02110

Inge Li Gørtz

Balanced Search Trees

2-3-4 trees red-black trees

Balanced search trees

Dynamic sets

- Search
- Insert
- Delete
- Maximum
- Minimum
- Successor
- Predecessor

This lecture: 2-3-4 trees, red-black trees

Next time: Splay trees

Dynamic set implementations

Worst case running times

Implementation	search	insert	delete	minimum	maximum	successor	predecessor
linked lists	O(n)	O(1)	O(1)	O(n)	O(n)	O(n)	O(n)
ordered array	O(log n)	O(n)	O(n)	O(1)	O(1)	O(log n)	O(log n)
BST	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)

In worst case h=n.

In best case h= log n (fully balanced binary tree)

Today: How to keep the trees balanced.

2-3-4 trees

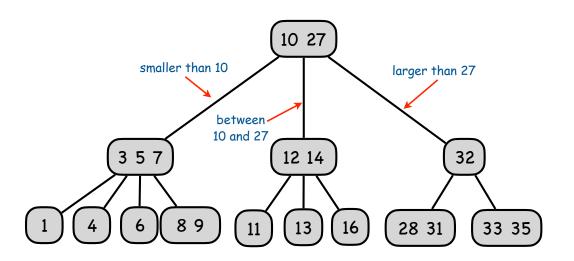
2-3-4 trees

2-3-4 trees. Allow nodes to have multiple keys.

Perfect balance. Every path from root to leaf has same length.

Allow 1, 2, or 3 keys per node

- 2-node: one key, 2 children
- 3-node: 2 keys, 3 children
- 4-node: 3 keys, 4 children

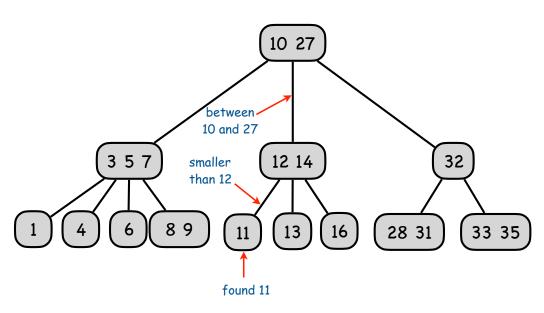


Searching in a 2-3-4 tree

Search.

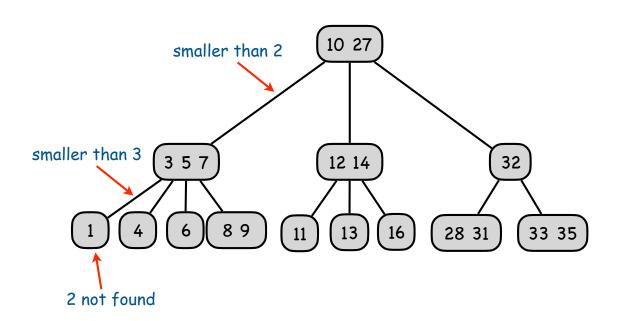
- Compare search key against keys in node.
- Find interval containing search key
- Follow associated link (recursively)

Ex. Search for 11



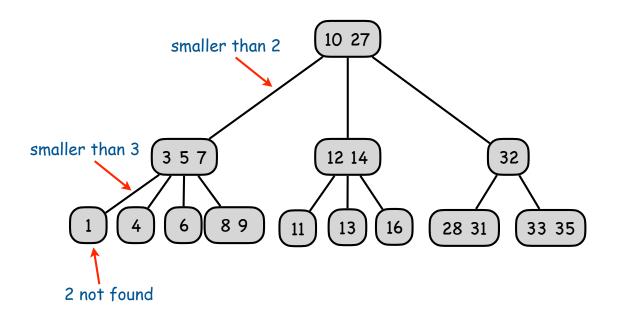
Insert.

Search to bottom for key.



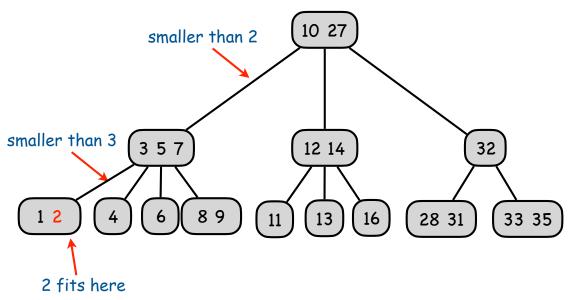
Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node



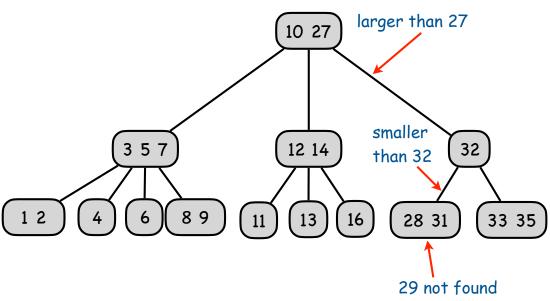
Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node



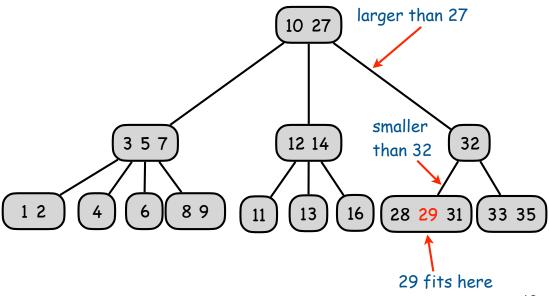
Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node



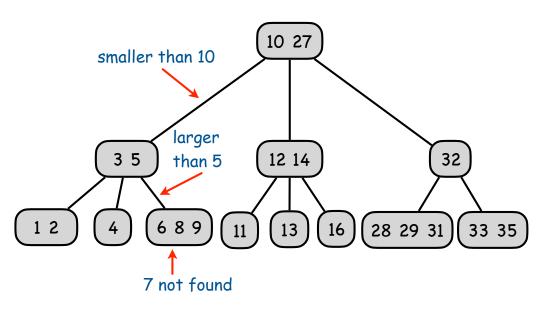
Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node



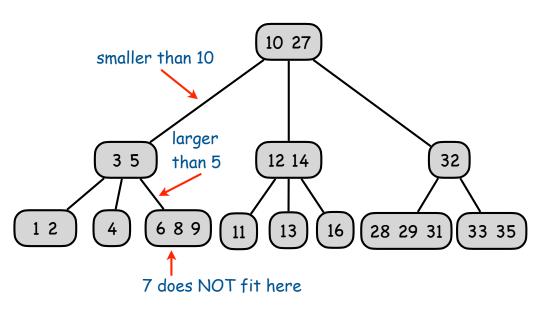
Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node



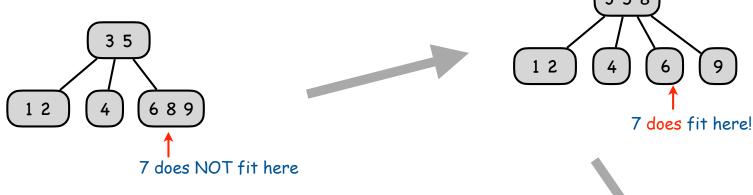
Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??



Splitting a 4-node in a 2-3-4 tree

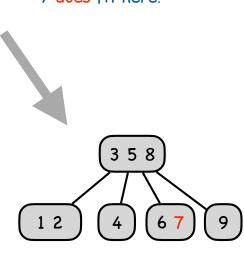
Idea: split the 4-node to make room



Problem: Doesn't work if parent is a 4-node

Solution 1: Split the parent (and continue splitting while necessary).

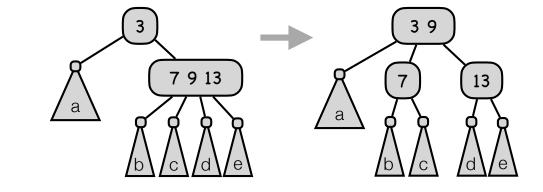
Solution 2: Split 4-nodes on the way down.

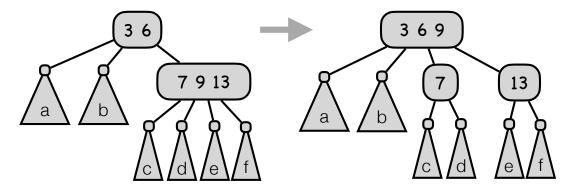


Splitting a 4-node in a 2-3-4 tree

Idea: split 4-nodes on the way down the tree.

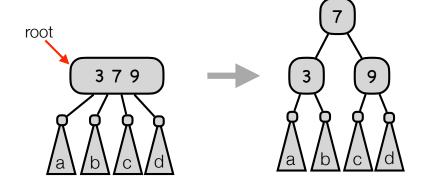
- Ensures last node is not a 4-node.
- Transformations to split 4-nodes:





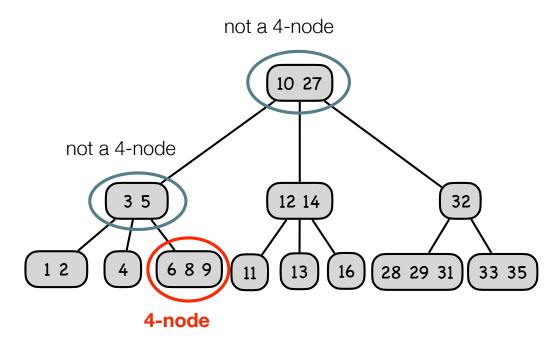
Invariant. Current node is not a 4-node.

Consequence. Insertion at bottom is easy since it's not a 4-node.



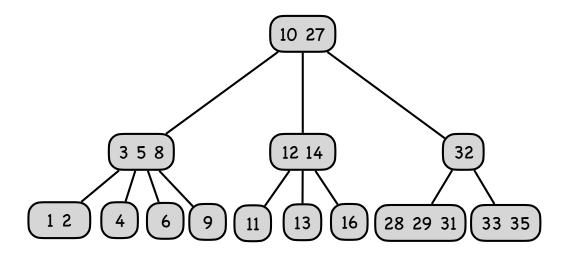
Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??



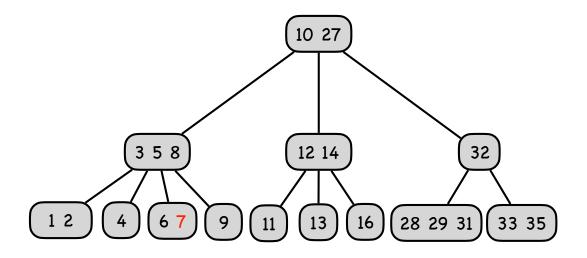
Insert.

- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??



Insert.

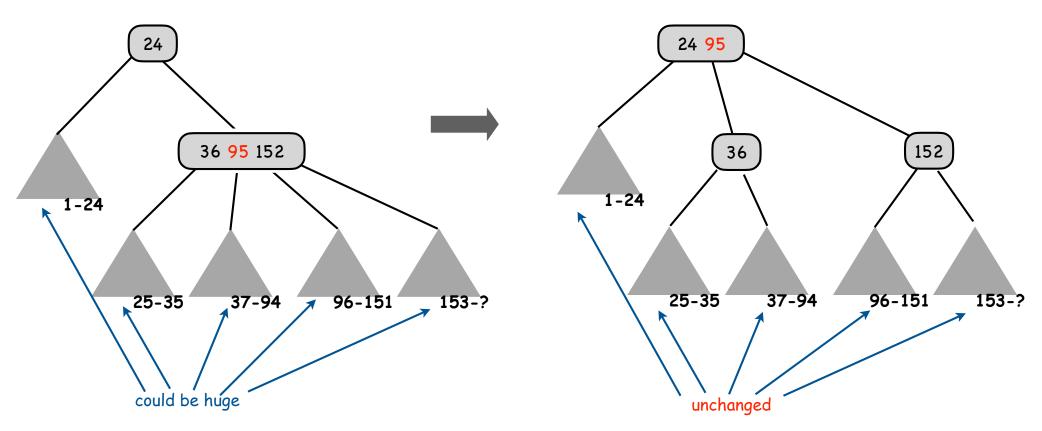
- Search to bottom for key.
- 2-node at bottom: convert to 3-node
- 3-node at bottom: convert to 4-node
- 4-node at bottom: ??



Splitting 4-nodes in a 2-3-4 tree

Local transformations that work anywhere in the tree.

Ex. Splitting a 4-node attached to a 2-node



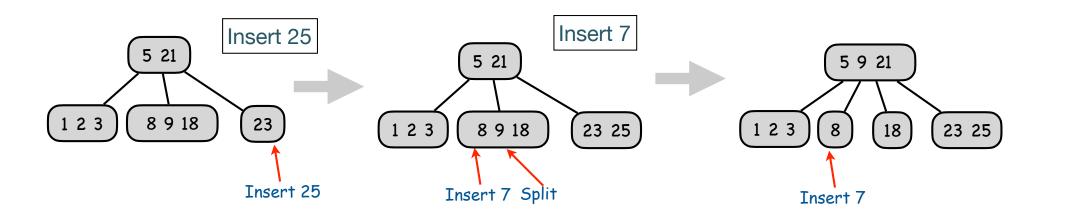
Splitting 4-nodes in a 2-3-4 tree

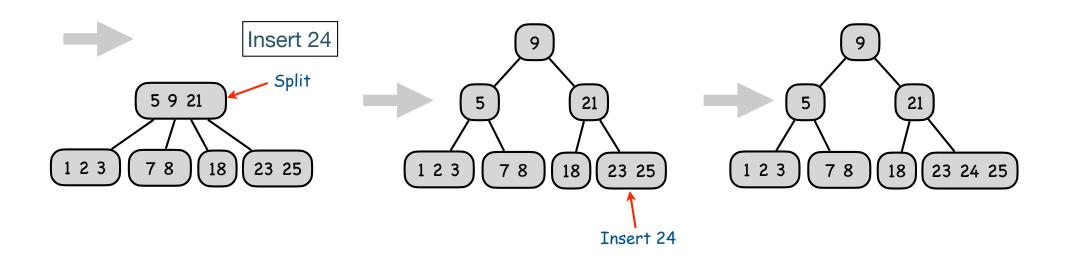
Local transformations that work anywhere in the tree.

Splitting a 4-node attached to a 4-node never happens when we split nodes on the way down the tree.

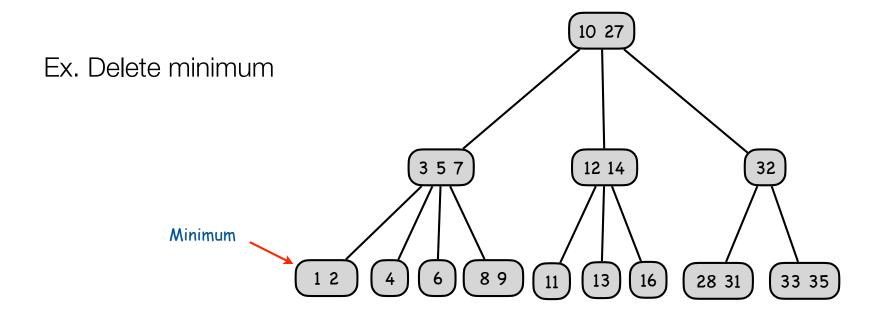
Invariant. Current node is not a 4-node.

Insertion 2-3-4 trees

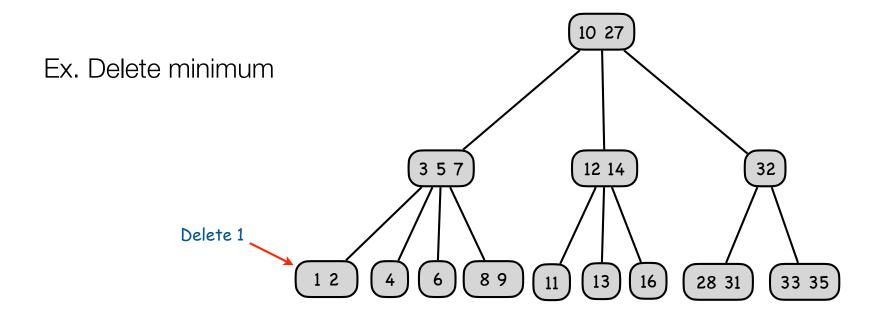




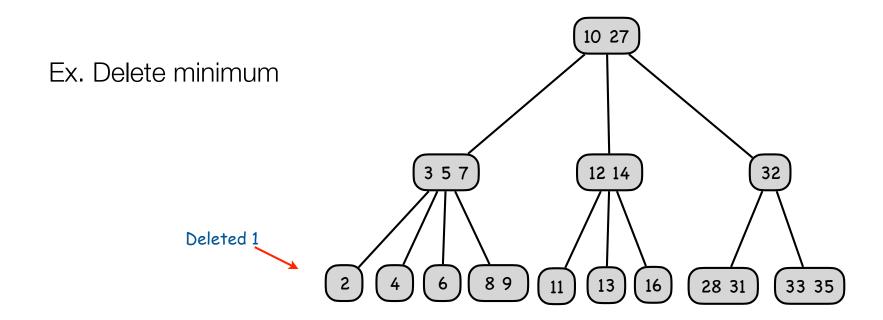
- minimum always in leftmost leaf
- If 3- or 4-node: delete key



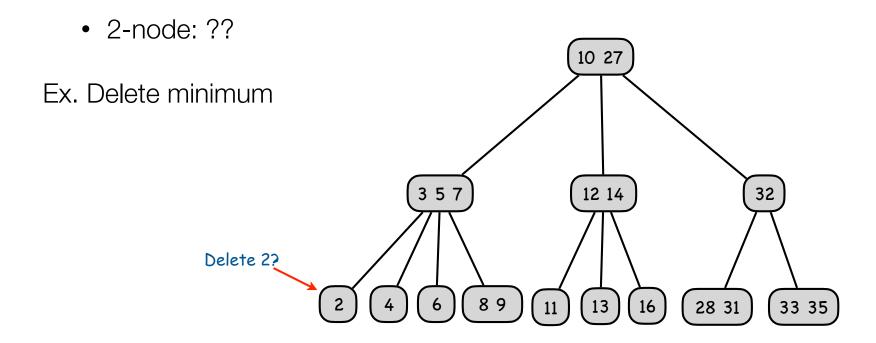
- minimum always in leftmost leaf
- If 3- or 4-node: delete key



- minimum always in leftmost leaf
- If 3- or 4-node: delete key

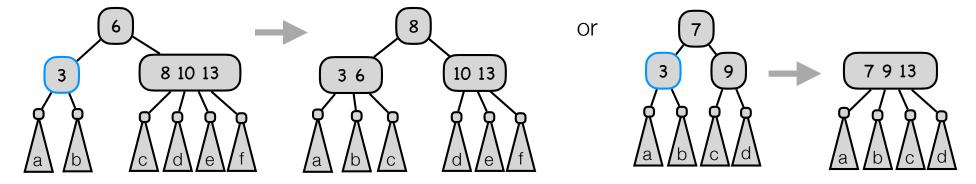


- minimum always in leftmost leaf
- If 3- or 4-node: delete key

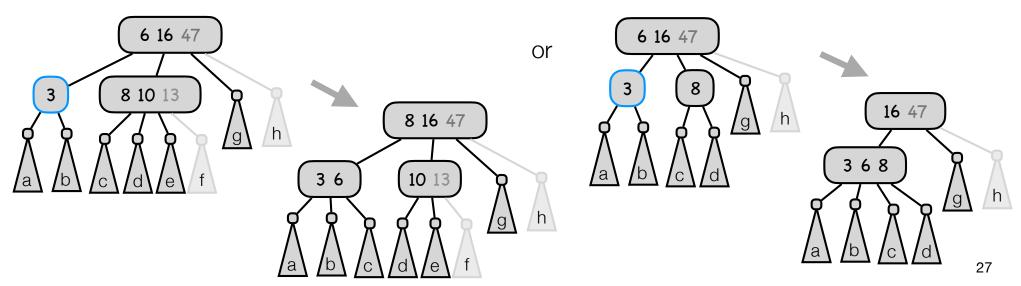


Idea: On the way down maintain the invariant that current node (except root) is not a 2-node.

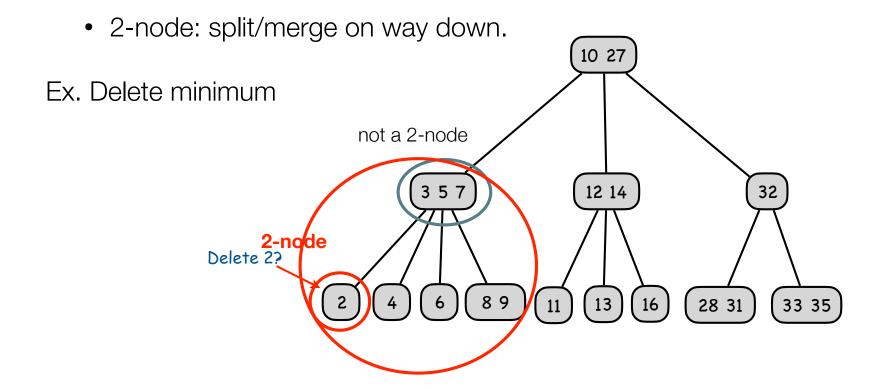
• Child of root and root is a 2-node:



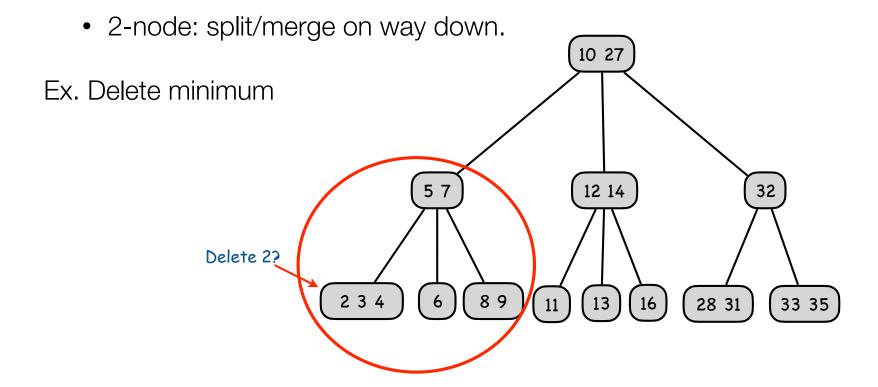
• on the way down:



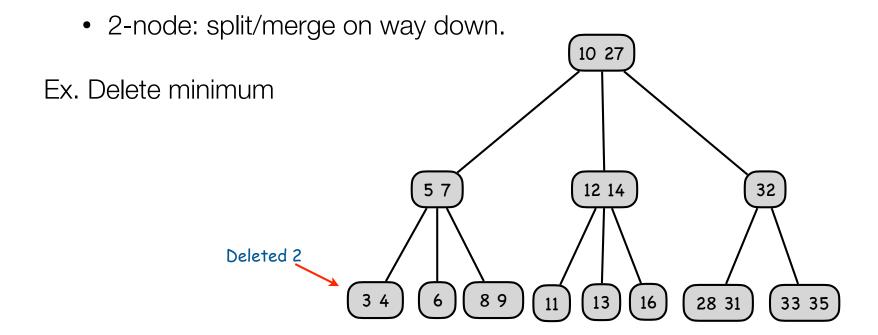
- minimum always in leftmost leaf
- If 3- or 4-node: delete key



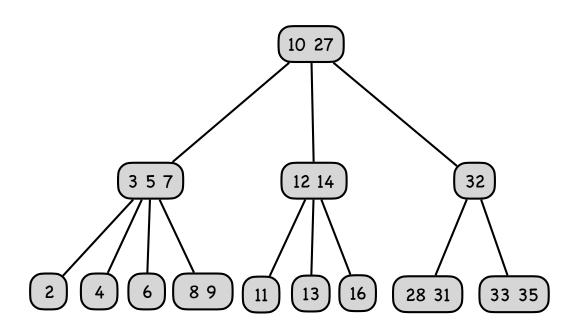
- minimum always in leftmost leaf
- If 3- or 4-node: delete key



- minimum always in leftmost leaf
- If 3- or 4-node: delete key

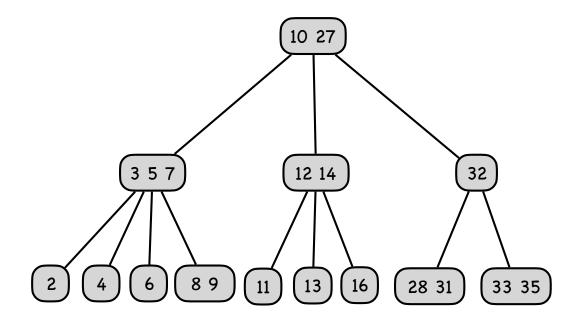


Delete:



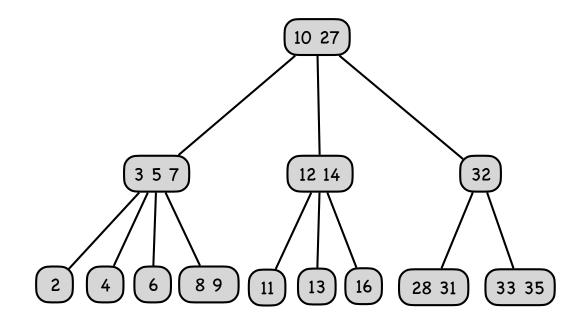
Delete:

• During search maintain invariant that current node is not a 2-node



Delete:

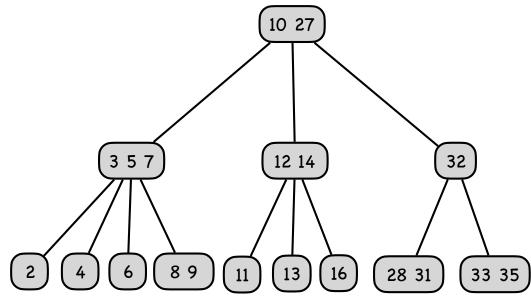
- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key



Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key

• Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

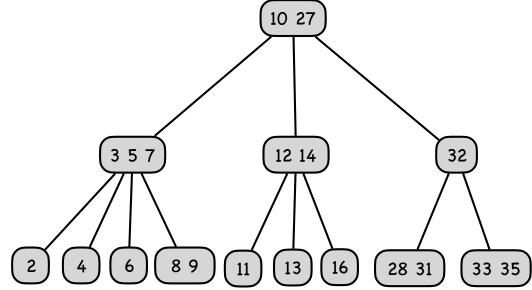


Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key

 Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete 10

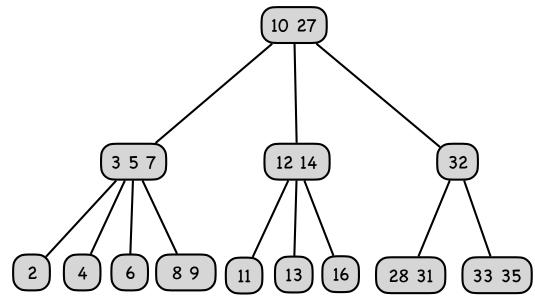


Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete 10

Find successor



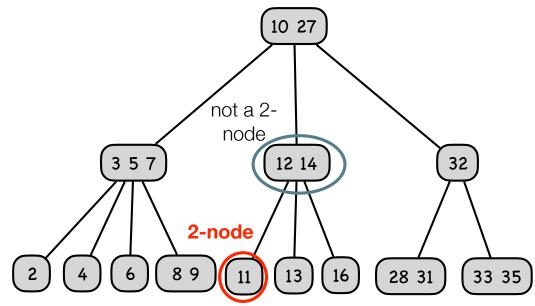
Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key

 Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete 10

Find successor

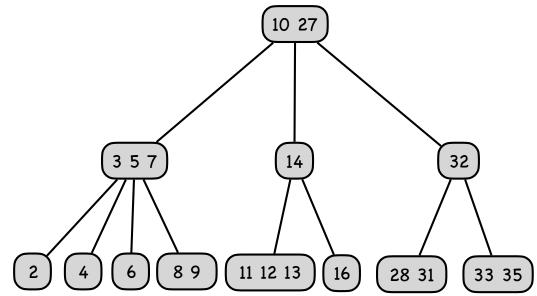


Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

Ex. Delete 10

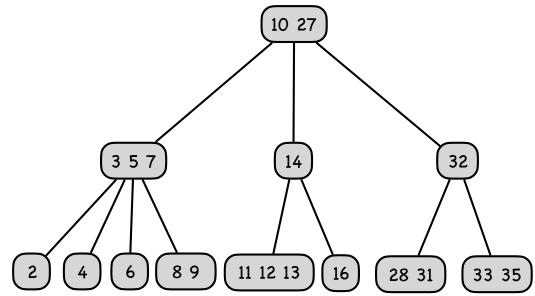
Find successor



Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

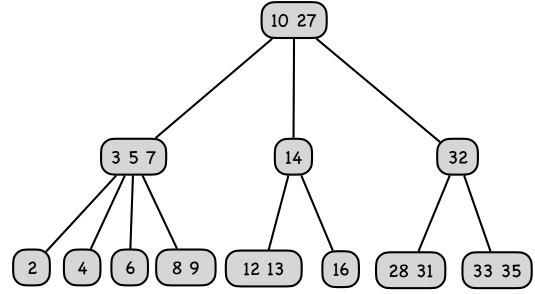
- Find successor
- Delete 11 from leaf



Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key
- Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

- Find successor
- Delete 11 from leaf

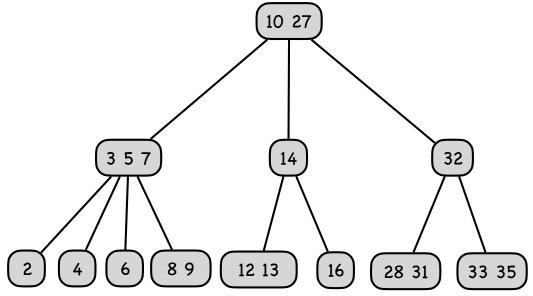


Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key

 Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

- Find successor
- Delete 11 from leaf
- Replace 10 with 11

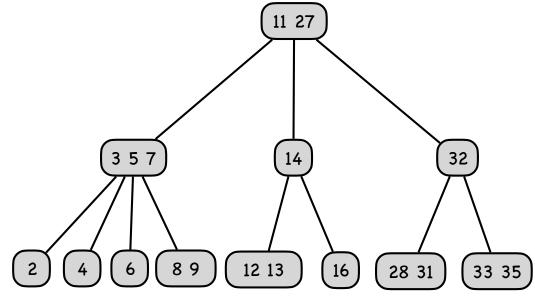


Delete:

- During search maintain invariant that current node is not a 2-node
- If key is in a leaf: delete key

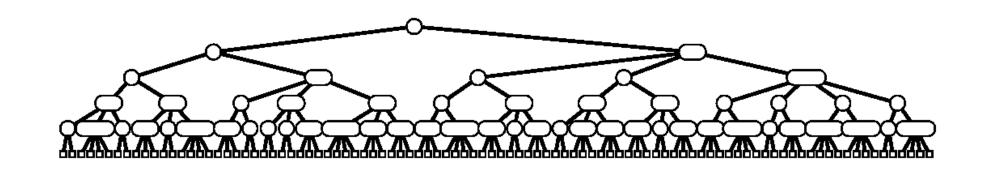
 Key not in leaf: replace with successor (always leaf in subtree) and delete successor from leaf.

- Find successor
- Delete 11 from leaf
- Replace 10 with 11



2-3-4 Tree: Balance

Property. All paths from root to leaf have same length.



Tree height.

Worst case: Ig N [all 2-nodes]

Best case: $log_4 N = 1/2 lg N$ [all 4-nodes]

Between 10 and 20 for a million nodes.

Between 15 and 30 for a billion nodes.

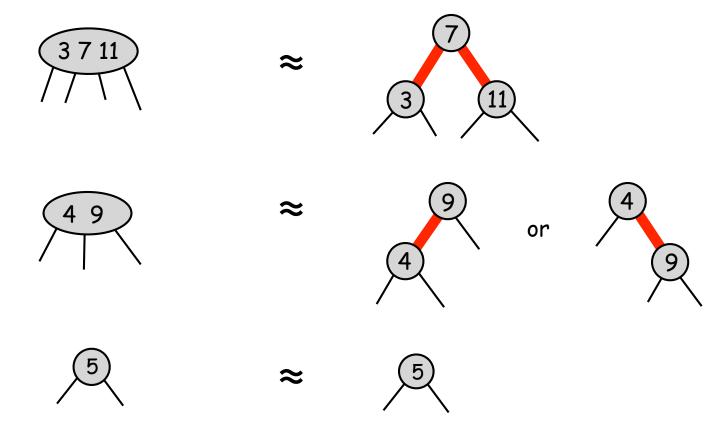
Dynamic set implementations

Worst case running times

Implementation	search	insert	delete	minimum	maximum	successor	predecessor
linked lists	O(n)	O(1)	O(1)	O(n)	O(n)	O(n)	O(n)
ordered array	O(log n)	O(n)	O(n)	O(1)	O(1)	O(log n)	O(log n)
BST	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)
2-3-4 tree	O(log n)	O(log n)					

Represent 2-3-4 tree as a binary search tree

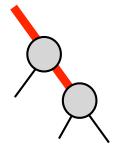
• Use colors on edges to represent 3- and 4-nodes (red edges glues nodes together).



Represent 2-3-4 tree as a binary search tree

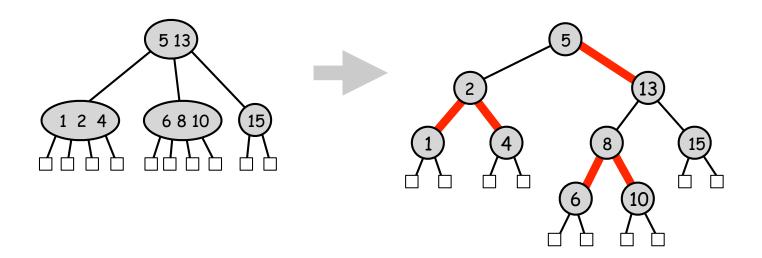
• Use colors on edges to represent 3- and 4-nodes.

• Disallowed: 2 red nodes in-a-row.



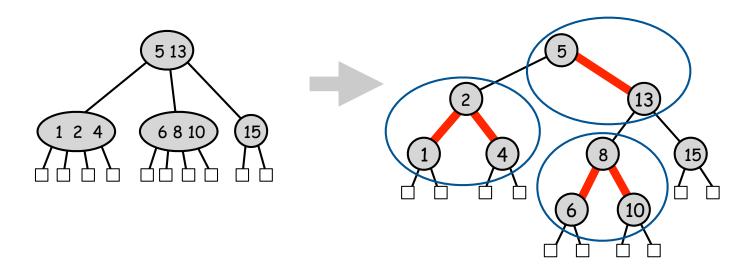
Represent 2-3-4 tree as a binary search tree

• Use colors on edges to represent 3- and 4-nodes.



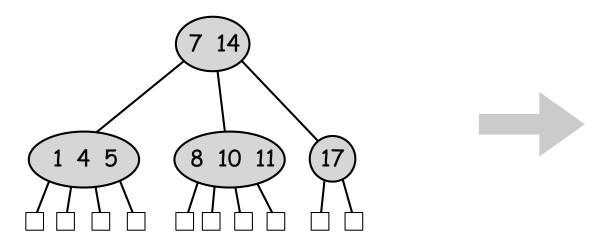
Represent 2-3-4 tree as a binary search tree

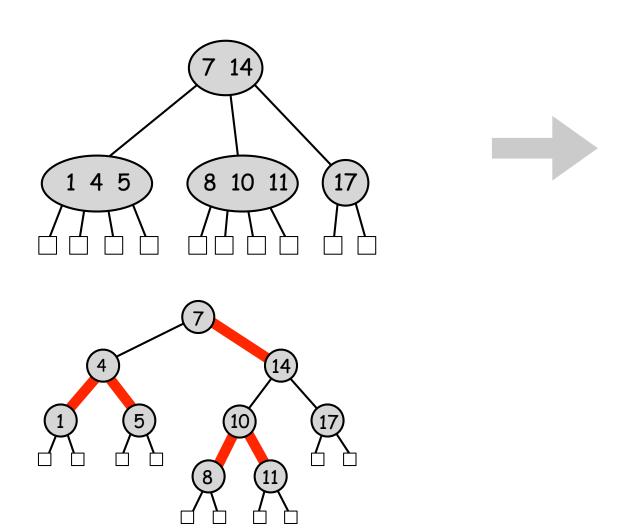
• Use colors on edges to represent 3- and 4-nodes.

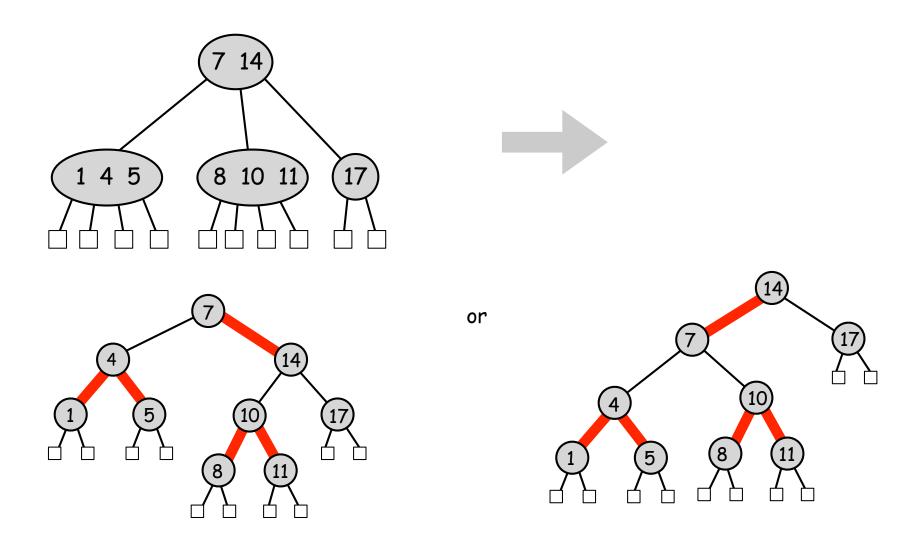


Properties of red-black trees:

- All root-to-leaf paths have the same number of black edges.
- No root-to-leaf path has two red edges in a row.

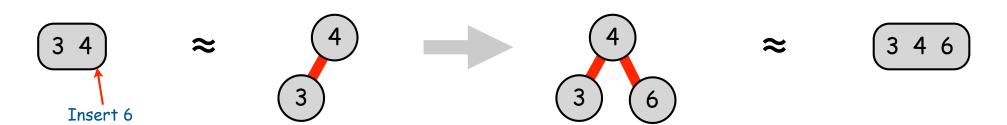




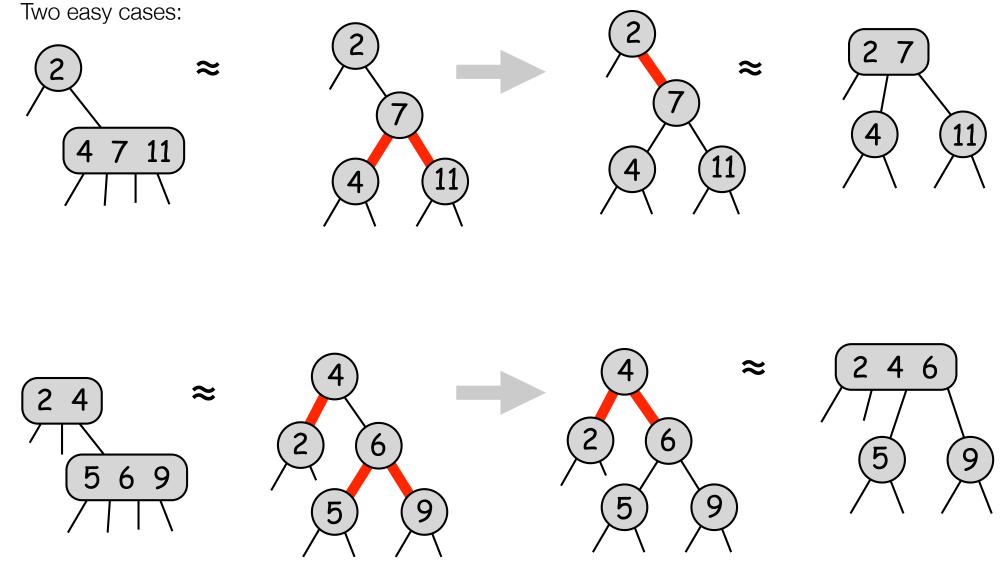


Insertion in 2-node:

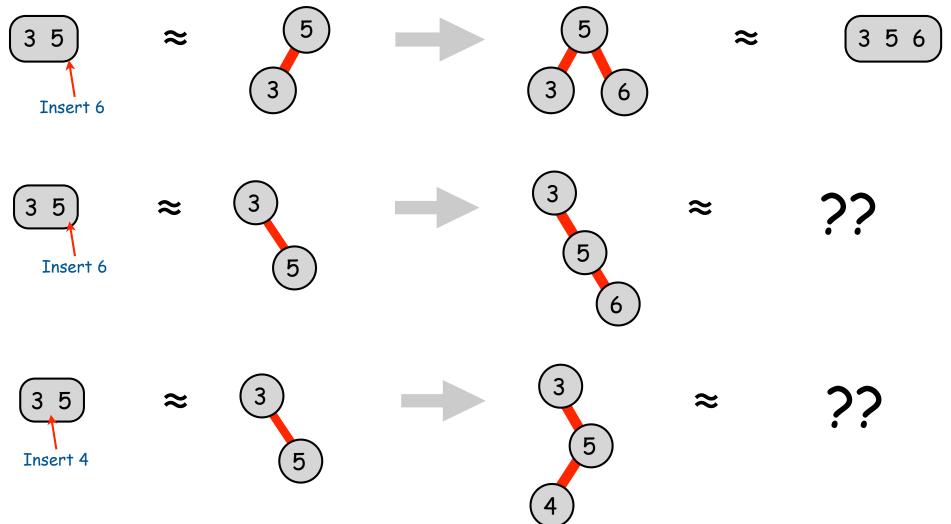
Insertion in 3-node:



Red-black tree: Splitting 4-nodes

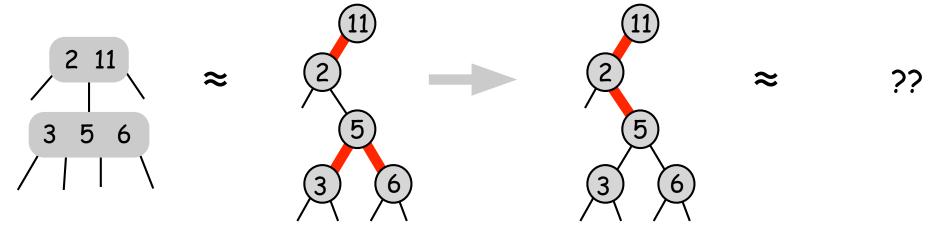


Insertion in 3-node (continued):



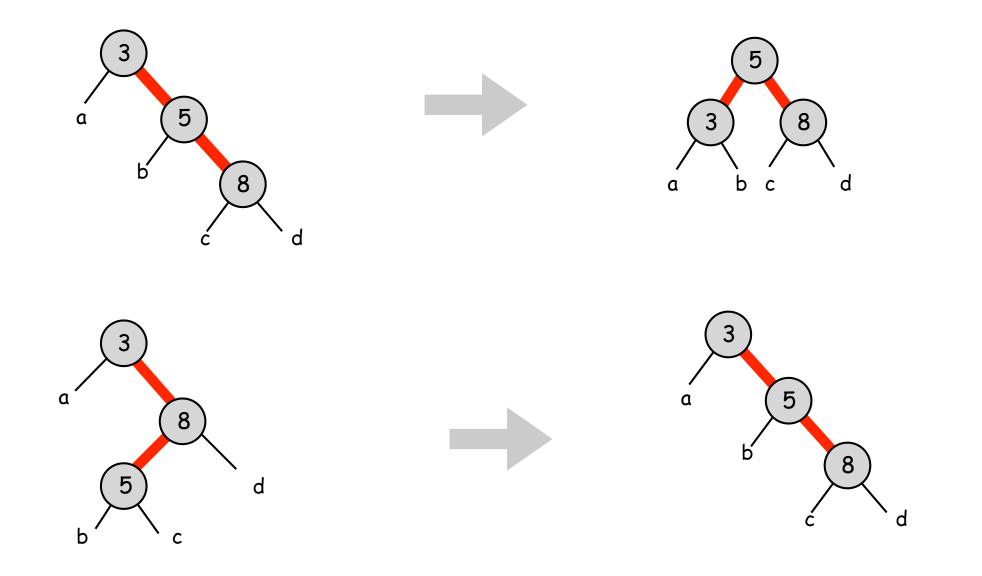
Red-black trees: Splitting of 4-nodes

Example of hard case:



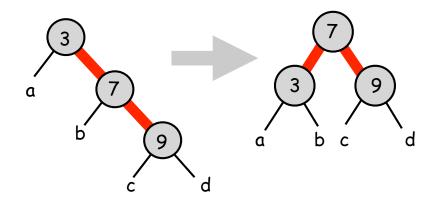
Solution: Rotations!

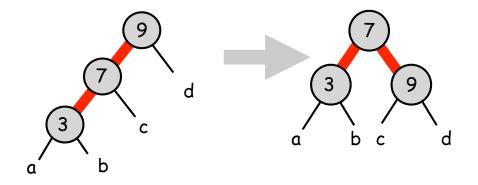
Rotations in red-black trees

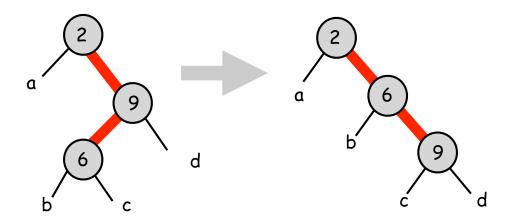


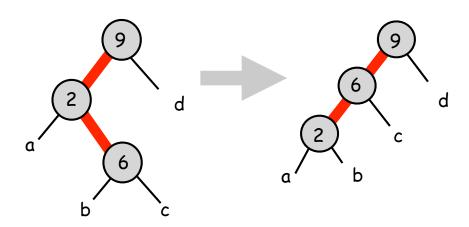
Rotations in red-black trees

Two types of rotations:

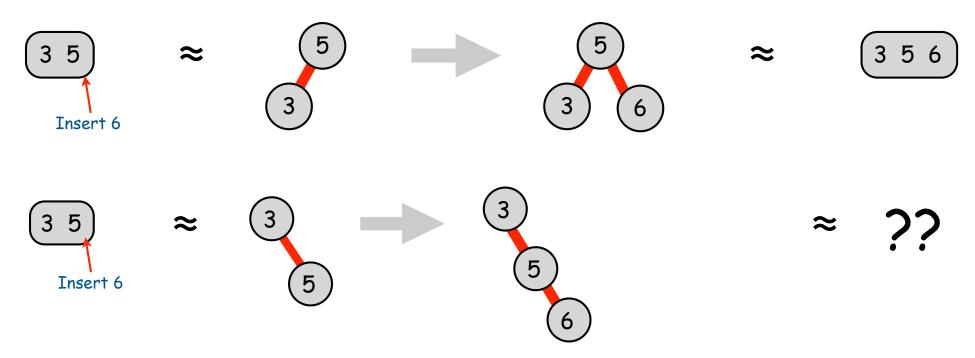




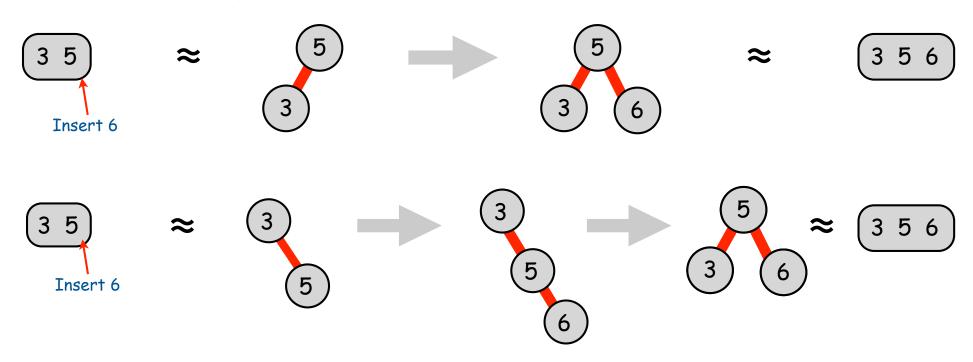




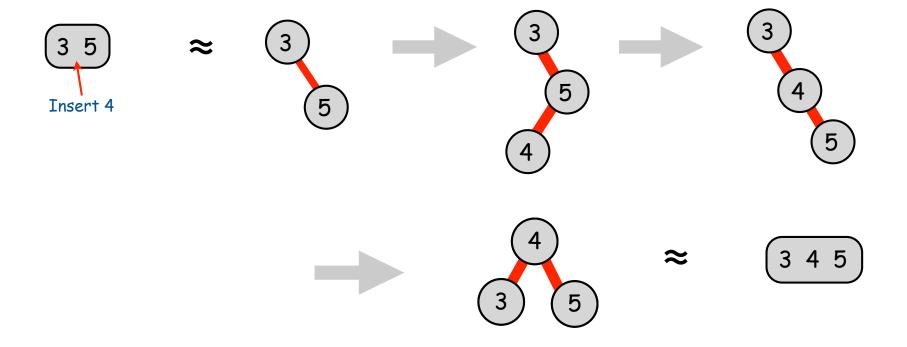
Insertion in 3-node (continued):

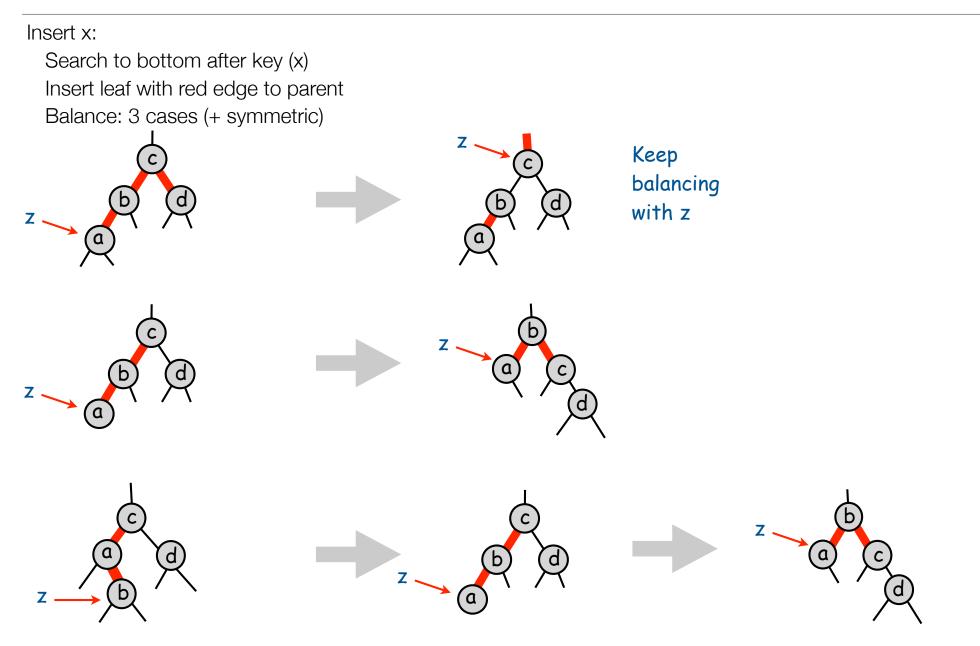


Insertion in 3-node (continued):

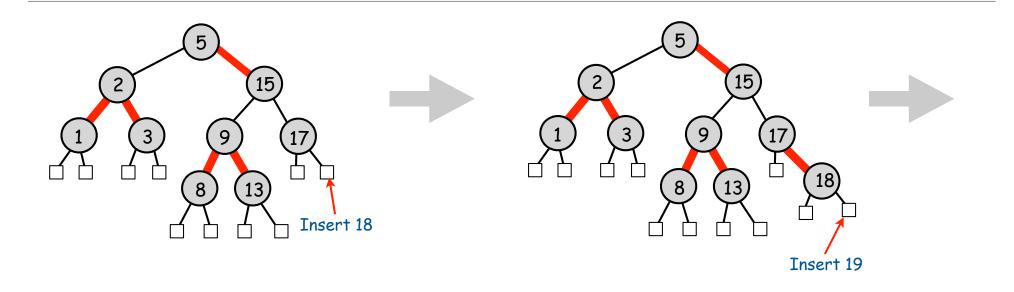


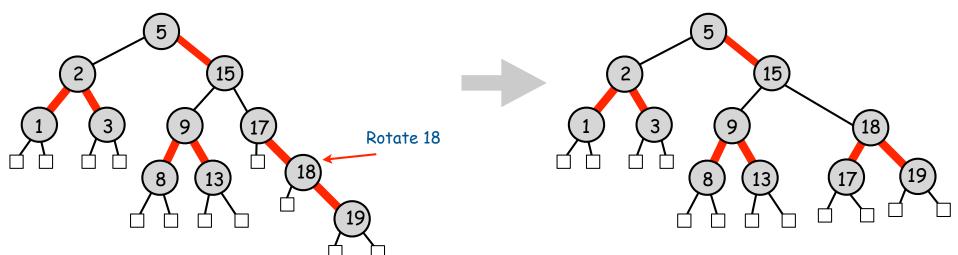
Insertion in 3-node:



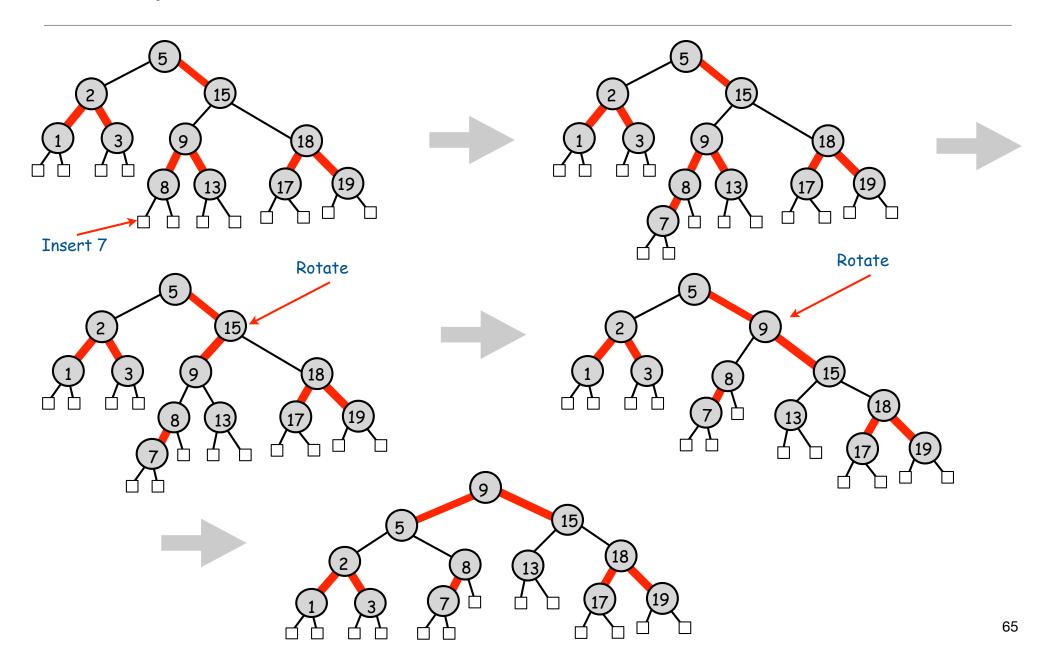


Eksempel





Example



Running times in red-black trees

- Time for insertion:
 - Search to bottom after key: O(h)
 - Insert leaf with red edge: O(1)
 - Perform recoloring and rotations on way up: O(h)
 - Can recolor many times (but at most h)
 - At most 2 rotations.
- Total O(h).
- Time for search
 - Same as BST: O(h)
- Height: O(log n)

Dynamic set implementations

Worst case running times

Implementation	search	insert	delete	minimum	maximum	successor	predecessor
linked lists	O(n)	O(1)	O(1)	O(n)	O(n)	O(n)	O(n)
ordered array	O(log n)	O(n)	O(n)	O(1)	O(1)	O(log n)	O(log n)
BST	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)	O(h)
2-3-4 tree	O(log n)	O(log n)					
red-black tree	O(log n)	O(log n)					

Balanced trees: implementations

Redblack trees:

```
Java: java.util.TreeMap, java.util.TreeSet.
```

C++ STL: map, multimap, multiset.

Linux kernel: linux/rbtree.h.