P and NP

Inge Li Gørtz

Problem Classification

Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides

- Q. Which problems will we be able to solve in practice?
- A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

Hardness of problems

- Want to understand how difficult or easy a given problem is.
 - Know there are problems that can be solved in polynomial time (all problems seen in this course).
 Easy
 - There are problems we cannot solve! Unsolvable
 - What about in between?

Problem Classification

1

3

- · Q. Which problems will we be able to solve in practice?
- A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

Problem Classification

- · Q. Which problems will we be able to solve in practice?
- A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

Problem Classification

- · Q. Which problems will we be able to solve in practice?
- A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

Problem Classification

- Q. Which problems will we be able to solve in practice?
- A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953, Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]

		Shortest path									Longest path									
		Min cut									Max cut									
	Soccer championship (2-point rule)									Soccer championship (3-point rule)										
1. DIVISION 1 SAMLET HJE	990 MME UDE EFTERÅR	FORÅR	v	U	т	SCORE	+/- 3	< 1989 1991 >	s 5	UPER Anlei	LIGAEN (3F SUPERLIGAEN) HJEMME UDE EFTER VILIDNAVN	2020/21 ÅR FORÅR	~		T	500	opdate	vet të og	< 2019/20 med 04.10.202	
1 Bren	by IF	26	17	8	1	50-16	+34	42			Brandby IF	4	4	0	0	9-	5	+4	12	
2 B 19	3	26	10	11	5	44-27	+17	31			AGE	4	2	2	0	10-	6	+4	8	
3 Ikast	rs	26	11	8	7	38- 27	+11	30	-	10	Vejie BK (O)	4	2	1	1	9-	7	+2	7	
4 Sike	long DF	26	11	8	7	35- 26	+9	30		8	SenderjyskE	4	2	1	1	8-	7	+1	7	
c py c	em	26	7	15	-4	33- 25	+8	29		0	FC Hidtysland (M)	4	2	1	1	4-	4	۰	7	
2 DATE	y BK	26	10	8	8	44- 30	+14	28		6	AaB	4	1	2	1	3-	4	-1	5	
6 Lyngi				10		31, 25	+6	28			FC Nordsjælland	4	1	1	2	9-	8	+1	4	

Problem Classification

5

• Ideally: classify problems according to those that can be solved in polynomial-time and those that cannot.

6

8

• Provably requires exponential-time.

• Given a board position in an n-by-n generalization of chess, can black guarantee a win?

· Provably undecidable.

- Given a program and input there is no algorithm to decide if program halts.
- Frustrating news. Huge number of fundamental problems have defied classification for decades.

Overview

Reductions

Tools for classifying problems according to relative hardness

• P and NP

Instances

- A problem (problem type) is the general, abstract term:
 - Examples: Shortest Path, Maximum Flow, Closest Pair, Sequence Alignment, String Matching.

9

11

- A problem instance is the concrete realization of a problem.
 - Maximum flow. The instance consists of a flow network.
 - Shortest path. The instance is a graph.
 - String Matching. The instance consists of two strings.

10

Polynomial-time Reductions

Maximum flow and maximum bipartite matching

- Bipartite matching \leq_P Maximum flow
 - Matching M => flow of value |M|
 - Flow of value v(f) => matching of size v(f)

<section-header><section-header><section-header><section-header><section-header><text>

Polynomial-time reductions

- Purpose. Classify problems according to relative difficulty.
 - Design algorithms. If $X \leq_P Y$ and Y can be solved in polynomial-time, then X can also be solved in polynomial time.
 - Establish intractability. If $X \leq_P Y$ and X cannot be solved in polynomial-time, then Y cannot be solved in polynomial time.
 - Establish equivalence. If $X \leq_P Y$ and $Y \leq_P X$, we use notation $X =_P Y$.

Polynomial-time reductions

- Reduction. X ≤_P Y if arbitrary instances of problem X can be solved using:
 - · Polynomial number of standard computational steps, plus
 - · Polynomial number of calls to oracle that solves problem Y.
- Strategy to make a reduction if we only need one call to the oracle/black box to solve X:
 - 1. Show how to turn (any) instance $S_{\boldsymbol{x}}$ of X into an instance of $S_{\boldsymbol{y}}$ of Y in polynomial time.
 - 2. Show that: S_x a yes instance of X => S_y a yes instance of Y.
 - 3. Show that: S_y a yes instance to $Y \Rightarrow S_x$ a yes instance of X.

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size $\ge k$?

· Example:

• Is there an independent set of size \geq 6? Yes

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size $\ge k$?
- Example:
 - Is there an independent set of size ≥ 6?

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size $\ge k$?
- Example:

19

- Is there an independent set of size \geq 6? Yes
- Is there an independent set of size \geq 7?

Independent set and vertex cover

- Independent set: A set S of vertices where no two vertices of S are neighbors (joined by an edge).
- Independent set problem: Given graph G and an integer k, is there an independent set of size $\ge k$?
- · Example:
 - Is there an independent set of size \geq 6? Yes
 - Is there an independent set of size \geq 7? No

Independent set and vertex cover

- · Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size ≤ k?

· Example:

• Is there a vertex cover of size ≤ 4? Yes

Independent set and vertex cover

- Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Vertex cover problem: Given graph G and an integer k, is there a vertex cover of size $\leq k$?

Example:

• Is there a vertex cover of size ≤ 4?

Independent set and vertex cover

- · Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size ≤ k?
- Example:
 - Is there a vertex cover of size \leq 4? Yes
 - Is there a vertex cover of size ≤ 3?

21

Independent set and vertex cover

- Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.
- Independent set problem: Given graph G and an integer k, is there a vertex cover of size < k?
- · Example:
 - Is there a vertex cover of size ≤ 4 ? Yes
 - Is there a vertex cover of size \leq 3? No

Independent set and vertex cover

- Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Proof.
 - =>: S is an independent set.
 - e cannot have both endpoints in S => e have an endpoint in V-S.
 - V-S is a vertex cover.

Independent set and vertex cover

- Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Proof.
 - =>: S is an independent set.

Independent set and vertex cover

- Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.
- Proof.
 - =>: S is an independent set.
 - e cannot have both endpoints in S => e have an endpoint in V-S.
 - · V-S is a vertex cover
 - <=: V-S is a vertex cover.

28

Set cover

• Set cover. Given a set U of elements, a collection of sets S₁,...S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

Independent set and vertex cover

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its complement V-S is a vertex cover.

• Independent set \leq_P vertex cover

- Use one call to the black box vertex cover algorithm with k = n-k.
- There is an independent set of size $\geq k$ if and only if the vertex cover algorithm returns yes.

vertex cover ≤_P independent set

- Use one call to the black box independent set algorithm with k = n-k.
- vertex cover =_P independent set

Set cover

• Set cover. Given a set U of elements, a collection of sets S1,...Sm of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?

30

- · Example:
 - · Does there exist a set cover of size at most 6?

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_1,...S_m$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- Example:
 - · Does there exist a set cover of size at most 6? Yes

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_1,...S_m$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- · Example:
 - Does there exist a set cover of size at most 6? Yes
 - · Does there exist a set cover of size at most 4?

Set cover

- Set cover. Given a set U of elements, a collection of sets S₁,...S_m of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- Example:
 - · Does there exist a set cover of size at most 6? Yes

Set cover

- Set cover. Given a set U of elements, a collection of sets $S_1,...S_m$ of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- · Example:
 - · Does there exist a set cover of size at most 6? Yes
 - · Does there exist a set cover of size at most 4? Yes

Set cover

- Set cover. Given a set U of elements, a collection of sets S1,...Sm of subsets of U, and an integer k. Does there exist a collection of at most k sets whose union is equal to all of U?
- · Example:
 - Does there exist a set cover of size at most 6? Yes
 - Does there exist a set cover of size at most 4? Yes
 - Does there exist a set cover of size at most 3? No

Reduction from vertex cover to set cover

- vertex cover ≤_P set cover
- U = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14,}
- $S_1 = \{e_1, e_2, e_3, e_4\}$
- $S_2 = \{e_1, e_{11}, e_{10}\}$
- $S_3 = \{e_2, e_8\}$
- $S_4 = \{e_3, e_9\}$
- $S_5 = \{e_4, e_5\}$
- $S_6 = \{e_5, e_6, e_7\}$
- $S_7 = \{e_7, e_{13}\}$
- $S_8 = \{e_8, e_9, e_{10}, e_{12}, e_{13}, e_{14}\}$
- $S_9 = \{e_{11}, e_{12}\}$
- $S_{10} = \{e_6, e_{14}\}$

Reduction from vertex cover to set cover

• vertex cover ≤_P set cover

P and NP 40

The class P

- P ~ problems solvable in deterministic polynomial time.
 - Given a problem type X, there is a deterministic algorithm A which for every problem instance *I* ∈ X solves *I* in a time that is polynomial in *II*, the size of *I*.
 - IRunning time of A is O(|I|^k) for all I ∈ X, where k is a constant independent of the instance I.

· Examples.

- Maximum flow: There is an algorithm A that for any network finds a maximum flow in time $O(|V|^3)$, where V is the set of vertices.
- String matching: There is an algorithm A that for any text T and pattern P finds all occurrences of P in T in O(|P| + |T|) time.

Hard problems

- · Many problems share the above features
 - Can be solved in time 2^{|T|} (by trying all possibilities.)
 - Given a potential solution, it can be checked in time $O(|I|^k)\!,$ whether it is a solution or not.
- These problems are called polynomially checkable.
- A solution can be guessed, and then verified in polynomial time.

Hard problems: Example

• Potato soup. A recipe calls for B grams of potatoes. You have a K kilo bag with n potatoes. Can one select some of them such that their weight is exactly B grams?

• Best known solution: create all 2ⁿ subsets and check each one.

Optimization vs decision problems

- Decision problems. yes-no-problems.
- Example.
 - Potato soup. A recipe calls for B grams of potatoes. You have a K kilo bag with n
 potatoes. Can one select some of them such that their weight is exactly B
 grams?
- Optimization vs decision problem.
 - Optimization Longest Path. Given a graph G. What is the length of the longest simple path?
 - Decision Longest Path. Given a graph G and integer k. Is a there a simple path of length ≥ k?
- Exercise. Show that Optimization Longest Path can be solved in polynomial time if and only if Decision Longest Path can be solved in polynomial time.

41

The class NP

- Certifier. Algorithm B(s,t) is an efficient certifier for problem X if:
 - 1. B(s,t) runs in polynomial time.
 - 2. For every instance s: s is a yes instance of X

⇔

there exists a certificate t of length polynomial in s and B(s,t) returns yes.

proposed solution

- Example. Independent set.
 - s: a graph G and an integer k.
 - t: a set of vertices from G.
 - B(s,t) returns yes \iff t is an independent set of G and $|S| \ge k$.
 - Check in polynomial time: check that no two vertices in t are neighbors and that the size is at least k.
- NP. A problem X is in the class NP (Non-deterministic Polynomial time) if X has an efficient certifier.

45

Examples of NP-complete problems

- Preparing potato soup (Subset Sum)
- Independent Set
- · Vertex Cover
- · Set Cover
- · Longest path
- · Max cut
- · Soccer championship (3-point rule)
- 3-coloring

P vs NP

- P solvable in deterministic polynomial time.
- NP solvable in non-deterministic polynomial time/ has an efficient (polynomial time) certifier.
- P⊆NP (every problem T which is in P is also in NP).
- P = NP?
- There is subclass of NP which contains the hardest problems, NP-complete problems:
- X is NP-Complete if
 - $X \in NP$
 - $Y \leq_P X$ for all $Y \in NP$

NP-complete problems

• Satisfiability.

- Input: A set of clauses C = {c1, ..., ck} over n boolean variables x1,...,xn.
- Output:
 - YES if there is a satisfying assignment, i.e., if there is an assignment
 a: {x₁,...,x_n} ? → {0,1} such that every clause is satisfied,
 - · NO otherwise.

$\left(\begin{array}{cccc}\overline{x_1} \lor x_2 \lor x_3\right) \land \left(\begin{array}{cccc}x_1 \lor \overline{x_2} \lor x_3\right) \land \left(\begin{array}{cccc}x_1 \lor x_2 \lor x_4\right) \land \left(\overline{x_1} \lor \overline{x_3} \lor \overline{x_4}\right)$

 $x_1 = 1, x_2 = 1, x_3 = 0, x_4 = 1$

proposed solution/certificate t

NP-complete problems

· Hamiltonian cycle.

- Input: Undirected graph G
- Output:
 - · YES if there exists a simple cycle that visits every node
 - NO otherwise

 Traveling Salesperson Problem (TSP): Given a set of n cities and a pairwise distance function d(u, v), is there a tour of length ≤ D?

How to prove a problem is NP-complete

- 1. Prove $Y \in NP$ (that it can be verified in polynomial time).
- 2. Select a known NP-complete problem X.
- 3. Give a polynomial time reduction from X to Y (prove $X \leq_P Y$):
 - Explain how to turn an instance of X into one or more instances of Y
 - Explain how to use a polynomial number of calls to the black box algorithm/ oracle for Y to solve X.
 - Prove/argue that the reduction is correct.

The Main Question: P Versus NP

The Simpsons: P = NP?

Copyright © 1990, Matt Groening