| 02110 |
| :--- |
| Inge Li Gortz |
|  |

Balanced Search Trees

2-3-4 trees
red-black trees

## Dynamic set implementations

## Balanced search trees

Dynamic sets
Worst case running times

- Search
- Insert
- Delete
- Maximum
- Minimum
- Successor
- Predecessor

This lecture: 2-3-4 trees, red-black trees

| Implementation | sear | insert | delete | minimum | maximum | succossor | predecessor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| linked lists | O(n) | 0 (1) | O(1) | O(n) | 0 (n) | 0 (n) | O(n) |
| ordered array | O(log n) | O(n) | $O(n)$ | 0 (1) | O(1) | O(log n) | O(logn) |
| sst | O(h) | O(h) | O(h) | O(h) | O(h) | O(h) | O(n) |

In worst case h=n.
In best case $h=\log n$ (fully balanced binary tree)
Today: How to keep the trees balanced.

## 2-3-4 trees

## 2-3-4 trees

2-3-4 trees. Allow nodes to have multiple keys.
Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node

- 2-node: one key, 2 children
- 3-node: 2 keys, 3 children
- 4-node: 3 keys, 4 children


Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.

Ex. Insert 2


## Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node

Ex. Insert 2


Ex. Insert 2


## Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node

Ex. Insert 29


## Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node

Ex. Insert 7

${ }^{13}$

## Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??

Ex. Insert 7


14

## Splitting a 4-node in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree

- Ensures last node is not a 4-node.
- Transformations to split 4-nodes:


Consequence. Insertion at bottom is easy since it's not a 4-node.


## Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??



## Insertion in a 2-3-4 tree

Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??

Ex. Insert 7


## Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree.

Ex. Splitting a 4-node attached to a 2-node


## Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree.
Splitting a 4-node attached to a 4-node never happens when we split nodes on the way down the tree.

Invariant. Current node is not a 4-node.

## Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

Ex. Delete minimum


## Insertion 2-3-4 trees




## Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

Ex. Delete minimum


## Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key

Ex. Delete minimum


## Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key
- 2-node: ??

Ex. Delete minimum


## Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key
- 2-node: split/merge on way down.

Ex. Delete minimum


## Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key
- 2-node: split/merge on way down

Ex. Delete minimum


## Deletions in 2-3-4 trees

Delete minimum:

- minimum always in leftmost leaf
- If 3- or 4-node: delete key
- 2-node: split/merge on way down.

Ex. Delete minimum

## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node



## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key



## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete 10


## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.



## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete 10

- Find successor



## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete 10

- Find successor



## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete 10

- Find successor
- Delete 11 from leaf



## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete 10

- Find successor



## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf

Ex. Delete 10

- Find successor
- Delete 11 from leaf



## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf

Ex. Delete 10

- Find successor
- Delete 11 from leaf
- Replace 10 with 11



## 2-3-4 Tree: Balance

Property. All paths from root to leaf have same length.


Tree height.
Worst case: Ig $N$ [all 2-nodes]
Best case: $\log _{4} N=1 / 2 \lg N \quad[a l l ~ 4-n o d e s]$
Between 10 and 20 for a million nodes.
Between 15 and 30 for a billion nodes.

## Deletions in 2-3-4 trees

Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf

Ex. Delete 10

- Find successor
- Delete 11 from leaf
- Replace 10 with 11



## Dynamic set implementations

Worst case running times

| Implementation | search | insert | delete | minimum | maximum | successor | predecessor |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| linked lists | $O(n)$ | $O(1)$ | $O(1)$ | $O(n)$ | $O(n)$ | $O(n)$ | $O(n)$ |
| ordered array | $O(\log n)$ | $O(n)$ | $O(n)$ | $O(1)$ | $O(1)$ | $O(\operatorname{lng} n)$ | $O(\log n)$ |
| BST | $O(h)$ |
| 2-3-4 tree | $O(\ln n)$ | $O(\ln n)$ | $O(\operatorname{lng} n)$ | $O(\log n)$ | $O(\log n)$ | $O(\log n)$ | $O(\log n)$ |

Red-black trees

## Red-black tree

Represent 2-3-4 tree as a binary search tree

- Use colors on edges to represent 3- and 4-nodes.


 $\approx$
 or $Q$
- Disallowed: 2 red nodes in-a-row.



## Red-black tree

Represent 2-3-4 tree as a binary search tree

- Use colors on edges to represent 3- and 4-nodes (red edges glues nodes together).

$\approx$


$\approx$

or


5
$\approx 5$

## Red-black tree

Represent 2-3-4 tree as a binary search tree

- Use colors on edges to represent 3- and 4-nodes.


or $夕_{6}$
- Connection between 2-3-4 trees and red-black trees:



## Red-black tree

Represent 2-3-4 tree as a binary search tree

- Use colors on edges to represent 3- and 4-nodes.

- Connection between 2-3-4 trees and red-black trees:



## Red-black tree

Connection between 2-3-4 trees and red-black trees:


## Red-black tree

Connection between 2-3-4 trees and red-black trees:



## Red-black tree

Connection between 2-3-4 trees and red-black trees:


or


Red-black tree: Splitting 4-nodes
Two easy cases:





$\approx \begin{aligned} & 246 \\ & 7 \\ & 59\end{aligned}$

## Insertion in red-black trees

## Insertion in 2-node:

(8) $\approx$
(8)


Insertion in 3-node:


Insertion in red-black trees
Insertion in 3-node (continued):


Red-black trees: Splitting of 4-nodes
Example of hard case:



$\approx$

Solution: Rotations!

Rotations in red-black trees
Two types of rotations:





Rotations in red-black trees




## Insertion in red-black trees

Insertion in 3-node (continued):


## Insertion in red-black trees

Insertion in 3-node (continued):


## Insertion in red-black trees

Insertion in 3-node:


Eksempel




## Running times in red-black trees

- Time for insertion:
- Search to bottom after key: O(h)
- Insert leaf with red edge: $\mathrm{O}(1)$
- Perform recoloring and rotations on way up: O(h)
- Can recolor many times (but at most h)
- At most 2 rotations.
- Total O(h).
- Time for search
- Same as BST: O(h)
- Height: O(log n)

Balanced trees: implementations

Redblack trees:

Java: java.util.TreeMap, java.util.TreeSet.
C++ STL: map, multimap, multiset
Linux kernel: linux/rbtree.h.

