
P and NP
Inge Li Gørtz

Thank you to Kevin Wayne, Philip Bille and Paul Fischer for inspiration to slides 1

• Want to understand how difficult or easy a given problem is.

• Know there are problems that can be solved in polynomial time (all problems
seen in this course).

• There are problems we cannot solve!

• What about in between?

Hardness of problems

Easy

Unsolvable

• Q. Which problems will we be able to solve in practice?

• A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953,

Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]  

Problem Classification

3

• Q. Which problems will we be able to solve in practice?

• A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953,

Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]  

Problem Classification

Yes No

Shortest path Longest path

Min cut Max cut

Soccer championship (2-point rule) Soccer championship (3-point rule)

2-coloring 3-coloring

4

s
t s

t

Shortest s-t path? Longest s-t path?

• Q. Which problems will we be able to solve in practice?

• A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953,

Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]  

Problem Classification

Yes No

Shortest path Longest path

Min cut Max cut

Soccer championship (2-point rule) Soccer championship (3-point rule)

2-coloring 3-coloring

5

s
t3

6 2

4

5

3
1 5

2

3

7 s
t3

6 2

4

5

3
1 5

2

3

7

Minimum s-t cut? Maximum s-t cut?

• Q. Which problems will we be able to solve in practice?

• A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953,

Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]  

Problem Classification

Yes No

Shortest path Longest path

Min cut Max cut

Soccer championship (2-point rule) Soccer championship (3-point rule)

2-coloring 3-coloring

6

• Q. Which problems will we be able to solve in practice?

• A. Those with polynomial-time algorithms. (working definition) [von Neumann 1953,

Godel 1956, Cobham 1964, Edmonds 1965, Rabin 1966]  

Problem Classification

Yes No

Shortest path Longest path

Min cut Max cut

Soccer championship (2-point rule) Soccer championship (3-point rule)

2-coloring 3-coloring

7

2-coloring? 3-coloring?

• Ideally: classify problems according to those that can be solved in polynomial-time
and those that cannot.

• Provably requires exponential-time.

• Given a board position in an n-by-n generalization of chess, 

can black guarantee a win?

• Provably undecidable.

• Given a program and input there is no algorithm to decide if program halts.

• Frustrating news. Huge number of fundamental problems have defied classification
for decades.

Problem Classification

8

• Reductions

• Tools for classifying problems according to relative hardness

• P and NP

Overview

9

Polynomial-time Reductions

10

• A problem (problem type) is the general, abstract term:

• Examples: Shortest Path, Maximum Flow, Closest Pair, Sequence Alignment,

String Matching.

• A problem instance is the concrete realization of a problem.

• Maximum flow. The instance consists of a flow network.

• Shortest path. The instance is a graph.

• String Matching. The instance consists of two strings.

Instances

11

• Reduction from problem X to problem Y.

• Example. Scheduling of doctors.

Polynomial-time reduction

12

instance of X
instance
of Y solution to X

solution
to Y

transform
X to Y Solve Y transform

Y to X

s t

1

1

c

c

c

• Reduction from problem X to problem Y.

• Reduction. Problem X polynomial reduces to problem Y if any instance of problem
X can be solved using:

• Polynomial number of standard computational steps, plus

• Polynomial number of calls to oracle that solves problem Y.

• Notation. X ≤P Y.

• We pay for time to write down instances sent to black box ⇒ instances of Y must
be of polynomial size.

Polynomial-time reduction

13

instance of X
instance(s)
of Y solution to X

solution
to Y

transform
X to Y Solve Y transform

Y to X

polynomial time polynomial timeoracle

polynomial
number of

• Bipartite matching ≤P Maximum flow

Maximum flow and bipartite matching

14

1

1

1

1
1

1

1

s t

1

Maximum flow and maximum bipartite matching

15

1

1

1

1
1

1

1

s t

1

• Bipartite matching ≤P Maximum flow

• Matching M => flow of value |M|

• Flow of value v(f) => matching of size v(f)

• Purpose. Classify problems according to relative difficulty.

• Design algorithms. If X ≤P Y and Y can be solved in polynomial-time, then
X can also be solved in polynomial time.

• Establish intractability. If X ≤P Y and X cannot be solved in polynomial-time,
then Y cannot be solved in polynomial time.

• Establish equivalence. If X ≤P Y and Y ≤P X, we use notation X =P Y.

Polynomial-time reductions

up to a
polynomial factor

16

• Reduction. X ≤P Y if arbitrary instances of problem X can be solved using:

• Polynomial number of standard computational steps, plus

• Polynomial number of calls to oracle that solves problem Y.

• Strategy to make a reduction if we only need one call to the oracle/black box to
solve X:

1. Show how to turn (any) instance Sx of X into an instance of Sy of Y in
polynomial time.

2. Show that: Sx a yes instance of X => Sy a yes instance of Y.

3. Show that: Sy a yes instance to Y => Sx a yes instance of X.

Polynomial-time reductions
• Independent set: A set S of vertices where no two vertices of S are neighbors (joined

by an edge).

• Independent set problem: Given graph G and an integer k, is there an independent

set of size ≥ k?

• Example:

• Is there an independent set of size ≥ 6?

Independent set and vertex cover

18

• Independent set: A set S of vertices where no two vertices of S are neighbors (joined
by an edge).

• Independent set problem: Given graph G and an integer k, is there an independent
set of size ≥ k?

• Example:

• Is there an independent set of size ≥ 6? Yes

Independent set and vertex cover

19

• Independent set: A set S of vertices where no two vertices of S are neighbors (joined
by an edge).

• Independent set problem: Given graph G and an integer k, is there an independent
set of size ≥ k?

• Example:

• Is there an independent set of size ≥ 6? Yes

• Is there an independent set of size ≥ 7?

Independent set and vertex cover

20

• Independent set: A set S of vertices where no two vertices of S are neighbors (joined
by an edge).

• Independent set problem: Given graph G and an integer k, is there an independent
set of size ≥ k?

• Example:

• Is there an independent set of size ≥ 6? Yes

• Is there an independent set of size ≥ 7? No

Independent set and vertex cover

21

• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Vertex cover problem: Given graph G and an integer k, is there a vertex cover of size
≤ k?

• Example:

• Is there a vertex cover of size ≤ 4?

Independent set and vertex cover

22

• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of

size ≤ k?

• Example:

• Is there a vertex cover of size ≤ 4? Yes

Independent set and vertex cover

23

• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of

size ≤ k?

• Example:

• Is there a vertex cover of size ≤ 4? Yes

• Is there a vertex cover of size ≤ 3?

Independent set and vertex cover

24

• Vertex cover: A set S of vertices such that all edges have at least one endpoint in S.

• Independent set problem: Given graph G and an integer k, is there a vertex cover of

size ≤ k?

• Example:

• Is there a vertex cover of size ≤ 4? Yes

• Is there a vertex cover of size ≤ 3? No

Independent set and vertex cover

25

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Proof.

• =>: S is an independent set.

Independent set and vertex cover

vertex cover

independent set

26

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Proof.

• =>: S is an independent set.

• e cannot have both endpoints in S => e have an endpoint in V-S.

• V-S is a vertex cover.

Independent set and vertex cover

e

vertex cover

independent set

27

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Proof.

• =>: S is an independent set.

• e cannot have both endpoints in S => e have an endpoint in V-S.

• V-S is a vertex cover

• <=: V-S is a vertex cover.

Independent set and vertex cover

vertex cover

independent set

28

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Proof.

• =>: S is an independent set.

• e cannot have both endpoints in S => e have an endpoint in V-S.

• V-S is a vertex cover

• <=: V-S is a vertex cover.

• u and v not part of the vertex cover = > no edge between u and v

• S is an independent set.

Independent set and vertex cover

u v

vertex cover

independent set

29

• Claim. Let G=(V,E) be a graph. Then S is an independent set if and only if its
complement V-S is a vertex cover.

• Independent set ≤P vertex cover

• Use one call to the black box vertex cover algorithm with k = n-k.

• There is an independent set of size ≥ k if and only if the vertex cover algorithm

returns yes.

• vertex cover ≤P independent set

• Use one call to the black box independent set algorithm with k = n-k.

• vertex cover =P independent set

Independent set and vertex cover

30

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

Set cover

31

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6?

Set cover

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

Set cover

33

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

Set cover

34

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

• Does there exist a set cover of size at most 4?

Set cover

35

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

• Does there exist a set cover of size at most 4? Yes

Set cover

36

S1 S3 S5S4 S6S2 S7 S8

U

S

e1 e2 e3 e4 e5 e6 e7 e8 e9 e10 e11 e12 e13 e14

• Set cover. Given a set U of elements, a collection of sets S1,…Sm of subsets of U,
and an integer k. Does there exist a collection of at most k sets whose union is
equal to all of U?

• Example:

• Does there exist a set cover of size at most 6? Yes

• Does there exist a set cover of size at most 4? Yes

• Does there exist a set cover of size at most 3? No

Set cover

37

• vertex cover ≤P set cover

Reduction from vertex cover to set cover

1
2

3

4

5
6

7

8

9

10

e5

e4

e3

e7

e13 e14

e12
e10

e11

e6

e9

e8

e1

e2

38

• vertex cover ≤P set cover

• U = {e1, e2, e3, e4, e5, e6, e7, e8, e9, e10, e11, e12, e13, e14,}

• S1 = {e1, e2, e3, e4}

• S2 = {e1, e11, e10}

• S3 = {e2, e8}

• S4 = {e3, e9}

• S5 = {e4, e5}

• S6 = {e5, e6, e7}

• S7 = {e7, e13}

• S8 = {e8, e9, e10, e12, e13, e14}

• S9 = {e11, e12}

• S10 = {e6, e14}

Reduction from vertex cover to set cover

1
2

3

4

5
6

7

8

9

10

e5

e4

e3

e7

e13 e14

e12
e10

e11

e6

e9

e8

e1

e2

39

P and NP

40

• P ~ problems solvable in deterministic polynomial time.

• Given a problem type X, there is a deterministic algorithm A which for every

problem instance I ∈ X solves I in a time that is polynomial in |I|, the size of I.

• IRunning time of A is O(|I|k) for all I ∈ X, where k is a constant independent of the

instance I.

• Examples.

• Maximum flow: There is an algorithm A that for any network finds a maximum

flow in time O(|V|3), where V is the set of vertices.

• String matching: There is an algorithm A that for any text T and pattern P finds all

occurrences of P in T in O(|P| + |T|) time.

The class P

41

• Potato soup. A recipe calls for B grams of potatoes. You have a K kilo bag with n
potatoes. Can one select some of them such that their weight is exactly B grams?

• Best known solution: create all 2n subsets and check each one.

Hard problems: Example

42

• Many problems share the above features

• Can be solved in time 2|T| (by trying all possibilities.)

• Given a potential solution, it can be checked in time O(|I|k), whether it is a

solution or not.  

• These problems are called polynomially checkable.

• A solution can be guessed, and then verified in polynomial time.

Hard problems

43

• Decision problems. yes-no-problems.

• Example.

• Potato soup. A recipe calls for B grams of potatoes. You have a K kilo bag with n
potatoes. Can one select some of them such that their weight is exactly B
grams?

• Optimization vs decision problem.

• Optimization Longest Path. Given a graph G. What is the length of the longest

simple path?

• Decision Longest Path. Given a graph G and integer k. Is a there a simple path of

length ≥ k?

• Exercise. Show that Optimization Longest Path can be solved in polynomial time if
and only if Decision Longest Path can be solved in polynomial time.

Optimization vs decision problems

44

• Certifier. Algorithm B(s,t) is an efficient certifier for problem X if:

1. B(s,t) runs in polynomial time.

2. For every instance s:

• Example. Independent set.

• s: a graph G and an integer k.

• t: a set of vertices from G.

• B(s,t) returns yes t is an independent set of G and |S| ≥ k.

• Check in polynomial time: check that no two vertices in t are neighbors and that

the size is at least k.

• NP. A problem X is in the class NP (Non-deterministic Polynomial time) if X has an
efficient certifier.

⟺

The class NP

s is a yes instance of X
⇔

there exists a certificate t of length polynomial in s and B(s,t) returns yes.

45

proposed solution

• P solvable in deterministic polynomial time.

• NP solvable in non-deterministic polynomial time/ has an efficient (polynomial time)

certifier.

• P⊆NP (every problem T which is in P is also in NP).

• P = NP?

• There is subclass of NP which contains the hardest problems, NP-complete

problems:

• X is NP-Complete if

• X ∈ NP

• Y ≤P X for all Y ∈ NP

P vs NP

46

• Preparing potato soup (Subset Sum)

• Independent Set

• Vertex Cover

• Set Cover

• Longest path

• Max cut

• Soccer championship (3-point rule)

• 3-coloring

Examples of NP-complete problems

47

• Satisfiability.

• Input: A set of clauses C = {c1, . . . , ck} over n boolean variables x1,…,xn.

• Output:

• YES if there is a satisfying assignment, i.e., if there is an assignment
a: {x1,...,xn} �→ {0,1} such that every clause is satisfied,

• NO otherwise.

NP-complete problems

€

x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x3() ∧ x1 ∨ x2 ∨ x4() ∧ x1 ∨ x3 ∨ x4()

€

x1 =1, x2 =1, x3 = 0, x4 =1

instance s

proposed solution/certificate t

48

• Hamiltonian cycle.

• Input: Undirected graph G

• Output:

• YES if there exists a simple cycle that visits every node

• NO otherwise

NP-complete problems

instance s certificate t

49

1. Prove Y ∈ NP (that it can be verified in polynomial time).

2. Select a known NP-complete problem X.

3. Give a polynomial time reduction from X to Y (prove X ≤P Y):

• Explain how to turn an instance of X into one or more instances of Y

• Explain how to use a polynomial number of calls to the black box algorithm/

oracle for Y to solve X.

• Prove/argue that the reduction is correct.

How to prove a problem is NP-complete

50

• Traveling Salesperson Problem (TSP): Given a set of n cities and a pairwise
distance function d(u, v), is there a tour of length ≤ D?

All 13,509 cities in US with a population of at least 500
Reference: http://www.tsp.gatech.edu

51

• Traveling Salesperson Problem (TSP): Given a set of n cities and a pairwise
distance function d(u, v), is there a tour of length ≤ D?

Optimal TSP tour
Reference: http://www.tsp.gatech.edu

52

• There is no polynomial time algorithm for TSP for unless P=NP.

• Hamiltonian cycle. Given G=(V,E). Is there a cycle visiting every vertex exactly once?

Reduction example: TSP

I have found a
O(n5)-algorithm for

TSP!

Then I can use your
algorithm to solve an NP-

complete problem in
polynomial time!

• G has a Hamiltonian cycle ⇔ optimal cost of TSP in G’ is n = 9.

• G has no Hamiltonian cycle ⇔ optimal cost of TSP in G’ is at least n -1 + 2

 = 8 + 2 = 10

Hamiltonian Cycle ≤P TSP

???
If there is a HC in G then

your algorithm returns a tour
of cost 9.

If there is no HC in G then
your algorithm returns a tour of

cost ≥ 10.

G G’

— cost 1

— cost 2

TSP: Hardness
So there is no

polynomial time algorithm
for TSP?

Not unless P = NP!

• TSP is NP-complete:

• Hamiltonian cycle ≤P TSP.

• TSP ∈ NP.

• Certificate: Tour given as list of nodes .

• Certifier: Check that

• there is an edge from to

• all nodes are in the list.

v1, v2, …, vn

vi vi+1

The Main Question: P Versus NP

• Does P = NP? [Cook 1971, Edmonds, Levin, Yablonski, Gödel]

• Is the decision problem as easy as the certification problem?

• Clay $1 million prize.

• Consensus opinion on P = NP? Probably no.

EXP NP

P

If P ≠ NP If P = NP

EXP
P = NP

56

The Simpsons: P = NP?

Copyright © 1990, Matt Groening

57

