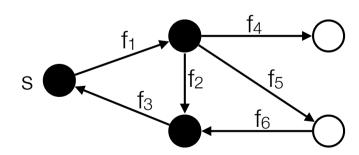


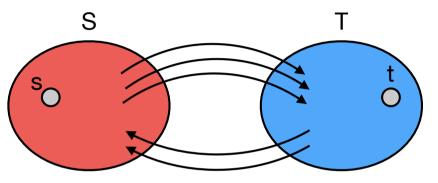
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$



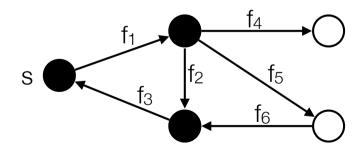


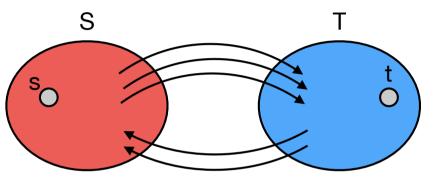
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$ 
  - $f_2 + f_4 + f_5 f_1 = 0$





- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$ 
  - $f_2 + f_4 + f_5 f_1 = 0$
  - $f_3 f_2 f_6 = 0$



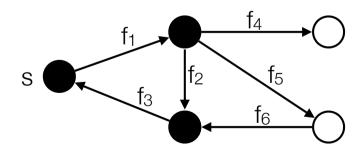


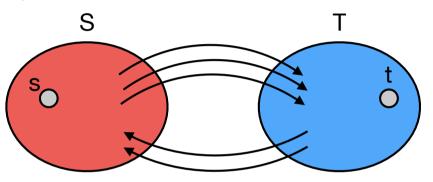
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$

• 
$$f_2 + f_4 + f_5 - f_1 = 0$$

• 
$$f_3 - f_2 - f_6 = 0$$

• 
$$f_1 - f_3 = |f|$$





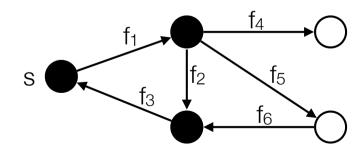
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$

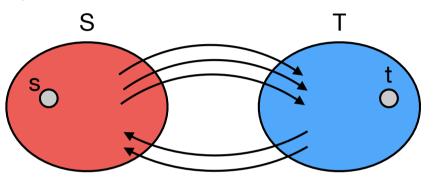
• 
$$f_2 + f_4 + f_5 - f_1 = 0$$

• 
$$f_3 - f_2 - f_6 = 0$$

• 
$$f_1 - f_3 = |f|$$

• 
$$(f_2 + f_4 - f_1 + f_5) + (f_3 - f_2 - f_6) + (f_1 - f_3) = |f|$$





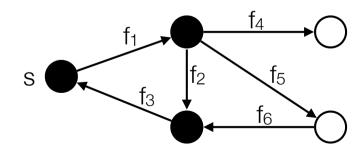
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$

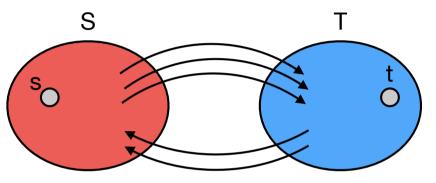
• 
$$f_2 + f_4 + f_5 - f_1 = 0$$

• 
$$f_3 - f_2 - f_6 = 0$$

• 
$$f_1 - f_3 = |f|$$

• 
$$(f_2 + f_4 - f_1 + f_5) + (f_3 - f_2 - f_6) + (f_1 - f_3) = |f|$$





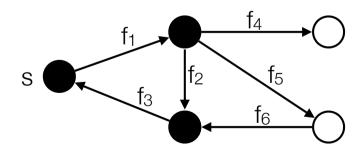
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$

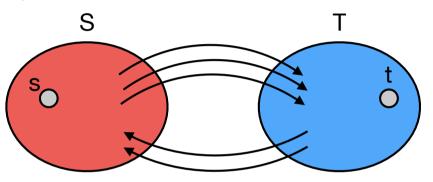
• 
$$f_2 + f_4 + f_5 - f_1 = 0$$

• 
$$f_3 - f_2 - f_6 = 0$$

• 
$$f_1 - f_3 = |f|$$

• 
$$(f_2 + f_4 - f_1 + f_5) + (f_3 - f_2 - f_6) + (f_1 - f_3) = |f|$$





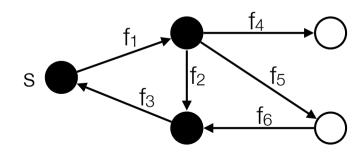
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$

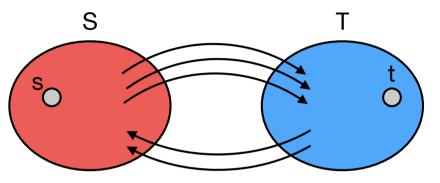
• 
$$f_2 + f_4 + f_5 - f_1 = 0$$

• 
$$f_3 - f_2 - f_6 = 0$$

• 
$$f_1 - f_3 = |f|$$

• 
$$(f_2 + f_4 - f_1 + f_5) + (f_3 - f_2 - f_6) + (f_1 - f_8) = |f|$$





- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$

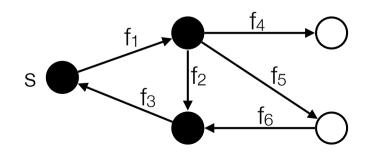
• 
$$f_2 + f_4 + f_5 - f_1 = 0$$

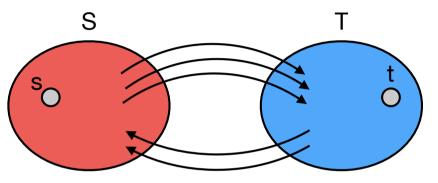
• 
$$f_3 - f_2 - f_6 = 0$$

• 
$$f_1 - f_3 = |f|$$

• 
$$(f_2 + f_4 - f_1 + f_5) + (f_3 - f_2 - f_6) + (f_1 - f_8) = |f|$$

• 
$$f_4 + f_5 - f_6 = |f|$$





- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Flow across cut:  $f_4 + f_5 f_6 = ?$

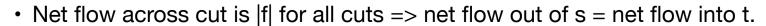
• 
$$f_2 + f_4 + f_5 - f_1 = 0$$

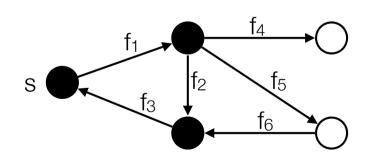
• 
$$f_3 - f_2 - f_6 = 0$$

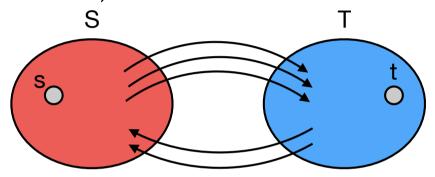
• 
$$f_1 - f_3 = |f|$$

• 
$$(f_2 + f_4 - f_1 + f_5) + (f_3 - f_2 - f_6) + (f_1 - f_8) = |f|$$

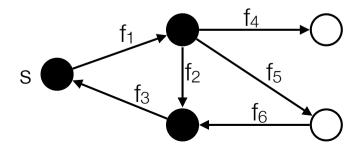
• 
$$f_4 + f_5 - f_6 = |f|$$

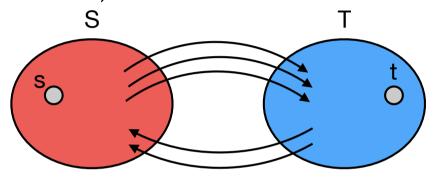




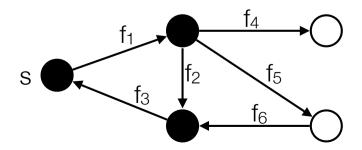


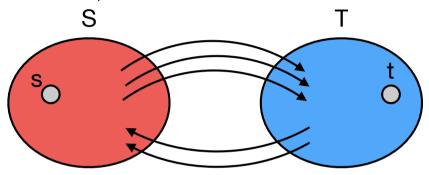
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.



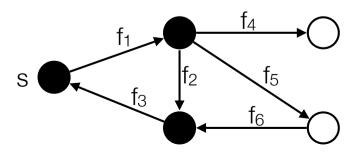


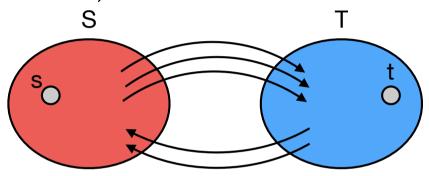
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Net flow across cut is |f| for all cuts => net flow out of s = net flow into t.



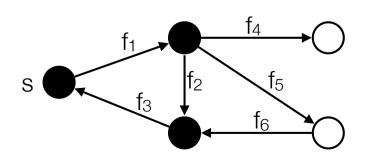


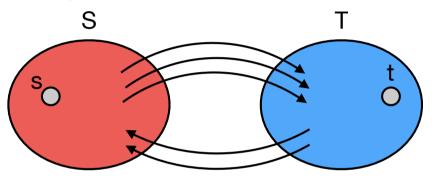
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Net flow across cut is |f| for all cuts => net flow out of s = net flow into t.
- $|f| \le c(S,T)$ :



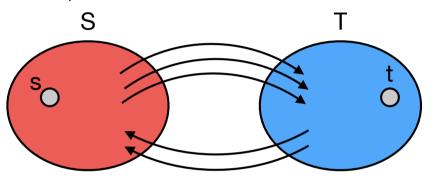


- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- Net flow across cut is |f| for all cuts => net flow out of s = net flow into t.
- $|f| \le c(S,T)$ :
  - $|f| = f_4 + f_5 f_6 \le f_4 + f_5 \le c_4 + c_5 = c(S,T)$

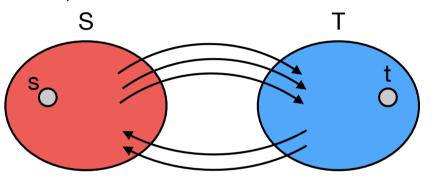




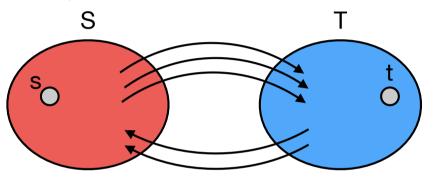
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- $|f| \le c(S,T)$ .



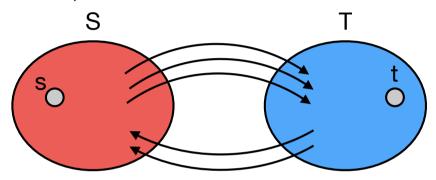
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- $|f| \le c(S,T)$ .
- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
  maximum flow and (S,T) is a minimum cut.



- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- $|f| \le c(S,T)$ .
- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
  maximum flow and (S,T) is a minimum cut.
  - Let f\* be the maximum flow and the (S\*,T\*) minimum cut:



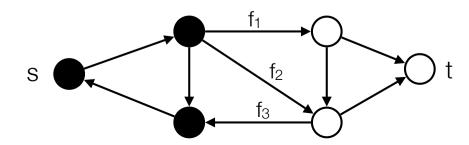
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- $|f| \le c(S,T)$ .
- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a maximum flow and (S,T) is a minimum cut.
  - Let f\* be the maximum flow and the (S\*,T\*) minimum cut:
  - $|f| \le |f^*| \le c(S^*, T^*) \le c(S, T)$ .



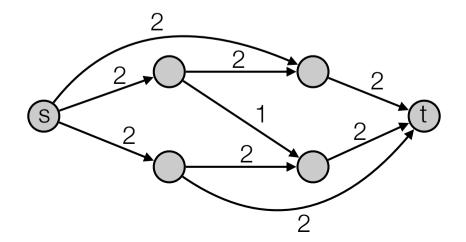
- Capacity of cut: total capacity of edges going from S to T.
- Flow across cut = flow from S to T minus flow from T to S.
- $|f| \le c(S,T)$ .
- Suppose we have found flow f and cut (S,T) such that |f| = c(S,T). Then f is a
  maximum flow and (S,T) is a minimum cut.
  - Let f\* be the maximum flow and the (S\*,T\*) minimum cut:
  - $|f| \le |f^*| \le c(S^*, T^*) \le c(S, T)$ .
  - Since |f| = c(S,T) this implies  $|f| = |f^*|$  and  $c(S,T) = c(S^*,T^*)$ .

#### Max-flow min-cut theorem

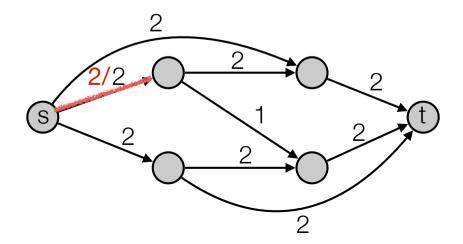
- There is no augmenting path <=> f is a maximum flow.
  - f maximum flow => no augmenting path:
    - Show that exists augmenting path => f not maximum flow.
  - no augmenting path => f maximum flow
    - no augmenting path => exists cut (S,T) where |f| = c(S,T):
      - Let S be all vertices to which there exists an augmenting path from s.
      - t not in S (since there is no augmenting s-t path).
      - Edges from S to T:  $f_1 = c_1$  and  $f_2 = c_2$ .
      - Edges from T to S:  $f_3 = 0$ .
      - =>  $|f| = f_1 + f_2 f_3 = f_1 + f_2 = c_1 + c_2 = c(S,T)$ .
      - => f a maximum flow and (S,T) a minimum cut.



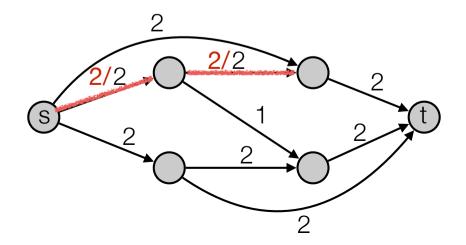
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



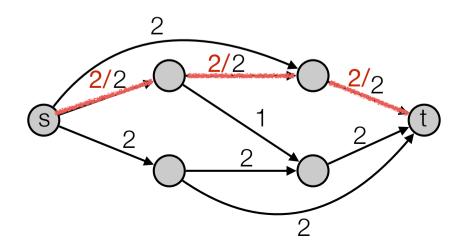
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



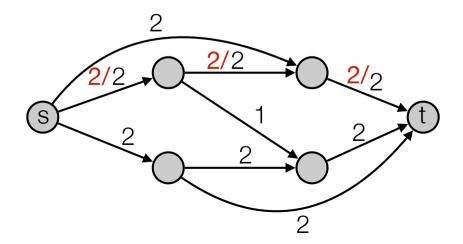
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - · Let S be all vertices to which there exists an augmenting path from s.



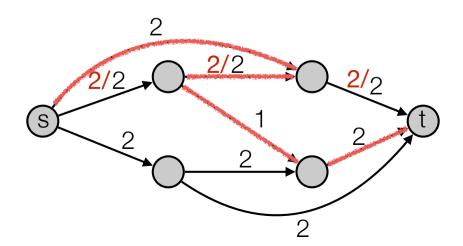
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



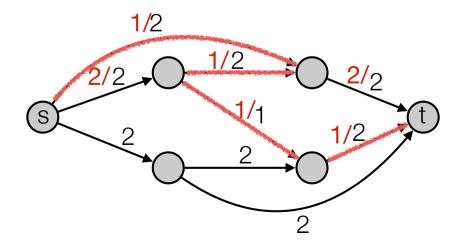
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



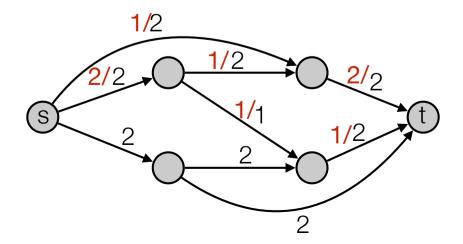
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



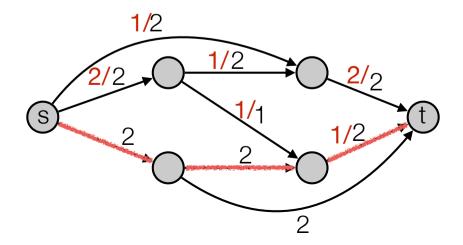
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



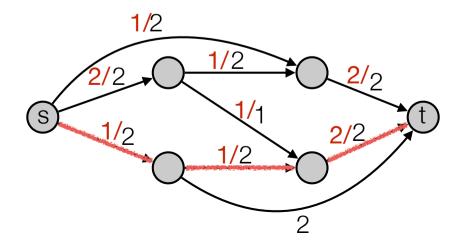
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



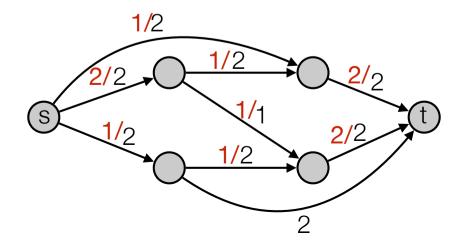
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



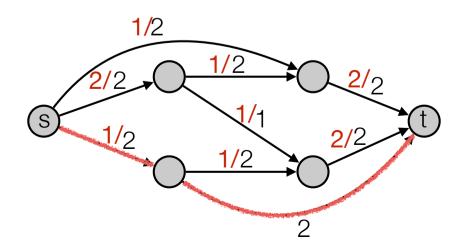
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



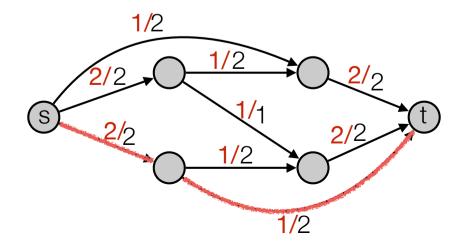
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



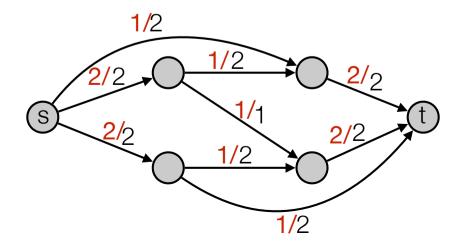
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



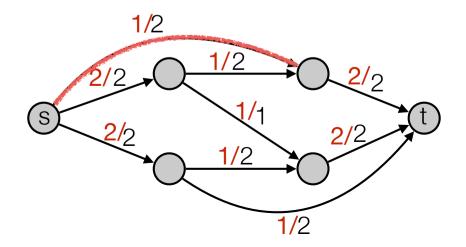
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



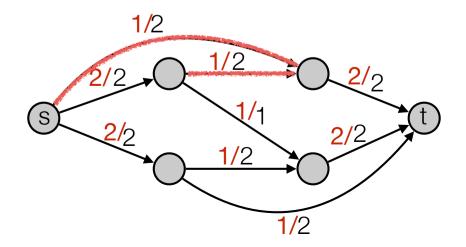
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - · Let S be all vertices to which there exists an augmenting path from s.



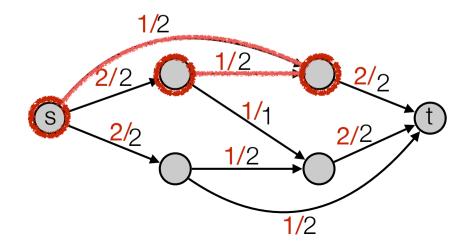
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



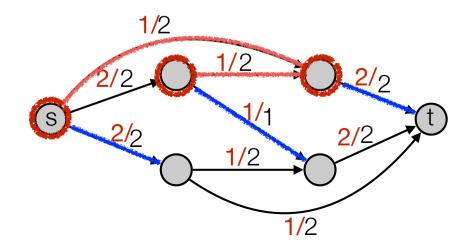
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



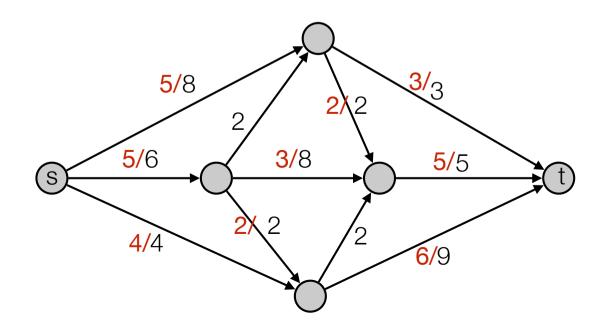
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



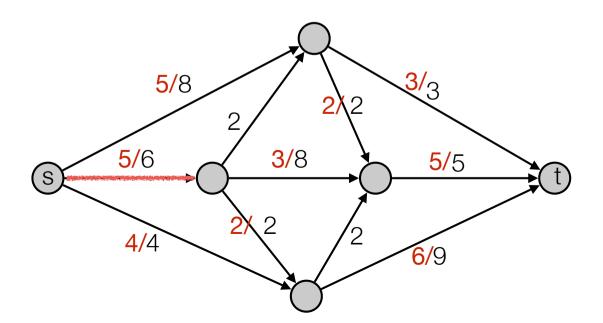
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - · Let S be all vertices to which there exists an augmenting path from s.



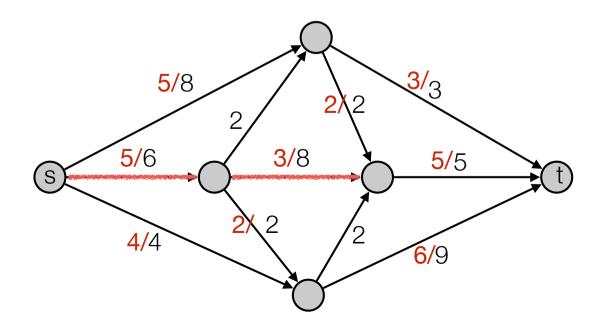
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



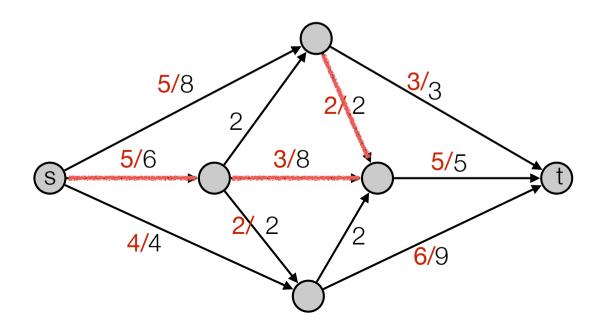
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



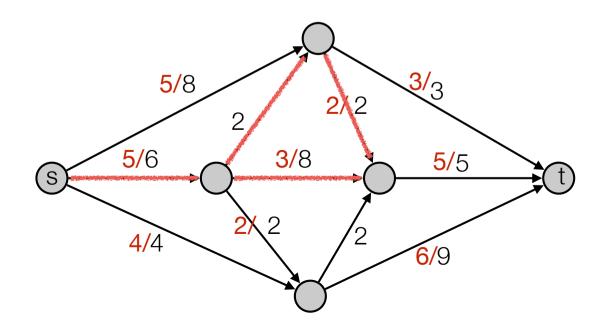
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



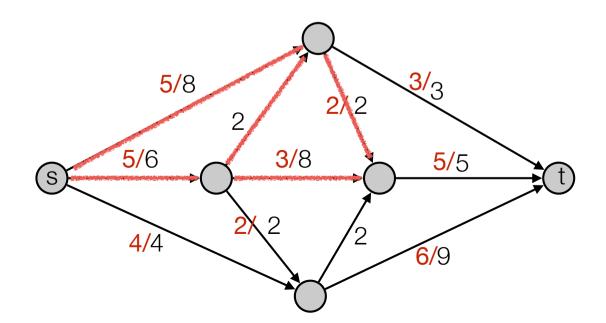
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



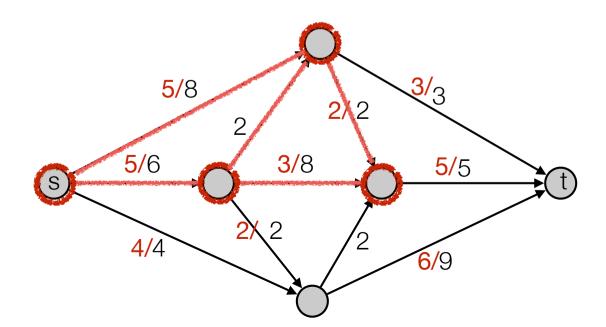
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



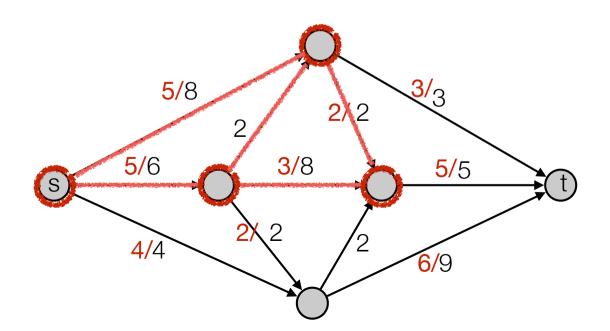
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



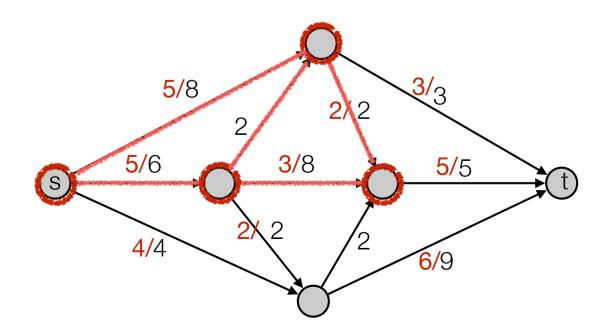
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.



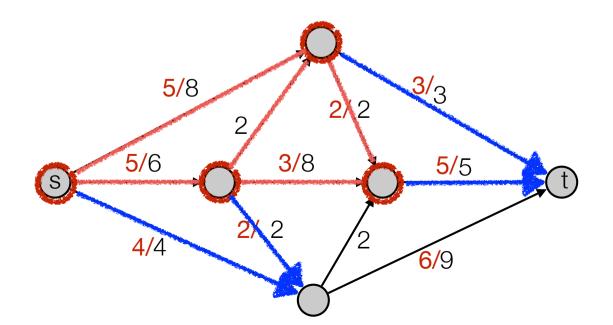
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.
- Remember:



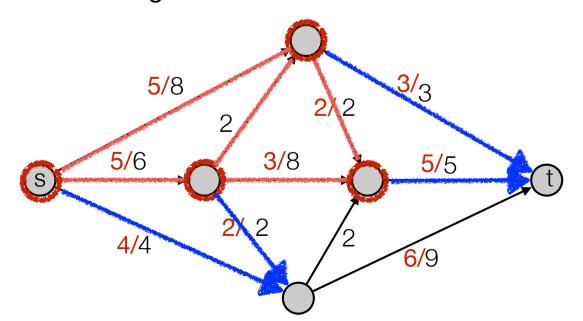
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.
- Remember:
  - All forward edges in the minimum cut are "full" (flow = capacity)



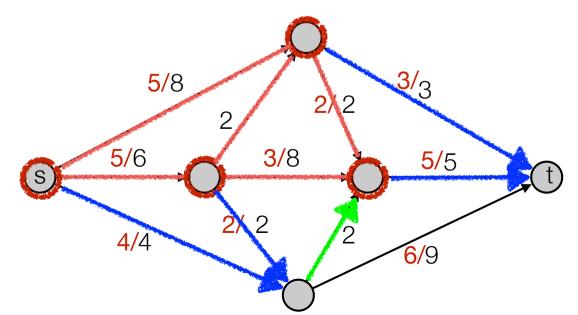
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.
- Remember:
  - All forward edges in the minimum cut are "full" (flow = capacity)



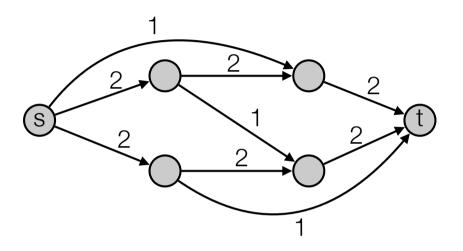
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.
- Remember:
  - All forward edges in the minimum cut are "full" (flow = capacity)
  - All backwards edges in minimum cut have 0 flow.

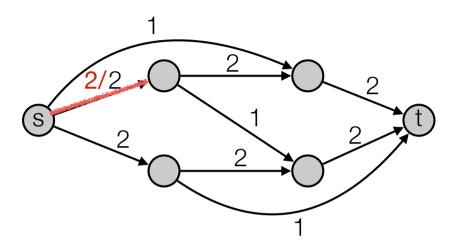


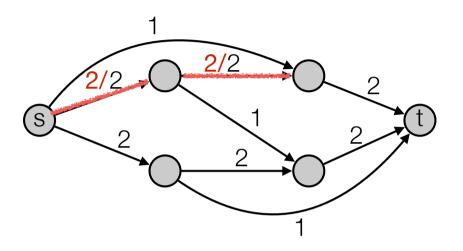
- Use Ford-Fulkerson to find a max-flow (finding augmenting paths).
- When no augmenting s-t path:
  - Let S be all vertices to which there exists an augmenting path from s.
- Remember:
  - All forward edges in the minimum cut are "full" (flow = capacity)
  - All backwards edges in minimum cut have 0 flow.

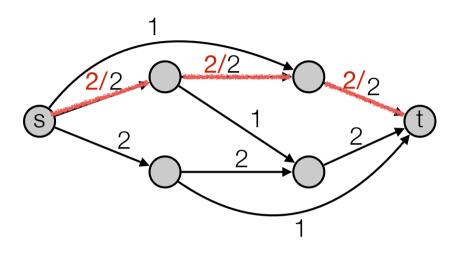


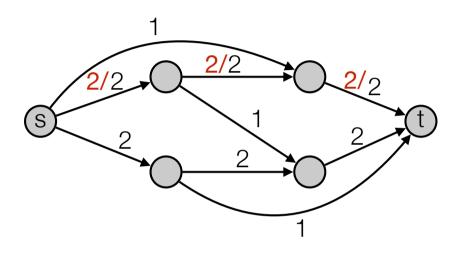
## Residual networks

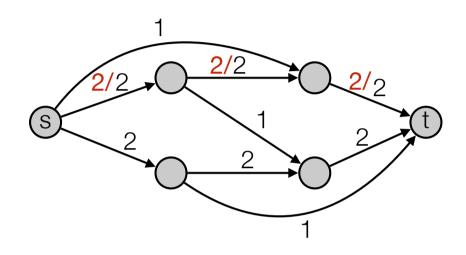


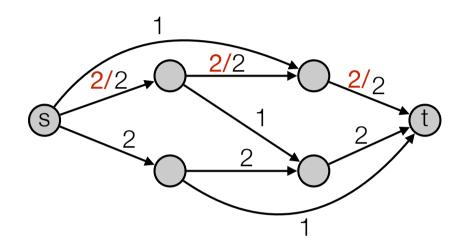


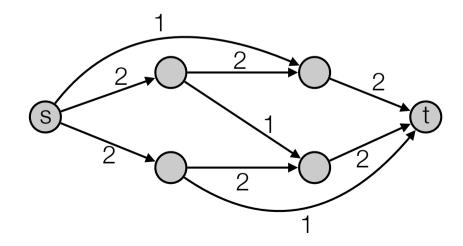


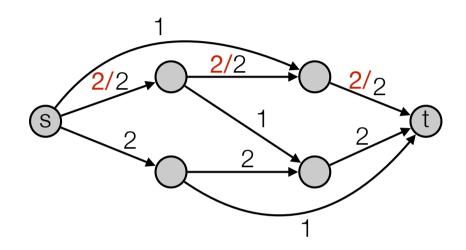


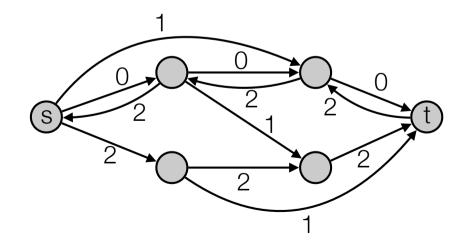


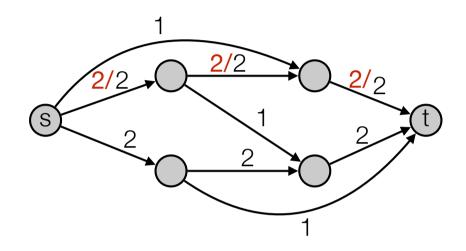


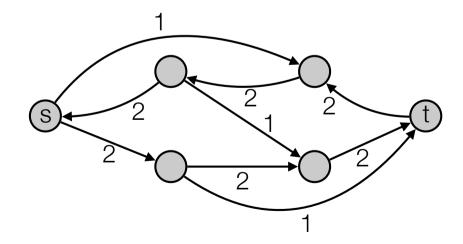


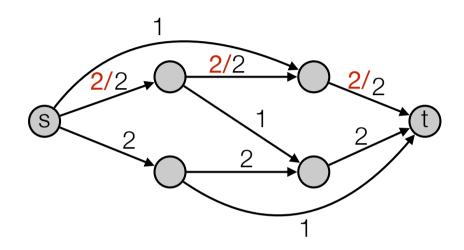


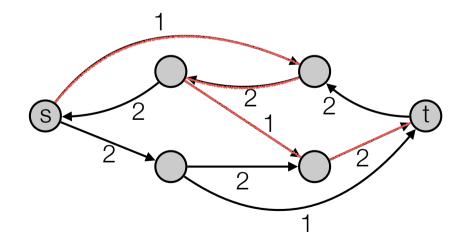


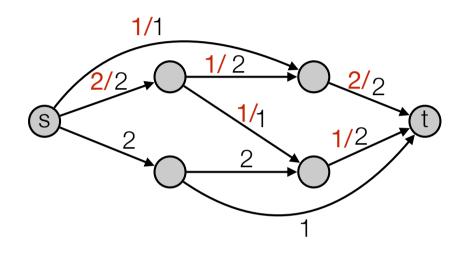


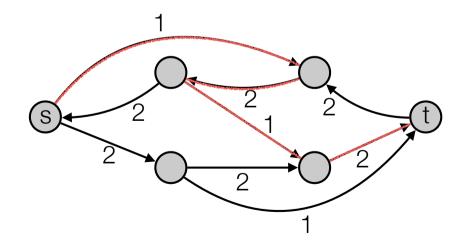


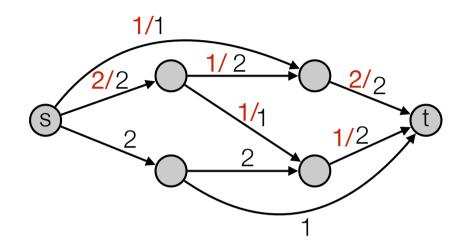


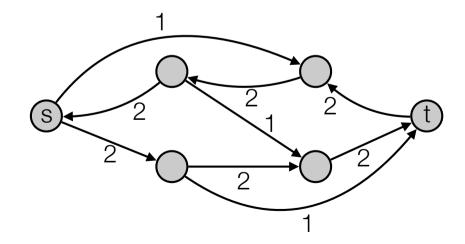


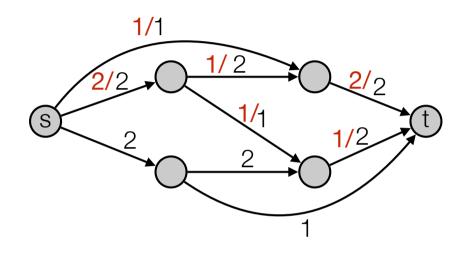


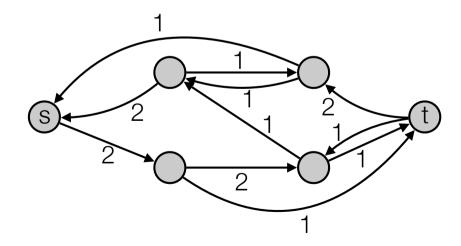












### **Network Flow**

Multiple sources and sinks:

