
Joint Proceedings of co-located Events at the
8th European Conference on Modelling Foundations and Applications
(ECMFA 2012)

Harald Störrle, Goetz Botterweck, Michel Bourdellès,
Dimitris Kolovos, Richard Paige, Ella Roubtsova,
Julia Rubin, Juha-Pekka Tolvanen (Eds.)

Joint Proceedings

Co-located Events at the 8th European
Conference on Modelling Foundations and

Applications (ECMFA 2012)

Harald Störrle, Goetz Botterweck, Michel Bourdellès, Dimitris
Kolovos, Richard Paige, Ella Roubtsova, Julia Rubin,

Juha-Pekka Tolvanen (Eds.)

Editors

Harald Störrle
Technical University of Denmark (DTU)
Richard Petersens Plads, 322.024
DK-2800 Kongens Lyngby
hsto@imm.dtu.dk

Goetz Botterweck
Michel Bourdellès
Dimitris Kolovos
Richard Paige
Ella Roubtsova
Julia Rubin
Juha-Pekka Tolvanen

ISBN: 978-87-643-1014-6
Publisher: Technical University of Denmark (DTU)
Printed by DTU Informatics
Technical University of Denmark (DTU)
Building 321, DK-2800 Kongens Lyngby
Copenhagen, Denmark
reception@imm.dtu.dk
www.imm.dtu.dk
2011

The Technical University of Denmark (DTU) has published the manuscripts
in this book under a publishing agreement that was signed by the respective
authors. Under this agreement, each author retains the rights to all intellectual
property developed by the author and included in the manuscript. Further, the
authors also retain the copyright to their manuscripts, and the agreement for
granting publishing rights does not prevent the authors to publish their work
with any other publisher.

Preface

We are very glad to welcome you all at the Technical University of Denmark
(DTU) in Kongens Lyngby for the events co-located with the 8th European
Conference on Modelling Foundations and Applications.

Despite the economic downturn, we have a very strong program this year
again, with six workshops and two tutorials. Among the workshops, we have
two repeat workshops (BMFA and PMDE) that run for the fourth, and second
consecutive time, respectively. We also have a healthy dose of new workshops
picking up emerging trends and topics, like GMLD, ACME, and CloudMDE.
Altogether, these workshops received 39 paper submissions, of which 23 were
accepted, yielding an acceptance rate of 59%.

Furthermore, we also have a workshop providing an overview of academic-
industrial collaboration projects in the area of Real-Time and Embedded Mod-
elling (EIAC-RTESMA) with eight presentations, six tool demonstrations and
four posters.

In the true spirit of the word “Workshop”, the events co-located to ECMFA
are working sessions, that is, they are intended as forums for constructive discus-
sion, collegial criticism, and scientific openness. Together with the more classic
layout of the main ECMFA conference, we believe this is an excellent way of
promoting the science and practice of model based software development.

Thank you all for contributing, and thank you for joining us in Kongens Lyngby.
We hope you enjoy ECMFA 2012 and all its co-located events!

July 2012

Harald Störrle
Goetz Botterweck
Michel Bourdellès
Dimitris Kolovos
Richard Paige
Ella Roubtsova
Julia Rubin
Juha-Pekka Tolvanen

Table of Contents

Preface v

CloudMDE 1
1st Workshop on MDE for and in the Cloud
Richard Paige, Jordi Cabot, Marco Brambilla, Marsha Chechik,
Parastoo Mohagheghi

ACME 53
1st Workshop on Academics Modelling with Eclipse
Dimitris Kolovos, Davide Di Ruscio and Louis Rose

BMFA 109
4th Workshop on Behavioural Modelling: Foundations and Appli-
cations
Ella Roubtsova, Ashley McNeile, Ekkart Kindler, Mehmet Aksit

GMLD 189
1st Workshop on Graphical Modelling Language Development
Heiko Kern, Juha-Pekka Tolvanen, Paolo Bottoni

PMDE 253
2nd Workshop on Process-based approaches for Model-Driven En-
gineering
Reda Bendraou, Lbath Redouane, Coulette Bernard, Gervais
Marie-Pierre

TOOLS 317
Tool Demonstrations and Poster Presentations at ECMFA 2012
Julia Rubin

EIAC-RTESMA 351
1st Workshop on European Industrial and Academic Collabora-
tions on Real Time & Embedded Systems Modelling and Analysis
Michel Bourdellès, Laurent Rioux, Sbastien Grard

First International Workshop on
Model-Driven Engineering
for and in the Cloud

CloudMDE 2012
(co-located with ECMFA 2012)

Proceedings

2 July 2012

DTU Lyngby, Denmark

Editors: Richard Paige, Jordi Cabot, Marco Brambilla, Marsha
Chechik, Parastoo Mohagheghi

1

Preface

The first workshop on Model-Driven Engineering (MDE) for and in the Cloud was
held on 2 July 2012 at DTU Lyngby, Denmark, co-located with the 8th European
Conference on Modelling: Foundations and Applications (ECMFA) 2012. Model
Driven Engineering (MDE) elevates models to first class artefacts of the software
development process. MDE principles, practices and tools are also becoming more
widely used in industrial scenarios. Many of these scenarios are traditional IT
development and emphasis on novel or evolving deployment platforms has yet to be
seen. Cloud computing is a computational model in which applications, data, and IT
resources are provided as services to users over the Internet. Cloud computing
exploits distributed computers to provide on-demand resources and services over a
network (usually the Internet) with the scale and reliability of a data centre.
Cloud computing is enormously promising in terms of providing scalable and elastic
infrastructure for applications; MDE is enormously promising in terms of automating
tedious or error prone parts of systems engineering. There is potential in identifying
synergies between MDE and cloud computing. The workshop aimed to bring together
researchers and practitioners working in MDE or cloud computing, who were
interested in identifying, developing or building on existing synergies. The workshop
focused on identifying opportunities for using MDE to support the development of
cloud-based applications (MDE for the cloud), as well as opportunities for using
cloud infrastructure to enable MDE in new and novel ways (MDE in the cloud).
Attendees were also interested in novel results of adoption of MDE in cloud-related
domains, as well as work-in-progress or experience reports, that provide insight into
early adoption of MDE for building cloud-based applications, or in terms of
deploying MDE tools and infrastructure on ‘the cloud’.
The workshop received 10 paper submission (technical papers, position papers and
work-in-progress papers), from which it accepted 6 for presentation at the workshop.
Each paper was reviewed by 2-3 members of the program committee, and was
selected based on its suitability for the workshop, novelty, likelihood of sparking
discussion, and general quality. The workshop also featured a keynote presentation by
Muhammad Ali Babar (ITU Copenhagen, Denmark) on migration to the cloud. The
organisers thank all authors for submitting papers, our keynote speaker Ali Babar, the
workshop participants, the ECMFA local organisation team, the workshop chair
Harald Störrle, and the program committee for their support.

Workshop Organisers: Richard Paige (University of York, UK), Jordi Cabot
(AtlanMod, École des Mines de Nantes, France), Marco Brambilla (Politecnico di
Milano, Italy), Marsha Chechik (University of Toronto, Canada) and Parastoo
Mohagheghi (ICT at NAV, Norway)

Program Committee: Danilo Ardagna, Aldo Bongio,
Radu Calinescu, Marcos Didonet Del Fabro, Federico Facca, Xavier Franch, Esther
Guerra, Sebastian Mosser, Alek Radjenovic, Louis Rose, Manuel Wimmer

2

Transforming Very Large Models in the Cloud:
a Research Roadmap

Cauê Clasen1, Marcos Didonet Del Fabro2, and Massimo Tisi1

1 AtlanMod team, INRIA - École des Mines de Nantes - LINA, Nantes, France
{caue.avila clasen, massimo.tisi}@inria.fr

2 C3SL labs, Universidade Federal do Paraná, Curitiba, PR, Brazil
marcos.ddf@inf.ufpr.br

Abstract. Model transformations are widely used by Model-Driven En-
gineering (MDE) platforms to apply different kinds of operations over
models, such as model translation, evolution or composition. However,
existing solutions are not designed to handle very large models (VLMs),
thus facing scalability issues. Coupling MDE with cloud-based platforms
may help solving these issues. Since cloud-based platforms are relatively
new, researchers still need to investigate if/how/when MDE solutions can
benefit from them. In this paper, we investigate the problem of trans-
forming VLMs in the Cloud by addressing the two phases of 1) model
storage and 2) model transformation execution in the Cloud. For both
aspects we identify a set of research questions, possible solutions and
probable challenges researchers may face.

1 Introduction

Model transformation is a term widely used in Model-Driven Engineering (MDE)
platforms to denote different kinds of operations over models. Model transfor-
mation solutions are implemented in general purpose programming languages
or transformation-specific (often rule-based) languages such as ATL [8], Epsilon
[10], or QVT [11]. These solutions access and manipulate models using exist-
ing model management APIs, such as the Eclipse Modeling Framework API,
EMF [2]. Current model transformation solutions are not designed to support
very large models (VLMs), i.e., their performances in time and memory quickly
degrade with the growth of model size, as already identified in previous works[9].

Moving model transformation tools to a cloud may bring benefits to MDE
platforms. In a cloud, a large amount of resources is shared between users (e.g.,
memory, CPUs, storage), providing a scalable and often fault-tolerant environ-
ment. Distribution issues are transparent to final users, which see cloud-based
applications as services. Some initiatives for improving the performance of the
EMF have been conducted. For instance, the Morsa [7] framework enables load-
ing larger models, by using a storage framework based on documents (MongoDb).

While MDE techniques have been used to improve cloud-based solutions
[13,3], not much work has been done the other way around. Cloud-based plat-
forms are relatively new and researchers still need to investigate if/how/when

3

MDE solutions can really benefit from a cloud. This area has been called Mod-
eling in the Cloud, or Modeling As A Service [1].

In this article, we present a set of research questions, possible solutions and
probable challenges we may face when coupling MDE and Cloud Computing.
Specifically, we concentrate on two main tasks to ultimately accomplish the
execution of model transformations on the Cloud:

1. Model storage in the Cloud: a cloud-based and distributed storage mech-
anism to enable the efficient loading of VLMs to the Cloud, for subsequent
querying and processing.

2. Model transformation execution in the Cloud: intended to take ad-
vantage of the abundance of resources by distributing the computation of
the transformations to different processing units.

We will present a set of questions, benefits, and challenges that have risen in
both these aspects, and possible solutions that need to be further investigated.

As future work we plan to implement a proposed solution to the problems
described in this paper, in the form of a model transformation tool based on
EMF and ATL. For this reason we base the examples in this paper on this
technological framework.

This article is organized as follows. Section 2 presents the problem of stor-
ing/accessing models in the Cloud. Section 3 focuses on distributed model trans-
formations in the Cloud. Section 4 concludes the paper.

2 Storage of Models in the Cloud

One of the core principles of cloud computing is to distribute data storage and
processing into servers located in the cloud. In MDE, a cloud-based framework
for model storage and/or transformation could bring several benefits, e.g.:

Support for VLMs. Models that would be otherwise too large to fit in the
memory of a single machine could be split into several different nodes located
in the cloud, for storage, processing, or both.

Scalability. The execution time of costly operations on models (e.g., complex
queries or model transformations on VLMs) can be improved by the data
distribution and parallel processing inherent capabilities of the Cloud.

Collaboration. A cloud-based model storage can simplify the creation of a
collaborative modeling environment where development teams on different
locations could specify and share the same models in real-time.

Other topics, such as transparent tool interoperability, model evolution and
fault-tolerance could also benefit from the cloud computing principles and have
yet to be further investigated [1].

In the next subsections we identify and discuss two main research tasks that
have to be addressed to obtain an efficient mechanism for VLMs in the cloud:

4

1. how to access models in remote locations in a transparent way, so that ex-
isting MDE tools can make direct use of them;

2. how to distribute the storage of a VLM on a set of servers, to make use of
the resources offered by the cloud.

2.1 Transparent remote model storage

The use of models in the Cloud should not hamper their compatibility with ex-
isting modeling environments. All complexity deriving from the framework im-
plementation, such as element/node location, network communication and bal-
ance should be hidden to end users and applications. This transparency towards
the MDE clients can be obtained by implementing the network communication
mechanism behind the model management API.

Fig. 1. Extending EMF with support of cloud storage for models.

The idea of providing alternative backends to model management APIs has
already been used for local storage. For instance EMF allows applications to
load and manipulate models stored as XMI files on disk when using its XMI
backend, or the CDO3 backend for models stored in databases. Clasen et al.
[5] generalize this idea by introducing the concept of virtual models (with a
direct reference to virtual databases) as a re-implementation of the EMF API
to represent non-materialized models whose elements are calculated on demand
and retrieved from other models regardless of their storage mechanism.

The same principle can be extended to support a cloud-based storage. The
model management API can be extended/re-implemented to allow the access to
a cloud-based persistence layer. Requests and updates of elements on this non-
materialized model would be translated into calls to the web-services exposed
by the cloud infrastructure. In our research agenda we plan to provide such a
mechanism as a Cloud Virtual Model, illustrated in Figure 1.

3 http://www.eclipse.org/cdo/

5

2.2 Distributed model storage

Data manipulated by a given cloud can come from a single data source (e.g.,
the client) or a distributed storage mechanism in the cloud. The second solution
is especially useful to handle VLMs. The idea behind distributed model storage
is to decompose a full model and to store subsets of its elements in different
servers or physical locations (see Fig. 2). The sets of elements located in each
node can be regarded as partial models, and from their composition the global
model is constituted. The distribution strategy can be made invisible to the
client application by using a virtualization layer as explained above. This way
the persisted model is perceived as one single logical model.

Fig. 2. A cloud virtual model that abstracts the composition of several distributed
partial models. Dashed lines represent elements associations between cloud nodes.

Distributing model elements. The criteria used to define which elements are
stored in each cloud node vary according to the context of use of the distributed
model. For instance, when considering collaboration aspects, the model can be
distributed to reduce the network costs, assigning to a given node the elements
more likely to be accessed by the team located the closest to that node. As
another example, in cases of parallel processing some knowledge about the com-
putation algorithm may be used to assign model elements to nodes, to optimize
parallelization. There are already approaches that study how to create partitions
from graphs in a cloud for processing purposes (see the solutions from [12]). A
study on the nature of MDE applications to identify correspondences with these
existing approaches, in order to adapt them or to create novel solutions, has yet
to be done.

Among the different model distribution policies two corner cases can be iden-
tified, analogous to the homonymous techniques in database systems:

– Vertical Partitioning. [14] Each partial model holds only elements conforming
to certain types, i.e., each node has the responsibility to store only a certain

6

subset of concepts of the global model. For instance, a first partial model
may contain only structural aspects of a UML model whereas a second may
correspond to dynamic aspects.

– Horizontal Partitioning. [4] Each partial model holds elements of any type,
and the separation conforms to a property-based selection criteria. For in-
stance, elements representing French customers may be allocated to one
node, whereas elements representing Brazilian customers may be allocated
to another.

The choice of the distribution policy is not limited to partitions of the original
set of model elements. Element replication could be desired to optimize the
balance of network vs. memory usage [17].

Distributing associations. In most cases it is not possible to determine a
partitioning in partial models that can be processed by completely independent
nodes. Model elements can have different types of relationships between them
(e.g., single and multi-valued references, containment references) and the com-
putation on one node could at one point need to access an associated element
contained in another one.

We first need a mechanism to store information about associations between
elements located in different partial models. This information has to contain
1) pointers to locate incoming and outgoing associated element/s, and 2) the
relationship type, so the distribution infrastructure can correctly interpret it.
The pointers must necessarily contain both identifiers to the referenced elements
within a partial model, and the location of the node that holds this partial model.

Cross-node associations can be distributed in several ways in the cloud nodes.
Two main topologies are used by distributed databases and filesystems [17]:

1. The relationship metadata is centralized in a single node. All partial nodes
must ask this central node for the location of the partial model containing
the referenced element.

2. The relationship metadata is known by all nodes. Partial models then can
directly request the referenced element to the correct node when necessary.

Both topologies have their pros and cons. Sharing the metadata in all nodes
implies in extra memory usage, whereas a centralized metadata node requires
extra inter-node communications. The choice of the best solution depends on sev-
eral factors, as for instance node location, network bandwidth, and the quantity
of cross-node associations.

Wherever the cross-node associations are stored, this information has to be
correctly interpreted to enable navigation of the distributed model across nodes.
When each node has a transparent abstraction of the full model, this navigation
has to happen seamlessly. A navigation call to the virtual model of the node
would have to start a resolution algorithm to: 1) retrieve the information about
the cross-node association, 2) locate the requested elements from another node,
and 3) return it to the MDE tool mimicking a call to a local model. This way,

7

when a node wants to access external model elements, it becomes itself a client
of the cloud that contains it.

3 Model transformations in the Cloud

Model transformations are central operations in a MDE development process. A
model transformation can be seen as a function that receives as input a set of
source models and generates as output a set of target models. A transformation
execution record is commonly represented in MDE as a set of trace links, each one
connecting: 1) a set of source elements, 2) a set of corresponding target elements
and 3) the section of code (e.g., rule, method) responsible for the translation.

Transformations can consume a lot of resources, in terms of memory occupa-
tion and computation time. Operations like traversing the full model or executing
recursive model queries can be very expensive. When a centralized solution can-
not handle the processing efficiently, one solution is to parallelize the execution
of the transformations, for instance, within a cloud. The computation tasks have
to be distributed on several nodes, each one in charge of generating partial out-
puts (i.e., models) that are later merged to obtain the full result. The expected
result of a parallel computation must be the same result of its correspondent
sequential transformation.

We sketch below a subdivision of the parallel transformation process in the
three following steps, resulting on an overall conceptual view depicted in Fig. 3.

pSM3

pSM2

pSM1 mt

mt

mt pTM3

pTM2

pTM1

MT

1
. T

ra
n

sf
o

rm
at

io
n

 D
is

tr
ib

u
ti

o
n

SM

TM

Node 1

Node 2

Node 3

2. Parallel Transformation

3
. Target M

o
d

el C
o

m
p

o
sitio

n

SM: source model

TM: target model

pSM: partial source model

pTM: partial target model

MT: model transformation

mt: partial model transformation

Fig. 3. Parallel Transformation Overview.

This process is divided in three major steps:

1. Transformation Distribution. An algorithm is defined to distribute the
transformation computation over the available nodes. This phase may in-
clude a physical partitioning of the source model into partial models to send

8

to each server. The step is optional, e.g., in the case of transforming source
models that are already distributed on nodes.

2. Parallel Transformation. The transformation code of each node is fed
with a source model and runs in parallel with the others, generating a set of
partial target models. When implementing the transformation engine run-
ning on the nodes, it could be advisable to re-use its sequential implemen-
tation, and to add a communication mechanism between nodes to access
unavailable information. Both aspects have been discussed in Section 2.2.

3. Target Model Composition. The partial target models generated by each
node are composed into a full target model.

While in the following we describe the three steps as sequential, they don’t
have to be necessarily executed eagerly. For example, in scenarios requiring costly
data processing, but where a cloud-based storage infrastructure is not available,
source models can be loaded and transformed lazily (i.e., on demand). Even
when the target partial model have been computed, they don’t necessarily have
to be returned to the client as a full model, but a virtual model can be used to
lazily retrieve needed model elements only when they are requested. The subject
of lazy execution has been investigated in [15], and its application to the phases
of parallel transformations is another pointer for future research.

3.1 Transformation distribution

The phase of transformation distribution is responsible for the assignment of
parts of the transformation computation to each node. At the end of the par-
allel transformation the global transformation record will be constituted by the
same set of trace links of the equivalent sequential transformation, since the cor-
respondence between source and target model elements is not changed by the
parallelization. Each node is responsible for a subset of the trace links, having
translated only a subset of the VLM. Thus, distributing the computation of
the transformation is equivalent to partitioning the set of trace links in groups
assigned to the nodes.

To implement this partitioning, a distribution algorithm has to communicate
to the nodes the needed information to determine which trace links to generate.
Being a trace link uniquely determined by a set of source elements and a section
of transformation code, the nodes, in general, have to receive information about
the model elements they are responsible for and the transformation code to apply
to each of them.

This information can be determined according to several different strategies.
We classify the possible strategies based on the knowledge they exploit:

– In a first class of strategies, the transformation distribution algorithm assigns
computation to nodes without ever loading the model. These approaches
avoid the problem of loading a VLM that could exceed the limited memory
of the client. Distribution can be still performed based on:

9

• A partitioning of the transformation code (e.g., each node executes a
single transformation rule). All nodes have access to the full source model
(or its replica), but only execute a subset of the transformation code.
This approach is called transformation slicing.

• A low-level parsing of the serialized model, that in some situations can
be split in consistent chunks without being fully loaded in memory. The
chunks are then only loaded when they arrive to their assigned nodes.

– A second class of transformation distribution algorithms allow to load the
model (and its metamodel) and to select which computation to assign based
on properties of the model elements. This category is calledmodel slicing.
Vertical and horizontal model partition algorithms (see Section 2.2) can be
used as transformation distribution approaches of this type.

– A more sophisticated class of algorithms would be based on static analysis
of the transformation code, to determine a partitioning that can optimize
parameters of the parallel execution, e.g., total time, throughput, network
usage. Static analysis can for instance identify dependencies between trans-
formation rules that can be exploited to maximize the parallelization of the
computation. Similar dependencies have already been computed in related
work, e.g., in [16] with a focus on debugging.

– Finally several external sources of data can be used to drive the distribu-
tion, like usage statistics on model elements, or information about the cloud
topology and resources.

An analogous characterization can be done for the algorithms of target model
composition. For instance, for some transformations, the nodes could provide a
perfect partition of the target model, without requiring the composition algo-
rithm to load and analyze the produced partial models. Alternatively, some
processing could be required during composition, e.g., to remove redundant ele-
ments, or to bind missing references.

Optimal algorithms in these classes may be a promising research subject.

3.2 Coupling model transformations with MapReduce

A well-known large scale data processing framework that may be adapted to im-
plement distributed (especially on-demand) model transformations on the Cloud
is the MapReduce framework[6]. MapReduce has three key aspects:

Input format: is always a pair (key, value). The key is used to distribute the
data. The value is processed by the framework. However, it is necessary to
implement import/export components to be able to inject different formats
(e.g., text files, databases, streams) into the framework.

Map tasks: receives each (key, value) pair and processes them in a given node.
The result is another (key, value) pair.

Reduce tasks: receives the output of the Map tasks and merges them into a
combined result.

10

Once the (key,value) pairs are defined and these two tasks are implemented,
the framework takes care of the complex distribution-inherent details such as
load balancing, network performance and fault tolerance.

In order to use MapReduce to execute model transformations, we need to
precisely define how to represent models and model transformations in terms
of these components. We can identify a clear correspondence in Fig. 3 between
those steps and the MapReduce mechanism:

1. The source model needs to be divided into appropriate (key,value) pairs.
Values should be partial source models.

2. The Map functions execute the transformations rules in parallel, on each
one of the partial source models, generating partial target models as output
data.

3. The Reduce functions combine the result of all Maps (i.e. partial target
models) into a final result (i.e. a full composed model).

The exploitation of the MapReduce framework seems a feasible starting point
towards parallel model transformations by allowing the research focus to be on
MDE-related issues, while the framework is in charge of handling all cloud-
inherent complications.

4 Conclusion and Future Work

In this article, we have discussed a set of research questions to port modeling
and transformation frameworks into a cloud-based architecture. We have de-
scribed different paths that need further investigation. Based on our previous
experience on the use, development and research of model transformations, we
have identified key aspects and divided them in two phases. First, an efficient
model storage and access mechanism on the cloud needs to be investigated. The
main difficulties are related on how to efficiently distribute the model elements
and the relationships between them. Second, a parallel processing mechanism by
distributed model transformations has to be provided. The main difficulties are
about the distribution of the transformations coupled with the models that are
going to be processed and how to combine the distributed results.

In our future work we plan to propose a solution, among the illustrated
alternatives, in the form of a cloud-based engine for the ATL transformation
language. The main design features for this engine will be: cloud transparency,
re-use of the standard ATL engine, node inter-communication, and support for
pluggable distribution algorithms. We also want to study how the static analysis
of ATL transformations can help in optimizing the distribution algorithm for
our engine. Finally, we hope that this article will promote discussion and involve
other researchers to the task of moving MDE to the Cloud.

11

References

1. H. Brunelière, J. Cabot, and F. Jouault. Combining Model-Driven Engineering and
Cloud Computing. In MDA4ServiceCloud’10 (ECMFA 2010 Workshops), Paris,
France, June 2010.

2. F. Budinsky. Eclipse modeling framework: a developer’s guide. Addison-Wesley
Professional, 2004.

3. S. Ceri, P. Fraternali, and A. Bongio. ”Web Modeling Language (WebML): a
modeling language for designing Web sites”. Computer Networks, 33(1–6):137 –
157, 2000.

4. S. Ceri, M. Negri, and G. Pelagatti. Horizontal data partitioning in database
design. In ACM 1982 SIGMOD International Conference, pages 128–136, Orlando,
USA, 1982. ACM.

5. C. Clasen, F. Jouault, and J. Cabot. VirtualEMF: A Model Virtualization Tool. In
Advances in Conceptual Modeling. Recent Developments and New Directions (ER
2011 Workshops), LNCS 6999, pages 332–335. Springer, 2011.

6. J. Dean and S. Ghemawat. MapReduce: Simplified Data Processing on Large
Clusters. Communications of the ACM, 51(1):107–113, 2008.

7. J. Espinazo Pagán, J. Sánchez Cuadrado, and J. Garćıa Molina. Morsa: A Scalable
Approach for Persisting and Accessing Large Models. In MODELS 2011, LNCS
6981, pages 77–92. Springer, 2011.

8. F. Jouault and I. Kurtev. Transforming Models with ATL. In MoDELS 2005
Workshops, LNCS 3844, pages 128–138. Springer, 2006.

9. F. Jouault and J. Sottet. An AmmA/ATL Solution for the GraBaTs 2009 Reverse
Engineering Case Study. In 5th International Workshop on Graph-Based Tools,
Grabats, Zurich, Switzerland, 2009.

10. D. Kolovos, R. Paige, and F. Polack. The Epsilon Transformation Language. In
ICMT 2008, LNCS 5063, pages 46–60. Springer, 2008.

11. I. Kurtev. State of the Art of QVT: A Model Transformation Language Standard.
In AGTIVE 2007, LNCS 5088, pages 377–393. Springer, 2008.

12. J. Lin and C. Dyer. Data-Intensive Text Processing with MapReduce. Synthesis
Lectures on Human Language Technologies, 3(1):1–177, 2010.

13. I. Manolescu, M. Brambilla, S. Ceri, S. Comai, and P. Fraternali. Model-Driven
Design and Deployment of Service-Enabled Web Applications. ACM Transactions
on Internet Technology, 5(3):439–479, Aug. 2005.

14. S. Navathe, S. Ceri, G. Wiederhold, and J. Dou. Vertical Partitioning Algorithms
for Database Design. ACM Transactions on Database Systems, 9(4):680–710, 1984.

15. M. Tisi, S. Mart́ınez, F. Jouault, and J. Cabot. Lazy Execution of Model-to-Model
Transformations. In MODELS 2011, LNCS 6981, pages 32–46. Springer, 2011.

16. Z. Ujhelyi, A. Horvath, and D. Varro. Towards Dynamic Backward Slicing of
Model Transformations. In ASE 2011, pages 404 –407. IEEE, nov. 2011.

17. P. Valduriez and M. Ozsu. Principles of Distributed Database Systems. Prentice
Hall, 1999.

12

Towards a Common Modelling Platform for the
Migration to the Cloud

Alek Radjenovic1 and Richard F. Paige1

Department of Computer Science, The University of York, United Kingdom
{alek.radjenovic,richard.paige}@york.ac.uk

Abstract. Cloud-based software is starting to replace the ubiquitous
desktop applications. Software manufacturers are investigating ways of
migrating their key assets (desktop software) to the cloud. Such migra-
tions are not easy, as they must take into account migration of data,
functionality and user interfaces. We propose an approach that supports
abstraction and automation, leveraging a set of established Model-Driven
Engineering technologies, in order to support migration. The approach
intends to help define a common modelling platform that will formalise
the migration process, and provide mechanisms to support partial and
incremental migration. We argue that such systematic approach may
lead to a significant reduction in cloud application development costs
and, consequently, faster adoption of the cloud computing paradigm.

1 Introduction

Cloud-based software solutions are beginning to replace the previously ubiq-
uitous desktop applications. Software manufacturers, who are aware of these
changes, are investigating ways of protecting their long-term investments – desk-
top software – that are increasingly becoming legacy. Over the years, many of
these desktop applications were re-engineered and migrated to multiple operat-
ing systems (OS), either by being made cross-platform, or spawning separate
versions, one for each OS. Migration of desktop software to the cloud, however,
has no straightforward solutions.

The cloud computing paradigm imposes a significant shift in design think-
ing. Although the computational ability or functionality of an application may
remain the same/similar, the way in which storage, security, networking, off-line
usage, and user interfaces (UI) of a cloud-based application are designed and
implemented is substantially different from in desktop software. In this respect,
migration of desktop applications to the cloud can no longer be regarded as a
straightforward (software) evolution problem; a more complex, transformational,
approach is needed. This is arguably best achieved at a high level of abstraction,
e.g. at a model level.

We argue that a systematic approach supporting abstraction and automation,
like those rooted in the disciplines of software architectures and Model-Driven
Engineering (MDE), can take into account the essential aspects and deal with
the critical challenges of cloud migration problems. Our hypothesis is that, by

13

leveraging software architecture and MDE, the process of migration of desktop
applications to the cloud will be easier to understand, raise awareness of potential
problems at an early stage, and provide structured development, deployment
and maintenance plans. This, we predict, could lead to a substantial reduction
in cloud application development costs and faster adoption of the paradigm.

In this position paper, we highlight some of the key concerns and challenges
associated with the migration process and propose an approach that will, we
hope, kick-start the definition of a core set of principles, methods and formalisms
unified under a common modelling platform. Our primary intention is to attempt
to stimulate discussion within the MDE and cloud communities, and to bring
them together in order to tackle the identified challenges.

2 Background

Cloud computing is a computational model which does not yet have a standard
definition (nor standard application frameworks for their development). A work-
ing definition [10] is that clouds of distributed computers provide on-demand
resources and services over a network with the scale and reliability of a data
centre [7]. Though cloud computing may have a positive impact on organisa-
tions, the absence of widely accepted open standards is a risk to adoption; the
Open Cloud Manifesto [12] aims to provide a minimal set of principles that may
form a basis for an initial set of accepted standards.

Cloud computing acts as a catalyst [13] for: tool developers for better de-
livery, data as a service, creation of workflow standards, and metadata services
and standards. A typical cloud architecture consists of three service layers [9]:
Software as a Service (SaaS), Platform as a Service (PaaS), and Infrastructure
as a Service (IaaS). Clouds that provide on-demand computing instances (e.g.
Amazon EC2 [2]) can use these to supply SaaS (e.g Salesforce.com), or to pro-
vide a PaaS (e.g Heroku [8]), often in the form of tools used for the development
of SaaS (e.g. Google App Engine [5], or Microsoft Windows Azure [1]).

Cloud migration is growing in importance; increasing numbers of applications
are moving to the Web, including office software or development tools. Some
predictions suggest that eventually little software will run on a desktop [3].

Architecturally, differences between traditional web applications and cloud-
based applications are significant. A web application normally resides in one
location (e.g., a web server, an application pool). The data it manipulates is
typically stored inside a single database within a single database server instance.
(The term single is used loosely here, meaning a single logical unit – e.g. a
traditional master/slave database architecture, provided in an ad–hoc and costly
way). In contrast, cloud applications are distributed and scale differently.

There is also a strong case for the production of hybrid applications (part-
desktop, part-cloud). One scenario sees an incremental conversion process, where
during each stage only a portion of a desktop application is migrated, and where
each stage ends with working software (e.g. using an Agile approach). Another
scenario considers cases where the target application is only partially converted

14

(e.g. part of the focus of the Diaspora* project [6], which aims to support local
storage of data while using a cloud-based solution, e.g. Facebook [4]).

Existing research projects such as mOSAIC [11] and RESERVOIR [15] ad-
dress interesting cloud computing challenges, but not legacy software. REMICS
[14] on the other hand does focus on migration, but its wide scope and close
integration with OMG standards may prove too impractical in the long run.

3 Scientific Questions and Objectives

Migration of applications to the cloud is generally ad-hoc. We would like to put
migration to the cloud on a more rigorous footing, by proposing and developing
novel MDE theories, tools and techniques that directly address the challenges of
migration of desktop applications to the cloud, while providing reusable mech-
anisms that increase productivity. Amongst other things, this will help reduce
the likelihood of errors in migration, allow non-CS experts to take advantage
of the cloud more easily, and promote better understanding of the challenges of
migration. Theoretically, we aim to enrich the field of software migration and
maintenance by providing a rigorous methodology for transitioning to the cloud.

The key scientific questions to be addressed are: What MDE techniques to
use in the process of migration? Can a generic MDE framework be provided to
support incremental and partial migration? How can we assess the effectiveness
and practicality of such approach? Can the migration process be formalised? Is
it possible to identify when a migration is feasible (e.g., measured in terms of
the proportion of the process that can be automated) and when it is not?

To provide answers to these questions, we have decided to focus on the fol-
lowing research objectives: (a) provision of new theories and practical imple-
mentations of modelling frameworks and technologies, (b) generation of a set of
architectural blueprints using MDE for model driven migration that focuses on
maximal code reuse, with guidelines on how to perform incremental and partial
migration, (c) identification of scenarios in which the migration is either not pos-
sible, unnecessary, or not beneficial from the perspective of a cost-effort trade-off,
and (d) formalisation of the migration process. The latter may ultimately be rep-
resented in the form of process models (e.g., using SPEM or activity diagrams)
that can then be automated using a suitable workflow engine.

Central to the proposed approach are techniques and technologies, instanti-
ated as a set of architectural blueprints and MDE tools. The blueprints could take
the form of MDE metamodels (capturing key concepts and concerns of cloud ap-
plication architecture) and MDE migration operations (automating the process
of transition from a desktop architecture to a cloud architecture). The emphasis
should be on delivering the metamodels and operations using tools that permit
their automated application (preferably exploiting open-source standards).

15

4 Approach

We propose that the initial work addresses the following aspects of applications:
computation, data I/O and persistence, and user interface (UI) (we call
these domains in the sequel). These domains are not only core to all applications,
but they are also significantly different between the two platforms. Typically,
desktop computation is migrated into (web) services, application data is migrated
to the network, and the cloud–based UI is either flattened inside a web browser,
or reduced to a (smaller) mobile device screen. Features such as security, data
integrity, or multi-tenancy may also be considered where appropriate but not at
any great length during the initial work. Furthermore, the projected common
modelling platform will need to define (at a minimum) the following components:

Metamodels, formalising: (i) domain modelling logic (components, relation-
ships, composition and interaction rules) within as well as between the domains,
(ii) relationships between domains, (iii) common architectural models for each
platform (desktop and cloud), and (iv) transformation of architectural models
from one platform to another with respect to the domains. The resulting uni-
fied metamodels for each domain and platform will identify, define, classify and
formalise the relevant modelling components, intra-domain (within the domain)
and inter-domain (between domains) relationships (dependencies, communica-
tion, messaging), as well as typical modelling operations within the domain.

Migration mechanisms, for each domain, allowing explicit expression of
the dependencies with model elements from other domains (enabling domain
detachment – e.g. a desktop application UI, and its migration to the cloud in
support of incremental migration and hybrid applications). The mechanisms
need to define how the newly created cloud components can work with the
remaining desktop elements (e.g., migration of computation to web services has
to consider how these can deal with local data storage and a desktop UI).

Migration scenarios, defining strategies for migration in the form of step-
by-step guidelines that describe how to approach the migration process, and
which architectural components and relationships are the right candidates for
migration in each particular step. Furthermore, we propose the definition of hy-
brid architectural models that describe the necessary transformations required
to achieve the migration from one phase to another. Finally, the common mod-
elling platform needs to identify those scenarios where only partial migration
may be the best or feasible option and to specify the utility of such approach.
For instance, there may be situations in which only the user interface is migrated
to a web browser while the computation and data storage is done locally.

The definition of the above components could best be reached in an iterative
fashion, with each iteration broadly comprising the following steps: analysis,
identifying relevant existing technologies, allowing us to minimise the amount
of standard development and to focus on the novel aspects; formalisation, de-
veloping migration strategies e.g. as: (i) correspondence models (highlighting
important relationships between platforms), and (ii) mechanisms required to
achieve migration; migration, deploying desktop application parts to the cloud
using case studies; testing, using identical test cases on the original and migrated

16

applications where criteria is based on validating the applications’ functionality,
carrying out (at the same time) benchmark tests that compare the performance
aspects of the original desktop application with its cloud equivalent; and eval-
uation, assessing previous step outputs and drawing further conclusions on the
suitability of the approach(es) employed.

5 Conclusion

Traditional desktop software is steadily being replaced by the new cloud-based
solutions. Software companies are seeking ways to migrate their exiting desktop
applications to the cloud. This migration is generally ad hoc as there are no
predefined mechanisms or strategies to help with the process.

In this paper we have outlined an approach that puts the migration on a
rigorous footing, and that leverages the well-established theories and techniques
from the software architecture and MDE arenas. The approach involves defin-
ing a common modelling platform that provides support for three core aspects
of applications: computation, data I/O and persistence, and user interface. The
common modelling platform also comprises three major components: metamod-
els – formalising modelling logic, architectures, and transformations; migration
mechanisms – enabling incremental migration and hybrid applications; and, mi-
gration scenarios – providing strategies, guidelines and the feasibility studies for
various types of applications.

We have also proposed a five-step iterative process for the definition of the
common modeling platform components, which includes the analysis, formalisa-
tion, migration, testing and evaluation steps.

References

1. Microsot Windows Azure. http://www.microsoft.com/windowsazure/, 2011.
2. Amazon Elastic Compute Cloud (EC2). http://aws.amazon.com/ec2, 2011.
3. Hakan Erdogmus. Cloud Computing: Does Nirvana Hide behind the Nebula? IEEE

Software, 26(2):4–6, March 2009.
4. Facebook. http://www.facebook.com, 2011.
5. Google App Engine. http://code.google.com/appengine, 2011.
6. Daniel Grippi, Maxwell Salzberg, Raphael Sofaer, and Ilya Zhitomirskiy. Diaspora*

(https://joindiaspora.com/), 2011.
7. Robert L. Grossman. The Case for Cloud Computing. IT Professional, 11(2):23–

27, March 2009.
8. Heroku. http://www.heroku.com/, 2012.
9. Ali Khajeh-Hosseini, Ian Sommerville, and Ilango Sriram. Research Challenges for

Enterprise Cloud Computing. Technical report, LSCITS, 2010.
10. Peter Mell and Timothy Grance. The NIST Definition of Cloud Computing. Tech-

nical report, 2011.
11. mOSAIC. http://www.mosaic-project.eu/, 2012.
12. Open Cloud Manifesto. http://www.opencloudmanifesto.org, 2011.
13. RCUK. ‘Cloud Computing for Research’ Workshop. Technical report, 2010.
14. REMICS. http://remics.eu/, 2012.
15. RESERVOIR. http://www.reservoir-fp7.eu/, 2012.

17

Towards CloudML, a Model-based Approach to
Provision Resources in the Clouds?

Eirik Brandtzæg1,2, Sébastien Mosser1, and Parastoo Mohagheghi1

1 SINTEF IKT, Oslo, Norway
2 University of Oslo, Oslo, Norway
{firstname.lastname}@sintef.no

Abstract. The Cloud-computing paradigm advocates the use of re-
sources available “in the clouds”. In front of the multiplicity of cloud
providers, it becomes cumbersome to manually tackle this heterogene-
ity. In this paper, we propose to define an abstraction layer used to
model resources available in the clouds. This cloud modelling language
(CloudML) allows cloud users to focus on their needs, i.e., the modelling
the resources they expect to retrieve in the clouds. An automated provi-
sioning engine is then used to automatically analyse these requirements
and actually provision resources in clouds. The approach is implemented,
and was experimented on prototypical examples to provision resources
in major public clouds (e.g., Amazon EC2 and Rackspace).

1 Introduction

Cloud–Computing [2] was considered as a revolution. Taking its root in dis-
tributed systems design, this paradigm advocates the share of distributed com-
puting resources designated as “the cloud”. The main advantage of using a
cloud-based infrastructure is the associated scalability property (called elastic-
ity). Since a cloud works on a pay–as–you–go basis, companies can rent com-
puting resources in an elastic way. A typical example is to temporarily increase
the server–side capacity of an e–commerce website to avoid service breakdowns
during a load peak. According to Amazon (one of the major actor of the Cloud
market): “much like plugging in a microwave in order to power it doesnt require
any knowledge of electricity, one should be able to plug in an application to the
cloud in order to receive the power it needs to run, just like a utility” [15]. How-
ever, there is still a huge gap between the commercial point of view and the
technical reality that one has to face in front of “the cloud”.

The Cloud-computing paradigm emphasises the need for automated mecha-
nisms, abstracted from the underlying technical layer. It focuses on the repro-
ducibility of resource provisioning: to support the horizontal scaling of cloud-
applications (i.e., adding new computing resources on-the-fly), such a provision-
ing of on-demand resources will be performed by a program. The main drawback

? This work is funded by the European commission through the REMICS project
(www.remics.eu), contract number 257793, with the 7th Framework Program.

18

associated is the heterogeneity of cloud providers. At the infrastructure level,
more than ten different providers publish different mechanisms to provision re-
sources in their specific clouds. It generates a vendor lock-in syndrome, and an
application implemented to be deployed in cloud C will have to be re-considered
if it now has to be deployed on cloud C ′. All the deployment scripts that were de-
signed for C have to be redesigned to match the interface provided by C ′ (which
can be completely different, e.g., shell scripts, RESTful services, standard API).

Our contribution in this paper is to describe the first version of CloudML,
a cloud modelling language specifically designed to tackle this challenge. This
research is done in the context of the REMICS EU FP7 project, which aims
to provide automated support to migrate legacy applications into clouds [10].
Using CloudML, a user can express the kind of resources needed for a specific
application, as a model. This model is automatically handled by an engine,
which returns a “run-time model” of the provisioned resources, according to
the models@run.time approach [3]. The user can then rely on this model to
interact with the provisioned resources and deploy the application. The approach
is illustrated on a prototypical example used to teach distributed systems at the
University of Oslo.

2 Challenges in the cloud

To recognise challenges when doing cloud provisioning we use an example ap-
plication [5]. The application (known as BankManager) is a prototypical bank
manager system which support (i) creating users or bank accounts and (ii) mov-
ing money between bank accounts and users. BankManager is designed but not
limited to support distribution between several nodes. Some examples of provi-
sioning topologies is illustrated in Fig. 1, each example includes a browser to
visualise application flow, a front-end to visualise executable logic and back-end
represents database. It is possible to have both front-end and back-end on the
same node, as shown in Fig. 1(a). In Fig. 1(b) front-end is separated from the
back-end, this introduces the flexibility of increasing computation power on the
front-end node while spawning more storage on the back-end. For applications
performing heavy computations, it can be beneficial to distribute the workload
between several front-end nodes as seen in Fig. 1(c), the number of front-ends
can be increased n number of times as shown in Fig. 1(d). BankManager is not
designed to handle several back-ends because of the relational database, this can
solved on a database level with master and slaves (Fig. 1(e)) although this is
out of the scope of this article.

We used bash scripts to implement the full deployments of BankManager
against Amazon Web Services (AWS) [1] and Rackspace [13] with a topology of
three nodes as shown in Fig. 1(c). From this prototype, it became clear that
there were multiple challenges that we had to address:

– Heterogeneous Interfaces: The first challenge we encountered was to sim-
ply support authentication and communication with the cloud. The two

19

Browser
Front-end

And Back-end

(a) Single node

Browser Front-end Back-end

(b) Two nodes

Browser Load balancer

Front-end

Front-end

Back-end

(c) Three nodes

Browser Load balancer

Front-end

Front-end

Back-end

(d) Several front-ends

Browser Load balancer

Front-end

Front-end

Back-end master

Slave

Slave

(e) Several front-ends and back-ends (slaves)

Browser

Non-system interaction

Node

Provisioned instance

Load balancer

Load balancer as a service

Connection flow n-times

(f) Legend

Fig. 1. Different architectural ways to provision nodes (topologies).

providers we tested against had different approaches, AWS [1] had command-
line tools built from their Java APIs, while Rackspace [13] had no tools beside
the API language bindings, thus we had to operate against the command-
line tools and public APIs. As this emphasises the complexity even further,
it also stresses engineering capabilities of individuals executing the tasks to
a higher technical level.

– Platform-specific Configuration: Once we were able to provision the cor-
rect amount of nodes with desired properties on the first provider it became
clear that mirroring the setup to the other provider was not as convenient
as anticipated. There were certain aspects of vendor lock-in, so each script
was hand-crafted for specific providers. The lock-in situations can, in many
cases, have financial implications where for example a finished application is

20

locked to one provider and this provider increases tenant costs3. Or availabil-
ity decreases and results in decreases of service up-time, damaging revenue.

– End-user Reproducibility: The scripts provisioned nodes based on command-
line arguments and did not persist the designed topology in any way, this
made topologies cumbersome to reproduce. Scripts can be “re-executed” to
redo a provisioning step, but they often rely on command-line arguments
that differs from a computer to another one (e.g., file paths), requiring tech-
nical knowledge to be correctly executed.

– Shareable: Since the scripts did not remember a given setup it was im-
possible to share topologies “as is” between coworkers. It is important that
topologies can be shared because direct input from individuals with different
areas of competence can enhance quality. Provisioning scripts can be shared
as plain files, and the lack of modularity expressiveness in the underlying lan-
guage does not support re-use as defined in the Object-Oriented community.
The re-use of deployment script is empirically done through a copy-paste
approach, and concerns are not modularised in shareable components.

– Robustness: There were several ways the scripts could fail and most errors
were ignored. Transactional behaviours were non-existent.

– Run-time dependency: The scripts were developed to fulfil a complete
deployment, and to do this it proved important to temporally save run-time
specific meta-data. This was crucial data needed to connect front-end nodes
with the back-end node. Shell scripts are usually executed in a batch mode,
and will result in static files containing the information available from the
cloud (e.g., IP addresses) at deployment time. Thus, changes in the cloud
(e.g., IP re-allocation) cannot be easily propagated.

Vision: Towards a CloudML environment. Our vision is to tackle these chal-
lenges by applying a model-driven approach supported by modern technologies.
Our objective is to create a common model for nodes as a platform-independent
model [4] to justify multi-cloud differences and at the same time base this on a
human readable lexical format to resolve reproducibility and make it shareable.
The concept and principle of CloudML is to be an easier and more reliable path
into cloud computing for IT-driven businesses of variable sizes. We envision a
tool to parse and execute template files representing topologies of instances in the
cloud. Targeted users are application developers without cloud provider specific
knowledge. The same files should be usable on other providers, and alternat-
ing the next deployment stack should be effortless. Instance types are selected
based on properties within the template, and additional resources are applied
when necessary and available. While the tool performs provisioning meta-data
of nodes is available. In the event of a template being inconsistent with possibil-
ities provided by a specific provider this error will be informed to the user and
provision will halt.

3 For example, Google decided in 2011 to change the pricing policies associated to the
GoogleAppEngine cloud service. All the applications that relied on the service had
basically two options: (i) pay the new price or (ii) move to another cloud-vendor. Due
to vendor lock-in, the second option often implied to re-implement the application.

21

Table 1. CloudML: Challenges addressed.

Challenge Addressed by

Complexity One single entry point to multiple providers. Utilizing existing
framework. Platform-independent model approach used to dis-
cuss, edit and design topologies for propagation.

Multicloud Utilizing existing framework designed to interface several
providers.

Reproducibility Lexical model-based templates. Models can be reused to multi-
ply a setup without former knowledge of the system.

Shareable Lexical model-based templates. Textual files that can be shared
through mediums such as e-mail or version control systems such
as Subversion or Git.

Robustness Utilizing existing framework and solid technologies.

Metadata dependency Models@run.time. Models that reflect the provisioning models
and updates asynchronously.

+id: String
Node Property*

+min: Int
RAM

+value: String
Location

+min: Int
Core

+min: Int
Disk

+name: String
Template

*
RuntimeInstace

System

*
RuntimeProp *

+value: Address
PublicIP

+value: Address
PrivateIP

+build(Accout, List[Template]): System

CloudMLEngine
Connector

AmazonEC2 RackSpace

*
+name: String

Account 1

Credential
1

+identity: String
+credential: String

Password
+public: String

KeyPair

provider

drivers

nodes

properties

node

tpl

credential

models@run.time

UserLibrary

*

*
accounts

templates

Fig. 2. Architecture of CloudML

3 Contribution

We have developed a metamodel that describe CloudML as a Domain-Specific
language (DSL) for cloud provisioning. It addresses the previously identified
challenges, as summarised in Tab. 1. We provide a class-diagram representation
of the CloudML meta-model in Fig. 2. The scope of this paper is to describe the
provisionning part of CloudML. The way application are deployed is described
in [7].

Illustrative Scenario. CloudML is introduced using a scenario where an end-user
(named Alice) is provisioning the BankManager to Amazon Web Services Elastic

22

Compute Cloud (EC2) using the topology shown in Fig. 1(c). It is compulsory
that she possesses an EC2 account in advance of the scenario. She will retrieve
security credentials for account and associate them with Password in Fig. 2.
Credential is used to authenticate the user to supported providers through
Connector. The next step for Alice is to model the appropriate Template con-
sisting of three Nodes. The characteristics Alice choose for Node Properties

are fitted for the chosen topology with more computational power for front-end
Nodes by increasing amount of Cores, and increased Disk for back-end Node. All
Properties are optional and thus Alice does not have to define them all. With
this model Alice can initialize provisioning by calling build on CloudMLEngine,
and this will start the asynchronous job of configuring and creating Nodes.
When connecting front-end instances of BankManager to back-end instances
Alice must be aware of the back-ends PrivateIP address, which she will retrieve
from CloudML during provisioning according to models@run.time (M@RT) ap-
proach. RuntimeInstance is specifically designed to complement Node with
RuntimeProperties, as Properties from Node still contain valid data. When
all Nodes are provisioned successfully and sufficient metadata are gathered Alice
can start the deployment, CloudML has then completed its scoped task of pro-
visioning. Alice could later decide to use another provider, either as replacement
or complement to her current setup, because of availability, financial benefits
or support. To do this she must change the provider name in Account and call
build on CloudMLEngine again, this will result in an identical topological setup
on a supported provider.

Implementation. CloudML is implemented as a proof of concept framework [6]
(from here known as cloudml-engine). Because of Java popularity we wrote
cloudml-engine in a JVM based language with Maven as build tool. Cloudml-
engine use jclouds.org library to connect with cloud providers, giving it support
for 24 providers out of the box to minimize complexity as well as stability and
robustness.

We represent in Fig. 3 the provisioning process implemented in the CloudML
engine, using a sequence diagram. Provisioning nodes is by nature an asyn-
chronous action that can take minutes to execute, therefore we relied on the
actors model [9] using Scala actors. With this asynchronous solution we got con-
current communication with nodes under provisioning. We extended the model
by adding a callback-based pattern allowing each node to provide information
on property and status changes. Developers exploring our implementation can
then choose to “listen” for updating events from each node, and do other jobs
/ idle while the nodes are provisioned with the actors model. We have divided
the terms of a node before and under provisioning, the essential is to intro-
duce M@RT to achieve a logical separation. When a node is being propagated,
it changes type to RuntimeInstance, which can have a different state such as
Configuring, Building, Starting and Started. When a RuntimeInstance reaches
Starting state the provider has guaranteed its existence, including the most nec-
essary metadata, when all nodes reaches this state the task of provisioning is
concluded.

23

:User :CloudML :RuntimeInstance :AWS

build(account,List(template))

Initialize()

List(RuntimeInstance)

provision node

getStatus()

”Building”

status(”Starting”)

update(”Starting”)

getStatus()

”Starting”

Fig. 3. CloudML asynchronous provisionning process (Sequence diagram).

4 First Experiments: Sketching Validation

Our objective here is to sketch the validation of the CloudML framework, by sup-
porting the provisioning of several nodes into multiple clouds. To start the valida-
tion of the approach and the implemented tool, we provisioned the BankManager
application using different topologies in Fig[1(a), 1(c)]. The implementation uses
JavaScript Object Notation (JSON) to define templates as a human readable se-
rialisation mechanism. The lexical representation of Fig. 1(a) can be seen in
Listing. 1.1. The whole text represents the Template of Fig. 2 and conse-
quently “nodes” is a list of Node from the model. JSON is textual which makes
it shareable as files. We implemented it so once such a file is created it can be
reused (reproducibility) on any supported provider (multi-cloud).

1 { "nodes": [

2 { "name": "testnode" }

3]

4 }

Listing 1.1. One single node (topology: Fig. 1(a))

24

The topology described in Fig. 1(c) is represented in Listing. 1.2, the main
difference from Listing. 1.1 is that there are two more nodes and a total of five
more properties. The characteristics of each node are carefully chosen based on
each nodes feature area, for instance front-end nodes have more computation
power, while the back-end node will have more disk. The key idea is that the
meta-model is extensible, and can support new properties in the language thanks
to the extension of the Property class.

1 {

2 "nodes": [

3 { "name": "frontend1",

4 "minRam": 512,

5 "minCores": 2 },

6 { "name": "frontend2",

7 "minRam": 512,

8 "minCores": 2 },

9 { "name": "backend",

10 "minDisk": 100 }

11]

12 }

Listing 1.2. Three nodes (topology: Fig. 1(c))

5 Related Work

There already exists scientific research projects and technologies which have
similarities to CloudML both in idea and implementation. First we will present
three scientific research projects and their solutions, then we will introduce pure
technological approaches. We also discuss how our approach differ from theres.

One project that bears relations to ours is mOSAIC [12] which aims at not
only provisioning in the cloud, but deployment as well. They focus on abstrac-
tions for application developers and state they can easily enable users to “ob-
tain the desired application characteristics (like scalability, fault-tolerance, QoS,
etc.)” [11]. The strongest similarities to CloudML are (i) multi-cloud with their
API [11], (ii) meta-data dependencies since they support full deployment and
(iii) the robustness through fault-tolerance. The mOSAIC project works at a
code-based level. Thus, it could not benefit from the use of models as interop-
erability pivot with other tools, to ensure verification for example. The M@RT
dimension advocated by CloudML also tames the complexity of the technolog-
ical stack to be used from an end-user point of view. However, model trans-
formation can be designed from CloudML provisioning models to target the
mOSAIC API, thus benefiting of the multi-cloud capabilities offered by the mO-
SAIC platform. Reservoir [14] is another project that also aim at multi-cloud.
The other goal of this project is to leverage scalability in single providers and
support built-in Business Service Management (BSM), important topics but not
directly related to our goals. CloudML follows the same underlying approach,
but brings the model@run.time dimension, considering that the keystone of such

25

an approach should be at the model level. Vega framework [8] is a deployment
framework aiming at full cloud deployment of multi-tier topologies, they also fol-
low a model-based approach. Contrarily to Vega, CloudML supports multi-cloud
provisioning.

There are also distinct technologies that bear similarities to CloudML. None
of AWS CloudFormation and CA Applogic are model-driven, and actually fo-
cus on their own specificities to ensure vendor lock-in. Access to run-time data
is bound to specific interface, where CloudML advocate a M@RT representa-
tion of the system, supporting reasonning at a higher level of abstraction. Oth-
ers are plain APIs supporting multi-cloud such as libcloud, jclouds and Delta-
Cloud. The last group are projects that aim specifically at deployment, mak-
ing Infrastructure-as-a-Service (IaaS) work as Platform-as-a-Service (PaaS) like
AWS Beanstalk and SimpleCloud. The downside about the technical projects are
their inability to solve all of the challenges that CloudML aims to address, but
since these projects solve specific challenges it is appropriate to utilize them.
Cloudml-engine leverages on jclouds in its implementation to support multi-
cloud provisioning, and future versions can utilize it for full deployments.

6 Conclusions & Perspectives

In this paper, we presented the initial version of CloudML, a cloud modelling
language used to model the resources that a given application can require from
existing clouds. The approach is defined as a meta-model, associated to a refer-
ence implementation using the Scala language. This reference implementations is
connected to several cloud providers, and we described preliminary experiments
that address major cloud providers: Amazon EC2 and Rackspace.

The first perspective of this work is to emphasise its validation. In the context
of the REMICS project, our partners provide us several case studies (tourism,
banking, scientific computation) that require the provisioning of resources in the
clouds. As CloudML is as a platform-independent meta-model to support cloud
resource provisioning, one can consider it as a target of a model transformation.
This point will be investigated in the context of REMICS: the migration chain
results in SOAML models, to be deployed on provisioned resources. We are also
interested in refining the set of properties available in the CloudML meta-model
to properly categorise the available resources (as for now this mechanism is lim-
ited and can lead to sun-optimal provisioning). For now, we focus our effort on
computational power, but other dimensions of clouds (e.g., data location, costs)
should be taken into account at the CloudML level. The next challenge to be
tackled by the CloudML environment is to model the complete deployment of
cloud-applications. By coupling the current version of CloudML with an archi-
tecture description language, it will be possible to model the needed resources
and the deployment plan to be followed to support the automated deployment
of the application.

26

References

1. Amazon: Amazon web services (2012), http://aws.amazon.com
2. Armbrust, M., Fox, A., Griffith, R., Joseph, A.D., Katz, R.H., Konwinski,

A., Lee, G., Patterson, D.A., Rabkin, A., Stoica, I., Zaharia, M.: Above
the Clouds: A Berkeley View of Cloud Computing. Tech. Rep. UCB/EECS-
2009-28, EECS Department, University of California, Berkeley (Feb 2009),
http://www.eecs.berkeley.edu/Pubs/TechRpts/2009/EECS-2009-28.html

3. Aßmann, U., Bencomo, N., Cheng, B.H.C., France, R.B.: Models@run.time
(dagstuhl seminar 11481). Dagstuhl Reports 1(11), 91–123 (2011)

4. Bézivin, J., Gerbé, O.: Towards a Precise Definition of the OMG/MDA Framework.
In: Proceedings of the 16th IEEE international conference on Automated software
engineering. pp. 273–. ASE ’01, IEEE Computer Society, Washington, DC, USA
(2001), http://dl.acm.org/citation.cfm?id=872023.872565

5. Brandtzæg, E.: Bank manager (2012), https://github.com/eirikb/grails-bank-
example

6. Brandtzæg, E.: cloudml-engine (2012), https://github.com/eirikb/cloudml-engine
7. Brandtzæg, E., Parastoo, M., Mosser, S.: Towards a Domain-Specific Language

to Deploy Applications in the Clouds. In: Third International Conference on
Cloud Computing, GRIDs, and Virtualization (CLOUD COMPUTING’12). pp.
1–6. Nice, France (Jul 2012)

8. Chieu, T., Karve, A., Mohindra, A., Segal, A.: Simplifying solution deployment on
a Cloud through composite appliances. In: Parallel Distributed Processing, Work-
shops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on. pp. 1
–5 (april 2010)

9. Haller, P., Odersky, M.: Actors that unify threads and events. In: Proceed-
ings of the 9th international conference on Coordination models and languages.
pp. 171–190. COORDINATION’07, Springer-Verlag, Berlin, Heidelberg (2007),
http://dl.acm.org/citation.cfm?id=1764606.1764620

10. Mohagheghi, P., Sæther, T.: Software Engineering Challenges for Migration to the
Service Cloud Paradigm: Ongoing Work in the REMICS Project. In: SERVICES.
pp. 507–514. IEEE Computer Society (2011)

11. Petcu, D., Crăciun, C., Neagul, M., Panica, S., Di Martino, B., Venticinque, S.,
Rak, M., Aversa, R.: Architecturing a Sky Computing Platform. In: Cezon, M.,
Wolfsthal, Y. (eds.) Towards a Service-Based Internet. ServiceWave 2010 Work-
shops, Lecture Notes in Computer Science, vol. 6569, pp. 1–13. Springer Berlin /
Heidelberg (2011)

12. Petcu, D., Macariu, G., Panica, S., Crăciun, C.: Portable Cloud applica-
tionsFrom theory to practice. Future Generation Computer Systems (2012),
http://www.sciencedirect.com/science/article/pii/S0167739X12000210

13. Rackspace: Rackspace cloud (2012), http://www.rackspace.com/cloud
14. Rochwerger, B., Breitgand, D., Levy, E., Galis, A., Nagin, K., Llorente, I.M., Mon-

tero, R., Wolfsthal, Y., Elmroth, E., Caceres, J., Ben-Yehuda, M., Emmerich, W.,
Galan, F.: The Reservoir model and architecture for open federated cloud comput-
ing. IBM Journal of Research and Development 53(4), 4:1 –4:11 (july 2009)

15. Varia, J.: Architecting for the Cloud : Best Practices. Compute 1(January), 1–23
(2010)

27

Performance Evaluation of Model-based Data
Access Layers in NoSQL Databases

Tamás Vajk1, László Deák1, Gergely Mezei1, and Tihamér Levendovszky2

1 Budapest University of Technology and Economics,
Magyar Tudósok körútja 2. QB-207., Budapest, H-1117, Hungary

tamas.vajk@aut.bme.hu,ladeak@windowslive.com,gmezei@aut.bme.hu

http://www.aut.bme.hu
2 Vanderbilt University,

1025 16th Ave S, Suite 102, Nashville, TN 37212, USA
tihamer@isis.vanderbilt.edu

Abstract. Cloud service providers offer a great variety of computational
power per virtual machines and several storage mediums, such as SQL
databases, associative arrays to store BLOBs, schema-less data tables.
These diverse services provide flexible and economical solutions for com-
panies to store, access, and transform their data. Schema-less data tables
offer a large number of possibilities to separate the data. These options
are not trivial to choose from, performance may diverge greatly in dif-
ferent access scenarios. Thus, in this paper, we focus on the performance
of schema-less tables based on different data separation patterns. Based
on our measurements, we came to the conclusion that choosing appro-
priate keys has significantly higher impact on performance than data
separation algorithms. Naturally, the development of the different data
access layers can be efficiently automated with the use of a data model
and a modeling environment that supports code generation from these
artifices.

Keywords: NoSQL, Windows Azure table storage, Performance mea-
surement

1 Introduction

Cloud computing has received significant attention recently. Companies can store
their data and perform their computations off-premise in a highly available and
scalable environment, where they only pay for the resources that they actually
use. Compared to traditional infrastructures that only use in-house resources,
cloud computing has many advantages that have been transforming the comput-
ing solutions used at companies. Naturally, already existing on-premise resources
can still be used as part of the infrastructure by connecting them to cloud ser-
vices and forming a hybrid environment.

From the service provider’s perspective, companies with over-scaled com-
putation and storage capacity can now profit from utilizing their unexploited

28

resources and offering a cloud computing provider solution. Their previously
gained knowledge of building and maintaining a large infrastructure is now being
offered as a service to customers. The most widespread cloud computing plat-
forms include Amazon AWS [1], Google App Engine (GAE) [2], The Rackspace
Cloud [3], and Microsoft Windows Azure [4].

Platform as a Service (PaaS) cloud service providers offer several types of
data storage mediums. Many software solutions store their data in a relational
database, thus, cloud providers typically implement SQL servers for data storage,
which makes the transition to the cloud easier [5]. However, if we need to scale
out a relational database and spread across multiple servers, the relational con-
straints – which the database server can guarantee – are significantly reduced.
Referential integrity of the data may have to be checked in application logic,
which results in application code that is hard to maintain and performance is-
sues arise. Thus, cloud providers tend to offer simpler, but more scalable storage
options. Google App Engine, Microsoft Windows Azure, and Amazon AWS all of-
fer BLOB (Blobstore, BLOB storage, Amazon S3), queue (Task Queue, Queue,
Amazon SQS) and schema-less table (Google Storage, Table storage, Amazon
SimpleDB) storage solutions. Typically binary large object (BLOB) stores are
simple key-value pairs, where the key identifies the binary data (1 byte to TBs).
Queues provide reliable storage and delivery of messages between application
parts. And schema-less table storages or NoSQL databases [6] are containers for
structured data, where the data is organized into tables, each table contains rows
of data, and each row holds attribute name-value pairs, but attribute names may
differ from row-to-row.

In this paper, we have analyzed a number of ways how data can be stored
in NoSQL solutions. The history of NoSQL databases is not too long, thus, the
design paradigms are not straightforward or commonly known contrary to SQL
data scheme design. Database normalization has a strong mathematical back-
ground, however, in NoSQL databases, denormalization is a common method
of providing better query performance. NoSQL databases are designed for dis-
tributed use, which makes indexing resource intensive, thus, most of the solutions
lack secondary database indices, which forces developers to combine as much in-
formation into the primary key as possible. In this paper, we focus on two aspects
of NoSQL databases: (i) the effect of separating the data into different tables
and (ii) the selection of primary keys. We have selected a simple example with
one-to-many relationships, which would be obvious to map to a SQL schema,
and examined the effect of changing the underlying NoSQL-based data access
layer on the query performance. For the performance evaluation, we have de-
fined 10 queries with different access scenarios, and measured their execution
time as we have increased the amount of stored data. Obviously, hand-coding
the different data access layers would be error-prone, thus, we have modeled the
data layer in the Visual Modeling and Transformation System (VMTS) [7], and
used its T4 template [8] processing capabilities to generate most of the different
data access layers. These layers can be tested by the developer and if the best
performing layer is found, later only that layer needs to be generated in the

29

iterative development process. We have measured the query performance over
the Microsoft Windows Azure table storage NoSQL implementation.

The structure of this paper is as follows. Sect. 2 gives an overview of cloud
service and NoSQL performance evaluations. Also, Sect. 2 introduces promising
cloud-based model driven engineering solutions. In Sect. 3, we provide the one-to-
many relationship analysis implemented in Windows Azure. We have illustrated
the used data model, introduced the examined data access layer variations, and
execution time measurements have been provided. Finally, conclusions are drawn
and future research options are described in Sect. 4.

2 Background and Related Work

As cloud-based applications are getting widely used even in industrial areas, the
performance of cloud services should be evaluated to validate that they meet
the expectations. Quantitative performance metrics should be provided to fully
evaluate the pros and cons of moving an application to the cloud.

There are several cloud providers that can be chosen for an application.
The offered services are typically similar between the providers, thus, select-
ing the most appropriate one can be a daunting task. On a high level, Cloud-
Cmp [9] is a tool to systematically compare the performance and cost of cloud
providers. CloudCmp compares several popular providers (Amazon, Google, Mi-
crosoft, Rackspace, etc.) by executing benchmark tests against their computa-
tion and storage services. Table storage tests given in [9] consist response-time
evaluations for single get, put and entity listing operations. Single get operation
response time is typically more than 10ms, similarly to what we have measured.

In [10], the perfomance of Windows Azure services have been measured. Scal-
ability, availability and performance have been tested. Table storage performance
has been examined under stress test with 192 clients. The experiments show that
the number of operations a client could perform against the table store does not
depend on the entity size. Also, [10] evaluates the maximum throughput based
on different entity sizes and number of clients.

General scalability issues in cloud solutions are introduced in [11]. The high
scalability of NoSQL solutions is mentioned, with the drawbacks of not having
traditional ACID transaction. Clustered relational databases are also mentioned
as an alternative with compromised performance even for moderate loads when
transactions are supported. In [12], traditional implementations of ACID trans-
actions are named as the source of declined performance in relational databases.
The author concludes that poor performance has nothing to do with SQL, thus,
good performance can be achieved in either SQL or NoSQL context as well.

The weaving of model-driven engineering (MDE) and cloud technologies is
producing new results mainly in two distinct areas: (i) flexible cloud-based appli-
cation development, and (ii) unprecedented performance boost in model-based
tools. The former one emerges from the fact that model-based tools provide flex-
ible code generation options, thus, only the generator applications need to be
developed to provide cloud-based applications from previously existing models

30

[13]. In the latter one, the previously unavailable computational power and stor-
age space is used in MDE tools. For instance CPU intensive model transforma-
tions can be executed in the cloud, for instance [14] performs model verification
as a hosted service.

In our work, we have focused on one-to-many relationships as their mapping
to NoSQL tables are not evident. In a relational database, their representa-
tion would be two tables with one having a column for storing the other’s ID
and the referential integrity would be enforced by a foreign key. An example
of transforming this solution to NoSQL tables can be found in [15]. However,
each NoSQL solution has its own restrictions, thus, giving a universally optimal
solution is not possible. For instance, in Windows Azure, tables have two keys:
(i) a partition key and (ii) a row key. Row keys identify an entity in the table,
while along the partition keys the environment may partition the data to sev-
eral physical servers, which can greatly improve the performance under stress
[16]. Keys provide a fast access to entities, having no additional indices in tables
means that developers should choose keys that have information coded inside
them. For instance, in one of the examples in [16], using a date as a row key
is suggested, because that way selecting entries that are created after a certain
date can be done efficiently. Also, as operations on keys are strictly limited, for
example Substring() cannot be called on keys, only string-based comparison can
be used for filtering. Substring() functionality can be easily implemented with
Compare(), but it requires keys with fixed length and prefixing [17].

The importance of data partitioning is mentioned in [6] as one of the perfor-
mance tuning options. Many large-scale cloud applications build on map-reduce
[18] solutions, where the map phase emits key-value pairs and reducers con-
sume these pairs. All the key-value pairs that have the same key go to the same
partition and get processed by the same reducer. Map-reduce solutions can be ef-
ficiently parallelized because corresponding data is located in the same partition
and there is no connection between different partitions. For the same reason, to
achieve good query times in Windows Azure table storage, only the interrelated
data should be stored in the same partition.

3 Contributions

The Visual Modeling and Transformation Tool (VMTS) [7] is a powerful domain-
specific modeling and visual model transformation tool. In this work, we have
utilized its modeling feature and its ability to traverse the models and gener-
ate output from them with transformations expressed in T4 templates. Fig. 1
illustrates the overall development architecture. After creating the data model,
VMTS generates several data access layers over the Windows Azure table store
with T4 templates. The application developer performs the stress test on the dif-
ferent layers, and selects the one that fits best the performance requirements of
the application. Afterwards, if the data model is tweaked, the VMTS generator
process only needs to produce the selected data access layer. Obviously, if proper
performance metrics were found, the selection process could be automatized.

31

Input model
VMTS

T4 processor

DAL1

DAL2

DALn

no

yes

no

Perf. test

selected

Fig. 1. Overall development architecture.

Fig. 2. Blog class diagram.

For our performance evaluation, we have modeled the simplified internal
class hierarchy of a blog engine. Fig. 2 depicts the sample VMTS input model
used in this paper. Note that in the performance measurements, we have only
examined the Blog, Post and Comment elements. However, we have implemented
a simple ASP.NET MVC 4 application [19] above the data access layer, where
user authentication was necessary and we are currently examining many-to-many
relations as well, hence the figure shows the other classes.

3.1 Generated Data Access Layers

From the model in Fig. 2, we have generated nine different data access layers
to evaluate their query performance. The generation process has been imple-
mented by T4 templates [8], which traverse the models and generate C# code
from them based on text-based templates. The data has been stored in (i) a
single table (Si), (ii) three separate tables (Mu), and (iii) in a mixed way (Mi),
where blogs are stored in a separate table, while posts and comments are stored
in the same one. Orthogonally to this distinction, we have analyzed the effect of
using different partition and row key selection logic. The following options have
been implemented: (i) the blog ID is the partition key and a combination of the
other keys are used as a row key (B,C), (ii) similarly, the blog ID is the partition
key, but the row key is a random identifier (B,R), and (iii) both partition and
row keys are randomly chosen (R,R). Table 1 summarizes the options with their
reference names used in this paper. Note that although composition is a type of
association in the UML standard [20], semantically it means a stronger connec-

32

Table 1. Examined data access layers.

Single table Multiple table Mixed table (B-PC)

Partition key: Blog Id
Si(B,C) Mu(B,C) Mi(B,C)

Row key: Combined

Partition key: Blog Id
Si(B,R) Mu(B,R) Mi(B,R)

Row key: Random

Partition key: Random
Si(R,R) Mu(R,R) Mi(R,R)

Row key: Random

tion between items, thus, combined row keys are generated based on this obser-
vation. In our experiment, combined row keys are using the following pattern:
{Typename of element}[{ID of owners}]∗ {ID of element}, e.g. the com-
bined row key of a post whose ID is 26, and whose blog’s ID is 74 is post 74 26.
As mentioned in Sect. 2, it is worth using fixed length IDs or padding them
to the same length, thus, in the application we are using the 36 character-long
string representation of GUIDs.

Naturally, to facilitate the performance measurements, we have defined a
common interface that is implemented by the data access layers. Thus, switching
the actual implementation that is examined is handled simply by changing a type
name in the configuration file.

As stated before, in this work, we have only examined key selection and data
separation in one-to-many relationships. We have not considered other relation-
ship types and data redundancy, which would lead to other optimization options,
has been kept at a minimum.

3.2 Performance Evaluation

During the measurements, we have linearly increased the number of items in
the data store. Each inserted blog contained 100 posts and each post had 10
corresponding comments, thus, with inserting a single blog, 1101 items have been
inserted altogether. After each insertion, the execution time of the following 10
queries have been measured:

1. Selecting all the blogs
2. Selecting a single blog by its ID
3. Selecting all the posts for a blog
4. Selecting a single post by blog and post ID
5. Selecting all the comments for a post
6. Selecting a single comment by blog, post and comment ID
7. Selecting all the comments
8. Selecting a comment by ID
9. Selecting a comment by post and comment ID

10. Selecting a post by ID

The above 10 queries follow two navigation scenarios: (i) forward navigation,
where we follow the containment relations, and (ii) backward navigation, where
we start from the comments, and try to retrieve the container post and blog.

33

 0

 100

 200

 300

 400

 500

 600

 700

 800

 0 100 200 300 400 500

Re
qu

es
t t

im
e

(m
s)

Number of blogs

Blog
Post

Comment

 0

 50

 100

 150

 200

 0 100 200 300 400 500

Re
qu

es
t t

im
e

(m
s)

Number of blogs

Blog
Post

Comment

(Get all by container) (Get single with IDs)

Fig. 3. Performance of RDBMS solution mapped to NoSQL tables (Mu(R,R)).

 0

 50

 100

 150

 200

 250

 300

 0 100 200 300 400 500

Re
qu

es
t t

im
e

(m
s)

Number of blogs

Blog
Post

Comment

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0 100 200 300 400 500

Re
qu

es
t t

im
e

(m
s)

Number of blogs

Blog
Post

Comment

(Get all by container) (Get single with IDs)

Fig. 4. Performance of multiple tables with meaningful partition keys (Mu(B,R)).

Naturally, in case of a blog engine, typically, only the forward navigations are
required, because comments are not visualized without their posts. However, if
we consider the same class hierarchy, but changing the blog, post, and comment
elements to customer, order, and order item respectively, we gain a structurally
similar class diagram, but in this case backward navigations are equally impor-
tant. Thus, the last 4 items of Listing 3.2 are also required in some scenarios.

Forward navigations There are cases in Table 1 that are definitely not op-
timal, for instance using random keys in a table storage is rarely a viable way
of storing data. As in this case, for instance returning all the comments of a
post requires the server(s) to iterate through all the partitions and check items
one-by-one if they need to be returned. This solution is obviously not going to
provide good performance results, however, it can be considered a good baseline
solution as this is exactly the schema that we would use in a relational database.
Fig. 3 depicts the execution times of querying the first 6 queries from Listing 3.2
in data access layer Mu(R,R). Note that we have fitted a Bézier spline to the
measured raw data to visualize the incline trend.

Changing the partition key to the blog ID, but leaving the row key a random
GUID improves the performance immensely as illustrated in Fig. 4. Note that
querying all the blogs has not changed, as in both cases the servers need to iterate
through the Blogs table and return all the elements. However, the execution

34

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

 8000

 9000

 0 5 10 15 20

Re
qu

es
t t

im
e

(m
s)

Number of blogs

Mi(B,R)
Mi(B,C)

Mu(B,R)
Mu(R,R)
Si(R,R)
Si(B,C)

Fig. 5. Execution times of retrieving all the comments.

times of all the other queries become almost constants, as in the data access
layer Mu(B,R) the single element queries can operate on a single partition,
which for instance contains 1000 entries for comments, thus, finding a single
entry requires iterating through at most 1000 entries. Similarly, returning the
corresponding posts to a blog requires a query to a single partition in the Posts
table and returning all the elements from that partition.

Performing the same measurements in data access layers Mu(B,C), Mi(B,C),
Mi(B,R) results in almost the same execution times, as in those cases, the above
observations still apply. Also, single table solutions Si(B,C), Si(B,R) perform
similarly in Queries 2 to 6, however Query 1 becomes significantly slower. This
performance decline is caused by the fact that Query 1 needs to iterate through
all the elements in the table and check whether the row key starts with ”Blog ”
or not. Thus, in this case having too many irrelevant items (posts and comments)
in the same table reduces the performance as we cannot restrict the search to a
single partition. However, changing the partition key to a fixed value from the
blog ID resolves this problem.

Backward navigations In case of a blogging engine, navigating from a com-
ment to a post is rarely a request, however, other scenarios may require nav-
igation from contained to container element. Thus, we have examined those
navigations in our case study as well. In a schema-less environment, one might
think that storing entities in a single table will not affect performance too much.

The performance of the backward navigation is evaluated with the last 4
items of Listing 3.2. Execution times of querying all the comments is depicted
in Fig. 5 for data access layer Mi(B,R), Mi(B,C), Mu(B,R), Mu(R,R),
Si(B,C), and Si(R,R).

As it can be seen in Fig. 5, the performance does not vary too much between
the different implementations, because to return all the comments, the servers
have to iterate through all the elements where the comments are stored. Obvi-
ously, this means that the less data is stored in the table that is traversed, the

35

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500

Re
qu

es
t t

im
e

(m
s)

Number of blogs

Comment 2 parameters
Comment 1 parameter

Post

 0

 500

 1000

 1500

 2000

 0 100 200 300 400 500

Re
qu

es
t t

im
e

(m
s)

Number of blogs

Comment 2 parameters
Comment 1 parameter

Post

(Mu(B,C)) (Si(R,R))

Fig. 6. Performance of backward queries without redundant data.

faster the execution is. Thus, the Multiple table solutions provide the best per-
formance. However, this does not result in significant differences, as the number
of comments is way more than the number of other items.

The execution times of the last 3 queries are depicted in Fig. 6 for Mu(B,C)
and Si(R,R). The former option provides the best performance, while the latter
one is the slowest. Note that finding a comment by its ID takes almost identical
amount of time in both cases as there is no partition keys given in those queries,
thus, iterating over all the entries in the tables is necessary.

As a general remark, we can conclude that if backward navigation is required
in an application, data separation and lucid key selection is not going to provide
good enough performance. Thus, other optimization strategies need to be chosen,
such as storing data redundantly.

4 Conclusions and Future Work

With the proliferation of cloud services in industrial applications, the perfor-
mance of these services need to be extensively tested, as applications have to
predictably meet behavioral requirements. In this paper, we have examined the
performance of the NoSQL solution available in the Microsoft Windows Azure.
The performance effect of data separation into multiple tables and the impor-
tance of key selection in one-to-many relationships have been tested by generat-
ing several different data access layers from a data model.

We have found that data separation does not have a huge effect on perfor-
mance, however, identifier selection has an immense impact on query execution
times. Also we have found that without storing data redundantly, the execu-
tion time of many queries hugely depend on the size of the tables. Thus, using
separate tables for the different type of entities may result in better performance.

In the future, we aim at exploring the effects of generating data access layers
with different redundancy schemes. We believe that after key selection, redun-
dancy has the second largest impact on performance. Also, currently the selection
of the optimal data access layer is performed with manual testing. Based on the
queries executed on the data, we could automatically select the optimal data
access layer. Thus, if the queries were defined previously for instance in Object

36

Constraint Language (OCL) and the data model were extended with necessary
usage performance metrics, the corresponding optimal data scheme could be
selected automatically.

Acknowledgments

This work is connected to the scientific program of the ”Development of quality-
oriented and harmonized R+D+I strategy and functional model at BME” project,
supported by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-
09/1/KMR-2010-0002).

References

1. Amazon: Overview of Amazon Web Services. Technical report, Amazon (2010)
2. Severance, C.: Using Google App Engine. 1 edn. O’Reilly Media (May 2009)
3. Rackspace: Cloud Computing, Cloud Hosting & Online Storage.

http://www.rackspace.com/cloud/
4. David Chappell: The Windows Azure Programming Model. Technical report,

DavidChappel & Associates (2010) Sponsored by Microsoft Corporation.
5. Brunetti, R.: Windows Azure Step by Step. Step by Step. Microsoft Press (2011)
6. Tiwari, S.: Professional NoSQL. Wrox Programmer to Programmer. Wiley (2011)
7. VMTS: Visual Modeling and Transformation System website.

http://vmts.aut.bme.hu/ (2012)
8. Vogel, P.: Practical Code Generation in .Net: Covering Visual Studio 2005, 2008,

and 2010. Addison-Wesley Microsoft Technology Series. Pearson Education (2010)
9. Li, A., Yang, X., Kandula, S., Zhang, M.: CloudCmp: comparing public cloud

providers. In: ACM/USENIX Internet Measurement Conference. (2010)
10. Hill, Z., Li, J., Mao, M., Ruiz-Alvarez, A., Humphrey, M.: Early observations on

the performance of windows azure. Scientific Programming 19(2-3) (2011) 121–132
11. Vaquero, L.M., Rodero-Merino, L., Buyya, R.: Dynamically scaling applications

in the cloud. SIGCOMM Comput. Commun. Rev. 41(1) 45–52
12. Stonebraker, M.: Sql databases v. nosql databases. Commun. ACM 53(4) (April

2010) 10–11
13. MoDisco: MoDisco Toolbox.

http://www.eclipse.org/gmt/modisco/toolBox/
14. Verum: ASD:Suite For Rapid Software Design And Defect-Free Code.

http://www.verum.com/
15. Krishnan, S.: Programming Windows Azure - Programming the Microsoft Cloud.

O’Reilly (2010)
16. Windows Azure Storage Group: How to get most out of Windows Azure Tables.

Technical report, Microsoft Corporation (2010)
17. Jeffrey Richter: Working with Azure Tables with Multiple Entity Schemas. Tech-

nical report, Wintellect (2012)
18. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.

Communications of the ACM 51 (January 2008) 107–113
19. Vajk, T., Deák, L.: Sample blog application.

http://tableperftest.cloudapp.net/ (2012)
20. Stevens, P., Pooley, R.: Using UML: Software Engineering with Objects and Com-

ponents. Object Technology Series. Addison-Wesley (1999)

37

Cloud Computing Workload and Capacity
Management Using Domain Specific Modelling

Rafidah Pakir Mohamad, Dimitrios S. Kolovos and Richard F. Paige

Department of Computer Science,
University of York, UK

{rafidah,dkolovos,paige}@cs.york.ac.uk

Abstract. Cloud computing is a technology through which software,
platforms and infrastructure can be provided as services. Managing re-
sources which enable this technology is a crucial task to maximise per-
formance and benefits all related parties. Demand for resources starts
with application requests initiated by the users. These trigger the cre-
ation of virtual machines, which in turn trigger the allocation of physical
resources. This paper proposes a solution for cloud computing workload
management and capacity planning by utilising domain specific mod-
elling, model transformation, and time series analysis techniques with
estimation algorithms. Each application’s workload is different depend-
ing on its behaviour, software design and the technologies it builds atop.
As such, each application needs to provide a custom workload domain
specific language (WL-DSL) through which clients can express their an-
ticipated workloads. Models conforming to different WL-DSLs can be
transformed to a model conforming to a Virtual Machine domain spe-
cific language (VM-DSL) to assist the SaaS or PaaS service provider
to manage their virtual resources in the cloud. The IaaS provider can
also benefit from numbers of VM-DSL from their customer to manage
their physical resources in the actual data centre by transforming multi-
ple incoming VM-DSL models into a model that conforms to a Physical
Machine Domain Specific Language (PM-DSL).

1 Introduction

Cloud computing generally offers three types of services: software as service
(SaaS), platform as service (PaaS) and infrastructure as a service (IaaS). SaaS
provides software applications such as e-mail, file backup and CRM; PaaS pro-
vides platforms for software development such as those provided by Microsoft
Azure1 and Google App Engine2; and IaaS is a complete computing infrastruc-
ture provided as a service for the customer to be used for software development
and/or service hosting such as these provided by GoGrid3 and Amazon EC24.

1 http://www.windowsazure.com/en-us/
2 http://www.google.com/enterprise/cloud/appengine/
3 http://www.gogrid.com/
4 http://aws.amazon.com/ec2/

38

These three types of services are provided with computing resources through the
internet.

Capacity management is the process of assuring that the correct amount of
resources is allocated to satisfy the required level of computing demand. The cost
of a cloud computing service provider is closely related to resource usage and this
renders effective capacity management essential in order to avoid resource over-
provision and at the same time to maintain the required level of performance.
This study focuses on the scenario in which SaaS and PaaS providers (SPSP)
use a computing infrastructure provided by an IaaS provider (ISP) and provide
their services to customers as application software or as a software development
platform. In this context, capacity management is conducted by two parties.
Firstly, by the SPSP, who estimate virtual machine resources demand based on
their users’ workload, and secondly, by the ISP who ensures that the physical
resources are available for the SPSP to create virtual machines in the cloud
data centre. Figure 1 shows the relationship between these parties. SPSP tries
to minimise operational costs and to maintain the performance at an acceptable
level by utilising auto-scaling to avoid resource over provisioning. On the other
hand, the ISP also tries to minimise operation costs of data centre by optimising
the utilisation of physical machines through consolidation.

Fig. 1. Relationship between Users, SPSP, ISP and Data Centre

Although auto-scaling is a cost-effective method for SPSP to run their ser-
vices, it can be particularly challenging for ISPs to manage virtual machines
demands on limited physical resources in an efficient manner. Both SPSP and
ISP would try to avoid Service Level Agreements (SLAs) violations with their
respective customers, but in some cases SLA violations occur with or without
control. Managing SLA violations is closely related to capacity management, and
several approaches [1, 3, 7] have been proposed for particular types of applica-
tions. In this work, we propose an integrated framework for capacity management
in scenarios involving multiple applications using domain specific modelling. Do-
main specific modelling (DSM) is a methodology which advocates constructing
and using modelling languages that are tailored to the domain of interest. DSM
has been adopted in many fields [9] such as automotive, telecommunications and
high-integrity systems and in this work, DSM is utilised in cloud computing re-
source management to facilitate rigorous specification and automated analysis
of workloads.

39

The remainder of the paper is organised as follows. Section 2 discusses related
techniques and tools for workload management and resource estimation meth-
ods and Section 3 clarifies the motivation for conducting this study, Section 4
explains the proposal of workload and capacity management by utilising domain
specific modelling, and Section 5 concludes the paper by outlining the expected
outcomes of this study.

2 Background

2.1 Techniques and Tools to Generate Workloads and to Estimate
Resources

The characteristics of workloads are categorised based on application types, e.g.,
web applications [5, 11, 13], data intensive [8] and media streaming (audio and
video) [3]. Synthetic workload generation for selected applications based on the
analysis of existing log files is important to estimate the required resources for
that particular application [2, 5, 13]. Various parameters are accessed from the
application logs for each category of workload since the nature of each category
is different. Furthermore, it is difficult to establish generic workload prediction
mechanisms because the behaviour of the users of each application as well as its
architecture and implementation style make each workload pattern unique.

However, having a standardised workload specification mechanism for each
category has been shown to be possible by implementing domain specific mod-
elling languages with identified parameters extracted from previous log infor-
mation of the application. Bahga and Madisetti have developed the Workload
Specification Language (WSL), to examine and compare IaaS package offerings
before moving multi-tier web applications to the cloud [2].

Previous workload patterns and their associated system parameters are es-
sential to estimate future workload. For this purpose, parameters required for
each category of applications have been compiled in Table 1. Mainly statisti-
cal approaches have been used to estimate future workloads such as KCCA [8],
PCA [17], regression analysis [13], and Maximum Likelihood Estimation [2]. Ta-
ble 1 summarises the techniques and tools used for workload generation as well
as the workload estimation methods and parameters used in these works.

2.2 Physical and Virtual Machine Capacity Management

To be cost-effective, the right amount of resources need to be allocated for the
instantiation of virtual machines (VM) to ensure an acceptable level of per-
formance for the hosted applications and to avoid over or under provisioning of
resources. Workload demand prediction is essential for supporting resource auto-
scaling in cloud computing. However, assigning additional resources to SPSP vir-
tual data centres from limited ISP physical resources can be challenging. An ISP
needs to run a minimum number of physical servers with optimum utilisation to
fulfil SPSP VM demands with the agreed response time for VM creation in the

40

Application
Specification

Workloads
Generator

Workload Esti-
mation

Parameter Access from
Log File

Web Application

Workload Spec-
ification Lan-
guage (WSL) [2].
SPECweb99,
SURGE, SWAT
and httperf

Probabilistic Finite
State Machine and
Maximum Likeli-
hood Estimation [2]

Input, output, states, tran-
sitions and probability of a
transition

Jean 2 model Semantic descrip-
tions [7]

not applicable

KOOZA [5] Markov Chain
Models for storage,
processor and mem-
ory. Simple queuing
for network.

Storage: block size, type,
randomness, inter-arrival
times. Processor: CPU
utilization. Network:
arrival-rate

not applicable Autoregressive
moving av-
erage method
(ARMA) [13]

Number of visits to a single
page from the total number
of customers, number of
machines providing the ser-
vice demand and the think
time for clients

Data Intensive not applicable Kernel Canoni-
cal Correlation
Analysis [8]

Map time, reduce time, to-
tal execution time, map
output bytes, HDFS bytes
written, and locally writ-
ten bytes

Media streaming Medisyn [3] Mathematical
model in a tool
called MediaProf

Time, file name, duration,
file size, available users
bandwidth and elapse end
time

Table 1. Techniques and Tools for workloads generation and estimation

SLA. At the same time, the ISP offers the flexibility to increase VM resources
with auto-scaling. But sometimes node failure or unpredicted VM demand might
occur. Both SPSP and ISP need to perform capacity management to avoid or
minimise SLA violations. Several methods for performing capacity management
from the SPSP and ISP perspective are outlined in Table 2. SPSPs perform
capacity management in virtual data centres where the computing resources are
virtually accessed from the cloud, while ISPs perform capacity management in
physical data centres.

The main computing resources of interest to capacity management are CPU,
memory, storage, disk I/O and network use. Certain works have combined all
those resources as a unit [1, 13] while others study only a selected component
or a selection of specific components. Ejarque et. al. and Tan et. al. focus on
CPU and memory usage [7, 17] and Sun et. al. include storage in their study [16]

41

while [5] explore the combination of four components by extending their studies
to include network resources. Ganapathi et. al explore execution time of data
intensive workloads for scheduling and resource allocation with KCCA statistic-
driven with Hadoop task [8].

Capacity Manage-
ment

Cost Model Operational Models

Virtual Data Centre reward and penalty based
on respond time [1]

Normal and surge operations
model [1]. Markov Chain Models;
for storage, processor and mem-
ory and simple queue model for
network [5]. Decision retrieving
media file from memory or disk [3].
Minimum resource requirement [7].
Gradually increase number of ma-
chine to identify the right number
of resources required by calling the
Mean Value Analysis [13]. Kalman
filter, double exponential smooth-
ing, and Markov prediction [12].
input, output, states, transitions
and probability of a transition

Physical Data Centre Customer Priority
model [7]. Cost with
energy consumption and
cost of VM creation [6]

Surplus resource distribution [7].
Prebooted and preconfigured VM
instances with common feature [6].
Markov chain technique [10]. Multi-
dimensional Resource Integrated
Scheduling algorithm [16]

Table 2. Physical and Virtual Machine Capacity Managements

2.3 SLA related issues in workload management

Quality of Service (QoS) in an SLA can refer to response time, throughput,
availability, reliability, and security [10] of the provided service. Response time
is more favourable in most studies [1, 5, 6, 10] as it can be easily measured and
associated with resource demand.

2.4 Domain Specific Modelling

Domain Specific Modelling is a technique advocating the use of Domain Specific
Modelling Languages (DSMLs) for modelling solutions in particular application
domains [15]. The rationale behind DSM is that each application domain is char-
acterised by its own set of abstractions which are represented more precisely and

42

effectively using tailored modelling languages instead of generic languages such as
UML. A Domain Specific Language consists of five fundamental components [4]:
abstract syntax, concrete syntax, syntactic mapping, semantic domain and se-
mantic mapping. In a DSML, these components are used to formally represent
a specific set of structural, behavioural and requirement features of a particular
domain in the form of a meta-model. A meta-model is a model that describes
the abstract syntax and static semantics of a DSML. Concrete syntax is the
concrete form of textual or graphical constructs used to create a model.

3 Motivation

Most of the previous works [1, 3, 6, 12] are focused on managing resources for a
single application rather than considering a combination of applications. Work
conducted in [3] proposed a VM demand estimation formula for media streaming
and this formula can be adopted to estimate numbers of virtual machines needed
by considering the cost of accessing media files from disk or memory. Workload
forecasting methods such as ARMA [13], PCA [17], KCCA [8], Kalman Fil-
tering [12] are good prediction methods for times series in statistics to predict
future workload. In addition, Dougherty et. al [6] used Model Driven Engineer-
ing to assist in green auto-scaling which reduce energy consumptions resulting
from idle machines. Feature models are used as an abstraction which describes
the software platform’s behaviour and its associated configurable variables for a
single application in [6].

Three important phases are identified in providing services in cloud environ-
ments. Firstly, managing fluctuating workloads initiated by end-users and these
workloads can be for different SaaS or PaaS provider using IaaS as IT solution.
Secondly, managing virtual machine resources, which are used to run the ser-
vices; and finally, managing physical resources in IaaS data centres. Previous
research has focused on individual phases. This work proposes an integrated
framework for capacity management from the end-user to the infrastructure ser-
vice provider. A set of domain specific modelling languages (DSMLs) is used to
facilitate the integrations of these three phases.

Each application hosted on a virtual machine has its own unique character-
istics and as such workload specification models are unique to each application.
The behaviour of web application and media stream application is not the same
although they might have common attributes as an application. Furthermore,
technology and the architecture used to construct the application also makes
the application is unique to each other. This can be expressed using a DSM lan-
guage tailored to the application. A DSM language can precisely capture all the
parameters needed to express the estimated user workloads, and the workload
models can then be analysed and consolidated in order to estimate the virtual
machine and physical resource usage. While applications are unique and each
of them requires its own DSML to specify its workload, it is anticipated that
a single domain specific language will be sufficient to express virtual machine
workload specifications by capturing requirements for CPU, memory and other

43

resources over time. Virtual machine workload models can be used to perform
capacity management, in order to achieve an acceptable balance between per-
formance and cost. Moreover, the information captured in the virtual machine
demand model (VM-DSL) can be used to optimise physical resources in the ISP
data centre.

4 Proposed Work

Workloads generated by users utilise the virtual machine resources in SPSP
virtual data centres. The SPSP needs to provide sufficient resources with the
correct specifications of virtual machines offered by the ISP to assure the ad-
equate performance of the hosted applications and minimise the cost by not
over provisioning resources. Previous works focus only on a particular applica-
tion while in practice SPSPs typically provide multiple applications as services
sharing the virtual machines and computing resources. As discussed earlier, each
application has its own unique characteristics and as such workload specification
models are unique for each application and this can be expressed using a DSM
language tailored to that application. A DSM language can precisely capture
all the parameters needed to express users’ estimated workloads, and workload
models can then be analysed and consolidated in order to estimate VM and
physical resource usage.

Fig. 2. Workload and Capacity Management Framework

While applications are unique and each of them requires its own DSML to
specify its workload, we anticipate that a single domain specific language is suf-
ficient to express virtual machines workload specifications by capturing require-
ments for CPU, memory, storage, disk I/O, network bandwidth and response
time. VM workload models can be used to perform capacity management and
achieve an acceptable balance between performance and cost. Moreover, the in-
formation captured in the virtual machine demand model (VM-DSL) can be used
to optimise physical resources on the ISP data centre. Efficient physical resource
utilisation with consolidation reduces the operating cost of data centres [14].

44

Figure 2 illustrates the framework proposed in this work to manage workload
and capacity using domain specific modelling languages in three stages. First,
each application will have their unique workload specification DSL. Secondly,
application workload specification models can be transformed to virtual ma-
chine workload specification models (instances of the VM-DSL) to estimate the
overall virtual machine resource demand and to perform a VM request from the
ISP. Finally, the ISP can transform a collection of VM-DSL models from their
customers to instances of the physical machine DSL (PM-DSL) to estimate the
overall demand for physical resources in the data centre.

5 Expected Research Outcome

The proposed work is aimed at assisting capacity managers who are providing
and/or using IaaS to plan future resource requirements in physical and virtual
data centres. This task is performed by integrating the analysis techniques iden-
tified from the literature. It is anticipated that using DSML models to specify
workloads will render capacity management more flexible, precise and effective.

References

1. Bruno Abrahao, Virgilio Almeida, Jussara Almeida, Alex Zhang, Dirk Beyer, and
Fereydoon Safai. Self-adaptive sla-driven capacity management for internet ser-
vices. In Network Operations and Management Symposium, 2006. NOMS 2006.
10th IEEE/IFIP, pages 557–568, April 2006.

2. Arshdeep Bahga and Vijay Krishna Madisetti. Synthetic workload generation for
cloud computing applications. Journal of Software Engineering and Applications,
4(7):396–410, July 2011.

3. Ludmila Cherkasova, Wenting Tang, and Sharad Singhal. An sla-oriented capacity
planning tool for streaming media services. In Proceedings of the 2004 International
Conference on Dependable Systems and Networks, pages 743–752, Washington, DC,
USA, 2004. IEEE Computer Society.

4. Tony Clark, Andy Evans, Stuart Kent, and Paul Sammut. The mmf approach to
engineering object-oriented design languages. In Proceedings of the Workshop on
Language Descriptions, Tools and Applications, April 2001.

5. Christina Delimitrou and Christos Kozyrakis. Cross-examination of datacenter
workload modeling techniques. In 31st International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 72 –79, june 2011.

6. Brian Dougherty, Jules White, and Douglas C. Schmidt. Model-driven auto-scaling
of green cloud computing infrastructure. Future Generation Computer Systems,
28(2):371–378, 2012.

7. Jorge Ejarque, Marc de Palol, Inigo Goiri, Ferran Julia, Jordi Guitart, Rosa M.
Badia, and Jordi Torres. Sla-driven semantically-enhanced dynamic resource allo-
cator for virtualized service providers. In Fourth IEEE International Conference
on eScience, 2008.

8. Archana Ganapathi, Yanpei Chen, Armando Fox, Randy Katz, and David Patter-
son. Statistics-driven workload modeling for the cloud. In IEEE 26th International
Conference on Data Engineering Workshops (ICDEW), pages 87–92. IEEE, March
2010.

45

9. Steven Kelly and Juha-Pekka Tolvanen. Domain-Specific Modeling: Enabling Full
Code Generation. Wiley-IEEE Computer Society Pr, March 2008.

10. Hamzeh Khazaei, Jelena Misic, and Vojislav B. Misic. Modelling of cloud comput-
ing centers using m/g/m queues. In 31st International Conference on Distributed
Computing Systems Workshops (ICDCSW), pages 87–92, June 2011.

11. Xue Liu, Xiaoyun Zhu, Sharad Singhal, and Martin Arlitt. Adaptive entitlement
control of resource containers on shared servers. In 9th IFIP/IEEE International
Symposium on Integrated Network Management, 2005.

12. C.C.T. Mark, D. Niyato, and Tham Chen-Khong. Evolutionary optimal virtual
machine placement and demand forecaster for cloud computing. In IEEE Interna-
tional Conference on Advanced Information Networking and Applications (AINA),
pages 348–355, March 2011.

13. Nilabja Roy, Abhishek Dubey, and Aniruddha Gokhale. Efficient autoscaling in
the cloud using predictive models for workload forecasting. In IEEE International
Conference on Cloud Computing (CLOUD), pages 500–507, July 2011.

14. Shekhar Srikantaiah, Aman Kansal, and Feng Zhao. Energy aware consolidation for
cloud computing. In Proceedings of the 2008 conference on Power aware computing
and systems, HotPower’08, Berkeley, CA, USA, 2008. USENIX Association.

15. Thomas Stahl, Markus Vølter, Jorn Bettin, Arno Haase, and Simon Helsen. Model-
Driven Software Development: Technology, Engineering, Managementb. Wiley,
2006.

16. Xin Sun, Sen Su, Peng Xu, Shuang Chi, and Yan Luo. Multi-dimensional resource
integrated scheduling in a shared data center. In 31st International Conference on
Distributed Computing Systems Workshops (ICDCSW), pages 7–13, June 2011.

17. Jian Tan, P. Dube, Xiaoqiao Meng, and Li Zhang. Exploiting resource usage
patterns for better utilization prediction. In 31st International Conference on
Distributed Computing Systems Workshops (ICDCSW), pages 14–19, June 2011.

46

Model-Driven Cloud Data Storage

Juan Castrejón1, Genoveva Vargas-Solar2,
Christine Collet3, and Rafael Lozano4

1 Université de Grenoble, LIG-LAFMIA,
2 Centre National de la Recherche Scientifique, LIG-LAFMIA

3 Grenoble Institute of Technology,
681 rue de la Passerelle, Saint Martin d’Hères, France

{Juan.Castrejon, Genoveva.Vargas}@imag.fr,
Christine.Collet@grenoble-inp.fr

4 Instituto Tecnológico y de Estudios Superiores de Monterrey,
Campus Ciudad de México, Calle del Puente 222, México, México

ralozano@itesm.mx

Abstract. The increasing adoption of the cloud computing paradigm
has motivated a redefinition of traditional software development me-
thods. In particular, data storage management has received a great deal
of attention, due to a growing interest in the challenges and opportuni-
ties associated to the NoSQL movement. However, appropriate selection,
administration and use of cloud storage implementations remain a highly
technical endeavor, due to large differences in the way data is represented,
stored and accessed by these systems. This position paper motivates the
use of model-driven techniques to avoid dependencies between high-level
data models and cloud storage implementations. In this way, developers
depend only on high-level data models, and then rely on transformation
procedures to deal with particular cloud storage details, such as different
APIs and deployment providers, and are able to target multiple cloud
storage environments, without modifying their core data models.

1 Introduction

Cloud computing represents one of the most promising paradigms for software
development nowadays, due to its natural separation between users, applications
and the services they require. In this utility computing model, resources are
provided as services, easily accessible over a distributed network [12].

Cloud storage represents a paradigm to store, retrieve and manage large
amounts of data, using highly scalable distributed infrastructures. This area has
received a great deal of attention in recent years, due to a growing interest in
the challenges and opportunities associated to the NoSQL movement [3]. How-
ever, unlike traditional environments, where the use of the relational model is
pervasive, there is a wide variety of data models that can be used in cloud ap-
plications. These data models include [3]: key-value, document, extensible record,
graph and relational repositories. Each of these data models are designed for dif-
ferent use cases, and provide different support for functional and non-functional

47

requirements of distributed systems [3], such as different degrees of consistency,
scalability, replication and concurrency [3]. Moreover, there is also a wide vari-
ety of both public and private providers for the distributed infrastructure that is
required for cloud data storage [15]. These providers offer different combinations
of pricing, support, service levels, and usually have different APIs to store, re-
trieve and manage data. These differences make it difficult to design and deploy
applications targeting different cloud environments [16].

A key challenge in this heterogeneous environment is the appropriate selec-
tion of a data store that best matches the requirements of particular applications
[15, 16]. This can be a daunting task, due to the high number of implementations
in this environment, over 120 as of this writing [5], and the technical knowledge
required to make an appropriate selection, as outlined in [15].

Furthermore, applications may require more than one type of data store, in
order to support different use cases. In this regard, the appropriate use of data
stores, either traditional or NoSQL, to support multiple use cases in a single
application, is currently being studied as part of an emerging movement, named
polyglot persistence [6]. Nonetheless, the selection and administration of suitable
storage systems for each use case, remain an open challenge.

This paper motivates the use of model-driven engineering (MDE) techniques
[10], in order to characterize cloud data storage requirements, and to effectively
encapsulate the selection, administration and use of cloud data storage im-
plementations, specially, in polyglot persistence environments. We believe that
MDE is a natural fit for this purpose, due to its emphasis in relying on different
levels of modeling notations [10], which can be ultimately used to generate the
implementation of software systems [1]. In particular, these multi-level struc-
tures can be used to avoid dependencies between high-level data models, cloud
storage implementations and deployment providers.

The remainder of this paper is organized as follows. Section 2 outlines col-
laborations between cloud data storage and MDE. Section 3 describes related
work. Finally, conclusions and future challenges, are discussed in Section 4.

2 Model-driven cloud data storage

In this section, we outline a set of collaborations between cloud data storage and
MDE, that are intended to avoid dependencies between high-level data models
and cloud storage implementations. In particular, we strive for the following ob-
jectives: (i) provide adequate notations and environments to characterize cloud
data storage requirements; (ii) selection of storage implementations and deploy-
ment providers; and, (iii) management of the required artifacts to work with
different combinations of cloud storage implementations and providers.

2.1 Data modeling for the cloud

The specification of data models for software systems is traditionally performed
using notations such as entity-relation (ER) or UML class diagrams. MDE tech-

48

niques can currently be applied to transform these diagrams into their corre-
sponding relational database models and programming language entities.

However, these notations are usually not enough to characterize all the possi-
ble cloud data models. For instance, consider the document data model [3], that
lacks a rigid schema and in which semi-structured information can be stored.
Another example would be the adequate modeling of families of attributes [3],
usually associated to extensible record scenarios [3]. In this regard, different tech-
niques are currently being proposed to overcome these limitations [9].

One of the objectives of our current work is the definition of adequate no-
tations and environments for the modeling of datasets, and their associated
functional and non-functional requirements, for cloud environments. For this,
we intend to rely on the ISO/IEC Software Product Quality Requirements and
Evaluation (SQuaRE) standards [8], that already define software quality char-
acteristics, such as performance efficiency, portability and functional suitability.
These international standards also provide guidelines for the association, and
evaluation, of metrics associated to quality characteristics. In this case, we pro-
pose to define these characteristics through the association of metrics relevant
to cloud scenarios. We can reuse previously proposed metrics [15], such as per-
formance, cost and access latency, but further validation of these metrics is also
required. In particular, our modeling environments would allow users to specify
expected values for these metrics, according to their datasets requirements.

We intend to organise our modeling notations based on a traditional MDE
structure of platform independent and specific models (PIM/PSM) [10], in re-
gard to cloud storage implementations. In this way, we could integrate current
research and industrial efforts, such as specification languages for modeling cloud
environments [11], and different cloud data management interfaces [7, 18].

2.2 Data storage selection

In order to ease the selection of data storage implementations and providers,
we propose a decision process based on the analysis of historic data and usage
patterns, both in test applications and within systems generated in our modeling
environment. This analysis could be performed in a non-intrusive manner, during
application runtime, by automatically generating aspect-oriented programming
(AOP) monitoring artifacts, as outlined in [2]. In particular, dynamic crosscut-
ting techniques can be used to monitor the behavior of the selected data stores,
regarding the metrics associated to the SQuaRE quality standards. This monitor-
ing information could then be used to compare with the expected values specified
by the users of our modeling notations and environments. In turn, this analysis
could be automatically integrated in applications designed with our modeling
notations, with the objective of sharing the results in an open and collaborative
environment, that could be exploited by new users of cloud data storage, and by
our own modeling tools, as input for the data storage recommendation engine.

Developers could also generate the artifacts to work, at the same time, with
multiple combinations of implementations and providers, as outlined in [2]. For
instance, this would be helpful to compare their performance in real scenarios.

49

2.3 Cloud artifacts generation and management

Once the data storage implementations and providers have been selected for the
application datasets, we propose to use transformation procedures to generate
the low-level artifacts to work with them, that is, configuration files for the
deployment environments and cloud data management interfaces. This process
could be performed using different levels of transformation procedures, each of
them more dependent with particular storage implementations and providers,
using a similar approach as modern application development tools [17].

For example, an initial transformation could be defined between the graph-
ical data models and an intermediate domain specific language (DSL), possibly
extending the work in [11] and [17]. From this DSL, we could generate config-
uration files for the particular storage implementations, the AOP monitoring
aspects, and the configuration of data management interfaces [7, 18].

3 Related work

The Modeling as a Service (MaaS) initiative is proposed in [1] as an approach
to deploy and execute model-driven services over the Internet. This initiative
is aligned with SaaS principles, since consumers do not manage the underlying
cloud infrastructure and deal mostly with end-user systems. Our work deals with
lower level service models (PaaS and IaaS) by allowing control over the deployed
applications and the configuration settings of the deployment environments.

A model-driven approach for designing and deploying scalable applications on
cloud platforms is described in [13]. This approach promotes the use of graphical
models in order to capture cloud requirements, in particular, scalability features.
These models are then bundled into a generic platform that automatically de-
ploys them into PaaS and IaaS environments. Instead of striving for a generic
platform, our work is focused only on data storage features.

An approach for the automatic selection of cloud storage services is proposed
in [15]. This approach relies on the characterization of storage systems, based on
capabilities, such as performance and cost, and on the specification of require-
ments for application datasets, such as expected dataset size, access latency and
the number of concurrent clients. Based on this information, an assignment of
datasets to the storage systems is proposed, for example, using a mathematical
model that strives for optimal data allocation [16]. In comparison, we propose a
recommendation engine based on the monitoring of usage patterns.

4 Conclusions and Future work

This paper outlined collaborations between MDE and cloud data storage, in-
tended to facilitate both the specification of cloud data storage requirements,
and to encapsulate the selection, administration and use of cloud data storage.

We mentioned challenges that are required to make these collaborations pos-
sible, and that are currently being addressed by members of our research group.

50

For future work, we intend to use our approach in the context of networking
applications, managed as part of the UBIQUEST [4] and CLEVER [14] projects.

Acknowledgments

This work is funded by the French National Research Agency, through the
UBIQUEST project (http://ubiquest.imag.fr) ANR-09-BLAN-0131-01, and by
the STIC-AMSUD program, within the CLEVER project (http://clever.imag.fr).

References
1. Bruneliere, H., Cabot, J., Jouault, F.: Combining Model-Driven Engineering and

Cloud Computing. In: Modeling, Design, and Analysis for the Service Cloud Work-
shop. MDA4ServiceCloud ’10 (2010)

2. Castrejón, J.: An Aspect Oriented Approach for the Synchronization of Instance
Repositories in Model-Driven Environments. RCS 52, 179–189 (2011)

3. Cattell, R.: Scalable sql and nosql data stores. SIGMOD Rec. 39, 12–27 (May 2011)
4. Collet, C., Ahmad-Kassem, C., Bobineau, C., Double, E., Ma, F., Martínez, S.,

Grumbach, S., Ubéda, S.: A Data-Centric Approach for Networking Applications.
In: International Conference on Data Technologies and Applications (2012)

5. Edlich, S.: List of NoSQL Databases. http://nosql-database.org/ (March 2012)
6. Fowler, M.: Polyglot Persistence. http://martinfowler.com/bliki/ PolyglotPersis-

tence.html (November 2011)
7. jclouds Inc.: jclouds. http://www.jclouds.org/ (March 2012)
8. ISO/IEC:25010:2011: Systems and Software Quality Requirements and Evaluation

(SQuaRE) – System and software quality models. ISO, Geneva, Switzerland (2011)
9. Katsov, I.: NoSQL Data Modeling Techniques. http://highlyscalable.

wordpress.com/2012/03/01/nosql-data-modeling-techniques/ (March 2012)
10. Kent, S.: Model Driven Engineering. In: Butler, M., Petre, L., Sere, K. (eds.)

Integrated Formal Methods, LNCS, vol. 2335, pp. 286–298. Springer Berlin (2002)
11. Liu, D., Zic, J.: Cloud#: A Specification Language for Modeling Cloud. In: Pro-

ceedings of the 2011 IEEE 4th International Conference on Cloud Computing. pp.
533–540. CLOUD ’11, IEEE Computer Society, Washington, DC, USA (2011)

12. National-Institute-Standards-Technology: The NIST Definition of Cloud Comput-
ing. http://csrc.nist.gov/publications/PubsSPs.html (September 2011)

13. Peidro, J.E., Muñoz-Escoí, F.D.: Towards the Next Generation of Model Driven
Cloud Platforms. In: 1st International Conference on Cloud Computing and Ser-
vices Science. pp. 494–500. CLOSER ’11 (2011)

14. Portilla, A., Hernández-Baruch, V., Vargas-Solar, G., Zechinelli-Martini, J., Collet,
C.: Building reliable services based mashups. In: IV Jornadas Científico-Técnicas
en Servicios WEB y SOA. JSWEB 2008 (2008)

15. Ruiz-Alvarez, A., Humphrey, M.: An Automated Approach to Cloud Storage Ser-
vice Selection. In: Proceedings of the 2nd International Workshop on Scientific
Cloud Computing. pp. 39–48. ScienceCloud ’11, ACM, New York, NY, USA (2011)

16. Ruiz-Alvarez, A., Humphrey, M.: A Model and Decision Procedure for Data Stor-
age in Cloud Computing. In: Proceedings of the IEEE/ACM International Sym-
posium on Cluster, Cloud, and Grid Computing. CCGrid ’12 (2012)

17. SpringSource: Spring Roo. http://www.springsource.org/spring-roo (May 2012)
18. Storage-Networking-Industry-Association: Cloud Data Management Interface.

http://www.snia.org/cdmi (September 2011)

51

 52

First International Workshop on

Academics Modelling with Eclipse

ACME 2012

(co-located with ECMFA 2012)

Proceedings

2 July 2012

DTU Lyngby, Denmark

Editors: Dimitris Kolovos, Davide di Ruscio, Louis Rose

53

Preface

The 1

st
Academics Modelling with Eclipse (ACME) Workshop was organised as a satel-

lite event of the 2012 European Conference on Modelling Foundations and Applications

(ECMFA 2012) which was held at the Technical University of Denmark (DTU), Kgs.

Lyngby, Denmark, during July 2-5, 2012.

The Eclipse platform has played a very significant role in the evolution of MDE over

the last few years as it has provided mature infrastructure - predominately the Eclipse

Modeling Framework - for the development of interoperable modelling and model man-

agement languages and tools. The academic community has in turn embraced Eclipse as

the de-facto standard MDE environment and has contributed several modelling and model

management tools back as open source projects - some of which have been brought under

the umbrella of the Eclipse Foundation.

The aim of this workshop was to provide a venue where developers of research-oriented

MDE tools built on top of Eclipse could demonstrate the most recent developments in

their tools, provide insights on issues encountered when using these tools in practice,

obtain feedback, exchange expertise, and engage in fruitful discussions with like-minded

researchers.

In this first incarnation of the ACME workshop, the Program Committee received 10

paper submissions. From them, 7 were accepted for presentation at the workshop and

publication in these proceedings. To maintain a strong Eclipse focus, all papers were

asked to provide an Eclipse update site (and possibly more detailed instructions) through

which the presented tool could be installed and tested on a fresh copy of the Eclipse

Indigo Modelling distribution. Moreover, all submissions included a link to a screencast

demonstrating the tool presented.

The keynote speaker of the workshop was Bruce Trask, from MDE Systems in the

USA. We thank him very much for accepting our invitation and for his enlightening talk.

We are grateful to our Program Committee members for providing their expertise

through high-quality and timely reviews. Their helpful and constructive feedback on all

submitted papers is most appreciated. We also thank the ECMFA General Chairs for their

advice and guidance.

Workshop Organisers: Dimitris Kolovos (University of York), Davide di Ruscio (Uni-

versity of L’Aquila), Louis Rose (University of York)

Programme Committee: Cedric Brun, Antonio Cicchetti, Nicholas Drivalos, Esther

Guerra, Jendrik Johannes, Jan Koehnlein, Alfonso Pierantonio, Istvan Rath, Jess Snchez

Cuadrado, Massimo Tisi, Antonio Vallecillo, Pieter Van Gorp, Juan Manuel Vara, Edward

Willink, Ste↵en Zschaler

54

Conper: Consistent Perspectives on Feature

Models

Julia Schroeter1, Malte Lochau2 and Tim Winkelmann2

1 TU Dresden
Institute for Software- and Multimedia-Technology

julia.schroeter@tu-dresden.de

2 TU Braunschweig
Institute for Programming and Reactive Systems

{m.lochau,t.winkelmann}@tu-bs.de

Abstract. Domain feature models express commonality and variability
among variants of a software product line. For separation of concerns,
e.g., due to legal restrictions, technical considerations, and business re-
quirements, views restrict the configuration choices on feature models
for di↵erent stakeholders. Our tool Conper allows to create views that
obey di↵erent feature model semantics. We call such views perspectives
on a feature model. We use a structured view model based on the Eclipse
Modeling Framework (EMF) to define concern-relevant views as well as
dependencies and hierarchies between views w.r.t. their concerns. Our
tool supports the composition of views to create perspectives and o↵ers
an e�cient algorithm to verify their consistency. The tool is applied in
a staged configuration process for feature model preconfiguration. Addi-
tionally, as it is possible to define restricted perspectives per stakeholder,
Conper supports customization on feature model level.

Keywords: Software Product Lines, Feature Models, Preconfiguration, Cus-
tomization, Automated View Composition

1 Introduction

Feature models are used in software product line (SPL) engineering to express
variability and commonality among product variants [3]. They specify the variant
space. Due to various reasons the variant space is further restricted prior variant
derivation. Reasons for this are driven by business concerns, e.g., to enable a
variable pricing strategy for selling features in packages as well as by technical
concerns, e.g., to identify a representative subset of variants for e�ciently SPL
testing (cf. [5]). It seems promising to express such concerns in a separate view
model. Prior the derivation of a variant, concern-related views are selected and
the domain feature model is filtered accordingly [6]. We call such a semantic
preserving preconfiguration a perspective on the domain feature model. Various
approaches to create views on feature models exist in literature [1, 2]. Though,
these approaches focus on separation of concerns, whereas a particular view

55

Fig. 1. Conper allows to define structured views on a feature model and create consis-
tent perspectives by composing them.

is not intended to derive a complete variant, but rather to allow for specific
configuration decisions only. Our tool Conper supports the definition of views on
feature models in general and their aggregation to create consistent perspectives
in particular.

The remainder of this paper is structured as follows. We briefly explain the
concepts of perspectives on feature models in Sect.2. Sect. 3 describes the tool
Conper followed by Sect. 4 which explains our findings and conclusion.

2 Consistent Perspectives on Feature Models

A consistent perspective imposes a specialization of the configuration space, i.e.,
a refinement of the original feature model semantics. A perspective is created
by composing various views. A view represents a certain concern of the feature
model. In our approach, a domain feature model and a view model are unified
in a multi-perspective model, which imposes a conservative extension to the do-
main feature model. Due to the fact that only a valid subset of domain feature
model variants is required to be derivable, not all possible view combinations
form perspectives. Therefore, we use the concept of viewpoints to explicitly de-
fine valid view aggregations. The creation of a perspective is considered as a
preconfiguration step in the variant derivation process as we show in Fig. 1.
Furthermore, perspectives allow customization on feature model level in the way
that stakeholder-specific features are only available to a particular stakeholder
in the stakeholder’s perspective.

Ensuring multi-perspective model consistency is, in general, hard to maintain
due to the crosscutting nature w.r.t. the feature model, its cross-tree constraints
and its potential overlapping of feature groups in a view model. Therefore, be-
sides a comprehensive brute force approach, we developed an incremental heuris-
tic for a scalable consistency verification of perspectives [6].

3 Conper: A Tool for Creating Consistent Perspectives

We implement Conper as plug-ins for the Eclipse Modeling IDE and extend
the existing feature modeling and variant derivation environment FeatureMap-

per [4]. Further information, the source code as well as some example projects

56

Fig. 2. Conper: Visualization of the relation between features and views.

and various screencasts of Conper are provided online3, as well as an Eclipse
update-site4.

Our tool integrates the concepts of view models, feature models and map-
pings between them, as well as mechanisms to derive consistent perspectives.
A View Model captures the relationships between views and viewpoints. We
implement this concept using the Eclipse modeling framework (EMF). As the
FeatureMapper o↵ers an EMF-based feature meta-model that allows to create
feature models with group cardinalities, we were able to seamlessly combine our
approach with this environment. In addition, the FeatureMapper defines map-
pings between feature models in the problem space and EMF-based solution
space artifacts. We reuse this functionality in our approach to create the assign-
ments between features of the feature model and groups of the view model.

Conper provides various editors focussing on di↵erent aspects of the multi-
perspective model. In Fig. 2, we show a screenshot of Conper. In the shown
Cluster View, a viewpoint named “SpecialUser” is selected, and related view
groups and features are highlighted. Furthermore, the Group View is a top down
view, showing the view model starting from the core group. It is used during
domain engineering to create view groups and viewpoints. In combination with
the mapping view provided by the FeatureMapper, features are assigned to view
groups in this view. Another Eclipse view, the Viewpoint View complements the
Group View as it represents the view model bottom up, starting from a selected
viewpoint and therefrom showing those groups the viewpoint is directly and
indirectly assigned to. The Cluster View visualizes the mapping between feature
model and the view model. It shows the assignment of features to view groups

3 https://github.com/multi-perspectives/cluster/wiki
4 http://juliaschroeter.de/conper/update

57

and which features belong to a certain viewpoint. Finally, we use the Mapping

View provided by the FeatureMapper to assign features to view groups. By
selecting a viewpoint in one of the editors, it is possible to derive a perspective.
If the consistency check succeeds the corresponding perspective is derived by
automated view composition and persisted in the Eclipse workspace stating a
preconfigured feature model for subsequent product configurations.

4 Lessons Learned

The Eclipse IDE is a convenient platform to easily integrate new functionality.
We used the frameworks EMF, EMFText and Zest as they o↵er powerful graphi-
cal and textual modeling capabilities. An issue we experienced with EMF is that
our view model is a lattice graph as we support multiple inheritance relations
among group views, whereas the EMF meta-model is tree-based. Therefore, some
implementation e↵ort was needed. One key finding of our experiments consider-
ing very large feature models with up to 10, 000 features is, that our heuristic
consistency check algorithm is e�cient as it scales well. Depending on the size of
the view model, it identifies within milliseconds which viewpoints are consistent
and which are not. In general, our experiences with various case studies show
that perspectives are a promising concept for tailoring and customizing the vari-
ant space of a domain feature model to multiple stakeholders’ concerns. Another
finding is that there is a strong need for an appropriate visualization concept
of the assignment of features in the feature model to groups in the view model.
Our Zest-based cluster view provides a good overview of a complete mapping,
but we need to support the mapping process graphically as well. In general,
our tool Conper o↵ers a valuable approach for creating consistent perspectives
integrable in a staged configuration process with support for customization on
feature model level.

Acknowledgements The presented work is co-funded by the European Social Fund,
Federal State of Saxony and SAP AG in the research project #080949335.

References

1. Abbasi, E., Hubaux, A., Heymans, P.: A toolset for feature-based configuration
workflows. In: Proceedings of SPLC’11 (2011)

2. Clarke, D., Proença, J.: Towards a theory of views for feature models. In: Proceed-
ings of FMSPLE’10 (2010)

3. Czarnecki, K., Eisenecker, U.: Generative Programming: Methods, Tools, and Ap-
plications. Addison-Wesley (2000)

4. Heidenreich, F., Wende, C.: Bridging the gap between features and models. In:
Proceedings of AOPLE’07 (2007)

5. Lochau, M., Oster, S., Goltz, U., Schürr, A.: Model-based pairwise testing for feature
interaction coverage in software product line engineering. Software Quality Journal
(2011)

6. Schroeter, J., Lochau, M., Winkelmann, T.: Extended version of multi-perspectives
on feature models. Tech. Rep. TUD-FI11-07-Dezember 2011, TU Dresden (2011)

58

FAMILE: Tool support for evolving

model-driven product lines

Thomas Buchmann and Felix Schwägerl

Lehrstuhl Angewandte Informatik 1, University of Bayreuth
D-95440 Bayreuth

firstname.lastname @uni-bayreuth.de

Abstract. Model-driven development is a well-known practice in mod-
ern software engineering. Many tools exist which allow developers to
build software in a model-driven way. Unfortunately, these tools do not
provide dedicated support for the specific needs in software product line
processes. Only recently some approaches tried to combine feature mod-
eling and model-driven development. In this paper we present a new
approach that allows for the combination of feature models and Ecore
based domain models and keeps both models consistent during evolution.

1 Introduction

Software product line engineering [1, 2] deals with systematic development of
products belonging to a common system family based on organized reuse of
software artifacts. Thus, composing products from a library of reusable compo-
nents, rather than developing each product instance from scratch is preferred.
Model-driven software engineering [3] puts strong emphasis on the development
of higher-level models rather than on the source code. Both techniques promise to
increase productivity. In the past, several approaches have been made to combine
both techniques to get the best out of both worlds. Only recently, model-driven

software product line engineering has been established as an integrating disci-
pline. This paper contributes to this discipline by presenting FAMILE (Features
and mappings in lucid evolution), a new tool to combine feature models and do-
main models using an explicit mapping model. Furthermore, textual languages
are provided to (a) annotate domain model elements with feature expressions
and (b) specify dependencies and (automatically derived) repair actions to en-
sure the well-formedness of configured domain models.

2 Tool support

When developing software product lines in a model-driven way, various models
are involved: Features have to be mapped onto corresponding domain model
elements realizing them. Figure 1 shows the Ecore-based [4] models and meta-
models part of our toolchain. For the domain model, arbitrary EMF modeling
languages can be employed. In our running example, we use our own UML2

59

Ecore

Feature Metamodel Domain Metamodel
F2D Mapping
Metamodel

Feature Model
Feature

Configuration
Domain Model

Configured Domain
Model

Instance of

In
st

an
ce

of

Instance of

Instance of Instance of Instance of Instance of

F2D Mapping Model

In
st

an
ce

 o
f

Co
ns

is
te

nc
y

FEL SDIRL
M2M

Transformation

Fig. 1. Involved models and meta-models.

based domain modeling tool. The feature model [5] consists of a tree of features.
A non-leaf feature may be decomposed in two ways: In the case of an AND
decomposition, all of its child features have to be selected when the parent
is selected. In contrast, for an OR decomposition exactly one child has to be
selected. For one feature model, a number of feature configurations exist, each
defining the selection of features for one product. A mapping model (F2DMM) is
used to interconnect both feature model and domain model. The accompanying
screencasts (see section 4) demonstrate the mapping editor’s use.

In our previous work [6], we used implicit feature annotations and propaga-
tion of features to dependent model elements to ensure the well-formedness of
configured domain models in case a selected element requires the inclusion of an
unselected one. Contrastingly, in our current approach, selection states rather
than annotations are propagated. The user can choose between di↵erent propa-
gation strategies: The suppress active strategy propagates the selection state of
the required element, resulting in a negative (suppressed) selection state of the
previously selected context element. Contrastingly, the enforce inactive strategy
changes the selection state of the unselected required element to enforced.

Dependencies are either defined as meta-model specific constraints covered
by the SDIRL language based on OCL (see part 2 of the screencast), or gener-
ically determined by the Ecore containment hierarchy. Annotations of domain
model elements are phrased with our Xtext-based Feature Expression Language

(FEL) covered in part 3. As soon as a feature configuration is loaded, feature
expressions are evaluated and the result is presented to the user: A filled cyan
circle indicates that the corresponding model element is directly contained in the
configured domain model because its associated annotation evaluates to true,
whereas orange filled circles mark the exclusion of the respective element. Circles
with cyan or orange border depict enforced or suppressed model elements. Model
elements which are not annotated are decorated with a yellow circle. Based upon
the user’s choice, these elements are included or excluded from each product.

60

Fig. 2. Left: UML 2 state machine diagram from multi-variant input domain model.
Right: Excerpts from F2DMM mapping model for two feature configurations.

Fig. 3. Products derived from mapping using both feature configurations.

Figure 2 shows the annotation of two elements of a UML2 state machine, a
state (On Cooldown) and a transition (stopOven), positively or negatively asso-
ciated with the Feature Cooldown Mode, which is only included in one of two
example configurations. The derived products are visualized in Figure 3: In the
left configuration, the adjacent transitions of state On Cooldown are indirectly
excluded (suppressed) due to the propagation of On Cooldown’s selection state.

An advanced concept realized by our mapping editor are alternative map-

pings. These pseudo domain model elements are either defined in-place or ref-
erence objects located in a di↵erent resource. They are merged into the derived
product in case the associated feature expression evaluates to true and no con-
flicts with existing domain model elements occur. This enables the definition of
variation points even in case of a single-valued structural domain meta-model
feature, e.g. a class name (see parts 4 and 6 of the screencast). During the
mapping process, the consistency between feature model and configuration is
preserved as well as the tree structure of the mapping model which is dependent
on the domain model’s containment structure except for alternative mapping
elements. Changes in feature names may a↵ect feature expressions. In this case,
the user is free to accept or deny automatically derived renaming proposals.

3 Related work

Due to space restrictions, we limit our comparison to FeatureMapper [7], as it
also allows to map features to Ecore-based domain models. For a more detailed
comparison of model-driven software product line approaches, the reader is re-
ferred to [6]. FeatureMapper [7] is a tool that allows for the mapping of features
to Ecore based domain models. Like our approach, it is very general and does

61

not have any knowledge about the domain meta-model. In contrast to our ap-
proach, it provides only basic capabilites of checking well-formedness constraints
of the Ecore metamodel [8] and does not provide automatic repair actions. In
our previous work [6] we used the UML profile mechanism to implicitly annotate
the domain model. Contrastingly to our new approach, the mapping informa-
tion was persisted within the domain model rather than in a dedicated mapping
resource. Automatic feature propagation in a suppress active way was employed,
while feature expressions were limited to conjunction of features only.

4 Conclusion

In this paper we gave a short overview of our new tool support for the de-
velopment of evolving model-driven product lines. We extended our previous
approach by di↵erent directions of automatic feature propagation and feature
expressions allowing arbitrary combinations of features. Alternative mappings
allow the expression of variation points in domain models. To install our tool
in a clean Eclipse Modelling distribution, please make sure to download Xtext
2.2.1, Acceleo 3.2.0, OCL Tools 3.1.2 and ATL 3.2.1 first. The update site can
be found at: http://btn1x4.inf.uni-bayreuth.de/famile/update and the accompanying
screencast is located at
http://btn1x4.inf.uni-bayreuth.de/famile/screencasts. Please note that the tool distri-
bution also comprises our UML2 based domain modeling tool Valkyrie. However,
Famile can be used for arbitrary Ecore based domain models.

References

1. Clements, P., Northrop, L.: Software Product Lines: Practices and Patterns, Boston,
MA (2001)

2. Pohl, K., Böckle, G., van der Linden, F.: Software Product Line Engineering: Foun-
dations, Principles and Techniques. Springer Verlag, Berlin, Germany (2005)

3. Völter, M., Stahl, T., Bettin, J., Haase, A., Helsen, S.: Model-Driven Software
Development : Technology, Engineering, Management. John Wiley & Sons (2006)

4. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF Eclipse Modeling
Framework. 2 edn. The Eclipse Series, Boston, MA (2009)

5. Batory, D.S.: Feature models, grammars, and propositional formulas. In Obbink,
J.H., Pohl, K., eds.: Proceedings of the 9th International Software Product Line
Conference (SPLC’05). Volume 3714 of Lecture Notes in Computer Science., Rennes,
France, Springer Verlag (September 2005) 7–20

6. Buchmann, T., Westfechtel, B.: Model-driven Engineering of Software Product Lines
with Feature Models and Graph Transformations. Software and Systems Modeling
(2011) submitted for publication.

7. Heidenreich, F., Kopcsek, J., Wende, C.: FeatureMapper: Mapping features to mod-
els. In: Companion Proceedings of the 30th International Conference on Software
Engineering (ICSE’08), Leipzig, Germany (May 2008) 943–944

8. Heidenreich, F.: Towards systematic ensuring well-formedness of software prod-
uct lines. In: In Proceedings of the 1st Workshop on Feature-Oriented Software
Development, ACM Press (October 2009)

62

Developing a multi-panel editor

for EMF trace models

?

Álvaro Jiménez, Juan M. Vara, Verónica A. Bollati, Esperanza Marcos

Kybele Research Group,
Department of Computing Languages and Systems, Rey Juan Carlos University,

C/ Tulipán s/n, 28933, Móstoles, Madrid (Spain).
{alvaro.jimenez,juanmanuel.vara,

veronica.bollati,esperanza.marcos}@urjc.es

http://www.kybele.urjc.es/

Abstract. Eclipse and more specifically the Eclipse Modeling Framework is
probably the most commonly adopted meta-modelling framework to support
model-based Software Engineering proposals. One of the main advantages
of EMF is the ability to generate tree-like editors with basic capabilities
for models conforming to a previously defined metamodel. Unfortunately,
the generic nature of these editors does not always fit the needs of specific
scenarios. For instance, that is the case with models owning a relational
nature, such as weaving, trace or transformation models. To alleviate this
problem, this work presents the development of a multi-panel editor for
EMF models. In particular, it shows the development of an editor for trace
models. It allows representing at the same time the di↵erent source and
target models plus the relational model.

Keywords: Model-Driven Engineering, Eclipse, EMF, multi-panel editor,
trace links.

1 Introduction

With the advent of Model-Driven Engineering (MDE) [4], the role of models has
changed drastically since they become the main artefact all along the development
process. As a consequence, modelling can be seen as the most important activity
and tool support for such activity becomes also a cornerstone issue.

Indeed, as any other software paradigm, MDE should provide with the proper
tooling in order to support the development process. As software developers use
IDEs (Integrated Development Environments) to assist them in coding activities,
modellers need from modelling environments to in the development of modelling
activities. In this field, Eclipse and more concretely the Eclipse Modeling Framework
(EMF, [7], [20]) is considered the de-facto standard to develop tool support for
model-based proposals. Probably one of the most used facilities provided by EMF
is the ability to generate tree-based model editors [20] for models conforming to a
given metamodel stating from the metamodel itself. Nevertheless, the generic nature
of such editors does not always fit with the specific nature of specific scenarios.

? Update-site: http://www.kybele.es/research/tools/ACME2012/T-Trace_UpdateSite
Screencast: http://www.kybele.es/research/tools/ACME2012/screencast.htm

63

In other words, the generative nature of EMF implies a compromise between the
level of automation (100%) and the level of adjustment to specific purposes. i.e.
EMF generates an e�cient though not perfect diagrammer in reasonable time and
manner.

As a consequence, EMF-generated code use to be modified in order to adapt
the generated editor to enrich modelling experiences in specific scenarios [9]. See for
instance, the [10], [17]. The same applies for GMF-generated diagrammers: Graphiti
[19], EuGENia [16] and Kybele GMFGen [15] being examples of frameworks to help
on adapting GMF-based editors to the specific needs of a given domain.

One such scenario is constituted by relational models, i.e. models whose main
purpose is to represent the relationships between some other models, such as weaving
models [3]. To address this issue, this work presents the development of an EMF-
based editor for trace models.

The rest of this paper is structured as follows. Section 2 presents the motivation
behind the development of an ad-hoc editor to model and represent relationships be-
tween EMF model elements. Section 3 digs into the modification of EMF-generated
code and finally, Section 4 concludes by summarizing the main contributions and
providing directions for further work.

2 Motivation

The impact of the MDE paradigm has resulted in the advent of a number of method-
ological proposals for Model-Driven Software Development (MDSD) [21], where the
key role of models can positively influence the management of traceability infor-
mation. In a MDSD process the traces between software artifacts that have to be
maintained are mainly the links between the elements of the di↵erent models han-
dled along the process. Furthermore, such traces can be collected in other models to
process them using any model processing technique, such as model transformation,
model matching or model merging [3].

In this context we addressed the development of a methodological and technical
proposal to improve traceability management in model transformations develop-
ment [14]. Since we use to lean on EMF as underlying metamodeling framework, as
part of such proposal we have developed a new EMF-based DSL, so-called t-Trace,
to model the trace-links derived from the execution of model transformations (a
trace-link is an instance of a traceability relation between source elements and tar-
get elements [1]). Note that it is not our intention to discuss here the need for such
DSL or the state of the art of traceability management [14]. Here we focus just on
the development of an EMF-based editor for such DSL.

As we have already mentioned, EMF is capable of generating a fully functional
tree-based editor for models conforming to a previously defined Ecore metamodel.
However, a plain view of nested elements is not enough to provide an optimal
visualization of the di↵erent relationships that can arise between the elements of
di↵erent models. That is the case of trace models: in the tree-based editor generated
by EMF, the elements linked are showed as children of the trace-link objects, while
it would be much more intuitive to display them as referenced items, i.e. source
and/or target elements.

Fig. 1 illustrates this scenario by showing the use of an EMF tree-based editor
for trace models. Though functional, this representation is not intuitive at all. We

64

Fig. 1. EMF tree-based editor for trace models

believe that a much more desirable editor would be that where source elements are
showed on the left-hand side of the editor where as target elements are showed on
the right (as we will describe later, Fig. 3).

Reviewing existing works focused on the management of traceability information
in the context of MDE, we have found that some of them ([2], [6], [8], [13]) advocates
in favor of using the editors provided by existing tools such as AMW [8] or ModeLink
[11], [13]. This kind of editors, usually referred to as multi-panel editors, allow
showing views of several related models plus the model that relates them in an
integrated way. Although they improve the capabilities of the generic EMF editors
to display relational models, they still own some generic nature that results in some
limitations when used to display trace models. They were devised to work with any
kind of relational model, thus they still leave space for customization when used for
more specific purposes.

In particular, the ModeLink editor just supports the visualization of two/three
models, including the relationships model. Therefore, the user can only define re-
lationships between the elements of one source and one target model. As a con-
sequence, a limitation arises when we require defining traces between elements of
several (more than one) source and/or target models.

On the other hand, we found two main issues regarding the use of AMW. The
first one is that the AMW project is not very active, hence it is not updated as
much as other EMF-based plug-ins. As a consequence, compatibility problems with
other EMF-based tools can be arisen. Nevertheless, this can be seen as a minor
issue given that are in contact with the author and we have been considering to join
e↵orts to produce updated versions of AMW. The main limitation of AMW when
used to display trace models is that it hampers the distinction between source and
target models when dealing with more than two related models. For instance, Fig.
2 shows the use of AMW in a scenario composed by three source models and two
target models. Note that the generic layout of the di↵erent views in the AMWmulti-
panel editor is as follows: first referenced model, weaving model (which contains the
objects that represent the relationships) and the rest of referenced models. As figure
shows, this layout can be confusing for the users.

The most immediate solution to address the above-commented issues would
be extending AMW or ModeLink. However, we preferred to avoid technological-
dependency. Therefore, we decided to develop an ad-hoc multi-panel editor for trace

65

Fig. 2. Using the AMW editor with several source models

models. Concretely, we aimed at supporting the behavior shown in Fig. 3. Such an
editor should satisfy the following requirements:

– It should bundle three di↵erent panels to show separately the source models, the
trace model and the target models. If there are several source or target models,
they should be co-located vertically in their corresponding panel.

– The user should be able to drag elements from source and target models and
drop them on the trace model to establish new relationships (create new trace-
link objects).

– If the user selects a trace-link object, the editor has to highlight automatically
the elements referenced by the selected link. They should be highlighted in the
models containing the referenced elements and not in the trace model itself.

– If the user selects a source or target element, the editor must highlight the
trace-link objects that reference it.

Fig. 3. Desired functionality for the multi-panel editor

The following section present the development of a multi-panel editor for trace
models fulfilling the above mentioned requirements.

3 Development process

To illustrate the development of the multi-panel editor for EMF trace models, we
will show the development of the editor for the t-Trace DSL. As we have al-
ready mentioned, t-Trace is a specific DSL to model trace-links whose metamodel
is shown in Fig. 4. The multi-panel editors we present in this work can be used
to provide any DSL owning a relational nature with a graphical syntax. The only

66

restrictions are that the metamodel of such DSL has to contain some particular con-
cepts: metaclasses that allow representing source and target models (SourceModel
and TargetModel in the t-Trace metamodel) and elements to represent the linked
source and target objects (TraceElement). Moreover, note that each element reg-
isters the ID of the traced element it represents (ref attribute).

Fig. 4. t-Trace Metamodel

The multi-panel editor developed to ease the edition of models conforming to the
previous metamodel is the result of modifying the implementation of the tree-based
editor generated by EMF 1.

The first step of the process consists of modifying the plugin.xml file of the
editor project. In particular, one of the extension in the extensions tab corre-
sponds to the EMF tree-based editor. One can replace it for the new editor or keep
it and create a new one instead. In this case we have opted for the second option.
Thus, we add an extension on the org.eclipse.ui.editors extension so-called
Traceability Model Editor (Fig. 5). The class property of this extension (see
left-hand side of the figure) establishes that the Java class that implements the ex-
tension is the TraceabilityEditorTrace class, that we have to add to the editor
project.

Fig. 5. Creating a new editor extension

Probably, the easiest way to start with the coding tasks of the new editor is
to copy-paste the code that implements the tree-based editor in the new class

1 To generate a tree editor with EMF, please see: http://help.eclipse.org/ganymede/
index.jsp?topic=/org.eclipse.emf.doc/tutorials/clibmod/clibmod.html

67

(TraceabilityEditorTrace). The result is obviously two di↵erent editors provid-
ing exactly the same functionality. So, next step is to modify the duplicated code of
the TraceabilityEditorTrace class in order to get the desired functionality from
the new editor.

To define the structure of the editor, which will bundle three di↵erent panels
(source, trace and target models), we define three TreeViewer attributes, namely
sourceViewer, traceabilityViewer and targetViewer. Next step is to modify
the createPages() method that defines the appearance of the editor. This method
serves to establish the shape of the container and define the functionality of the
three di↵erent viewers. Note also that in order to display all the source models
(respectively target models) in the source viewer (respectively target), it must load
all the source models as Eclipse resources and it must register their corresponding
metamodels. These operations are done by retrieving their path as well as the path
of the metamodels from the trace model. As example, the following code excerpt
shows the implementation of the source viewer:

// Creation of the viewer for source models.

ViewerPane viewerPane = new ViewerPane(

getSite().getPage(), TraceabilityEditorTrace.this){

public Viewer createViewer(Composite composite) {

Tree tree = new Tree(composite, SWT.MULTI);

return new TreeViewer(tree);

}

public void requestActivation() {

super.requestActivation();

setCurrentViewerPane(this);

}

};

viewerPane.createControl(topSashForm);

sourceViewer=(TreeViewer)viewerPane.getViewer();

sourceViewer.setContentProvider(new AdapterFactoryContentProvider(

adapterFactory));

sourceViewer.setLabelProvider(new AdapterFactoryLabelProvider(

adapterFactory));

Transfer[] transfers = new Transfer[] {LocalTransfer.getInstance()};

sourceViewer.addDragSupport(DND.DROP_LINK , transfers,

new ViewerDragAdapter(sourceViewer));

for(int i=0;i<sources.size();i++){ //If metamodel is not null

if (sources.get(i).getMetamodel() != null) { //If it is not empty

if (!sources.get(i).getMetamodel().equals("")) {

String metamodelRegistered=Actions.registerMetamodel(

sources.get(i).getMetamodel(), sources.get(i).getName());

sources.get(i).setMetamodel(metamodelRegistered);

}

}

68

}

sourceRs = Actions.createResourceSet_Sources(sources);

Actions.setSourceModels(getEditingDomain().getResourceSet(), sources);

sourceViewer.setInput(sourceRs);

sourceViewer.setSelection(new StructuredSelection(

sourceRs.getResources().get(0)), true);

viewerPane.setTitle("Source Models");

sourceViewer.addSelectionChangedListener(

new ISelectionChangedListener(){

// This ensures that we handle selections correctly.

public void selectionChanged(SelectionChangedEvent event){

handleContentSourceSelection(event.getSelection());}});

new AdapterFactoryTreeEditor(sourceViewer.getTree(), adapterFactory);

At this point, the editor is composed of three tree-based panels displaying the
source, trace-links and target models respectively. The next step consists of connect-
ing the information displayed in these panels. To do so, we created some methods to
connect the model elements contained in the di↵erent viewers (in order to support
model elements highlighting):

– handleContentOutlineSelection(): whenever a user selects an element on
the Outline viewer of Eclipse, this method is responsible of selecting the same
element on the trace model.

– handleContentTraceabilitySelection(): this method is invoked when the
user selects a trace-link or an element of a trace-link. whether it represents
a source or a target element. When the selected element is a source one, the
method search for its ID (ref attribute) among the elements of the di↵erent
source models, highlighting those with the same ID. The same applies for target
elements. Finally, if the selection is a trace-link object, the previous function-
alities are combined to search for the IDs of all the elements referenced by the
selected link.

– handleContentSourceSelection(): this method is called when the user selects
an element from a source model. It searches for the ID of the element among
the source elements of the trace-link objects to identify the trace-links in which
the selected element is involved.

– handleContentTargetSelection(): this method provides the same function-
ality for target models.

As a result, the multi-panel does not only allocate each model in the correspond-
ing panel, but also supports bi-directional highlighting of model elements: selections
in trace models produce highlighting actions in source/target models and vice-versa.

Last task to address is the implementation of drag&drop functionality. This way,
the user should be able to create trace-links by dragging elements from source and
target models and dropping them on the trace-links panel. To support this function-
ality, we add a new class so-called TraceabilityDragDrop in the editor project.
It extends the EditingDomainViewerDropAdapter class, so that its constructor re-
ceives as arguments the domain, the viewer and the source and target models. It
implements the following methods:

– helper(): this method receives the drag&drop event, identifying the element
dragged as well as the trace-link over which it has been dropped. By identifying

69

which the element dragged is, the proper response to the event can be derived,
i.e. whether a source or a target element has to be added to the corresponding
trace-link object.

– drop(): this method determines whether an action should be carried in response
to the event or if it must be discarded. To that end, it uses the selectionType
attribute of the helper() method.

– createTraceElement(): this method receives as arguments the dragged ele-
ment, the trace-link which receives the element and the type of the element
dragged (source or target). With this information, it decides which method to
invoke (handleSetSourceElement() or handleSetTargetElement()) in order
to create a source or a target element in the corresponding trace-link object.

– handleSetSourceElement(): it adds an element to the trace-link object point-
ing to the source element that was dragged.

– handleSetTargetElement(): it adds an element to the trace-link object point-
ing to the target element that was dragged.

The TraceabilityDragDrop class is instantiated from the createPages()method
mentioned before, just after the code implementing the viewers.

At this point, the multi-panel editor for trace models provides the desired struc-
ture and functionality (section 2). Moreover, we have added some minor improve-
ments, mainly related with icons and text-descriptions. Fig. 6 serves to illustrate the
final result. It shows a trace model between two source models (Family Simpson

and Family Skywalker models) and one target model (People model). In particu-
lar, when the user selects the Mother 2 Female trace-link, the corresponding source
and target elements (Mother and Female) are identified by the editor.

Fig. 6. Multi-panel editor to show trace models

It worth mentioning that this multi-panel editor has been used in more complex
scenarios such as traces models between UML conceptual data models and XML
Schemas [14].

70

4 Conclusion

Models play a key role in any MDE proposal [4]. Therefore, MDE practitioners
should have at their disposal the proper and mature tooling to create and handle
models. In this context, Eclipse and EMF [7][20] are widely used as underlying basis
for the development of new tools. Probably due to being an open-source project and
its extensive nature, EMF has been massively adopted as metamodelling framework
by researchers from academia. Another relevant advantage of EMF is its generative
nature: from the abstract syntax of a DSL collected in an Ecore metamodel, it
provides with a basic Java implementation that includes an API to handle models
programmatically as well as a full-fledged (but basic) editor.

The generative nature of EMF implies that produced editors have to be generic.
In some sense, they are general-purpose editors since they should work for mod-
els conforming to any given metamodel. However, such editors leave much room
for improvement. Indeed, they are devised to be adapted to the needs of specific
domains.

All this given, in this work we have combined the main features of EMF to
overcome the disadvantages brought by the generic nature of EMF tree-based editors
when they are used to display trace models. So, we have shown how to refine EMF-
generated code to produce a multi-panel editor that fits better with the relational

nature of trace-link models. The result is an ad-hoc editor composed by three tree-
based panels which shows several source models, a trace model and several target
models in an integrated manner. Moreover, it supports drag&drop creation of trace-
link elements and automatic bi-directional selection of model elements and trace-
links. As well, this work has served to show that EMF-generated code can be used
as starting point to produce high-level tools and it can be easily refined to adapt
EMF-based software artefacts to specific needs. Indeed, EMF itself can be seen as
the perfect example of how to put into practice MDE principles.

Regarding directions for further work, the most immediate is to add new func-
tionality to the multi-panel editors already developed. For instance we are integrat-
ing element searching and ordering capabilities. A more interesting direction for
future work is to follow the method presented here to develop multi-panel editors
to support other kind of models for model management operations. For instance,
we are already developing ad-hoc editors for transformation models [5]. Besides,
the refining of EMF-generated code is subject to automation. In this sense, we will
analyse Xpand to address this task.

Acknowledgements

This research was carried out in the framework of the MASAI (TIN-2011-22617)
project, financed by the Spanish Ministry of Science and Innovation.

References

1. Aizenbud-Reshef, N., Nolan, B. T., Rubin, J., and Shaham-Gafni, Y. (2006): Model
traceability, IBM Systems Journal, vol. 45 (3), pp. 515-526.

71

2. Barbero, M., Del Fabro, M. D., and Bezivin, J. (2007): Traceability and provenance
issues in global model management. Proceedings of International Conference on Sys-
tems Engineering and Modelling (ICSEM07), 2007.

3. Bernstein, P. (2003): Applying model management to classical meta data problems.
First Biennial Conference on Innovative Data Systems Research, Asilomar, CA, USA.

4. Bézivin, J. (2004): In search of a basic principle for model driven engineering. No-
vatica Journal, Special Issue, vol. V(2), pp. 21-24.

5. Bézivin, J., Büttner, F., Gogolla, M., Jouault, F., Kurtev, I., Lindow, A. (2006):
Model Transformations? Transformation Models!. Model Driven Engineering Lan-
guages and Systems. vol. 4199, Springer, pp. 440-453.

6. Boronat, A., Carśı, J., and Ramos, I. (2005): Automatic Support for Traceability in a
Generic Model Management Framework. 1st European Conference on Model-Driven
Architecture Foundations and Applications (ECMDA-FA’05), Nuremberg.

7. Budinsky, F. (2004): Eclipse modeling framework: a developer’s guide. Addison-
Wesley Professional.

8. Didonet Del Fabro, M. (2007) Metadata management using model weaving and
model transformation. PhD thesis, University of Nantes.

9. Ehrig, K., Ermel, C., Hänsgen, S., and Taentzer, G. (2005): Generation of visual
editors as eclipse plug-ins. The 20th IEEE/ACM international Conference on Auto-
mated Software Engineering (ASE’05), Long Beach, USA, pp. 134-143.

10. EMF Facet Project. http://www.eclipse.org/modeling/emft/facet/
11. Epsilon ModeLink, http://www.eclipse.org/epsilon/doc/modelink/
12. Fowler, M., Parsons, R. (2010): Domain-specific languages. Addison-Wesley Profes-

sional.
13. Guerra, E., de Lara, J., Kolovos, D.S., and Paige, R. F. (2010): Inter-modelling:

From Theory to Practice. Model Driven Engineering Languages and Systems. vol.
6394, Springer, pp. 376-391.

14. Jiménez, Á. (2012): Integrating traceability management in a framework for MDD
of model transformations. PhD thesis, Rey Juan Carlos University.

15. Jiménez, Á., Vara, J. M., Bollati, V., and Marcos, E. (2010): Mejorando el nivel
de automatización en el desarrollo dirigido por modelos de editores gráficos. DSDM
2010 (JISBD), Valencia, Spain, pp. 29-37.

16. Kolovos, D. S., Rose, L. M., Paige, R. F., Polack, F. A. C. (2009): Raising the level of
abstraction in the development of GMF-based graphical model editors. Proceedings
of the 2009 ICSE Workshop on Modeling in Software Engineering, 2009, pp. 13-19.

17. Langer, P., Wieland, K., Wimmer, M., Cabot, J. (2011): From UML Profiles to EMF
Profiles and Beyond. Objects, Models, Components, Patterns. vol.6705, Springer.

18. Levendovszky, T., Balasubramanian, D., Smyth, K., Shi, F., Karsai, G. (2010):
A transformation instance-based approach to traceability. Proceedings of the 6th
ECMFA Traceability Workshop, Paris, France, 2010, pp. 55-60.

19. Maxime, P., Jonathan, P., Matthieu, W., Slaheddine, A. (2009): An Open Frame-
work for Rapid Prototyping of Signal Processing Applications. EURASIP Journal
on Embedded Systems, vol. 2009.

20. Steinberg, D., Budinsky, F., Paternostro, M., and Merks, E. (2008): EMF: Eclipse
Modeling Framework. 2nd Edition ed.: Addison-Wesley Professional.

21. Stahl, T., Voelter, M., Czarnecki, K.: Model-Driven Software Development: Tech-
nology, Engineering, Management. John Wiley & Sons (2006).

72

An Integrated Tool Chain for Software Process

Modeling and Execution

Ralf Ellner2, Samir Al-Hilank2, Martin Jung2,
Detlef Kips1,2, and Michael Philippsen1

1 University of Erlangen-Nuremberg, Computer Science Department,
Programming Systems Group, Martensstr. 3, 91058 Erlangen, Germany

philippsen@cs.fau.de

2 develop group Basys GmbH, Am Weichselgarten 4, 91058 Erlangen, Germany
ellner|alhilank|jung|kips@develop-group.de

Abstract. The Eclipse Process Framework (EPF) allows for a detailed
modeling of software development processes and methods based on the
Software and Systems Process Engineering Metamodel (SPEM) standard.
A comprehensive electronic process guide may be generated from such a
model. However, EPF and SPEM only support a rather coarse descrip-
tion of the behavior of software processes. As there is no support for
automated enactment or simulation of these software process models, one
cannot benefit from context-sensitive process guidance, automated pro-
cess conformance checking, or automated progress tracking when enacting
detailed software process models.
eSPEM (enactable SPEM) is an extension of the SPEM standard that
supports UML activities and state machines for fine-grained behavior
modeling. Its operational semantics is based on OMG’s fUML (Semantics
of a Foundational Subset for Executable UML Models) and may be used
to instantiate, simulate, and enact software process models. However,
without a reasonable tooling for eSPEM the benefit for end users is still
limited.
This paper presents an integrated tool chain based on eSPEM and Eclipse.
The tool chain not only supports process modelers in modeling fine-
grained eSPEM-based software processes, but also guides and supports
project sta↵ in working according to the process in a context-sensitive
manner. It automates repetitive and cumbersome work like checking
process conformance or progress tracking. Hence, it lets end users benefit
from process modeling and enactment.

1 Introduction

Software development processes (SDPs) are widely accepted as a critical factor
in the e�cient development of complex and high-quality software and systems.
Beginning with Osterweil’s process programming [1] many process modeling
languages (PML) have been proposed to describe SDPs in more or less abstract,
(semi-)formal ways, see [2–4] for an overview.

73

SPEM [5] is a standardized PML; it is based on the UML Infrastructure
[6] and defines a graphical notation. Due to its familiar notation, practitioners
can pick up SPEM easily. The Eclipse Process Framework (EPF) provides a
reference implementation of SPEM. However, SPEM and EPF have been primarily
designed to model and document the static structure of SDPs. Thus, when a
SDP is modeled with SPEM, this results in a thorough informal documentation
of the process. With EPF, one may generate an electronic process guide from a
SPEM-based SDP model. Such a process documentation is valuable or may even
be required, for example in safety critical projects, but it does not provide much
additional value for the project sta↵ as there is no help in executing the process.

Although it has been a requirement, executability is not in the scope of
the current version 2.0 of SPEM, even though it would provide the following
additional benefits (see [1, 7]): First, executable software process models can be
simulated and can thus more easily be validated before they are used in a project.
Second, a process execution machine (PEX) can guide and support the project
sta↵. Third, since a PEX can automatically check conformance of the executed
process with the modeled process, it can detect and prevent process violations.
Finally, a PEX can track progress of the executed process. This is of great use
for process audits, because it is possible to partially automate the proof that the
actually executed process conforms to the modeled process.

In [8] we presented eSPEM, a SPEM extension based on UML activities
and state machines [9]. In addition to the behavior modeling concepts of UML
(for example, decisions, exceptions, and events), eSPEM also provides behavior
modeling concepts that are specific to SDPs (e.g., task scheduling). These behavior
modeling concepts can be used to describe the behavior of SDPs in a fine-grained,
formal, but intuitive way. The formality of the SDP behavior description is
required in order to execute it. Another requisite of SDP execution is that there
is a rigid definition of the operational semantics used to describe a SDP. In [10]
we presented the operational semantics of eSPEM based on the OMG standard
Semantics of a Foundational Subset for Executable UML Models (fUML) [11].
fUML defines the operational semantics of UML activities and actions. But fUML
execution is limited to a single machine, and fUML does not support human
interaction nor can its execution model be extended. While fUML is suitable
for local simulation, it is insu�cient for distributed process execution which is
needed for typical team-driven software projects. Thus, we added support for
distributed execution, human interaction, and user specific extensions to the
operational semantics of eSPEM. We also implemented the operational semantics
of UML state machines which are missing in fUML.

Our extensions to SPEM and fUML are the conceptual foundation of a detailed
software process modeling and automated enactment. However, a reasonable tool
support for eSPEM is required to let end users benefit. This papers presents
such an integrated tool chain for software process modeling and execution. Fig. 1
gives an overview of the tool chain from a user’s perspective.

A Process Designer models, validates, and simulates an executable software
process using a Process Modeling Environment (PME). The Process Designer

74

Integrated
Development
Environment

Process
Execution

Machine (PEX)

Executable
SDP model

Manager

Developer
Other
Tools

Process
Modeling

Environment
(PME)

Process Designer

deploy

Fig. 1. Overview of the Integrated Tool Chain

may then deploy the resulting model to a PEX. A Manager may use the PEX
to create development projects that follow the model. The PEX interprets the
software process model and guides and supports the Developers through the
process. Depending on a task a developer performs, the PEX o↵ers context
sensitive help. The PEX also cooperates with tools used in the process and
manages artifacts as specified in the process model. It can report deviations
between the modeled process and the process actually executed. In addition, the
PEX tracks all actions performed throughout the process and supports process
traceability.

Section 2 presents the overall architecture of our integrated tool chain and
shows how it achieves the mentioned benefits. In section 3 we use the tool chain
to model and enact an exemplary process. Section 4 covers related approaches
and tools. In section 5 we conclude and preview future work.

2 Architecture of the Integrated Tool Chain

The tool chain is built from three major components (see Fig. 2). First, a Process
Modeling Environment (PME) to model, simulate and deploy software processes,
a Process Enactment Server (PES) that manages deployed process models and
distributed process model instances, and a Process Enactment Client (PEC)
that is the graphical front end for process enactment. PEC and PES employ a
traditional client/server architecture, together providing the functionality of a
PEX (see Fig. 1). All three components are based on the Eclipse Equinox OSGi
framework [12] and several other Eclipse components [13] (see Fig. 2) to help
distributed development teams in their process enactment.

2.1 Process Modeling Environment (PME)

The PME implements the abstract and concrete syntax of the modeling language
eSPEM. The abstract syntax is realized as an EMF (Eclipse Modeling Framework)
Ecore meta-model [14] accompanied by mostly generated Java code. Since typical

75

Access Control

GMF
(Diagrams)

QVT (M2M-
Transformations)

Acceleo (M2T-
Transformations)

JDT/PDE (Plugin
Development)

Epsilon (Model
Migration)

Eclipse RCP

Process Modeling Process Deployment

Eclipse RCP

Epsilon (Model
Migration)

Process
Enactment

Process
Administration

Process
Enactment

Repository
Management

CDO (Distributed Modeling Support)
EMF (Modeling Infrastructure)

Equinox OSGi Framework (Component and Services Infrastructure)
Riena (Communication Infrastructure)

Off-the-shelf componentOwn component

PME PEC PES

Fig. 2. Overall Architecture of the Integrated Tool Chain

SDP models tend to be large and complex, the PME strives to reduce that
complexity. First, a view-based diagram editing approach for eSPEM’s concrete
syntax makes modeling of processes more intuitive and easier. Four di↵erent
types of diagrams depict di↵erent aspects of the SDP model. There are a state
machine diagram editor and an activity diagram editor for the dynamic behavior
of software processes. Aspects of the static structure of software processes can be
modeled with a method content diagram editor and a team profile diagram editor.
All diagram editors are realized with GMF (Graphical Modeling Framework) [15]
and may be used concurrently on a single process model.

In order to further reduce complexity of process models and to provide fast
and easy access to frequently used information, we also provide a variety of
Eclipse views that filter the model by the type of model elements. For example,
the activity view shows all activities within a model. These views also show the
semantic relations among model elements, e.g., which roles perform an activity.
As a result, these views provide fast access to a model element and its usage
within the model. In addition, there is an electronic process guide (EPG) preview
that provides a comprehensive, navigable electronic process documentation in
natural language. It uses a model-to-text (M2T) transformation to generate an
EPG and to display it in a browser.

For general purpose modeling, the model explorer provides an unfiltered view
of the abstract syntax tree of a process model. It can be used to generically create,
select, move, and delete elements. In addition, model validation can be triggered
from the model explorer. Our validation support is based on the EMF Validation
Framework [14] and various OCL [16] constraints in the eSPEM meta-model.
This automated validation support is a great help in checking a large model for
structural and semantic correctness. For even more validation support, there is
the process simulation view. It may be used to locally simulate the behavior of
a process on top of the eSPEM execution machine. Process simulation greatly
improves debugging and testing SDPs and finding bottlenecks in them.

76

As most software processes have to be tailored to the needs of a concrete
project, eSPEM provides language constructs to adapt and select processes and
development methods, and to bring them together as a process configuration [8,
5]. To ease process configuration, the configuration view helps to bind a process
to methods by simple drag-and-drop.

Similar to process tailoring, a PEX must be adaptable to the needs of a
concrete project or organization. For this kind of adaption the tool chain provides
a lot of extension points for plugins. Plugins may be developed with the PME
that also includes all Eclipse components for Java and Eclipse plugin development.
There are extension points for tool adapters, version control systems, extensions
of our process runtime infrastructure, and process plugins. To deploy and enact
a process model, a corresponding process plugin for our PES/PEC has to be
generated first. This task is fully automated. Model-to-model and M2T transfor-
mations turn an eSPEM-based process model into an Ecore model, Java code,
and meta data (e.g., OSGi meta data, EPG) that form a process plugin. Finally,
process plugins may adapt an already running process to a new version of its
process model. For this purpose, we use Epsilon Flock [17], a transformation
language for model migrations. Flock greatly simplifies model migrations because
only rules for transforming structural di↵erences have to be written explicitly at
the level of the generated Ecore models. Unchanged parts of two meta-models
are adapted automatically.

2.2 Process Enactment Server (PES)

The PES provides secure shared access to process instances. It manages eSPEM
execution models with CDO [13], a framework that allows for concurrent remote
access to models and supports model versioning. We use the latter to implement
traceability of process enactment. This is useful in process audits and for process
improvements. Since versioning leads to large amounts of data, we use a relational
database as back-end to store execution models. To secure access to process
instances, we implemented an access control layer on top of CDO and Riena [18].

The eSPEM process execution machine relies on the observer design pattern
to track changes of the execution model. Upon each change, the next execution
steps are computed and performed. For performance reasons, the PES manages
the observer object that has direct access to process instances in the Java virtual
machine of the PES.

2.3 Process Enactment Client (PEC)

The PEC provides views and editors to instantiate, manage, and execute deployed
software process models and their instances. It is an Eclipse rich client application
and may be directly integrated into the development environment used by
the project sta↵. The PEC presents two predefined perspectives: First, the
administration perspective with views and editors to create and administrate
projects, users, and plugins. Second, the process enactment perspective that the
project sta↵ uses to execute the process, i.e., manage activities, tasks, and work

77

products. Context-sensitive help from the electronic process guide is seamlessly
integrated into those perspectives to allow a direct access to the relevant part of
the process description.

Process audits often require a thorough documentation of each process step.
Without an automated enactment this results in a lot of additional manual
labor. The PEC/PES fully automates this work and automatically generates log
messages that make all changes to the process state reproducible. The PEC’s
process log view is another benefit as it provides easy access to the generated log
messages.

Due to the complexity of software processes, it is often a nontrivial task to
follow them. It is even more di�cult to fix conformance problems after things have
gone wrong. eSPEM uses (OCL) constraints to detect such problems. Checking
of conformance is bundled with a transaction system that performs rollbacks in
case of severe problems or issues warnings in case of less severe problems. This
automated process instance validation and rollback helps project sta↵ in working
according to the process by reducing time to detect problems.

3 Walkthrough of an Exemplary SDP

To demonstrate the functionality of our integrated tool chain, we first cover the
Scrum SDP [19] as an exemplary process. Scrum is an agile, iterative-incremental
process. An iteration is called sprint. Within each sprint, a potentially shippable
product increment is developed. A sprint starts with a sprint planning meeting.
During this meeting, tasks are estimated and written down in the sprint backlog.
After the sprint planning meeting, the planned tasks are executed by project sta↵.
Each day starts with a daily scrum meeting followed by development work. At the
end of a sprint, the developed product increment is presented during the sprint

review meeting. Afterwards, the sprint is discussed and process improvements
are elaborated during the sprint retrospective meeting.

3.1 Modeling Scrum

After this sketch of Scrum, we illustrate how to model a part of Scrum with a
PME, deploy the model to a PES, and enact Scrum with a PEC. We provide a
more detailed version of this example as screencast in [20]. Our tool chain can be
downloaded from [21].

Since software development is a creative endeavour, not all details of a
process can be anticipated and modeled. In fact, most processes (including
Scrum) use dedicated planning activities (e.g., the sprint planning meeting) to
react upon changing requirements or risks within a project. However, current
process modeling languages have no means to express such process situations. In
contrast, eSPEM provides task schedulers to model the planning of dynamically
instantiated tasks. Fig. 3 shows how a task scheduler (Backlog Task Scheduler)
may be used to model an execution strategy (e.g., based on the priority or
dependencies of a task) for tasks within the Sprint Backlog.

78

Fig. 3. Behavior model of a Scrum sprint modeled with eSPEM and our PME

The special action Execute Backlog Tasks accepts the Sprint Backlog

and executes its tasks in the order determined by the Backlog Task Scheduler.
Using this modeling concept, we integrated the main project planning behavior
of Scrum into our process model. The two additional actions in Fig. 3 have simple
call semantics executing the tasks they refer to (Sprint Review Meeting and
Sprint Retrospective Meeting). In the same way, the behavior of a Sprint
shown in Fig. 3 may be called by another activity.

Although this example lacks some detail (see [20] for a more detailed step-by-
step presentation), we expressed the main behavior of a Scrum sprint with just a
few model elements. This behavior may be simulated with a PME or enacted
with a PES to drive a Scrum-based project. For the latter, a user must deploy
the process model as a process plugin to a PES.

3.2 Enacting Scrum

Fig. 4. Scrum Enactment with our PEC

After a process plugin is successfully
deployed to a PES, a PEC may be em-
ployed to create a development project
that uses this process. When a project
is created the PES automatically cre-
ates an initial activity, artifact repos-
itories, and proxy objects for the pro-
cess roles and tools. Afterwards, the
behavior of the initial activity must be
started manually to execute the process.
In our example, the Sprint Behavior

is executed. As shown in Fig. 3, a sprint
planning meeting has to be executed
first in a sprint. To guide the user, the
PES interprets the process model and

79

creates a request to execute a sprint planning meeting. A PEC displays these
pending execution requests in a dedicated view called Execution Explorer (see
Fig. 4). This view provides context-sensitive actions to mark a task as finished.
When a user marks the sprint planning meeting as finished, the PES executes
the next action (Execute Backlog Tasks) by inspecting the Sprint Backlog

(provided as input parameter) and scheduling the tasks in the backlog according
to the Backlog Task Scheduler. This results in further execution requests in
the Execution Explorer that must be handled by a user. When all requests are
handled, execution of a Sprint Review Meeting and a Sprint Retrospective

Meeting is requested by the PES. Finally, the control flow returns to the caller
of the Sprint Behavior that may start another sprint. With this short example,
we demonstrated how to model a SDP with our PME, deploy it, and enact it
with a PES and a PEC.

4 Related Work

Many authors have identified software process modeling and execution as relevant
for producing software. Early approaches of software processes modeling are
executable [2] but had limited impact in industry due to their complex formalisms,
low level of abstraction, or inferior tool support [22]. Therefore, below we focus
on high-level modeling languages with up-to-date tool support.

The Microsoft Team Foundation Server (TFS) [23], IBM Rational Team
Concert (RTC) [24], and Method Park Stages [25] are popular Application Life-
cycle Management (ALM) tools that integrate other tools, e.g., configuration
management systems, change management systems, and IDEs into a distributed
development and collaboration platform. Although they can be adapted to a
process by using templates, their template languages are limited to static aspects
of the processes only. In contrast to our work, these tools cannot guide and
support project sta↵ in executing a custom process based on a process template,
e.g., they cannot determine the next possible steps in a process and guide project
sta↵ accordingly.

UML4SPM [26] extends SPEM 1.1 with UML 2.0 behavior modeling concepts.
Although its operational semantics has been implemented on top of fUML to
simulate and execute UML4SPM-based process models [27], there is no support
for distributed execution that is needed for realistic team-based development.

The Eclipse Process Framework (EPF) [28] o↵ers a reference implementation
of SPEM 2.0. With the IBM Rational Method Composer [29] a commercial version
of EPF is also available. Although comprehensive EPGs may be generated from
such EPF models, they lack a description of the behavior as SPEM lacks suitable
language constructs. Hence, EPF cannot simulate or enact a process and thus
cannot help exploit the mentioned benefits, e.g., it makes process validation more
complex.

The Process Enactment Toolkit (PET) [30] is a framework to enact process
models. PET is a generic model-to-model transformation framework with input
adapters for di↵erent process modeling languages and output adapters for di↵erent

80

issue management, collaboration, and ALM tools like TFS. As stated above, TFS
and other ALM tools fall short in guiding and supporting project sta↵. Moreover,
in contrast to our work PET cannot simulate process execution.

5 Conclusion and Future Work

In this paper, we presented an integrated tool chain for modeling and enacting
software processes. The Eclipse-based tool provides a reasonable support for mod-
eling, documenting, simulating, and enacting eSPEM-based software processes.
It also comes with a process simulator to easily validate a process before it is
enacted. Our context-sensitive help provides easy access to the relevant part of
the process documentation. Our automated process logging keeps accurate data
for process audits and improvements without any additional e↵ort for project
sta↵. Furthermore, the tool automatically checks for process conformance and
proactively prevents illegal process states. Our tool chain relies on the Eclipse
architecture to integrate other Eclipse-based extensions and third party tools.
Currently no other tool provides such a completely integrated approach that
leverages all mentioned benefits of automated process enactment.

Our future work will extend the scope of our integrated tool chain to support
process assessments and to check conformance of process models to process
reference models, e.g., CMMI [31], and standards like ISO 26262 (Road vehicles –
Functional safety) [32]. Since our tool chain provides access to the process model
and runtime data, it is an ideal environment to check conformance of processes.
We integrate standard models and trace models with our tool chain in order to
support assessments of process models, and assessments of executed processes
in multi-certification contexts (i.e., processes must conform to more than one
standard).

References

1. Osterweil, L.: Software processes are software too. In: Proc. 9th Intl. Conf. Software
Eng., Monterey, CA. (Apr. 1987) 2–13

2. Zamli, K., Lee, P.: Taxonomy of Process Modeling Languages. In: Proc. ACS/IEEE
Intl. Conf. Computer Sys. and Appl., Beirut, Lebanon. (Jun. 2001) 435–437

3. Acuña, S.T., Ferré, X.: Software Process Modelling. In: Proc. World Multiconf.
Systemics, Cybernetics, and Informatics, Orlando, FL. (Jul. 2001) 237–242

4. Bendraou, R., Jezequel, J.M., Gervais, M.P., Blanc, X.: A Comparison of Six
UML-Based Languages for Software Process Modeling. IEEE Trans. Softw. Eng.
36(5) (2010) 662–675

5. Object Management Group: Software & Systems Process Engineering Meta-Model
Specification, Ver. 2.0. (Apr. 2008)

6. Object Management Group: OMG Unified Modeling Language, Infrastructure, Ver.
2.3. (May 2010)

7. Almeida da Silva, M., Bendraou, R., Blanc, X., Gervais, M.P.: Early Deviation
Detection in Modeling Activities of MDE Processes. In: Proc. 13th Intl. Conf.
Model Driven Eng. Lang. and Sys., Oslo, Norway. Volume 6395 of LNCS. (2010)
303–317

81

8. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: eSPEM -
A SPEM Extension for Enactable Behavior Modeling. In: Proc. 6th Europ. Conf.
Model. Foundations and Appl., Paris, France. Volume 6138 of LNCS. (2010) 116–131

9. Object Management Group: OMG Unified Modeling Language, Superstructure,
Ver. 2.3. (May 2010)

10. Ellner, R., Al-Hilank, S., Drexler, J., Jung, M., Kips, D., Philippsen, M.: A FUML-
based Distributed Execution Machine for Enacting Software Process Models. In:
Proc. 7th Europ. Conf. Model. Foundations and Appl., Birmingham, UK. Volume
6698 of LNCS. (2011) 19–34

11. Object Management Group: Semantics of a Foundational Subset for Executable
UML Models, Ver. 1.0 Beta 3. (Mar. 2010)

12. McA↵er, J., VanderLei, P., Archer, S.: OSGi and Equinox. Addison-Wesley
Longman (2010)

13. Eclipse Project: http://eclipse.org/. (Apr. 2012)
14. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling

Framework. 2nd edn. Addison-Wesley Longman (2009)
15. Gronback, R.C.: Eclipse Modeling Project: A Domain-Specific Language (DSL)

Toolkit. Addison-Wesley Longman (2009)
16. Object Management Group: Object Constraint Language, Ver. 2.2. (Feb. 2010)
17. Rose, L., Kolovos, D., Paige, R., Polack, F.: Model Migration with Epsilon Flock.

In: Theory and Practice of Model Transform. Volume 6142 of LNCS. (2010) 184–198
18. Riena Platform Project: http://eclipse.org/riena/. (Apr. 2012)
19. Schwaber, K.: Agile Project Management with Scrum. Microsoft Press (2004)
20. Al-Hilank, S., Ellner, R.: Modeling and Enacting Scrum (Screencast),

http://www2.cs.fau.de/research/IWKMMASWEP/screencasts/. (Apr. 2012)
21. Al-Hilank, S., Ellner, R.: eSPEM and tool chain download page,

http://www2.cs.fau.de/research/IWKMMASWEP/download/. (Apr. 2012)
22. Gruhn, V.: Process Centered Software Engineering Environments – A Brief History

and Future Challenges. Annals of Softw. Eng. 14(1-4) (2002) 363–382
23. Microsoft: VS Team Foundation Server, http://microsoft.com/vs/. (Apr. 2012)
24. IBM: Rational Team Concert, http://ibm.com/rational/rtc/. (Apr. 2012)
25. Method Park Software AG: Stages, http://methodpark.com/en/product.html.

(Apr. 2012)
26. Bendraou, R., Gervais, M.P., Blanc, X.: UML4SPM: A UML2.0-Based Metamodel

for Software Process Modelling. In: Proc. 8th Intl. Conf. Model Driven Eng. Lang.
and Sys., Montego Bay, Jamaica. Volume 3713 of LNCS. (2005) 17–38

27. Bendraou, R., Jezéquél, J.M., Fleurey, F.: Achieving process modeling and execution
through the combination of aspect and model-driven engineering approaches. J. of
Softw. Maintenance and Evolution: Research & Practice (2010) Preprint.

28. Eclipse Process Framework Project: http://eclipse.org/epf/. (Apr. 2012)
29. IBM: Rational Method Composer, http://ibm.com/rational/rmc/. (Apr. 2012)
30. Kuhrmann, M., Kalus, G.: Providing Integrated Development Processes for Dis-

tributed Development Environments. In: Workshop on Supporting Distributed
Team Work at Computer Supported Cooperative Work (CSCW 2008). (Nov. 2008)

31. CMMI Product Team: CMMI for Development, Ver. 1.3. Technical Report
CMU/SEI-2010-TR-033, Carnegie Mellon Univ. – Software Eng. Inst. (Nov. 2010)

32. Intl. Org. for Standardization: ISO 26262: Road vehicles – Functional safety. (Nov.
2011)

82

Transient View Generation in Eclipse

?

Christian Schneider, Miro Spönemann, and Reinhard von Hanxleden

Real-Time and Embedded Systems Group,
Department of Computer Science, Christian-Albrechts-Universität zu Kiel

{chsch,msp,rvh}@informatik.uni-kiel.de

Abstract. Graph-based model visualizations can e↵ectively communi-
cate information, but their creation and maintenance require a lot of
manual e↵ort and hence reduce productivity. In this paper we build on
the concept of Model Driven Visualization by presenting a meta model
for graphical views and an infrastructure for configurable automatic lay-
out. This enables the transient views approach, in which we e�ciently
derive and draw graph representations from arbitrary models.

1 Introduction

Graphical modeling languages such as the UML and its dialects as well as domain-
specific modeling languages (DSMLs) can be e↵ectively employed for a multi-
tude of purposes, including documentation, communication, and code genera-
tion. However, an important amount of productivity is wasted with drawing and
beautification activities while working with state-of-the-practice modeling envi-
ronments. Even when automatic layout is available, it is often unable to properly
consider domain-specific requirements on the layout. Furthermore, the develop-
ment of a graphical notation can be unnecessarily tedious, especially when it
comes to the details.

Our objective is to allow lightweight and transient graphical representations,
following the concept of Model Driven Visualization (MDV) introduced by Bull
et al. [4]. This means that views are completely specified using model transfor-
mations, hence no manual user interaction is required. Our main contribution
is a meta model for graphs, their layout, and their graphical representation. We
employ this meta model both for the view model of generated graphical views
and for the interface to layout algorithms. Furthermore, we present an infras-
tructure for automatic layout that is statically and dynamically configurable and
provides the foundation for transient view synthesis. Both contributions are real-
ized within the KIELER project,1 which provides an Eclipse update site. A more
detailed version of this paper is available as technical report [12].

This paper is organized as follows. We discuss previous work on view synthesis
and layout integration in Sect. 2. The meta models and basic approaches for
transient views are presented in Sect. 3. The integration and configuration of
layout algorithms in Eclipse is described in Sect. 4, after which we conclude.
? This work was funded in part by the Program for the Future Economy of Schleswig-
Holstein and the European Regional Development Fund (ERDF)

1
http://www.informatik.uni-kiel.de/rtsys/kieler/

83

2 Related Work

The work presented here builds on Model Driven Visualization as proposed by
Bull et al. [4, 2], which is an extension of the Model Driven Engineering (MDE)
approach to the creation of views. This helps to lift the development of graphical
tools to a more abstract level. However, Bull et al. focus on view models for dif-
ferent kinds of data visualization, which does not only include graphs, but also
tables and charts. The Zest toolkit [3] employed in their contribution mainly
addresses the SWT integration of graph viewers and o↵ers only few graph layout
algorithms. In our approach we go one step further and add rendering specifi-
cation as well as layout directives to the graph view model and hence allow to
express all details of the generated view using MDE methods.

A very simple tool for visualizing EMF models is o↵ered by the EMF To

Graphviz project.2 Being restricted to drawing boxes with lists of attributes
and using Graphviz as layout engine [8], this tool it is very limited in terms of
rendering and layout, which makes it useful for debugging and rapid prototyping,
but insu�cient for more complex visualizations.

The established graphical modeling frameworks GMF and Graphiti are not
well suited for transient model visualization in the sense of this paper. Both
are designed for composing models by dragging and dropping figures onto a
diagram canvas. They require a fully-fledged editor setup in order to simply show

diagrams, which is a waste of resources that is felt bitterly for large diagrams.
Although Graphiti maintains the description of figures in a view model (the
Pictogram model), some characteristics, such as the bend point rendering of
edges (angular or rounded), are configured in the editor code. GMF’s Notation

model has no means at all for specifying rendering primitives, but points to
predefined edit part classes using integer identifiers. The arrangement of figures
(micro layout) must be realized in Java code in both frameworks. While GMF

relies on the layout manager concept of Draw2D, Graphiti requires to implement
layout features. This inconsistent use of view models for the specification of
graphics impedes the application of model transformations and other model-
based techniques for full-automatic view generation.

Although editor code generation front-ends such as GMF Tooling

3 and Spray

4

o↵er means for model-based view specification, the generated code su↵ers from
the same problems as described above. The additional level of abstraction makes
it even harder to customize and fine-tune the views. Furthermore, GMF Tooling
requires a tight coupling of model and view. This imposes strong requirements
on the structure of the meta model, i. e. the abstract syntax of the language,
which is not acceptable, since we aim for multiple views on the same model.

Modeling tools such as GME [10] and VMTS [11], which are built on Windows
instead of Eclipse, allow the creation of graphical editors with custom graphics,
but the graphics must be created by either using a specific API or editing a

2
http://sourceforge.net/projects/emf2gv/

3
http://www.eclipse.org/modeling/gmp/?project=gmf-tooling

4
http://code.google.com/a/eclipselabs.org/p/spray/

84

(a) Inheritance hierarchy of a class. (b) Proposal: transient Statechart diagram.

Fig. 1. Examples of transient views

visualization model in the UI. The focus of these projects is on meta-modeling
and model transformations, and they do not cover automatic view generation
and layout.

3 Towards Lightweight Graphical Modeling

The common graphical modeling approaches, either based on generic modeling
environments or customized editing tools, require the modeler to manually put
each single element on the canvas and determine its position. If an element
shall be characterized with respect to di↵erent facets, e. g. a class as part of
a software system, multiple diagrams must be drawn, each representing that
element from di↵erent points of view. Those diagrams are often persisted in
separate files, which may lead to consistency issues if elements are reordered or
deleted. Regarding this dissatisfying situation we believe that it can be improved
by exploiting the ability to automatically arrange diagram elements.

3.1 Transient Graphical Views

We propose to employ the transient views approach, which consists of the direct
synthesis of graphical views out of existing models. This inverts the traditional
graphical editing approach, in which a model is constructed using a graphical
view. In our vision a modeler works with an arbitrary editor, e. g. based on a
textual DSL, and requests and dismisses graphical views like Java programmers
hit ctrl+T to see the inheritance hierarchy of a class, see Fig. 1. This way the
benefits of graphical modeling are preserved, while disadvantages such as time
consuming composition are avoided.

The transient graphical view synthesis process comprises the following steps.

1. Select models to be represented, possibly with manual or automatic filtering.

85

2. Construct a view model according to mapping rules from the domain model.
a. Identify the essential graph elements (nodes, edges, labels, ports).
b. Create each element’s graphics by composing rendering primitives.
c. Arrange the rendering primitives (micro layout).

3. Arrange the graph structure of the view model (macro layout).
a. Analyze the view model and derive a layout graph.
b. Configure the layout by choosing layout algorithms and setting options.
c. Execute the layout algorithms.
d. Transfer the computed layout back to the view model.

4. Render the view model by means of a 2D graphics framework.

In our approach we aim to optimize the synthesis process in terms of perfor-
mance and simplicity in order to justify the predicate “lightweight”. This would
enable truly transient views, eliminating the necessity of persisting the view
models. We achieve this by employing the same meta model for layout algo-
rithms and for the view model, and extending it with annotations for expression
of rendering primitives and their arrangement. This yields the following benefits:

– The view model is based on EMF and thus allows to use model transformation
as well as other model-based techniques, which is the basic idea of MDV [4].
For instance, this enables the employment of interpreted transformations
that could be formulated by the tool user. This advantage applies to all
three parts of Step 2 in the view synthesis process.

– In common graphical editors the micro layout (Step 2.c) is implemented
in Java (see Sect. 2). By including the micro layout specification in the
rendering model we are able to express it on an abstract level. While this
may seem like a trivial matter, it turns out to be crucial for the consistent
use of automatic layout: as illustrated in Fig. 2, changes of the macro layout
may require recomputation of the micro layout. Therefore a close coupling
of both levels of layout is beneficial.

– Step 3.a is often an intricate task, which concerns the extraction of the graph
structure as well as the initial macro layout. We obtain the simplest possible
solution by using the same graph structure for the view model and the layout
process, hence no transformation or adaption is needed. This also applies to
Step 3.d, since the concrete layout attached to the graph instance during
execution of layout algorithms directly a↵ects the view model.

3.2 Use Cases

Applications of transient views are manifold. As motivated in Sect. 3.1, modelers
may want to get certain information on their system under development. Simi-
larly, modelers continuously want to check the correctness of their work, e. g. the
reachability of states in Statecharts, by reviewing it in an alternative notation.
In case of an error the fix shall be performable directly in the view.

In practice, specifications of large systems are usually created in a component-
based way. This often occurs in form of declaring and referencing elements sep-
arately. An example, found in the railway signaling domain, looks as follows

86

Fig. 2. Broken figure rendering after an update of the Statechart diagram: inserting
labels on the transitions between the OpenTray and ClosedTray states causes the On
state to be enlarged; afterwards the state label is not centered anymore and the line
below is too short.

Fig. 3. Component architectural outline on a specification excerpt of a complex railway
signaling system. It has been composed based on various single description parts.

(simplified). There are three types of components, each of them specified in a
separate document: a MainController, SwitchControllers, and SwitchDrivers. The
components communicate via dedicated interfaces described in further specifica-
tion parts. Finally, instances of the components are introduced and connected in
an additional statement. Although those particular descriptions may be simple,
the resulting networks can become quite complex and di�cult to browse, un-
derstand, and maintain. By means of transient views the tool can o↵er specific
compound representations, which are built upon multiple parts of the specifica-
tion, and provide a component architectural outline as shown in Fig. 3.

3.3 The KGraph and KRendering Meta Models

The KGraph meta model describes the graph as used in steps 2.a and 3.a of the
view synthesis process. Its class diagram, derived from an EMF Ecore model, is
shown in Fig. 4. The graph structure is represented by the classes KNode, KEdge,
KPort, and KLabel. Each instance of these graph elements contains an attached
KEdgeLayout (for edges) or KShapeLayout (for other elements), which are both
able to hold concrete layout data as well as abstract layout data represented by
layout options (see Sect. 4). A graph is represented by a KNode instance with
its content stored in the children reference.

Fig. 5 depicts an excerpt of the KRendering notation meta model, which is
an extension of KGraph. Basic figure shapes are instances of KRendering, which
inherits from KGraphData and thus can be attached to KGraphElements. KRen-

87

Fig. 4. KGraph meta model with basic graph structures and layout data.

Fig. 5. KRendering basic shapes to be composed to diagram figures.

derings can be configured in terms of KStyles for specification of properties such
as line width or foreground and background color (see Fig. 6). KRenderingRefs
refer to other rendering definitions, and templates of KRenderings may be stored
in a KRenderingLibrary. The placement of KRenderings can be defined by means
of KDirectPlacementData or KPolylinePlacementData (see Fig. 7), or by attaching
them to grid- or stack-based micro layouts, which are omitted here. The direct
placement definitions consist of two points, given by KX-/KYPositions, that are
related to the borders of the parent KRendering. Polyline placements consist of a
number of bend positions, respectively. These implicit coordinates are resolved
in Step 4 of the view synthesis process.

The composition of diagram figures by means of the KRendering primitives
is exemplified in Fig. 8, showing a description excerpt of the SwitchController di-
agram node from Fig. 3. The figure consists of a KNode comprising a KShapeLay-

88

Fig. 6. KRendering core elements.

Fig. 7. KRendering placement elements for specifying micro layout directives.

out defining its size and a layouter hint, a KRectangle, and a bunch of KPorts

(only one is shown for the sake of brevity). The rectangle covers the whole figure,
since no placement data are given, and contains two horizontally centered text
fields showing the type and instance name of the depicted element (the second
text field’s description is omitted, too). They are modified in terms of the text’s
vertical alignment, the transparency of the background color, and their size and
position in the figure that is characterized by the KDirectPlacementData entry.
Thus, the first text field spans a rectangle ranging from the left to the right and
from the top to 14pt below the top border of the diagram figure. The horizontally
centered alignment is set by default.

The figures of the ports are basically constructed in the same way, apart from
horizontal alignment of the port label text field. In addition, one observes that
KText elements determine their minimal size by their font size and text length.
Hence, the horizontal part of the bottomRight position does not matter for the
left aligned port label. Observe furthermore that child KRenderings need not to
be placed within the bounds of its parent, which is the case for the port label.

The view synthesis process is realized in the KIELER Lightweight Diagrams
(KLighD) project, our test bed for investigating the topic of transient graphical
representations, which is integrated in the KIELER view management [7]. KLighD

provides infrastructure to manage the mapping rules needed in Step 2, which
currently have to be provided by the tool developer. Step 3, the macro layout, is

89

KNode {
KShapeLayout {
width 200 height 100
mapProperties:
"de.cau.cs.kieler.portConstraints"

= "FIXED_POS"
},
KRectangle {
KBackgroundColor 255 250 205
KText "SwitchController" {
KVerticalAlignment TOP
KBackgroundVisibility false
KDirectPlacementData {
topLeft KLeftPosition abs 0.0 rel 0.0

/ KTopPosition abs 0.0 rel 0.0
bottomRight KRightPosition abs 0.0 rel 0.0

/ KTopPosition abs 14.0 rel 0.0
}
},
...
}

KPort {
KShapeLayout {
xpos -8 ypos 31 width 9 height 9
},
KRectangle {
KBackgroundColor 0 0 0
KText "turn" {
KFontSize 9,
KHorizontalAlignment LEFT
KBackgroundVisibility false
KDirectPlacementData {
topLeft KLeftPosition abs 12.0 rel 0.0

/ KTopPosition abs 0.0 rel 0.0
bottomRight KLeftPosition abs 0.0 rel 0.0

/ KBottomPosition abs 0.0 rel 0.0
}
}
}
},
...
}

Fig. 8. Excerpt of the KRendering-based specification of the SwitchController diagram
element depicted in Fig. 3.

delegated to the KIELER Infrastructure for Meta Layout (KIML), see Sec. 4, and
Step 4, the rendering of the representation, is performed by the graphics frame-
work Piccolo2D [1]. Since the view model (KGraph + KRendering) does not rely
on any specific graphics framework, we will add support for other frameworks
such as Draw2D in the future.

4 Configurable Automatic Layout

Research on graph drawing algorithms has led to a rich variety of methods over
the past 30 years [6, 9]. In theory, these layout methods should equip users of
graphical modeling tools adequately to satisfy their need for automatic diagram
layout. However, today’s modeling tools are still quite far from the point where
diagram layout would be available with the same flexibility as textual formatting
such as the Java code formatter of Eclipse JDT. The problem is not the lack of
appropriate algorithms or libraries for graph layout, but rather their integration.

Two examples of excellent libraries are OGDF [5] and Graphviz [8], both of
which o↵er several layout methods with plenty of options for customization. The
former o↵ers a C++ API and support for GML and OGML graph formats, while
the latter o↵ers a C API and support for the DOT graph format. Connecting
one of these tools to a Java application is a costly task, since it consists either
in the intricacy of directly executing native code or in the communication with
a separate process using one of the supported graph formats.

The KIELER Infrastructure for Meta Layout (KIML) provides a bridge be-
tween diagram viewers and layout algorithms and o↵ers interfaces for layout
configuration. Graphviz, OGDF, and a collection of Java-based algorithms are

90

included, thus o↵ering a wide variety of layouts to Eclipse based diagram edi-
tors and viewers. Graphiti and GMF have been connected generically such that
layout can be done in many editors that are based on these frameworks without
the need of adding or changing any code. However, as explained in Sect. 3.1, the
layout process is a lot more e�cient for KLighD views.

4.1 Layout Configuration

We consider two levels of automatic layout: concrete layout and abstract layout.
A concrete layout determines the exact position and size of all elements of a
graph, including nodes, labels, and edge bend points, whereas an abstract layout
consists of options for the selection and configuration of layout algorithms. When
an algorithm is executed on an input graph, it reads these options and considers
them in the calculation of graph element positions.

Layout options can be set for each graph element independently. This allows
to modify general settings of an algorithm, to set constraints for specific graph
elements, or even to apply di↵erent layout algorithms for di↵erent hierarchy
levels of a compound graph. These layout options are set in Step 3.b of the view
synthesis process described in Sect. 3.1 by executing a set of layout configurators
on each graph element. Some of the currently defined layout configurators are
described in the following.

– The Default configurator has the lowest priority and returns default layout
settings that are acceptable for most graphs.

– The Eclipse configurator manages an extension point and a preference page,
which can both be used to override default values for specific element types.
The edit part class or the domain model class can be used to specify the
type of a graph element.

– The Semantic configurator is an extensible mechanism for deriving layout
settings from the domain model. This is used when di↵erent layout option
values are chosen depending on properties of the domain model instance.

– The GMF / Graphiti configurators allow to customize the layout for a
single diagram, which can be done through an Eclipse view named Layout.
For GMF diagrams the options are stored as Style annotations in the Notation
model, while for Graphiti the options are stored as Property annotations in
the Pictogram model.

5 Conclusion and Future Work

We presented a continuation of the MDV approach by allowing the view model to
express graph structure as well as rendering and layout directives. The KGraph
meta model includes structural information that is relevant for layout algorithms,
properties for abstract layout specification, and concrete layout data calculated
by algorithms. The KRendering meta model adds rendering primitives with style
and micro layout annotations. The system is backed by a flexible and configurable

91

automatic layout infrastructure. Putting these building blocks together yields a
tool that is well suited for the visualization of complex models.

Our future work will target various aspects. Diagram specifications shall be
expressed in a textual language, similarly to Köhnlein’s Generic Graph View.5

This involves describing the rendering of elements, as well as composing dia-
grams, which may be understood as queries on a model base. The synthesized
diagrams shall be equipped with semantic zoom, i. e. the ability to change their
amount of detail according to the user’s focus. Finally, intuitive means for modi-
fying the abstract layout, e. g. in form of sliders or gestures, shall be investigated.

References

1. Bederson, B.B., Grosjean, J., Meyer, J.: Toolkit design for interactive structured
graphics. IEEE Transactions on Software Engineering 30(8), 535–546 (Aug 2004)

2. Bull, R.I.: Model Driven Visualization: Towards A Model Driven Engineering Ap-
proach For Information Visualization. Ph.D. thesis, University of Victoria, BC,
Canada (2008)

3. Bull, R.I., Best, C., Storey, M.A.: Advanced widgets for Eclipse. In: Proceedings
of the 2004 OOPSLA Workshop on Eclipse Technology Exchange. pp. 6–11. ACM,
New York, NY, USA (2004)

4. Bull, R.I., Storey, M.A., Litoiu, M., Favre, J.M.: An architecture to support model
driven software visualization. In: Proceedings of the 14th IEEE International Con-
ference on Program Comprehension (ICPC’06). pp. 100–106. IEEE (2006)

5. Chimani, M., Gutwenger, C., Jünger, M., Klein, K., Mutzel, P., Schulz, M.: The
Open Graph Drawing Framework. Poster at the 15th International Symposium on
Graph Drawing (GD07) (2007)

6. Di Battista, G., Eades, P., Tamassia, R., Tollis, I.G.: Graph Drawing: Algorithms
for the Visualization of Graphs. Prentice Hall (1998)

7. Fuhrmann, H., von Hanxleden, R.: Taming graphical modeling. In: Proceedings
of the ACM/IEEE 13th International Conference on Model Driven Engineering
Languages and Systems (MoDELS’10). LNCS, vol. 6394, pp. 196–210. Springer
(Oct 2010)

8. Gansner, E.R., North, S.C.: An open graph visualization system and its applica-
tions to software engineering. Software—Practice and Experience 30(11), 1203–
1234 (2000)

9. Kaufmann, M., Wagner, D. (eds.): Drawing Graphs: Methods and Models. No.
2025 in LNCS, Springer-Verlag, Berlin, Germany (2001)

10. Lédeczi, Á., Maróti, M., Bakay, Á., Karsai, G., Garrett, J., Thomason, C., Nord-
strom, G., Sprinkle, J., Völgyesi, P.: The generic modeling environment. In: Work-
shop on Intelligent Signal Processing (2001)

11. Mezei, G., Levendovszky, T., Charaf, H.: Visual presentation solutions for domain
specific languages. In: Proceedings of the IASTED International Conference on
Software Engineering. Innsbruck, Austria (2006)

12. Schneider, C., Spönemann, M., von Hanxleden, R.: Transient view generation in
Eclipse. Technical Report 1206, Christian-Albrechts-Universität zu Kiel, Depart-
ment of Computer Science (Jun 2012)

5
http://koehnlein.blogspot.de/2012/01/discovery-diagrams-for-generic.html

92

CommentTemplate:

A Lightweight Code Generator for Java built

with Eclipse Modeling Technology

Jendrik Johannes, Mirko Seifert, Christian Wende, Florian Heidenreich, and
Uwe Aßmann

DevBoost GmbH
D-10179, Berlin, Germany

Technische Universität Dresden
Chair of Software Technology
D-01062, Dresden, Germany

{firstname.lastname}@devboost.de

Abstract. In this paper we present CommentTemplate, which realizes
code generation features, as known from many model-driven develop-
ment tools, as a Java language extension. This paper first introduces
CommentTemplate and discusses its features and limitations. Second,
it discusses CommentTemplate as an example of (a) a tool that makes
concepts from model-driven development easily accessible for Java pro-
grammers and (b) a powerful and stable tool that was realized in a short
time thanks to Eclipse modeling technology.

1 Introduction

One of the fundamental technologies of model-driven development approaches
is code generation. Hence, many code generation technologies emerged over the
years. In the Eclipse modeling project alone, multiple solutions exist [1–6]. Fur-
thermore, there exist numerous code generation tools and framework for Java
outside Eclipse, which can also be combined with Eclipse modeling technology
(e.g., [7–9] and many more).

An issue model-driven development approaches, and code generation in par-
ticular, face when originating from academia, is their adoption by the “common”
developer in industry. First, an approach needs adequate tool support above the
level of academic prototyping. Second, such tools should be easily accessible for
the developer. That is, the developer should be able to immediately start work-
ing with the tools without the need to acquire more theoretical knowledge in the
beginning (flat learning curve).

Eclipse, and the Eclipse Modeling Framework (EMF), have greatly supported
these two points in the past. First, the Eclipse plugin mechanism and the ex-
tendability of EMF allow a rapid development of new high-quality modeling
tools by reusing existing, well-tested functionality. Second, Eclipse, being the

93

development platform of choice for many Java developers, gives Java developers
a quicker access to modeling technologies, because they are integrated into the
tool (Eclipse) they use on a daily basis. However, this second point so far mainly
addressed integration with the Eclipse IDE and not with the Java language it-
self. This makes it still di�cult for Java developers to easily understand and use
modeling tools which, at a first glance, are not connected to Java programming.

We previously developed the Java Model Printer and Parser (JaMoPP) [10],
to bring Eclipse modeling and the Java language closer together. JaMoPP con-
sists of a Java metamodel (defined in EMF’s Ecore) and the tooling to parse Java
source (and byte) code into instances of that metamodel as well as to print in-
stances back to Java source code. This increases integration of modeling and Java
both on the modeling and metamodeling level. On the modeling level, JaMoPP
is used to handle the Java language equally to other modeling languages, which
allows Eclipse modeling tools to work on Java source code as on other mod-
els (e.g., model-to-model transformations can be used to generate Java code).
On the metamodeling level, JaMoPP allows the integration of Java and other
(modeling) languages. New elements can be inserted into Java by extending the
Java metamodel and syntax or parts of Java can be reused in other (modeling)
languages by importing the Java metamodel and syntax.

In this paper, we present CommentTemplate, which is a code generation ex-
tension for the Java language. CommentTemplate is both an example of a tool
that transfers concepts of model-driven development to the programming tool
world and an example of a powerful, stable tool that was developed in a short
time by taking advantage of Eclipse and Eclipse modeling technology. Comment-
Template takes the important features of existing code generation languages,
which are not o↵ered by Java itself already, and implements those as a light-
weight extension for Java instead of providing a new language. This demonstrates
how fundamental features of model-driven technology can be realised closely to
an existing and well-accepted programming language to make these features,
which are valuable in their own right, more accessible for programmers. Com-
mentTemplate is developed based on JaMoPP and consists of approximately 800
lines of code. This shows how JaMoPP can indeed be used on the metamodeling
level for developing tools that integrate into the Java language and thus benefit
from the existing Java tooling in the Eclipse IDE. Although, we are both model-
ing enthusiasts and Java programmers, we prefer using CommentTemplate over
other code generation tools in certain situations. We motivate our reasons for
that by discussing the advantages and disadvantages of CommentTemplate.

The paper is structured as follows: Section 2 introduces CommentTemplate
an explains its features. Section 3 discusses how CommentTemplate is imple-
mented using Eclipse modeling technology. Section 4 takes a critical look at
the usefulness of CommentTemplate and discuss its application areas. Section 5
discusses limitations of CommentTemplate and Sect. 6 points at related work,
before a conclusion is given in Sect. 7.

94

1 @CommentTemplate

2 public String helloWorld() {
3 String greeting = "Hello";
4 /*<html>
5 <head><title>greeting world!</title></head>
6 <body>*/
7 for (int i = 1; i <= 5; i++) {
8 String greeted = "World" + i;
9 /*

10 greeting greeted!
*/
11 if (greeted.equals("World2")) {
12 /*
13 greeted, you are the best!
*/
14 }
15 }
16 /*
17 </body>
18 </html>*/
19 return null;
20 }

Listing 1. HelloWorld @CommentTemplate method

2 CommentTemplate Syntax and Features

CommentTemplate is a Java language extension for code generation. It makes
use of and extends the following Java language elements: multi-line comments,
methods, local variables and annotations. A code generation template written in
CommentTemplate is shown in Listing 1.

A template is defined as a Java method annotated with @CommentTemplate
that has the return type String.1 Inside the Method, one can use multi-line
comments (/* */ notation) to define fragments of the template. Around these
fragments, arbitrary Java code can be written and used to formulate, for exam-
ple, loops (Line 7) or conditions (Line 11). Furthermore, one can refer to local
variables of type String that are declared before the corresponding template frag-
ment. In the example, the variable greeting (declared in Line 3) is referred to
two times inside template fragments (Lines 5 and 10).

A @CommentTemplate method can be called as any Java method inside arbi-
trary Java code. However, it will return the expanded template as String. That
is, all template fragments are appended and the variables inside the fragments
are filled with their values. In the example of Listing 1, the String shown in
Listing 2 is produced.

This sums up the basic features of CommentTemplate. However, Comment-
Template o↵ers two additional annotations which help with syntax conflicts be-
tween templates and output syntax.

First, one can observe, that no special quotation is used to mark variables
in a template fragment in the example (e.g. greeting in Line 5). Other code
generation tools usually define a fixed symbol for escaping such variables. This
is sometimes problematic, because depending on which output is generated,
escape symbols can conflict with the output syntax. CommentTemplate does

1 To write compilable code, a return null; statement is needed at the end of the
method, which will be replaced by the CommentTemplate compiler (cf. Sect. 3).

95

1 <html>
2 <head><title>Hello world!</title></head>
3 <body>
4 Hello World1!

5 Hello World2!

6 World2, you are the best!

7 Hello World3!

8 Hello World4!

9 Hello World5!

10 </body>
11 </html>

Listing 2. Expanded Hello World template of Listing 1

not define such a symbol itself. However, it allows the user to do so by of-
fering the @VariableAntiQuotation annotation which takes a String format-
ting pattern as argument. In the example, we could add an annotation like
@VariableAntiQuotation("#%s#") to define that variables should be enclosed
in # characters. In the example in Line 5, we would then need to write #greeting#
to a access the greeting variable. In such a case, CommentTemplate could be ex-
tended to check if a variable is declared and report a missing declaration to
the user (cf. Sect. 5.3). If @VariableAntiQuotation is not used, this kind of
feedback can not be provided.

Second, CommentTemplate still relies on one problematic fixed symbol, which
is */ to end a template fragment. To generate this symbol in the output (e.g.,
when generating Java code with comments), an additional feature is needed.
Again, usually, a fixed escape symbol, to escape such symbols which are part
of the template language itself, is o↵ered. CommentTemplate makes this con-
figurable by o↵ering the @ReplacementRule annotation. This annotation takes
two arguments, a pattern and a replacement, which allows the specification of a
replacement for a certain String. For the problem described above, one can use
@ReplacementRule(pattern="#/", replacement="*/"), which replaces all oc-
curences of #/ with */. #/ can then be used as an alternative for */.

Both @VariableAntiQuotation and @ReplacementRule can be applied on
the level of single @CommentTemplate methods but also on the level of classes.
This allows a fine grained control of which escape characters are used where and
helps to avoid syntax conflicts with the output syntax.

3 CommentTemplate Compiler

CommentTemplate is implemented as a Java-source-to-Java-source compiler us-
ing JaMoPP. Since JaMoPP handles Java source code as models based on an
Ecore metamodel of Java, one could also look at the CommentTemplate compiler
as a model-to-model transformation with Java as input and output metamodel.
The implementation is realized in Java but could also be realized in a model
transformation language such as QVT.

The following transformation is performed by the compiler for each method
annotated with @CommentTemplate: An instantiation of a StringBuilder is added
to the beginning of the method body and the method’s return statements are

96

1 public String helloWorld() {
2 StringBuilder __content = new StringBuilder();
3 String greeting = "Hello";
4 __content.append("<html>\n");
5 __content.append("\t<head><title>");
6 __content.append(greeting.replace("\n", "\n\t"));
7 __content.append(" world!</title></head>\n");
8 __content.append("\t<body>");
9 for (int i = 1; i <= 5; i++) {

10 String greeted = "World" + i;
11 __content.append("\n");
12 __content.append("\t\t");
13 __content.append(greeting.replace("\n","\n\t\t"));
14 __content.append(" ");
15 __content.append(greeted);
16 __content.append("!
");
17 if (greeted.equals("World2")) {
18 __content.append("\n");
19 __content.append("\t\t");
20 __content.append(greeted.replace("\n","\n\t\t"));
21 __content.append(", you are the best!
");
22 }
23 }
24 __content.append("\n");
25 __content.append("\t</body>\n");
26 __content.append("</html>");
27 return __content.toString();
28 }

Listing 3. The Compiled HelloWorld @CommentTemplate method of Listing 1

modified to return the content of that StringBuilder as String. Furthermore, all
elements inside the method body are checked for multi-line comments.2 This
accessibility of comments is an important feature of JaMoPP exploited in the
CommentTemplate realization, which is not o↵ered by mechanisms such as plain
Java reflection. If a comment is found, it is split into lines and for each line, a
StringReference (Metaclass in the Java metamodel) is instantiated, which is filled
with the text from the comment line. Each String that is generated this way, is
passed to the StringBuilder by adding an append() call to the position in the
method, where the comment was located before. For the example, the result of
this transformation is shown in Listing 3.

An additional feature of the compiler is the indentation handling. It is a well
known problem in code template development, that formatting of the template
and formatting of the output are mixed. This basically concerns indentations,
tab (\t) characters, at the beginning of a line. In the example of Listing 1, one
can observe this issue. In Lines 3–19, one tab character is used to indent the
method body. This is formatting of the template, but not of the output. The
generated <html> (Line 4), for instance, should not be indented in the output
(cp. Listing 2; Line 1). Additional indentations of blocks inside the method (e.g.,
for-loop in Lines 8–14) should also be ignored in the output. Therefore, the Com-
mentTemplate compiler keeps track of indentation and corrects the indentation
in each String line. This behavior was adopted from Xtend2 [5].

2 In the Java metamodel, every metaclass is a subclass of Commentable which contains
the comments that are located before the element in the source file as String.

97

4 Application and Discussion

One can look at CommentTemplate from two viewpoints. First, one can regard
it as yet another code generation tool. Second, one can look at it as a Java
language extension that is so slim, that it does not even extend the syntax of the
language. With a critical look from these two viewpoints, two questions arise:

1. Why do we need another code generation tool if there are so many already?
2. Is a language extension that does not extend the Java syntax powerful enough

to add any significant new functionality that is not o↵ered by Java itself or
can be added through a library alone?

4.1 CommentTemplate vs. Code-Generation Tools

We developed CommentTemplate out of a need we had ourselves, which was not
met by existing code generation solutions. For us, the most important properties
for a code generation tool were: (a) compilation of templates to Java such that
we can run them as plain Java applications without requiring a template inter-
preter at template expansion time, (b) no dependencies in the template code to
(possibly changing) runtime frameworks or libraries, (c) tight integration into
Java, since this is the language we are working with most, (d) the ability to
reasonably format both the output and the template directly (i.e., without using
an additional formatting post-processor).

While many existing solutions meet one or more of these criteria, none of
them satisfied us completely. Before we decided to develop CommentTemplate,
we were going with Xtend2 [5], because it fulfilled criteria (a) and (d) as well as
(c) to some degree.

A problem we had with Xtend2 was that it did not satisfy requirement (b)
by providing a runtime library which was evolving with each version of Xtend2
over the last year. This made it di�cult to develop and use two code generators,
which were developed with di↵erent Xtend2 versions, side-by-side inside one
Eclipse installation, since it is not possible to run two Xtend2 versions in the
same Eclipse. This violated our requirement that the more than 700 Eclipse
plugins of our open-source toolbox DropsBox [11], which are integrated by a
Continuous Integration system and deployed on a single update-side, should all
be able to run together in one Eclipse installation.

Regarding criteria (c) one still has to consider that Xtend2 is a separate lan-
guage and not Java. Although, the barrier for Java developers to get started
with Xtend2 is low, since it compiles to Java source code and provides tool-
ing that is oriented at and integrated with the Eclipse Java Development Tools
(JDT), developers still need some time to familiarize with the syntax and pro-
gramming model of Xtend2. If a Java developer only needs a code generation
feature, CommentTemplate provides this in the familiar Java syntax and tools.
For CommentTemplate, the JDT Java editor can be reused directly with all
its established features. No additional editor or other kind of UI tooling (e.g.,

98

buttons or menus) are needed, since the compiler runs automatically in the back-
ground when a Java file is saved. On the downside, CommentTemplate does not
o↵er other additional languages features which are sometimes useful for code
generation (cp. limitations of CommentTemplate discussed in Sect. 5).

Instead of developing CommentTemplate, we could have extended or patched
an existing open source code generation solution. However, thanks to model-
driven technology, in particular EMF and JaMoPP, CommentTemplate was de-
veloped in a very short period of time (the initial working version was written
on one afternoon). This way, we obtained a solution that exactly met our re-
quirements with little e↵ort.3

This shows that Eclipse modeling and metamodeling technology can be used
for rapid tool development in a quality that exceeds the level of prototypes.

4.2 CommentTemplate vs. Java libraries

Before we used a code generation tool, we performed code generation with Java
directly. In fact, all templates (approx. 230) of our modeling tool EMFText [14]
are written in plain Java. The code of these templates bears a likeness to compiled
CommentTemplate code (cp. Listing 3). To make it better readable, we wrote a
small Java library that helped us with the formatting. However, the main issue
remains, which is that there is no way to write a block of output code as a String
in Java, since Strings do not support multiple lines. This renders the templates
di�cult to write and read, because there is a lot of boilerplate between the lines.4

Consequently, multi-line template fragments is the feature that Comment-
Template provides, which a Java library alone can not provide. Although, we do
not extend the Java syntax, we use an existing element of the syntax — multi-
line comments — for this feature, by altering the semantics of this element. The
advantage of avoiding syntax extensions is that the existing tooling can be used
without adjustment. Such an adjustment, in case of the JDT, would be possible
but complex, time consuming and error prone; let alone that other Java IDEs
would also need adjustment.

Nevertheless, altering the syntax of an existing element can be di�cult or
even dangerous. For multi-line comments, however, this is not the case. From
the compilers point of view, comments have no existing semantics. From a user’s
point of view, there is still the alternative of single-line comments (//) to use
inside @CommentTemplate methods. Furthermore, outside of @CommentTemplate
methods, no new semantics are given to multi-line comments.

3 Currently, we use CommentTemplate for example to implement the generator of our
Hibernate DSL HEDL [13] (which in turn is used in multiple customer projects) and
for our HTML5/JavaScript based company website http://www.devboost.de.

4 The minimal way to write multi-line Strings in Java is to use String concatenation
with the plus (+) operator, which still requires opening and closing the String in each
line with quotes (").

99

5 Limitiations and Future Work

As described in the previous section, we designed CommentTemplate as a min-
imal extension to Java that met our requirements for a code generation tool.
Compared to other code generation languages, CommentTemplate misses cer-
tain features. Currently, we believe that these features are out of scope for Com-
mentTemplate as we discuss in the following.

5.1 Expressions inside Template Code

First, CommentTemplate does not allow complex expressions inside the template
fragments (multi-line comments). Only String variables can be referenced to
inject content into the template. Many code generation languages have an escape
mechanism, which allows the definition of expressions inside an anti-quotation.

In cases where the @VariableAntiQuotation annotation is used in Com-
mentTemplate, we could also support arbitrary Java expressions. For this, we
would need to extend the CommentTemplate compiler such that it takes the
String from the anti-quoted part and parses it as an expression. Since most of
the tooling for this is provided by JaMoPP already, implementing this would
probably be possible with reasonable e↵ort.

Currently however, we feel that this feature is not necessary. One can always
define a new local variable and derive its value with an arbitrary expression.
This forces the developer to keep the template fragments clean from complex
calculations. A similar separation of data calculation and template code is also
deliberately enforced by StringTemplate [8] with the same argument. However,
future experiences with CommentTemplate might lead us to rethink this issue.

5.2 Support for closures/lambda expressions

Most of the mentioned code generation languages provide closure/lambda expres-
sion support. Many rely on OCL, or a variant of it, for this. This is convenient
in code generation, for example to iterate collections or to map a collection of
Objects to a collection of Strings.

We agree that this is a helpful language feature for code generation, but also
for other tasks. Thus, we see the responsibility to provide such features at Java
itself and they might indeed be provided in Java 8 [15]. Currently, Java classes
that use CommentTemplate can be combined with other JVM-based languages
which already provide such features such as Scala [16] or Xtend2 [5]. However,
this does not allow to use features of these languages and CommentTemplate
inside the same class. For this, the CommentTemplate would need to be ported
to work directly on the source of these languages.

5.3 Future Development

In the future, we plan to add some additional Eclipse tool support for Comment-
Template. Although, the existing JDT tooling can be reused without extension,

100

the usability of CommentTemplate can be improved. For instance, when anti-
quotation is used, CommentTemplate can report errors about variables that do
not exist directly in the source (currently these errors are only seen in the com-
piled version) and could o↵er code completion for variables inside templates.
Since JaMoPP/EMFText do already o↵er infrastructure to add this kind func-
tionality, we will constantly improve on it.

Furthermore, we plan to port the templates of EMFText, which are currently
written in plain Java (cp. Sect. 4.2), to CommentTemplate. This gives us the
possibility to further assess CommentTemplate on a collection of 230 templates.

6 Related Work

CommentTemplate was motivated by the functionalities and ideas behind exist-
ing code generation languages and language features such as JET, EGL, Acceleo,
Xpand, Xtend2, MOFScript Velocity, StringTemplate or JSP [1–9]. The idea of
compiling the templates to Java source code can be found in JET [1], Xtend2 [5]
and JSP [9]. The separation of template and output formatting by a smart
handling of tab characters was adopted from Xtend2 [5]. The limitation that
CommentTemplate does not support expressions inside templates, can be seen
as a strength which forces the user to separate model and view as publicized by
StringTemplate [8]. Unique to CommentTemplate is its closeness to Java and
its lightweightness reflected in its low number of new features added to Java
and the fact that compiled templates consist of plain Java code without any
dependencies despite Java itself.

7 Conclusion

This paper demonstrated CommentTemplate, a light-weight Java language ex-
tension for code generation. CommentTemplate is developed with Eclipse mod-
eling technology on the basis of EMF and JaMoPP. It is an example of both a
powerful, stable tool that is developed in short time thanks to Eclipse modeling
technology and a tool that brings important concepts of model-driven develop-
ment closer to the programming world.

Installation Instructions and Screencast

CommentTemplate can be installed from the DropsBox update-site available at
http://www.dropsbox.org/update_trunk (category CommentTemplate).
A screencast of the CommentTemplate installation and usage is available at
http://www.dropsbox.org/CommentTemplate

101

Acknowledgments

This work is supported by:

References

1. Eclipse Foundation: JET Project. www.eclipse.org/emft/projects/jet (April 2012)
2. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The Epsilon Generation

Language. In: Proc. of ECMDA-FA’08. Volume 5095 of LNCS., Springer (2008)
3. Eclipse Foundation: Acceleo Project. www.eclipse.org/acceleo (April 2012)
4. Eclipse Foundation: Xpand Project. www.eclipse.org/modeling/m2t/?project=xpand

(April 2012)
5. Eclipse Foundation: Xtend Project. www.eclipse.org/xtend (April 2012)
6. Eclipse Foundation: MOFScript Project (April 2012)
7. Apache Software Foundation: Apache Velocity Project. velocity.apache.org (April

2012)
8. Parr, T.: StringTemplate. www.stringtemplate.org (April 2012)
9. Oracle: JavaServer Pages Technology. www.oracle.com/technetwork/java/javaee/jsp

(April 2012)
10. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between

Modelling and Java. In: Proc. of SLE’09. LNCS, Springer (March 2010)
11. DevBoost GmbH and Software Technology Group Dresden: The Dresden Open

Software Toolbox (DropsBox). www.dropsbox.de (April 2012)
12. DevBoost GmbH: DevBoost Website). www.devboost.de (April 2012)
13. DevBoost GmbH and Software Technology Group Dresden: HEDL - Hibernate

Entity Definition Language. www.emftext.org/language/hedl (April 2012)
14. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and

Refinement of Textual Syntax for Models. In: Proc. of ECMDA-FA’09. Volume
5562 of LNCS., Springer (June 2009) 114–129

15. Java Community Process: JSR 337: Java SE 8 Release Contents.
www.oracle.com/technetwork/java/javaee/jsp (April 2012)

16. École Polytechnique Fédérale de Lausanne (EPFL): The Scala Programming Lan-
guage. www.scala-lang.org (April 2012)

102

Model2Roo: Web Application Development based

on the Eclipse Modeling Framework

and Spring Roo

Juan Castrejón1, Genoveva Vargas-Solar2, and Rafael Lozano3

1 Université de Grenoble, LIG-LAFMIA,
2 Centre National de la Recherche Scientifique, LIG-LAFMIA

681 rue de la Passerelle, Saint Martin d’Hères, France
{Juan.Castrejon, Genoveva.Vargas}@imag.fr

3 Instituto Tecnológico y de Estudios Superiores de Monterrey,
Campus Ciudad de México, Calle del Puente 222, México, México

ralozano@itesm.mx

Abstract. Inherent complexity in web application development is con-
tinually increasing, due to technical challenges, like new programming
frameworks and tools. In this context, model-driven techniques can cu-
rrently be used to guide the development of web systems, by focusing
on different levels of modeling abstractions that encapsulate both imple-
mentation details and the definition of system requirements. This paper
presents Model2Roo, a tool intended for Java web application develop-
ment, that relies on the Eclipse Modeling Framework and on the Spring
Roo project. In particular, this paper outlines key issues highlighted by
previous users of the tool, and demonstrates recent implemented features.

1 Introduction

Web application development is one of the most evolving industries in software
engineering [3]. However, this evolution also represents an increased complexity
in functional and non-functional requirements associated to web applications [3].
In this environment, software engineers need to constantly evaluate new technical
solutions for the development and maintenance of web applications, including a
wide variety of programming languages, frameworks and tools.

To help overcome this complexity, the Model2Roo [1] project was presented
in early 2011. Model2Roo uses a model-driven approach, in particular Model to
Text (M2T) techniques, to transform UML and Ecore [10] class diagrams into
appropriate Spring Roo commands [9], which can then be used to generate a full-
blown Java web application. The generated applications are automatically built
with a set of architecture patterns and industry best practices [9], and contain
not only the static structure of the system, but also comprehensive support for
the functionality associated to the Spring Framework module4. Model2Roo has
also been available as an open-source tool since early 20115.
4 http://www.springsource.org/
5 http://code.google.com/p/model2roo/

103

This paper describes related work (Section 2), the main issues encountered
by previous users of the tool (Section 3), demonstrates implemented features
(Section 4), and finally, outlines conclusions and future work (Section 5).

2 Related work

Web application development based on model-driven techniques is a widely re-
searched topic in software engineering. Representative results of this research
include the Web Modeling Language (WebML) [2] and the UWE approach [5].
Both projects provide tool support to generate fully functional web applications,
including not only presentation content, but also complex navigation features.

In comparison, tool support for Model2Roo is not yet as complete and mature
as the one provided by similar projects, however the main advantage of our tool
is that it provides an association to modern application development tools, by
means of the Spring Roo project. As a result, developers can easily access the
full potential of the Spring framework, and associated projects.

3 Previous tool issues

Three main issues have consistently been highlighted by previous users of the
tool: (i) Insufficient support for graphical environments; (ii) Basic edition of
Spring Roo properties; and, (iii) Troublesome installation procedure.

The first issue, support for graphical environments, was mainly associated to
the use of UML tools within the Eclipse Modeling Framework (EMF). In this
case, though Model2Roo could generate Spring Roo commands either from Ecore
and UML files, users found it troublesome to generate these files with the basic
UML and Ecore Model Editors [10], and wanted to use more complex tools,
such as Papyrus [8]. However, when trying to use Papyrus to generate UML
class diagrams, several incompatibilities with our tool were discovered, such as
inappropiate use of numeric data types.

Model2Roo allows the specification of Spring Roo properties through Ecore

Annotations and UML Profiles. However, in previous versions of the tool, the
value for each property could only be set as free text. This led to subtle errors,
such as assigning a String value to a property that required a numeric value,
but more importantly, users that were not familiar with Spring Roo, did not
know the possible domains for each property. For example, consider the property
debugLevel, that configures the level of application debug traces. In previous
versions of the tool, users had to know that this particular property could only
be assigned one of the following values: Debug, Info, Warn, Error and Fatal.

The third issue highlighted by the users, was a troublesome installation of the
tool. In this regard, though Model2Roo was distributed as a single plugin file,
the main issue was the installation of the required dependencies, in particular,
users were required to manually install the ATL [4] and Papyrus distributions.

These three main issues have been fixed in the last version of the Model2Roo
tool. The details will be demonstrated in the following section.

104

4 Features demonstration

This section demonstrates the Model2Roo features, using the Spring PetClinic
sample application6. This system is intended for clinic employees who need to
view and manage information regarding veterinarians, clients, and pets.

A screencast detailing this demonstration is available in the project web
site7. To try this demonstration locally, install Spring Roo, an Eclipse Modeling
distribution8, and finally, Model2Roo, using the project update site9.

It should be noted that the update site already references all of the features
that are required to execute Model2Roo, both over Ecore and UML projects.

To generate the test application, we must define a class diagram containing
the system Classes and Enumerations, as well as their properties and the asso-

ciations between them. In this case, we are going to use the Papyrus project,
applying the rooCommand and rooStructure UML profiles, which are part of the
Model2Roo installation. Fig. 1 depicts a fragment of the resulting class diagram.

Fig. 1. Fragment of the PetClinic class diagram.

As opposed to previous versions of Model2Roo, the current version fully sup-
ports Papyrus profiles. As a consequence, property values can now be specified
using drop-down menus. Also, in the current version of Model2Roo, the Acceleo
project [6] is used to generate the Spring Roo commands that correspond to
UML diagrams, as opposed to ATL queries in previous versions. This change
was motivated to increase maintainability, considering that Acceleo provides an
implementation of the MOF Model to Text Language (MTL) standard [7].

Finally, the generated commands can be executed by the Spring Roo console,
in order to create the corresponding Java web application, as depicted in Fig. 2.
6 http://static.springsource.org/docs/petclinic.html
7 http://code.google.com/p/model2roo/
8 http://eclipse.org/downloads/packages/eclipse-modeling-tools/indigosr1
9 http://model2roo.googlecode.com/svn/trunk/fr.imag.model2roo.update.site/

105

Fig. 2. Generated web application.

5 Conclusions and Future work

This paper described Model2Roo, a tool for web application development that
relies on UML and Ecore class diagrams, in order to generate Spring Roo com-
mands. The main issues highlighted by previous users were discussed, as well
as recent implemented features. Support for the full gamut of Spring Roo com-
mands is intended for future work.

Acknowledgments

This work is funded by the French National Research Agency, through the
UBIQUEST project (http://ubiquest.imag.fr) ANR-09-BLAN-0131-01, and by
the STIC-AMSUD program, within the CLEVER project (http://clever.imag.fr).

References

1. Castrejón, J., López-Landa, R., Lozano, R.: Model2Roo: A Model Driven Approach
for Web Application Development based on the Eclipse Modeling Framework and
Spring Roo. In: Electrical Communications and Computers (CONIELECOMP),
2011 21st International Conference on. pp. 82 –87 (March 2011)

2. Ceri, S., Fraternali, P., Bongio, A., Brambilla, M., Comai, S., Matera, M.: Designing
Data-Intensive Web Applications. Morgan Kaufmann, San Francisco, CA (2003)

3. Jazayeri, M.: Some Trends in Web Application Development. In: Future of Software
Engineering, 2007. FOSE ’07. pp. 199 –213 (May 2007)

4. Jouault, F., Allilaire, F., Bézivin, J., Kurtev, I.: ATL: A model transformation
tool. Science of Computer Programming 72(1-2), 31–39 (June 2008)

5. Kraus, A., Knapp, A., Koch, N.: Model-Driven Generation of Web Applications in
UWE. In: 3rd International Workshop on Model-Driven Web Engineering (2007)

6. Obeo: Acceleo. http://www.eclipse.org/acceleo/ (November 2011)
7. Object-Management-Group: MOF Model to Text Transformation Language, v1.0.

http://www.omg.org/spec/MOFM2T/1.0/ (January 2008)
8. Papyrus: Papyrus. http://www.eclipse.org/modeling/mdt/papyrus/ (April 2012)
9. SpringSource: Spring Roo. http://www.springsource.org/spring-roo/ (May 2012)

10. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling
Framework. Addison-Wesley Professional, Boston, Massachusetts, 2nd edn. (2008)

106

 107

 108

The Fourth Workshop on

Behaviour Modelling -

Foundations and Applications

Ella Roubtsova1,
Ashley McNeile2,
Ekkart Kindler3,
Mehmet Aksit4

1 Open University of the Netherlands,
ella.roubtsova@ou.nl
2 Metamaxim Ltd,UK,

ashley.mcneile@metamaxim.com
3 Technical University of Denmark,

eki@imm.dtu.dk
4 TU Twente, the Netherlands,

aksit@ewi.utwente.nl

Dynamics of changes and trends of todays systems show the growing role
of behaviour modelling in system life cycle. Growing variety of E-businesses: E-
commerce, E-logistics, E-procurement, E-government and collaborative services
result in the consequent emphasis on well defined interaction between software
components, importance of interfaces, contracts and service level agreements in
defining and managing behavioural system integration both within and across
organizational boundaries. New and new processes are covered with services
accumulating business intelligence to work with the Cloud.

Does the changes in software system size and architecture influence the re-
quirements for the behaviour modelling paradigms? Are there elements of system
behaviour that we need to model but cannot model easily? What kind of analysis
has to be fulfilled on models? These and other related questions are discussed at
the Fourth International Workshop on Behaviour Modelling - Foundations and
Applications.

After the evaluation of existing modelling paradigms during the three previ-
ous workshops the Fourth Workshop is aimed to analyse the requirements for the
behaviour modelling paradigms formulated by the new trends in system design
and organization. The workshop will focus its discussion on the need of design
of interactive systems of independently maintained services and has an aim to
formulate requirement patterns for the behaviour modelling techniques used in
different domains of behaviour modelling.

109

Organizing Committee

– Ella Roubtsova, Open University of the Netherlands
– Ekkart Kindler, Technical University of Denmark
– Ashley McNeile, Metamaxim Ltd, UK
– Mehmet Aksit. TU Twente, the Netherlands

110

Program Committee

– Mehmet Aksit, TU Twente, the Netherlands
– Louis Birta, University of Ottawa, Canada
– Behzad Bordbar, University of Birmingham, UK
– Ghizlane El Boussaidi, Ecole de technologie suprieure. Canada
– Joao M. Fernandes, Universidade do Minho, Portugal
– Luis Gomes, Universidade Nova de Lisboa, Portugal
– Reiko Heckel, University of Leicester, UK
– Ekkart Kindler, Technical University of Denmark
– Ashley McNeile, Metamaxim, UK
– Michel Reniers, TU Eindhoven. The Netherlands
– Ella Roubtsova, Open University of the Netherlands
– Bernhard Rumpe, Aachen University, Germany
– Gefei Zhang . Arwato Systems GmbH, Munich Area, Germany

111

Table of Contents

1. Defining and Verifying Behaviour of Domain Specific Language with fUML
Qinan Lai and Andy Carpenter
School of Computer Science, the University of Manchester

2. Consistency Checking Scenario-Based Specifications of Dynamic Systems
by Combining Simulation and Synthesis
Jens Frieben and Joel Greenyer
Fraunhofer Project Group Mechatronic Systems Design
Software Engineering Department. Paderborn, Germany
DeepSE Group, Dipartimento di Elettronica e Informazione, Milano, Italy

3. The Event Coordination Notation:
Execution Engine and Programming Framework
Ekkart Kindler
Informatics and Mathematical Modelling, Technical University of Denmark

4. Motivation Modelling for Human-Service Interaction
Ella Roubtsova
School of Computer Science. Open University of the Netherlands

5. A Metamodelling Approach to Behavioural Modelling
Adrian Rutle, Wendy MacCaull, Hao Wang, and Yngve Lam
Centre for Logic and Information, St. Francis Xavier University, Canada;
Bergen University College, Norway

112

BM-FA '12, July 03 2012, Kgs. Lyngby, Denmark.

 Defining and Verifying Behaviour of Domain Specific

Language with fUML

Qinan Lai and Andy Carpenter

School of Computer Science, the University of Manchester

laiq@cs.man.ac.uk, Andy.Carpenter@manchester.ac.uk

Abstract. The behavioural semantics of a Domain Specific Language (DSL)

are the instructions on how to execute the language. In practice, such semantics

are often documented by text, which leads to ambiguity and tool generation

problems. Although some formal frameworks have been proposed to address

these drawbacks, they only allow the correctness of a specification to be tested

at a later stage, usually when the semantics are implemented. This paper pre-

sents a new framework for implementing the behavioural semantics of meta-

model based DSLs and tools. The framework uses the foundational subset of

executable UML (fUML) as its semantic base, and uses the fUML meta-model

for modelling the abstract syntax and operational semantics of a DSL. The se-

mantics specification can be verified at design time without the need to execute

behaviour models. Thus, it can provide useful feedback to the DSL designer.

The framework is demonstrated in a Petri-net example.

1 Introduction

In Model-Driven Development, it is common to define a Domain Specific Language

(DSL) for an application domain. A DSL definition consists of four parts [11]. The

first one is abstract syntax, which defines the concepts of the language; it is often

defined as a meta-model. The second part is concrete syntax, which defines the nota-

tions for representing these concepts. The notations could be developed with plenty of

tools, such as Graphiti
1
 for graphical syntax and Xtext [8] for textual syntax. The third

part is static semantics. It adds further well-formedness rules to the language con-

cepts; this can be achieved by using OCL constraints. The last part is behavioural

semantics that defines how to execute a DSL program. Unfortunately, there is no

universally agreed way to define the behavioural semantics. It is still unclear how to

produce a high quality specification of behavioural semantics for a DSL [4].

Two challenges must be solved when defining the behavioural semantics of a DSL.

The first challenge is that it is difficult to describe the behavioural semantics [4]. In-

formal descriptions lead to ambiguous and non-analysable specification. On the other

hand, existing formal approaches have still not gained wide support. One of the possi-

ble reason is they are hard to learn. The other challenge is how to maximise the qual-

1 http://www.eclipse.org/graphiti/

113

http://www.eclipse.org/graphiti/

ity of the semantics specification, or in other words, minimise the defects in the speci-

fication [23].

Although a number of approaches to defining the behavioural semantics have been

proposed, none of them addresses both of these challenges. For example, translational

semantic and formal semantic frameworks require the DSL designers to combine an

understanding of technological spaces with mathematical knowledge; but they can

provide a better tool chain for verification. Whereas, weaving behaviour approaches

uses an action language for capturing the behavioural semantics, which is easier to

learn and use, but there is a lack of research on how to verify properties of the lan-

guage.

In this paper, a new framework for defining DSLs is presented, with particular em-

phasis on behavioural semantics. Our framework aims to address both of the high-

lighted issues; firstly, the approach applies an intuitive and widely used notation for

expressing behavioural semantics, thus making it easier to understand for both lan-

guage designers and domain experts. Secondly, the framework allows language de-

sign-time validation of the DSL, which can detect and help fix anomalies in semantics

specification. This validation includes static verification and integrated formal verifi-

cation.

Our approach uses the newly published OMG standard foundational subset of ex-

ecutable UML (fUML) [13] and action language for fUML (ALF) [12] as the defini-

tion language. Due to its adoption of UML graphical syntax and ALF scripts, the

method only demands limited prerequisite knowledge. It is also possible to integrate

existing methods for verifying UML behavioural models; verification at design time

helps to assure the quality of the semantics specification. In addition, how to add ad-

ditional static verification rules to our framework is demonstrated. Finally, a fUML

executor can take the language specification and a DSL program (an instance model)

as inputs; whether the behaviours of the DSL are expected can be tested by reading

the outputs of the executor.

The contributions of the paper are listed below. Firstly, we proposed a new way for

defining both the syntax and semantics aspects of a DSL by OMG standards. Com-

pared to existing weaving behaviour approaches such as Kermeta [3] and XOCL[5],

our approach support a richer vocabulary, including parallel, signal send/receive and

sequence expressions. Secondly, in the framework, the ALF code editor, the trans-

formation from ALF code to fUML model, and the model merger that combines the

behavioural aspects and structural aspects are implemented by us. Among them, the

transformation is the first one that can translate most of the concepts defined in ALF

standard.

Paper organisation. The second section summarises the work related to the two

challenges of behavioural semantics development. The third section describes how

our fUML-based framework addresses both these challenges. Furthermore, the tech-

nical details of the framework are discussed in this section. Section 4 demonstrates

our framework by specifying and verifying the behavioural semantics of a Petri net

language. The last section concludes the paper with discussion of further work.

114

2 Related works

This section discusses existing approaches to defining the behavioural semantics of

DSLs and minimising defects in these specifications.

2.1 Behavioural Semantics Specification

A formally specification of the behavioural semantics of a language helps avoid am-

biguities between language designers and users; it also makes automatic tool genera-

tion possible [4]. Existing approaches can be categorised as translational approaches

and operational approaches.

Translational approaches map DSL behavioural concepts to a language that is in-

tended for the definition of semantics (a semantic domain); semantic domains include

Abstract State Machine [9], Alloy [16] and Maude [15]. The advantage of this ap-

proach is that existing tools associated with the semantic domain such as simulators,

verifiers and compilers can be used; disadvantages of translational approaches include

that the DSL developer must be an expert in both the application and semantic do-

mains. It is also hard to define the mapping between the two domains. In comparison,

our approach does not require DSL developers to understand a semantic domain or a

mapping to a semantic domain.

Operational approaches derive from the idea of Plotkin’s structural operational se-

mantics [18]; with behavioural semantics defined as transition rules between system

states. The original notation was a mathematical language that was not easy to learn

or execute on a platform. Later works use graph transformation [7], general model-to-

model transformation language [25] or an action language (also known as weaving

behaviour approach) for describing the transition rules.

Researchers are using graph transformation for building the operational semantics

of DSLs, for example the Dynamic Meta Modelling (DMM) [14] approach. When

compared to translational approaches, graph transformation provides an intuitive

mechanism for capturing operational semantics; additionally, its mathematical foun-

dation makes it possible to analyse certain properties of descriptions. Although graph

transformation represents a promising approach, it does have limitations [19] in par-

ticular learning curve for language designers, scalability (dealing with large models),

maturity, and tool support. Our approach provides maintains the intuitive interface of

the graphical transformation approaches while combining this with a better tool chain

support.

Weaving behaviour approaches use an action language to describe operational se-

mantics. Consequently, their usability depends on the capabilities of the action lan-

guage. For instance, Kermeta [3], XOCL [5], and [24] use bespoke action languages

that are unfamiliar to DSL developers and on which limited work has been done on

design time verification of the semantics that they capture. In comparison, our work

uses OMG standard language with which developers should be more familiar. Addi-

tionally, our chosen language includes more abstract concepts such as parallel block

and signal sending/receiving which avoids the need to compose these from similar

primitives.

115

Scheidgen and Fischer [20] use an UML activity diagram like notation for captur-

ing behavioural semantics. However, their notation is only UML-like and they use

their own implementation of CMOF of the defining the meta-model, the result is that

their work does not integrate easily into existing tool chains. Furthermore, their work

does not highlight any further work for verification. Compared to them, our approach

provided better tool support and support more concepts in UML. Thus, it offers the

prospect of a seamless tool chain for DSL development that combines the syntax and

semantics defined together with verification to detect anomalies in the language defi-

nition.

2.2 Minimising defects in the Behavioural Semantics Specification

In section 2.1, the benefits of having a behavioural semantics specification were

summarised. However, they can only be achieved when the specification is correct. In

fact, some formal semantics specification, such as the Specification and Description

Language (SDL), contains a large amount of errors [10]. While minimising defects is

an important issue in developing DSLs, limited work has been done on the checking

of semantics specification. Soltenborn and Engels [23] propose the application of

Test-Driven Development (TDD) principles. This approach requires the execution of

DSL programs; thus, its coverage is dependent on the tests used. Combemale et. al.

[6] illustrated an idea to develop reference semantics for the original semantics, thus

the DSL has one translational and one operational semantics. Using different ap-

proaches means that misunderstanding can be identified.

These approaches are methodologies for assuring the quality of semantics specifi-

cation and have the potential for fulfilling their aim. However, they are not suffi-

ciently simple to ensure that this would be the case when they are applied in a practi-

cal situation.

In practice, static verification is widely applied in developing software using gen-

eral-purpose languages. Methods such as type system, dataflow analysis, model

checking, logic based approaches and approaches based on pattern matching can de-

tect potential or actual errors, enforce the developers to apply good programming

style, and report bad practice [21]. Weaving behaviour approaches are criticised for

their similarity to applying general-purpose language. On the other hand, it can be

seen as a benefit, because known approaches in general-purpose languages can be

adapted to use. To our knowledge, no work has provided a lightweight static verifica-

tion tool for DSL behavioural semantic specification in the way that we propose.

3 DSL Behavioural Semantics as Behavioural Models

Whether creating a DSL from scratch or formalising an existing one, applying a

Model-Driven approach makes developing DSL and its tools simpler than traditional

approaches based around manipulating an abstract syntax tree. The abstract syntax of

a DSL is captured as a meta-model. The languages for meta-modelling such as MOF

or Ecore reuse the concepts and notations of UML class diagrams. Furthermore, UML

116

is not only a language for modelling structural aspects; it also provides languages for

behaviour modelling. However, UML behaviour diagrams are a family of modelling

languages; their semantics are defined as text and many semantic variation points still

remain. Because different UML CASE tools provide different execution semantics of

UML activities, UML activity diagrams and action scripts are not compatible. To

capture the behavioural semantics of a DSL using UML would result in a language

valid for one particular UML dialect. This makes using UML for behavioural seman-

tics modelling the same complexity as using a special modelling framework such as

Kermeta or XOCL.

3.1 fUML and ALF

The new OMG standard fUML (and its action language, ALF), which is almost

finalised, is intended to give UML formal execution semantics. It defines a basic sub-

set (bUML) and its axiomic semantics using Process Specification Language (PSL)

[2]. The semantics of bUML are first-order logic axioms that constrain bUML con-

cepts to the process concepts defined in PSL. These basic models serve as vocabulary

for defining the operational semantics of a larger subset of UML activities and ac-

tions. Therefore, fUML execution model is a model of itself; just like a meta-meta-

model that could be used for define behaviour models. fUML specification gives exe-

cution semantics to three packages: CommonBehaviors, Activities and Ac-

tions. Although some behaviours existed in UML are excluded from fUML, it still

provides behaviour models in a platform-independent and abstract way.

The ALF language can be seen as a textual notation of fUML. Its primary goal is

for specifying executable behaviours that are not amenable to the UML graphical

notation, or there is no nominated graphical notation (e.g. LoopNode) for the concept.

Basic syntax of ALF is a Java-like syntax that is familiar to behaviour modelling

community. It also supports the syntax of UML such as colon for type and double

colon for qualified names. When dealing with sequences, ALF support OCL-like

syntax, such as select/reject/collect [12]. It does not have any naming

constraints; names could be declared as a string that contains any possible character.

Therefore, the UML graphical model does not need to change any names. ALF syntax

is easy to understand and learn when users have done some UML/OCL/Java before-

hand. The execution semantics of ALF is defined by translating ALF meta-concepts

to fUML, ALF code could be compiled to fUML; hence, semantically ALF code has

no difference between fUML behaviour models. The concept of ALF code and fUML

model will be treated as the same concept in the following part.

fUML has shown its ability to define the semantics of general purpose languages

by defining its own behaviour. Hence, as a DSL usually has a simpler syntax and

semantics than a general purpose modelling language, it is possible to use fUML to

model a complete language definition [22].

A complete language specification based on fUML can gain these benefits: (1)

well-known benefits of model-driven development can be achieved because the lan-

guage specification is fully model-based; we can reuse, translate, validate these mod-

els or generate code from it. (2) fUML has execution semantics, which makes verifi-

117

cation at design time possible. Language designers can test their models as early as

creating them rather than finding design errors when implementing a compiler or

interpreter. (3) Unlike other action language based approaches, much research has

been done in UML behaviour modelling, including theory on how to verify particular

property or tools for composing models. Existing knowledge can be adapted to fUML

with a small effort, because a fUML model is still a valid UML model. (4) fUML

models can be represented by the UML graphical syntax, which is intuitive for the

users (domain experts) to understand.

3.2 Framework overview

To gain the benefits mentioned before, our framework (Fig. 1): works like this

Fig. 1. Overview of fUML behavior semantics framework

1. The language designer creates the language specification using any UML CASE

tool that supports UML2. The abstract syntax is modelled as a class diagram and

the behaviours are modelled as activity diagrams. Complex operations that are

cumbersome to create using the graphical syntax can be written in ALF.

2. The abstract syntax (class diagram) can be imported, as an Ecore model, into the

Eclipse Modeling Framework (EMF), where tools, such as Xtext or Graphiti, can

be used to create the concrete syntax of the DSL.

118

3. ALF code is transformed to fUML behaviour model through an ATL model-to-

model transformation. This transformed model and the abstract syntax model are

then woven together using a simple model merger.

4. Currently the framework can perform static verification (such as [17] for executa-

bility, and we proposed to implement our own static verifier later) in the fUML

models. Feedback helps to reduce design error as early as possible.

5. The above steps support the DSL developer in defining their language and creating

the tooling needed to support the execution of a DSL program. An end-user’s DSL

program is transformed into a model that becomes instance data for the behavioural

model executed by the fUML execution engine.

To be clear, the complete framework has not been finished yet. In the next section,

details of the implementations are introduced.

3.3 Compilative Execution of ALF

ALF standard [12] defines three types of Semantic Conformance of ALF: Interpre-

tive Execution, Compilative Execution, and Translational Execution. Interpretive

execution means that the executor directly interprets ALF code. Compilative Execu-

tion transforms ALF code to fUML models which are then executed. Translational

Execution translates ALF code to another language which is then run to execute it. As

our framework allows a combination of textual ALF and graphical UML syntax,

Compilative Execution is used. Unfortunately, no tool is currently available that can

editing of ALF code and its compilation to fUML. To give the DSL designers the

ability to use ALF as an action language for describing semantics, such a tool is im-

plemented as part of our tool chain.

Fig. 2. Transformation from ALF to fUML

Xtext is used to create an ALF code editor. As Xtext is part of EMF, the process

shown in Fig. 2 can be used to create an equivalent fUML model.

To ensure that the ALF grammar is not LL recursive, the Ecore model generated

by Xtext is very verbose. Moreover, the mapping between the grammar model and

fUML is not specified. The second transformation transforms a grammar instance

model to an instance of the ALF meta - model. In this process, verbose structures in

119

the grammar model are simplified. This is equivalent to the difference between a

parsed tree and an abstract syntax tree in programming language development.

To illustrate the process, here is an example.

activity test(){
 startA();
 //@parallel
 {
 startB();
 startC();
 }

 }

Fig. 3. Result of the example

Assume that startA, startB, and startC are pre-defined by UML graphical

syntax. The activity test firstly calls the activity startA. Then startB and

startC are started in parallel. In the example only InvocationExpression,

Statement and AnnotatedStatement are included. Therefore, the Grammar

meta model and ALF meta-model are similar. Due to the meta model are too large,

they are not included in the paper.

The last transformation transforms ALF models to fUML models. The mapping

rules are specified in ALF standard. The resulted fUML model is represented in Fig.

3. An ALF statement maps to a StructuredActivityNode, and the

120

InvocationExpression is mapped depends on what is really invocated. In our

case it is mapped to an CallBehaviorAction in fUML. A normal block is

mapped as each of the statements become a StructuredActivityNode, and

each of them has a ControlFlow between them. A parallel block is the same, only

without the ControlFlow between them.

Finally, the models in Fig. 3 is merged to the models defined as UML diagrams. In

this stage, the internal references are resolved.

3.4 Verification at Design Time

When defining a behavioural semantics specification, incorrect behaviours and po-

tential design anomalies should be identified as early as possible. Leaving these errors

to implementation will lead to higher costs than correct them at design time. Some

certain errors such as deadlock can be identified by model checking or data flow

analysis. Another widely used way for static verification is to define an error pattern

library; the verifier can check whether these patterns exist in the target code. This

lightweight approach is applied by many static code analysers such as Findbug
2
 and

PMD
3
. Apart from the built-in rules, these tools also support to customise the pattern

database by adding new rules that are defined as XPath or Java code. Compared to

them, the targets of our framework are models, not text, thus the languages for defin-

ing rules for text are not easy to apply.

Seifert and Samlaus [21] proposed to use OCL for defining verification rules. It is

suitable for any language that has a meta-model, which is appropriate for our fUML

models. In addition, OCL is a standard technology in model-driven development,

there is no need for the developers to learn a new language. In their approach, OCL is

used to query models and add constraints to models; when a rule is violated, the gen-

erated code editor would report it.

Unused activities. In fUML, the only behaviour that users can customise is Activ-

ity. The Semantics specification is formed with a set of activities. If one activity is

defined but is never called in other activities, this activity is an unused activity. Un-

used activities should be removed when they are redundant. Another possibility is that

the semantics is deficient, additional activities should be added.

The following ATL helper checks whether an activity is used or not. It returns false

when there is no CallBehaviorAction calls the activity.

helper context UML!Activity def: isUsedActivity(): Boolean =

 UML!CallBehaviorAction.allInstances()

 ->exists(e|e.behavior=self);

2 http://findbugs.sourceforge.net/
3 http://pmd.sourceforge.net/

121

http://findbugs.sourceforge.net/
http://pmd.sourceforge.net/

Unused class members. Similarly, when a property of a class is declared, but is never

used in any of the behaviour models, it is defined as an unused member. When an

unused member appears, it is possible that either the member is redundant, or there is

a deficiency in the behavioural semantics.

To check whether a property is an unused member, an ATL helper can be defined

as:

helper context UML!Property def: isUsedProperty(): Boolean =

 UML!ReadStructuralFeatureAction.allInstances()

 ->exists(e|e.structuralFeature=self)

 or UML!AddStructuralFeatureValueAction.allInstances()

 ->exists(e|e.structuralFeature=self);

This helper reports an unused member when there is no action that read or modifies

the class member.

The plan of the static verifier is to establish a library of suspicious models and bad

practices. As the library grows larger, the verifier can report a huge amount of warn-

ing and errors. Thus, an algorithm for controlling false positive is also needed to ex-

plore. The next step of the verification framework is applying formal verification

technology. This could be done by translating the DSL specification to an input lan-

guage of a model checker. For example, [1] proposed a method to translate fUML

models to process algebraic specification language and check the models are deadlock

free. Due to the well established research on UML, other ways of verification, such as

verifying executability and data-flow analysis also exists. Unfortunately, this has not

been integrated with the framework. What are the expected features are still under

research.

4 Petri-Net Example

In the previous sections, the technology basis is introduced. How the proposed

framework could deal with specification and verification challenge is illustrated. In

this section, the abstract syntax and behavioural semantics of a Petri net language is

specified using our framework, then how to verify bad practices in the models and

execute instance models in the executor are demonstrated.

4.1 Petri net language specification

The meta-model of the DSL is firstly developed. Fig. 4 shows the meta-model of a

Petri net language. A Net class contains a set of places and transitions, each

transition has access to its source places (src) and target places (trg). Associations

between Transition and Place is bi-directional, so a Place also has access to its

sources and targets. The property token is an integer number, once all sources of a

Place have a token greater than 0, this Place is active.

122

Fig. 4. Petri net meta-model and behaviour semantics definition

Fig. 5. Activity of step

The necessary operations are also declared in the UML class diagram. It is possible

to use a general-purpose language like Java to specify the body of the operation.

However, general-purpose language can contain too much detail or not sufficient for

123

UML concepts (like associations, multiplicity, and concurrency). In addition, a

graphical language is preferable if the reader is a domain expert – not a programmer.

Therefore, the DSL developer can select whether to use graphical or textual syntax of

fUML by themselves. For example, Fig. 5 presents the graphical part of the behav-

ioural semantics. The activity step firstly finds an active transition (of which all its

source places has a token property that is greater than 0; this done by activity se-

lectActiveTransition), and then makes all the token of source places de-

crease by one (done by activity consume) and all its target places’ token increase by

one (done by activity produce).

The other activities are all presented as ALF programs (see Fig. 6). The activities

are the body of the operations defined in the class diagram. Because they are defined

in separate tools, to be convenient, the class name of the operation is added before

each activity. When using the merger, the activities will be assigned as the method of

the operations that has the same class name and the same operation name. Activity

runUntilDead, isActiveTransition, consume, produce and getAc-

tiveTransition are modelled as ALF script rather than graph diagram. As men-

tioned before, the graphical notation tends to be very verbose for complex behaviour;

equivalent representation in a diagram of OCL-like expressions in ALF, such as se-

lect and forAll, has to be mapped to an expansion region with all its condition

expressions inside that region. Diagrams are preferred when the diagram is intuitive,

but if the diagram is more verbose than a textual representation, and then textual is

preferred.

 The activity runUntilDead use a while loop. It repeats to do the step activity

when there is an active transition. The isActiveTransition returns true if all

tokens of source places are greater than zero. The activity selectActiveTran-

sition returns the first active transition because the semantics of this Petri net is

simplified by always firing the first active transition. The activities consume and

produce modify the token of a fired place.

@class=Net

activity runUntilDead(){

 while (transitions->exists e (e.isActive())){

 step();

 }

}

@class=Net

activity getActiveTransition():Transition{

 return transitions ->select e (e.isActive()).at(1);

}

@class=Place

activity product(){

 token = token + 1;

}

@class=Place

124

activity consume(){

 token = token - 1;

}

@class=Transition

activity isActive(): boolean{

 return src->forAll e (e.token>0);

}

Fig. 6. ALF code

4.2 Reduce Anomalies in Petri net behavioural semantics specification

While creating the behavioural semantics, it is possible that developers made some

flaws in the specification. Without static verification and test in design time, these

flaws could be left until implementation. By using the static verifier, simple defi-

ciency and redundant can be detected. For example, in the Petri net example, the veri-

fier would identify that the activity runUntilDead is never used, because it is the

main activity that executes the net. The verifier also reported that properties tran-

sition_place_0, net in class Place, and transition_place_1, net in

class Transition are never used. This is because the current fUML standard re-

quires an association to be bi-directional, these properties are opposite properties of

used properties.

The logic errors can be identified by testing. For example, the Petri net model can

be created by the Ecore instance model editor, then the behavioural semantics specifi-

cation (fUML models) and the instance are loaded to fUML executor, and whether the

result is expected can be checked.

Now it is possible to relate the example to the overview of the framework defined

in section 3.2. The definition of the DSL responds to the first step mentioned. The

transformation from ALF code to fUML and merged with fUML models (in the ex-

ample, the step() activity) is step three. The verification relates to step 4 and 5.

5 Conclusion and Further work

It is a challenging work to develop a high quality behavioural semantics specifica-

tion for a DSL. In this paper, a new framework for defining behavioural semantics

using the newly published OMG standard fUML is introduced. Tools for supporting

the framework are developed, including an ALF code editor, a transformation from

ALF code to fUML model and a rule-based static verifier. The reference implementa-

tion of fUML is modified to be able to execute an Ecore instance model of a DSL,

whose Ecore model is derived from fUML models.

Two contributions are highlighted here. Firstly, it is true that using UML activity

diagrams or similar notation for capturing behavioural semantics is not a new idea;

nevertheless, this paper is the first one that uses all OMG standard-based technology

for doing that. Secondly, we identified that the existing work for UML behaviour

model verification can be adapted to help to minimise the errors in a semantics speci-

125

fication. Currently the framework only supports to report some structural errors, for

example, unused models and empty models. General model attributes, such as check-

ing deadlocks, reachability and other properties requiring model checking are left as

future works of this project.

References

[1] Islam Abdelhalim, James Sharp, Steve Schneider, and Helen Treharne. Formal

verification of tokeneer behaviours modelled in fuml using csp. In Jin Dong and

Huibiao Zhu, editors, Formal Methods and Software Engineering, volume 6447 of

Lecture Notes in Computer Science, pages 371–387. Springer Berlin / Heidelberg,

2010.

[2] Conrad Bock and Michael Gruninger. Psl: A semantic domain for flow models.

Software and Systems Modeling, 4:209–231, 2005.

[3] Lionel Briand, Clay Williams, Pierre-Alain Muller, Franck Fleurey, and Jean-

Marc Jézéquel. Weaving Executability into Object-Oriented Meta-languages, volume

3713 of Lecture Notes in Computer Science, pages 264–278. Springer Berlin / Hei-

delberg, 2005.

[4] B.R. Bryant, J. Gray, M. Mernik, P.J. Clarke, R.B. France, and G. Karsai. Chal-

lenges and directions in formalizing the semantics of modeling languages. Computer

Science and Information Systems, 2011 OnLine-First(00):–, 2011.

[5] Tony Clark, Paul Sammut, and James Willans. Applied metamodelling: A foun-

dation for language driven development, second edition, 2008.

[6] Benot Combemale, Xavier Crégut, Pierre-Loc Garoche, and Xavier Thirioux.

Ëssay on semantics definition in mde - an instrumented approach for model verifica-

tion. Journal of Software, 4(9):943–958, 2009.

[7] Juan de Lara and Hans Vangheluwe. Defining visual notations and their manipu-

lation through meta-modelling and graph transformation. Journal of Visual Lan-

guages & Computing, 15(3-4):309–330, 2004.

[8] S. Efftinge and M. Völter. oaw xtext: A framework for textual dsls. In Workshop

on Modeling Symposium at Eclipse Summit, volume 32, 2006.

[9] Angelo Gargantini, Elvinia Riccobene, and Patrizia Scandurra. A semantic

framework for metamodel-based languages. Automated Software Engineering,

16(3):415–454, 2009.

[10] U. Glässer, R. Gotzhein, and A. Prinz. The formal semantics of sdl-2000: Status

and perspectives. Computer Networks, 42(3):343 – 358, 2003.

[11] R.C. Gronback. Eclipse modeling project: a domain-specific language toolkit.

The Eclipse series. Addison-Wesley, 2009.

[12] Object Management Group. Action language for foundational uml (alf) 1.0 -

beta 1. www.omg.org/spec/ALF/, 2010.

[13] Object Management Group. Semantics of a foundational subset for executable

uml models (fuml), version 1.0. http://www.omg.org/spec/FUML/1.0/, 2011.

[14] JH Hausmann. Dynamic meta modeling: a semantics description technique for

visual modeling languages. PhD thesis, Universität Paderborn, Germany, 2005.

126

[15] Peter Őlveczky, José Rivera, Francisco Durán, and Antonio Vallecillo. On the

Behavioral Semantics of Real-Time Domain Specific Visual Languages, volume 6381

of Lecture Notes in Computer Science, pages 174–190. Springer Berlin / Heidelberg,

2010.

[16] Pierre Kelsen and Qin Ma. A lightweight approach for defining the formal se-

mantics of a modeling language. In Krzysztof Czarnecki, Ileana Ober, Jean-Michel

Bruel, Axel Uhl, and Markus Völter, editors, Model Driven Engineering Languages

and Systems, volume 5301 of Lecture Notes in Computer Science, pages 690–704.

Springer Berlin / Heidelberg, 2008.

[17] Elena Planas, Jordi Cabot, and Cristina Gomez. Lightweight verification of ex-

ecutable models. In 30th International Conference on Conceptual Modeling (ER

2011), 2011.

[18] G. D. Plotkin. A structural approach to operational semantics, 1981.

[19] Arend Rensink. The Edge of Graph Transformation - Graphs for Behavioural

Specification, volume 5765 of Lecture Notes in Computer Science, pages 6–32–32.

Springer Berlin / Heidelberg, 2010.

[20] Markus Scheidgen and Joachim Fischer. Human comprehensible and machine

processable specifications of operational semantics. In Proceedings of the 3rd Euro-

pean conference on Model driven architecture-foundations and applications,

ECMDA-FA’07, pages 157–171, Berlin, Heidelberg, 2007. Springer-Verlag.

[21] M. Seifert and R. Samlaus. Static source code analysis using ocl. In J. Cabot and

P Van Gorp, editors, Proc. of the MoDELS 2008 Workshop on OCL Tools: From

Implementation to Evaluation and Comparison, 2008.

[22] Bran Selic. The theory and practice of modeling language design for model-

based software engineering - a personal perspective. In João Fernandes, Ralf Lämmel,

Joost Visser, and João Saraiva, editors, Generative and Transformational Techniques

in Software Engineering III, volume 6491 of Lecture Notes in Computer Science,

pages 290–321. Springer Berlin / Heidelberg, 2011.

[23] Christian Soltenborn and Gregor Engels. Towards Test-Driven Semantics Speci-

fication, volume 5795 of Lecture Notes in Computer Science, pages 378–392.

Springer Berlin / Heidelberg, 2009.

[24] Gijs Stuurman and Ivan Kurtev. Action semantics for defining dynamic seman-

tics of modeling languages. In Proceedings of the Third Workshop on Behavioural

Modelling, BM-FA ’11, pages 64–71, New York, NY, USA, 2011. ACM.

[25] Guido Wachsmuth. Modelling the operational semantics of domain-specific

modelling languages. In Ralf Lämmel, Joost Visser, and João Saraiva, editors, Gen-

erative and Transformational Techniques in Software Engineering II, volume 5235 of

Lecture Notes in Computer Science, pages 506–520. Springer Berlin / Heidelberg,

2008.

127

Consistency Checking Scenario-Based
Specifications of Dynamic Systems by
Combining Simulation and Synthesis

Joel Greenyer1?, Jens Frieben2

Politecnico di Milano,
Dipartimento di Elettronica e Informazione, DeepSE Group

Piazza Leonardo Da Vinci, 32, 20233 Milano, Italy
greenyer@elet.polimi.it

Fraunhofer Project Group Mechatronic Systems Design
Software Engineering Department

Zukunftsmeile 1, 33102 Paderborn, Germany
Jens.Frieben@ipt.fraunhofer.de

Abstract. Modern technical systems often consist of multiple compo-
nents that must fulfill complex functions in diverse and sometimes safety-
critical situations. Precisely specifying the behavioral requirements for
such systems is a challenge, especially because there may be inconsistent
requirements in possibly unforeseen component configurations. We pro-
pose a scenario-based specification approach based on Modal Sequence
Diagrams and a novel technique for finding inconsistencies in such spec-
ification based on a combination of simulation and synthesis techniques.
The simulation via the play-out algorithm can be used to analyze the
scenario requirements in large and dynamic systems. Play-out, however,
may run into avoidable violations, so that the engineer cannot assume
the specification’s inconsistency nor its consistency. We thus propose to
check specification parts for static component configurations via syn-
thesis. Then, if the part specifications are consistent, the resulting con-
trollers can guide the play-out for the complete specification, avoiding
more avoidable violations in the next simulation run.

Keywords: scenario-based specification, dynamic systems, consistency check-
ing, simulation, synthesis

1 Introduction

Modern technical systems in areas like transportation, traffic, or production typ-
ically consist of multiple components that must interact to fulfill complex func-
tions in diverse and sometimes safety-critical situations. Moreover, these systems
? This work was elaborated mainly as part of the author’s dissertation thesis [8], while
he was working at the University of Paderborn, Germany

128

are often dynamic, i.e., the relationships among the components may change or
components may leave or enter the system. Precisely and consistently specify-
ing the requirements for such dynamic systems is a major challenge, especially
because there may be many, possibly unforeseen configurations of components
where components are involved in multiple use cases at once and conflicts among
the components’ interaction specifications are possible to occur. If such inconsis-
tencies remain undetected, this may lead to costly iterations in the development
or to flaws in the final product.

In this paper, we propose first (1) a use case- and scenario-based approach
for specifying the interaction behavior of components in a dynamic system. The
approach is based on Modal Sequence Diagrams (MSDs) [18,12], a recent variant
of Live Sequence Charts (LSCs) [6], that allows the engineer to formally specify
what may, must, or must not happen in a system. Second (2), we propose a
novel technique for finding inconsistencies in MSD specifications, which is based
on the symbiosis of simulation and synthesis techniques.

As an example, we consider the specification of the RailCab system, which is
developed at the University of Paderborn. Here, small, autonomous rail vehicles,
called RailCabs, transport passengers and goods on demand. This system is
highly dynamic as relationships among RailCabs and control stations change
when for example RailCabs move along track sections, switches, and crossings.

First, to model such systems, we propose a special specification scheme where
the requirements described in use cases are formalized by scenario-based use case
specifications. A use case specification captures the structure and interaction
behavior described in a use case formally by using UML collaboration diagrams
and MSDs. We extend the MSDs with OCL binding expressions that can be
attached to lifelines and allow the engineer to specify precisely which components
in a dynamic system shall play which role in a use case. Within Scenario-
Tools, we have implemented an Eclipse/EMF&UML-based simulation engine
for executing such use case specifications via the play-out algorithm [14,18]. This
helps the engineer understand the interplay of different MSDs as environment
events occur in a particular, maybe structurally evolving, system instance.

The play-out algorithm typically has to make many non-deterministic choices
when executing the MSDs. In doing so, it may reach a state where a number
of MSD require that something must happen that is forbidden by other MSDs.
Such a violating state may indicate that the specification is inconsistent, but it
may also be consistent and just the play-out algorithm did not “look ahead” to
avoid the violation. Finding this out manually can be a very difficult.

We observe in our example that use cases typically describe the interaction of
a fixed set of participants. For this case, we developed a synthesis technique that
can effectively determine whether such a use case specifications is inconsistent or
not. If it is consistent, we can synthesize a strategy that demonstrates that there
exists a system that can always react to all possible sequences of environment
event in a way that satisfies the use case specification.

However, even if all use case specifications are consistent, it may be that con-
flicts among MSDs of different use case specifications occur if use cases overlap,

129

i.e., components are involved in multiple use cases at the same time. To further
analyze the specification, we therefore still rely on the simulation via play-out.
To improve the play-out, we developed a mechanism that guides the play-out by
the strategies that could be successfully synthesized from single use case speci-
fications. This improves the effectiveness of the simulation, giving the engineer
more reason to suspect an actual inconsistency if a violation occurs. In the fu-
ture, this approach could even be extended to successively eliminate all false
negatives by synthesizing strategies also for overlapping use case occurrences.

This paper is structured as follows. We explain the foundations of MSDs
in Sect. 2 and present an example use case specification in Sect. 3. A strategy
that could be synthesized from a use case specification is explained in Sect. 4.
In Sect. 5 we then describe our extended play-out algorithm and overview our
tool implementation in Sect. 6. We discuss related work in Sect. 7 and conclude
in Sect. 8.

2 Foundations

MSDs were proposed by Harel and Maoz as a formal interpretation of UML
sequence diagrams, based on the concepts of LSCs [12]. In the following, we first
explain the basics of MSDs and the play-out algorithm with respect to static
systems. In Sect. 2.3 we then explain extensions to MSDs and their interpretation
in the context of dynamic systems.

2.1 MSD Specifications

An MSD specification consists of a set of MSDs. An MSD can be existential or
universal. Existential diagrams specify sequences of events that must be possi-
ble to occur in the system. Universal diagrams specify requirements that must
be satisfied by all sequences of events that occur. During specification, the fo-
cus typically lies on universal MSDs, since they allow the engineers to express
mandatory behavior. We also focus on universal MSDs in this paper.

Each lifeline in an MSD represents an object in an object system that consists
of environment objects and system objects. The set of system objects is called
the system; the set of environment objects is called the environment.

The objects can interchange messages. Here we consider only synchronous
messages where the sending and receiving of the message is a single event. Our
approach can, however, be extended also to asynchronous communication. We
call the sending and receiving of a message a message event or simply event.

The messages in a universal MSD can have a temperature and an execution
kind. The temperature can be either hot or cold; the execution kind can be either
monitored or executed.

The semantics of these messages is as follows: An event can be unified with a
message in an MSD iff the event name equals the message name and the sending
and the receiving objects are represented by the sending resp. receiving lifelines
of the message. When an event occurs in the system that can be unified with the

130

first message in an MSD, an active copy of the MSD or active MSD is created.
(We consider that an MSD has only one first message.) As further events occur
that can be unified with the subsequent messages in the diagram, the active
MSD progresses. This progress is captured by the cut, which marks for every
lifeline the locations of the messages that were unified with the message events.
If the cut reaches the end of an active MSD, the active copy is terminated.

If the cut is in front of a message on its sending and receiving lifeline, the
message is enabled. If a hot message is enabled, the cut is also hot. Otherwise the
cut is cold. If an executed message is enabled, the cut is also executed. Otherwise
the cut is monitored. An enabled executed message is called an active message.

A safety violation occurs iff in a hot cut a message event occurs that can be
unified with a message in the MSD that is not currently enabled. If this happens
in a cold cut, it is called a cold violation. Safety violations must never happen,
while cold violations may occur and result in terminating the active copy of the
MSD. If the cut is executed, this means that the active MSD must progress and
it is a liveness violation if an active MSD never terminates or progresses to a
monitored cut.

As an example, Fig. 1 shows an MSD and an illustration of the considered
example. Cold monitored messages are shown as blue, dashed arrows; hot exe-
cuted messages are shown as red, solid arrows. The dashed horizontal lines in
the MSD RequestEnterAtEndOfTrackSection also show the reachable cuts, which
are accordingly cold and monitored (c/m) or hot and executed (h/e). Intuitively,
this MSD expresses the following requirements. We consider a scenario where a
RailCab moves along its current track section. At some point the RailCab rc
detects that it reaches the end of the current track section. This is modeled as
the message endOfTS sent between the environment and the RailCab rc. Now
the RailCab rc must send requestEnter to the next track section control tsc2,
which must reply with enterAllowed. These two messages must be sent before
the RailCab reaches a point where it is possible for the last time to safely break
before entering the switch (modeled by the environment message lastBrake).

Messages can also have parameters of certain types. Message events must
then carry according parameter values. Here the message enterAllowed has a
Boolean parameter, representing the choice to allow or deny the RailCab to enter.
In this MSD, the required parameter value is not specified, which allows the
parameter value to be either true or false. For more details on the interpretation
of parameter values, we refer to [8, pp. 33].

rc tsc2

illustration

endOfTS
lastBreak

enterNext

tsc1 env:Environment rc:RailCab tsc2:TrackSectionControl

MSD RequestEnterAtEndOfTrackSection

1. (h/e)

2. (h/e)

3. (c/m)

inactive
endOfTS

requestEnter

enterAllowed
(isAllowed)lastBrake

Fig. 1. The MSD RequestEnterAtEndOfTrackSection with illustration

131

We assume that the system is always fast enough to send any finite number
of messages before the next environment event occurs. An infinite sequence of
message events is called a run of the system and its environment. A run satisfies
an MSD specification consisting of a set of universal MSDs if it does not lead
to a safety or liveness violation in any MSD. (Multiple MSDs may be active
at the same time.) We say that an MSD specification is consistent or realizable
iff it is possible for the system objects to react to every possible sequence of
environment events so that the resulting run satisfies the MSD specification.

2.2 Play-Out

Harel and Marelly defined an executable semantics for the LSCs, called the play-
out algorithm [13], that was later also defined for MSDs [18]. The basic principle
is that if an environment event occurs and this results in one or more active
MSDs with active (enabled executed) system messages, then the algorithm non-
deterministically chooses to send a corresponding message if that will not lead
to a safety violation in another active MSD. The algorithm will repeat sending
system messages until no active MSDs with an active message remain. Then the
algorithm will wait for the next environment event, and this process continues.

If the play-out algorithm reaches a state where there are active messages,
but they would all lead to safety violations, this is called a violation. If the
MSD specification is inconsistent, this implies that there exists a sequence of
environment events that will lead the play-out algorithm to a violation. Such
a situation can, however, also occur if the specification is consistent. That is
because the play-out algorithm will often make non-deterministic choices without
“looking ahead” if they guarantee it not to run into violations later.

2.3 MSDs and Dynamic Systems

When specifying the behavior of dynamic systems, it is often impractical to
consider MSDs where each lifeline refers to a concrete object. Instead, symbolic
lifelines were introduced by Marelly et al. [19,14], which refer to a class. MSDs
with symbolic lifelines are also called symbolic MSD; MSDs with non-symbolic
lifelines, also called concrete lifelines, are called concrete MSDs. Here, concrete
lifelines have an underlined label; the label of symbolic lifelines is not underlined.

In an active copy of an MSD with symbolic lifelines, a symbolic lifeline can
be bound to an object that is an instance of the class referenced by the lifeline.
For a given object system, the semantics of a symbolic MSD is equivalent to
a set of concrete MSDs where for each possible combination of bindings of the
symbolic lifelines, there exists a concrete MSD with lifelines corresponding to
this possible combination of bindings.

Typically, we want to restrict a symbolic MSD to specify the behavior only
for combinations of objects that have certain relationships or properties. Then,
binding expressions can be added to the MSD in order to restrict the possible
lifeline bindings. Harel and Marelly define that binding expressions are expres-
sions over object properties or relationships between objects that evaluate to a

132

Boolean value [14]. A symbolic MSD then only specifies the behavior for the
combinations of objects where there exists a set of lifeline bindings where all
binding expressions evaluate to true.

Instead of translating symbolic MSDs to sets of concrete MSDs, Harel and
Marelly extended the play-out algorithm to handle the dynamic binding of sym-
bolic lifelines, supporting a simple form of binding expressions [14, pp. 209]. In
ScenarioTools, we implement similar mechanisms and consider binding ex-
pressions of the form <lifeline-name> := <expr> where <lifeline-name> is
the name of a lifeline, also called the slot lifeline, and <expr> is an OCL expres-
sion, also called the value expression. The value expression can evaluate to an
object that is an instance of the slot lifeline’s class.

Lifeline names can be used as variables within value expressions. If a lifeline is
bound to an object, so is the corresponding variable. Also other variables can be
used in value expression. In the course of progressing an active MSD, there may
be for example variables that are assigned parameter values, like the variable
isAllowed show in Fig. 1. The details of these mechanisms are not relevant here.
Important is that value expressions can only be evaluated when all the variables
appearing in the expression are bound.

During play-out, symbolic MSDs and binding expressions are interpreted as
follows: As a message event can be unified with a first message in an MSD,
an active copy of the MSD is created with the sending and receiving lifelines
of the first message bound to the sending and receiving object of the message
event. Then the value expressions of the binding expressions are evaluated as
soon as that is possible, and the corresponding slot lifelines are bound to the
resulting objects. It must not happen that a message is enabled and the sending
or receiving lifeline is unbound.

As an example, consider the symbolic variant of the MSD RequestEnterAt-
EndOfTrackSection shown on the right of Fig. 2, executed in the context of an
object system as illustrated on the left. If the message endOfTS is sent from the
environment object e to the RailCab rc1, an active copy of the MSD is created
where the lifeline env is bound to the object e and the lifeline rc is bound to
the object rc1. Now the binding expression can be evaluated, which results in
binding the lifeline next to the object tsc2.

We also consider that the value expression can evaluate to a set of objects.
Then for each object in the set a copy of the active MSD is created with the slot
lifeline bound to that object (see also [14, pp. 215]).

endOfTS

env:Environment rc:RailCab next:TrackSectionControl

requestEnter

enterAllowed
(isAllowed)

MSD RequestEnterAtEndOfTrackSection

lastBrake

next := rc.current.next

tsc2:Track
SectionControl

nextnexttsc1:Track
SectionControl

rc1:RailCab

...
next

registered-
RailCabs

current

...

(dynamic) object system

e:Environment
endOfTS

link
message event

Fig. 2. A dynamic object system and the symbolic version of the MSD RequestEnter-
AtEndOfTrackSection

133

3 Use Case Specifications

We observe that the early, informal requirements of a dynamic system are often
structured in use cases that describe (1) a particular configuration of objects
and (2), by a number of scenarios, how these objects may, must, or must not
react to certain, usually external, events. Instead of specifying the behavior of
a dynamic system with a plain set of symbolic MSDs, we thus propose a more
systematic approach where an engineer first captures the objects involved in the
use case and then specifies the MSDs based on this structure.

3.1 Use Case Specification Structure

Figure 3 shows the example of a use case specification for the use case RailCab
Obstacle Detected. The use case describes that a RailCab that detects an obstacle
must report a hazard and its position to its current track section control, which
then must warn the other RailCabs on that track section. The MSDs are in
fact an example where the play-out algorithm may choose an execution that
inevitably leads to a violation—but we will return to that in Sect. 4. We first
explain the structure and semantics of a use case specification.

A use case specification consists of a package with class definitions and a
collaboration (dashed ellipse) [1, Sect. 9.3.3]. The collaboration captures the
objects participating in a use case and it contains a set of MSDs. The nodes
in the collaboration diagram are called roles, and each role represents a system
or an environment object. Here environment roles are represented by a cloud
symbol. The roles are typed by classes, which are modeled in the class diagram.
The classes can define attributes, associations, and operations; the latter indicate
which messages an instance can receive.

Each lifeline of an MSD represents one role in the collaboration. Connectors
between the roles can be used for indicating structurally which roles interact in
the use case. In the MSDs it can then be ensured that messages are only modeled
between lifelines where their roles are connected.

3.2 Use Case Specification Semantics

The advantage of this specification scheme, besides supporting a more structures
modeling approach, is that it allows for two different interpretations that are
crucial for the symbiosis of simulation and synthesis.

Symbolic interpretation: The MSDs are interpreted as symbolic MSDs, as
if their lifelines would directly reference the classes that type the roles represented
by each lifeline. The object system can be any valid instance of the class model.
The collaboration has no particular semantics.

Static interpretation: Here we assume an object system where for each role
in the collaboration there is a corresponding object of the class typing the role.
The MSDs are then interpreted as static MSDs where each lifeline represents
the object that corresponds to its role.

134

obstacleDetected

env:Environment detectingRC:RailCab current:TrackSectionControl

hazardOccurred

MSD WarningWhenObstacleDetected

current := detectingRC.current

warnedRC:RailCab

warnedRC := current.
registeredRailCabs

->excluding(detectingRC)

hazardWarning
obstacleAtPosition

obstacleDetected

env:Environment detectingRC:RailCab current:TrackSectionControl

obstaclePosition

MSD ReportObstaclePosition

current := detectingRC.current

warnedRC:RailCab

warnedRC := current.
registeredRailCabs

->excluding(detectingRC)

obstacleAtPosition

(0,0,0,0)
(1,1,1,1)
(1,2,2,1)
(1,2,3,2)

(0,0,0,0)
(1,1,1,1)
(1,2,2,1)

detectingRC:RailCab current:TrackSectionControl

hazardOccurred

MSD ReportObstaclePositionAndIssueWarning

warnedRC:RailCab

warnedRC := current.
registeredRailCabs

->excluding(detectingRC)

hazardWarning
obstacleAtPosition

obstaclePosition

(0,0,0)
(1,1,1)
(2,2,1)
(2,3,2)

Environment

TrackSectionControl
hazardOccurred()
obstaclePosition()

RailCab
obstacleDetected()
obstacleAtPosition()
hazardWarning()

registered-
RailCabs 0..*

0..1 current

w

RailCabObstacleDetected

detectingRC:RailCab

current:TrackSectionControl

warnedRC:RailCab

RailCabObstacleDetected

package RailCabObstacleDetected

env:Environment

Fig. 3. The specification for the use case RailCab Obstacle Detected

The static interpretation makes the formal analysis of the use case specifi-
cation feasible, which would not be the case with the symbolic interpretation, if
we would have to consider many different object systems with different possible
bindings of symbolic lifelines. The second-listed author has developed such a
analysis technique in his thesis [8], which will be explained Sect. 4.

3.3 Combining Use Case Specifications

This modeling scheme also allows different engineers to specify different use case
specifications in parallel. These can later be composed as follows.

(1) The class models of the use case specifications can be composed by merg-
ing them into one package using UML package merge [1, Sect. 7.3.41]. Package
merge copies the contents of one or multiple merged packages into a merging
package. Equally named UML elements (classes, attributes, operations, etc.) in
the merged packages are mapped to the same element in the merging package.

(2) The UML package merge only defines how to merge structural (class)
models. It could probably be extended easily to merge also the MSDs—but
instead, we just slightly modify the symbolic interpretation of the MSD: We
assume that the object system can be any valid instance of the merged class
model. Then we interpret the sets of MSDs of all use case specifications like a
plain set of (symbolic) MSDs where we interpret an MSD lifeline as if it was
typed by the class that its role’s class was merged into.

We call the merged package the integrated package. With this symbolic in-
terpretation of the MSDs, it forms the integrated specification of the system.

If one use case depends on another, for example because one refers to message
types (i.e., operations) or object properties already specified in another, this can
also be expressed by a package merge where the depending use case specification
package merges the package of the use case specification it depends on.

135

4 Synthesis

As already proposed by Bontemps et al. [3], the problem of deciding whether
an MSD/LSC specification is consistent can be mapped to a two-player game
problem. Intuitively, this means that environment events and system reactions
are mapped to “moves” in a game that lead from one game state to another. A
game state in this case is essentially a set cut configurations of currently active
MSDs. Then it is checked whether there exists a strategy for the system against
the environment such that a certain winning condition is satisfied. The winning
condition here is that never a safety or liveness violation occurs and that there is
no infinite sequence of system events, i.e., always eventually a next environment
event can occur.

Today there exist a number of tools with efficient algorithms for finding win-
ning strategies in two-player games. Similar to Bontemps et al, we have developed
a synthesis approach [8,7] where MSD use case specifications are mapped to the
input of Uppaal Tiga [2], a tool based on the Uppaal model-checker that im-
plements an efficient game-solving algorithm [4]. Novel in our approach is that it
also supports timed MSDs and MSDs that formulate environment assumptions,
i.e., properties that the environment must satisfy to “win” against the system.
But these novelties are not relevant in the scope of this paper.

In our synthesis approach, if an MSD use case specification is consistent,
Uppaal Tiga will synthesize a strategy that shows us how the system can
always react to the environment such that the specification is satisfied. Uppaal
Tiga can even synthesize a complete strategy that shows all the moves to all
states in which the system will be able to win. Furthermore, if an MSD use case
specification is inconsistent, Uppaal Tiga can synthesize a counter-strategy that
shows how the environment can always violate the MSD specification.

Listing 1.1 shows a excerpt from a complete strategy synthesized from the
use case specification RailCab Obstacle Detected; Uppaal Tiga generates such a
textual output to the console or a file. Here only one state in the game and the two
winning transitions for this state are shown. As shown here, the sate is essentially
a particular configuration of cuts of the active MSDs (see [8, App.C.2] for more
information). Here it is the cuts reached in the MSDs after the environment
event obstacleDetected occurred (compare also with Fig. 3).

Listing 1.1. Excerpt from the controller synthesized from the specification of the use
case Warn RailCabs On Track

Strategy to win :
. . .
State : (. . .) . . .
WarningWhenObstacleDetected_env=1
WarningWhenObstacleDetected_detectingRC=1
WarningWhenObstacleDetected_current=1
WarningWhenObstacleDetected_warnedRC=1
ReportObstaclePosit ion_env=1
ReportObstaclePosit ion_detect ingRC=1
ReportObstac lePos i t ion_current=1
ReportObstaclePosition_warnedRC=1
ReportObstaclePosit ionAndIssueWarning_detectingRC=0
ReportObstaclePosit ionAndIssueWarning_current=0

136

ReportObstaclePositionAndIssueWarning_warnedRC=0
When you are in true , take transition

systemProcess . systemActive−>systemProcess . produceEvent
{ 1 , tau , event := detectingRC_current_reportHazard }

When you are in true , take transition
systemProcess . systemActive−>systemProcess . produceEvent

{ 1 , tau , event := detect ingRC_current_obstac lePos i t ion }
. . .

According to this strategy, the system can satisfy the use case specification
against any environment if in this state the RailCab detectingRC sends the mes-
sage reportHazard or obstaclePosition to the track section control current.
As it is a complete strategy, we know that sending any other system message
will not allow the system to “win” against any possible environment.

The possible violation is follows: Sending the message hazardOccurred, which
in this state is enabled in the MSD WarningWhenObstacleDetected, must be fol-
lowed by sending obstaclePosition. This then leads to a situation where there
is an active copy of MSD WarningWhenObstacleDetected in cut (1,2,2,1) and an
active copy of MSD ReportObstaclePositionAndIssueWarning in cut (2,2,1). In the
former, hazardWarning must occur, but obstaclePosition must not occur. In
the latter, obstaclePosition must occur, but hazardWarning must not occur.
Thus a safety or liveness violation is inevitable.

5 Combining Play-Out and Synthesis

The naive play-out of an integrated specification containing the use case RailCab
Obstacle Detected could easily run into the above-mentioned, avoidable viola-
tion. In many cases, this could be avoided by using the strategies that could be
successfully synthesized from single use case specifications. In the following, we
explain an extension of the play-out algorithms that is guided by these strategies.

The principle of this extension is shown in Fig. 4. At the bottom, it sketches a
RailCab object system where the environment just sent the message obstacle-
Detected to the RailCab rc2. On the top left, two active MSDs are shown, which
are activated as a result. The lifeline bindings are indicated by the small labels
on the lifelines. The remaining parts of the figure are explained in the following.

The main challenge in employing the strategies synthesized from use case
specifications is to determine in a state during play-out which state in which
strategy (or which states in which strategies) to inquire about which message
event can be safely executed next. Intuitively, we have to determine where a use
case “occurs”. We define a use case occurrence as a set of active MSDs where
the MSDs belong to the same use case occurrence and the lifelines representing
the same role are bound to the same object.

After finding the active MSDs that make up a use case occurrence (1), we
create an active copy of the corresponding strategy (also called active strategy).
Then we find a state in the this strategy that corresponds to the cuts of the
active MSDs (2). This state is also called the current state of the active strategy
for the use case occurrence.

137

obstacleDetected

env

rc1

env

warnedRC

rc2 tsc1

detectingRC

current

w

RailCabObstacleDetected

detectingRC:RailCab

current:TrackSectionControl

warnedRC:RailCab

env:Environment

env:Environment detectingRC:RailCab current:TrackSectionControl

MSD WarningWhenObstacleDetected

warnedRC:RailCab

env:Environment detectingRC:RailCab current:TrackSectionControl

MSD ReportObstaclePosition

warnedRC:RailCab

env rc2 tsc1 rc1

env rc2 tsc1 rc1

Execute an active
message event that
is not forbidden in
any active MSD and
does not disobey
an active strategy

4

Determine active
MSDs that make up a
use case occurrence

1

3

Play-out
algorithm

Determine prescribed
and disobeying message

events from active
strategy(-ies)

active synthesized
strategy

tsc2rc3

Determine
active and

safety-violating
message

events from
active MSDs

2
Map their cuts to a state
in the synthesized
strategy

Fig. 4. Guiding the play-out by strategies synthesized from use case specifications

Once such corresponding states are found for all occurrences of use case for
which a strategy is provided, we determine the prescribed and disobeying message
events (3). A message event is prescribed if it corresponds to an event that labels
a transition leaving the current state of the active strategy; a message event is
disobeying if it corresponds to a message event that labels a transition that is
not leaving the current state. (For brevity, we skip a more formal definition when
message events correspond in this case.)

As in regular play-out, we also have to determine which message events are
active and safety-violating in the active MSDs. We can now execute an active
event that is not safety-violating any other active MSD, and not disobeying any
active strategies (4). This process is repeated until the there are no more active
events. Then the system waits for the next environment event.

In this extended play-out it is not guaranteed that never an active strategy
must be disobeyed or never a safety violation occurs. This may still happen
when use cases overlap, i.e., objects participate in multiple use case occurrences
at once. Then again safety violations and events disobeying active strategies
may not necessarily mean that the specification is inconsistent—it could still
be that the system in the past could have chosen another sequence of steps to
avoid this. The second-listed author also describes an extension of this approach
for employing strategies synthesized from composed use case specifications, but
these concepts are not yet implemented.

After an active strategy was disobeyed, the play-out can still continue, but
then it may no longer be possible to find current state for the disobeyed active
strategy. Note that if the strategies used in this process are not complete, it
becomes more likely that active strategies must be disobeyed.

138

Note also that we can only identify use case occurrences if all lifelines of
an active MSD are bound. For this process to work properly, there should thus
not be an active MSD with unbound lifelines. It remains to be investigate if
maybe the play-out can follow multiple active strategies in parallel for different
“candiadate” use case occurrences as long as lifelines are unbound.

6 Realization and Evaluation

The concepts introduced here have been implemented in an Eclipse-based tool
suite called ScenarioTools1. Figure 5 gives an overview of ScenarioTools
and the supported modeling and analysis process.

In the first step, a UML-based MSD specification of the system is modeled.
For modeling, ScenarioTools extends the Topcased UML-Editor. The fig-
ure shows a number of packages that represent use case specifications (1). As
mentioned before, use case specifications can be modeled in separate packages,
dependencies can be expressed by package merge relationships, and finally all
use case specifications are merged into an integrated package.

The figure here also shows a base package. We suppose that sometimes, prior
to specifying the use cases, the requirements engineers already want to formally
capture a structural (class) model of the system. This is also called domain
modeling, and fosters a common understanding of the domain. This can be done
in this separate package from where classes, associations, and attributes can be
reused in the use case specifications. To do this, the use case specifications define
merge relationships to the base package.

In the second step, after formally specifying the use cases, we want to create
an instance system, or possible many instance systems, to carry simulations
of the specified behavior. To be able to do this, we create an EMF/ECore2

class model that corresponds to the merged class model of the UML-based MSD
specification. This transformation is described by Triple Graph Grammar (TGG)
that can be executed using the TGG Interpreter3. The transformation not
only creates the ECore class model, but also a correspondence model that stores
a detailed mapping between classes, properties, associations and operations in
the UML and ECore class models.

The Eclipse/EMF framework allows us to automatically generate simple
editors from the ECore class model. With the help of these editors, instance
models can easily be created (3). In the RailCab case, this could be a particular
RailCab track system with a particular number of RailCabs currently on certain
track sections.

Based on an instance model, we can now simulate the behavior defined in the
UML-based MSD specification (4). To know which MSD lifelines can be bound
to which objects and which messages can be sent between the objects, we exploit
the information in the above-mentioned correspondence model.
1 http://www.cs.uni-paderborn.de/index.php?id=scenariotools
2 http://www.eclipse.org/emf/
3 http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter

139

http://www.cs.uni-paderborn.de/index.php?id=scenariotools
http://www.eclipse.org/emf/
http://www.cs.uni-paderborn.de/index.php?id=tgg-interpreter

uc2

uc1

uc3

«merge»«merge» «merge»

«merge»«merge» «merge»

base

integr. integr.

perform the ScenarioTools
simulation (play-out)

the transformation
creates the merged

class model
(ECore)

UML-to-Ecore
transformation

(via TGGs)

«instanceof»

create a/the
instance model

model the MSD
specification

(UML)1

3

2

4

the ScenarioTools
play-out interprets the

MSDs in the
specification based on

the instance model

synthesized
 controller

Fig. 5. Overview of the ScenarioTools simulation

The figure also illustrates that the play-out can be guided by strategies that
could be successfully synthesized from use case specification.

ScenarioTools supports different simulation modes: a user-guided step-
by-step selection of system and environment events and a random execution.

7 Related Work

In the past, many approaches for the scenario-based specification of system re-
quirements have been proposed. Many, however, did not regard that scenarios
can be overlapping [15] or they only regarded existential scenarios, i.e., descrip-
tions of what must be possible to occur [17]. Others considered combining exis-
tential scenarios with pre-and post-conditions on messages [21], automata [20],
or safety properties in temporal logic [5] for expressing also mandatory require-
ments. With these additions also came the problem of checking the consistency
of the specification, which is addressed in these papers. To the best of our knowl-
edge, all these approaches did not consider the specification of dynamic systems.

LSCs introduced a rigorous semantics for expressing universal and existential
requirements [6] and only with symbolic lifelines [19], the behavior of dynamic
systems could be specified in a formal scenario-based way. Many approaches for
consistency checking LSC specifications and synthesizing controllers from them
were proposed [9,11,3,16], but they only consider static systems.

140

Another approach for improving the play-out of LSC specifications is smart
play-out [10]. Here model-checking is employed for finding a sequence of steps for
the system in reaction to an environment event that avoids avoidable violations.
The problem here is that this approach can only “look ahead” until the next
environment event occurs, thus not all avoidable violations can be anticipated.
Also, smart play-out only works in a static setting.

Maoz et al. presented an alternative implementation of the play-out algorithm
using AspectJ [18]. This implementation is extensible to plug-in different play-
out “strategies”, which for example allows for integrating smart play-out. This
implementation of the play-out algorithm is also used in the PlayGo tool4. The
website also mentions that synthesized strategies and counter-strategies can be
executed using this tool, but no details have been published thus far. Kugler
et al. also mention to execute synthesized controllers [16], but these are not
combined with play-out.

8 Conclusion and Outlook

We presented a novel extension of the play-out algorithm which combines play-
out of MSDs in a dynamic object system with strategies synthesized from speci-
fication parts. This helps avoid more avoidable violations and improves the play-
out because engineers now have more reason to suspect an actual inconsistency
when violations occur.

We are currently developing a new version of the ScenarioTools play-out
and synthesis and plan to extend this approach to also support environment
assumptions and parametrized messages. We also plan to further investigate the
symbiosis of synthesis and play-out for composed use cases.

References

1. UML 2.4.1 superstructure specification (August 2011), OMG document
formal/2011-08-06

2. Behrmann, G., Cougnard, A., David, A., Fleury, E., Larsen, K.G., Lime, D.:
UPPAAL-Tiga: Time for playing games! In: Damm, W., Hermanns, H. (eds.) Proc.
19th Int. Conf. on Computer Aided Verification (CAV’07). LNCS, vol. 4590, pp.
121–125. Springer, Berlin, Germany (July 2007)

3. Bontemps, Y., Schobbens, P.Y.: Synthesis of open reactive systems from scenario-
based specifications. In: Proc. 3rd Int. Conf. on Application of Concurrency to
System Design (ACSD 2003), 18-20 June 2003, Guimaraes, Portugal. pp. 41–50
(2003)

4. Cassez, F., David, A., Fleury, E., Larsen, K.G., Lime, D.: Efficient on-the-fly al-
gorithms for the analysis of timed games. In: Abadi, M., de Alfaro, L. (eds.) Proc.
16th Int. Conf. on Concurrency Theory (CONCUR’05). LNCS, vol. 3653, pp. 66–
80. Springer, San Francisco, CA, USA (August 2005)

4 http://www.weizmann.ac.il/mediawiki/playgo/index.php

141

http://www.weizmann.ac.il/mediawiki/playgo/index.php

5. Damas, C., Lambeau, B., van Lamsweerde, A.: Scenarios, goals, and state ma-
chines: a win-win partnership for model synthesis. In: Proc. 14th Int. Symp. on
Foundations of Software Engineering (ACM SIGSOFT ’06/FSE-14). pp. 197–207.
ACM (2006)

6. Damm, W., Harel, D.: LSCs: Breathing life into message sequence charts. In: For-
mal Methods in System Design. vol. 19, pp. 45–80. Kluwer Academic Publishers
(2001)

7. Greenyer, J.: Synthesizing modal sequence diagram specifications with Uppaal-
Tiga. Tech. Rep. tr-ri-10-310, University of Paderborn (February 2010)

8. Greenyer, J.: Scenario-based Design of Mechatronic Systems. Ph.D. thesis, Univer-
sity of Paderborn (October 2011)

9. Harel, D., Kugler, H.: Synthesizing state-based object systems from LSC specifi-
cations. In: Foundations of Computer Science. vol. 13:1, pp. 5–51 (2002)

10. Harel, D., Kugler, H., Marelly, R., Pnueli, A.: Smart play-out of behavioral require-
ments. In: Proc. 4th Int. Conf. on Formal Methods in Computer-Aided Design,
FMCAD 2002, Portland, OR, USA, November 6-8, 2002. pp. 378–398 (2002)

11. Harel, D., Kugler, H., Pnueli, A.: Synthesis revisited: Generating statechart mod-
els from scenario-based requirements. In: Kreowski, H.J., Montanari, U., Orejas,
F., Rozenberg, G., Taentzer, G. (eds.) Formal Methods in Software and Systems
Modeling. LNCS, vol. 3393, pp. 309–324. Springer (2005)

12. Harel, D., Maoz, S.: Assert and negate revisited: Modal semantics for UML se-
quence diagrams. Software and Systems Modeling (SoSyM) 7(2), 237–252 (May
2008)

13. Harel, D., Marelly, R.: Specifying and executing behavioral requirements: The play-
in/play-out approach. Software and System Modeling (SoSyM) 2, 2003 (2002)

14. Harel, D., Marelly, R.: Come, Let’s Play: Scenario-Based Programming Using LSCs
and the Play-Engine. Springer (August 2003)

15. Krüger, I., Grosu, R., Scholz, P., Broy, M.: From MSCs to Statecharts. In: Proc.
IFIP WG10.3/WG10.5 Int. Workshop on Distributed and Parallel Embedded Sys-
tems (DIPES ’98). pp. 61–71. Kluwer Academic Publishers, Norwell, MA, USA
(1999)

16. Kugler, H., Plock, C., Pnueli, A.: Controller synthesis from LSC requirements. In:
Chechik, M., Wirsing, M. (eds.) Proc. 12th Int. Conf. of Fundamental Approaches
to Software Engineering, FASE 2009. LNCS, vol. 5503, pp. 79–93. Springer (2009)

17. Maier, T., Zündorf, A.: The Fujaba statechart synthesis approach. In: Proc. 2nd
Int. Workshop on Scenarios and State Machines: Models, Algorithms, and Tools,
ICSE ’03 (2003)

18. Maoz, S., Harel, D.: From multi-modal scenarios to code: Compiling LSCs into
AspectJ. In: Proc. Int. Symp. on Foundations of Software Engineering (FSE’05).
pp. 219–230 (2006)

19. Marelly, R., Harel, D., Kugler, H.: Multiple instances and symbolic variables in
executable sequence charts. In: Proc. 17th Conf. on Object-Oriented Programming,
Systems, Languages, and Applications (OOPSLA ’02). ACM SIGPLAN Notices,
vol. 37, pp. 83–100 (November 2002)

20. Sikora, E., Daun, M., Pohl, K.: Supporting the consistent specification of scenarios
across multiple abstraction levels. In: Wieringa, R., Persson, A. (eds.) Require-
ments Engineering: Foundation for Software Quality, Lecture Notes in Computer
Science, vol. 6182, pp. 45–59. Springer (2010)

21. Whittle, J., Schumann, J.: Generating statechart designs from scenarios. In: Proc.
22nd Int. Conf. on Software Engineering, ICSE ’00. pp. 314–323 (2000)

142

The Event Coordination Notation:
Execution Engine and Programming Framework

Ekkart Kindler

Informatics and Mathematical Modelling, Technical University of Denmark
DK-2800 Lyngby, DENMARK

eki@imm.dtu.dk

Abstract. ECNO (Event Coordination Notation) is a notation for mod-
elling the behaviour of a software system on top of some object-oriented
data model. ECNO has two main objectives: On the one hand, ECNO
should allow modelling the behaviour of a system on the domain level; on
the other hand, it should be possible to completely generate code from
ECNO and the underlying object-oriented domain models.

Today, there are several approaches that would allow to do this. But,
most of them would require that the data models and the behaviour
models are using the same technology and the code is generated together.
By contrast, ECNO can be used for modelling the behaviour on top of
any object-oriented model – or even on top of manually written object-
oriented code. This way, it is easy to integrate ECNO models with other
technologies, to use ECNO on top of code generated by other technologies
or with code that was written manually.

In this paper, we rephrase the main concepts of ECNO. The focus of
this paper, however, is on the architecture of the ECNO execution en-
gine and its programming framework. We will show how this framework
allows us to integrate ECNO with object-oriented models, how it works
without any explicit control, and how it easily integrates with traditional
programming.

Keywords: Model-based Software Engineering, Local and global be-
haviour modelling, Event coordination, Model integration.

1 Introduction

The Event Coordination Notation (ECNO) [1–3] aims at modelling the be-
haviour of software systems on top of object-oriented data models. This way,
domain models can not only cover the data part, but also the behaviour of a
system. ECNO’s main concept are events and the coordination of the joint ex-
ecution of events among different objects. For each class, it is defined in which
events the objects of the class can participate, and the local behaviour for the
class defines when an object can participate in an event, and what happens
within that object when the event happens. The joint execution of all the par-
ticipating objects is called an interaction. The main concepts of ECNO have
been presented earlier already [2, 3]; therefore, we only rephrase these ideas in

143

Sect. 2. For lack of space, however, we cannot discuss the related work again; for
a detailed discussion of the related work we refer to [3].

In a first prototype [2], we had shown that the coordination of events de-
fined by ECNO’s coordination diagrams can be handled by an execution engine,
and that the code for the local behaviour of each class can be generated from
an extended version of Petri nets, which we called ECNO nets [3]. This pro-
totype, however, required that all the object-oriented models or the manually
written code followed the principles of ECNO and used the ECNO interfaces; for
this purpose, the prototype was equipped with a light-weight version of object-
oriented models. The first prototype of ECNO did not meet one of the most
important objectives of ECNO yet: it should be easy to integrate different mod-
elling technologies, and to use ECNO on top of existing software, which might
be any manually written code or code generated by some other technology.

In this paper, we discuss the design and architecture of a second ECNO
prototype, which consists of a ECNO engine and a programming framework
that supports the integration of ECNO with other technologies. As an example,
ECNO can now be used on top of the Eclipse Modeling Framework (EMF) [4].

2 The Event Coordination Notation

In this section, we rephrase the main concepts of ECNO by the help of an
example, which is taken from [2] with minor modifications.

2.1 Coordination Diagrams

This running example is the eternal coffee and tea vending machine. Figure 1
shows a class diagram with some extensions concerning events and their coordi-
nation. Therefore, we call it coordination diagram.

Before explaining the extensions that concern the coordination, let us have a
brief look at it as a class diagram – ignoring the operations compartment for a
moment. The diagram shows the different possible elements1 that are part of the
system: A coin can be close to a slot, which is represented by the reference from
Coin to Slot, or a coin can be in the slot, which is represented by the reference
from Slot to Coin. There is a Safe to which a coin is passed when a coffee or tea
is dispensed. There is a Panel for the user to interact with the vending machine.
This panel is connected to a control, which is represented by the reference from
Panel to Control. The control is connected to brewers, which can be either coffee
or tea brewers. At last, there is an output device for the beverage, which is
connected to the brewers.

As a class diagram, Fig. 1 can have instances, which would define a concrete
configuration of the vending machine. In our example, we assume that there
initially are three coins (not inserted yet to the slot), and that there are two

1 In order to point out that our objects are a bit more than objects in the traditional
sense of object orientation, we call them elements throughout this paper.

144

Slot

insert
return_
pass
reset

Panel

drink
cancel

Control

drink
cancel
pass
reset

Coffee

Brewer

drink
reset
cup_in

Output

cup_in

cup_out

*

cup_in: 1

drink: 1
reset: ALL

drink: 1
cancel: ALL

reset: ALL
pass: 1

pass: 1

*

*
*

*

insert: 1

*

return: ALL
pass: 1

Safe

pass

Coin

insert

pass

return

Tea

1

coffee tea

drink();insert(Coin coin, Slot slot);
pass(Coin coin, Slot slot);
return(Slot slot);

reset();
cancel();

cup_in();
cup_out();

coffee() extends drink;
tea() extends drink;

Fig. 1. A class and coordination diagram

coffee brewers and one tea brewer; for all other classes, we assume that there
is exactly one instance. Figure 2 shows such such an instance at a later stage –
after two of the coins were inserted to the slot. The overlays on top of the object
diagram will be discussed later.

Now, let us explain the extensions of Fig. 1 that concern events and their
coordination: First, there are some events defined at the bottom of the diagram,
such as insert or drink, which will be explained in some more detail later. For
now, we just use their names. These events occur in the operations compartment
of the classes again: for example, the events insert, pass and return for Coin. They
define in which events the different elements could participate. More importantly,
the references between the different elements are annotated with events and an
additional quantifier: 1 or ALL. We call them coordination annotations. These
annotations define the coordination of events and the participating elements:
more precisely, for an element executing some event, it defines which other ele-
ments need to participate in the execution of this event. We call a combination
of all the required elements and events and their execution an interaction. Fig. 2
indicates two examples of such interactions in the given situation, which we will
use to explain the meaning of coordination annotations below; note that there
would be more interactions in this situation, which are not shown.

Let us assume that some element is involved in the execution of some event
and that, in the coordination diagram, the type of this element has a reference
that is annotated with that event. Then, some elements at the other end of the
respective links also need to participate in the interaction. In Fig. 2, for example,
the panel is involved in the event drink (actually, it is the more specific coffee
event), the coordination annotation drink:1 at the reference to control, implies
that the control also needs to participate in the interaction with that event;
in turn, the reference from control to brewer annotated with drink:1 requires

145

drink: 1

pass: 1

*

cn3:Coin

sf:Safe

sl:Slot

p:Panel

ctl:Control

cf1:Coffee

tea:Tea

o:Outputcf2:Coffee

cn1:Coin

cn2:Coin

insert: 1

pass: 1

pass: 1

:coffee

:pass

:insert

drink: 1

Fig. 2. A vending machine configuration with two interactions high-lighted

that also one brewer must participate. In the interaction shown in Fig. 2, it is
the coffee brewer cf1; but choosing cf2 would also be fine. For reasons that will
become clear later, the control is required to participate in a pass event together
with a drink event. Therefore, the annotation pass:1 at the reference from class
Control to class Slot requires a slot to participate too. The slot, in turn, has two
references annotated with pass:1, one to the class Coin and one to the class Safe,
both of which must be met. Therefore, one coin and one safe need to participate
in the execution – this way, the coin will be passed from the slot to the safe,
when the interaction is executed, which will be discussed in more detail later
in Sect. 2.3. Altogether, this gives us an interaction with six elements and two
events as shown in Fig. 2. Note that, though the synchronisations are via the
drink event, the actually event in this interaction is a coffee event, since the
coffee machine specializes the drink event to a coffee event.

As discussed above, a coordination annotation refers to an event and has
a quantifier, which can be 1 or ALL. In the example, above, we have seen the
quantifier 1 already: it means that one partner at the other end of the links
corresponding to that reference must participate. If the event is quantified by
ALL, all the elements at the other end of these links need to participate.

In our example from Fig. 2, there are two coins inserted to the slot. If, in
this situation, the slot participates in a return event, the annotation return:ALL
at the reference from Slot to Coin means, that both coins must participate in the
execution of the event return.

2.2 Event Types and Parameters

Up to now, events have, basically, been names, which were used in coordination
annotations to identify other partners that need to participate in an interaction.
In addition to that, events can also be used to exchange information between
the partners of an interaction. To this end, events can have parameters. The

146

ready

1

brewing

c = coffee();

cup = cup_in();

r = reset();

t = tea();

Fig. 3. Local behaviour of the coffee brewer

declarations of the events of our vending machine along with their parameters is
shown at the bottom of Figure 1. In order to distinguish them from the concrete
instances in interactions, we actually call them event types. On a first glance,
the definition of event types looks very much like method declarations. In con-
trast to methods, however, event types or events do not have behaviour of their
own. Events are used only for synchronizing participants in an interaction and to
share information between them. Moreover, events are shared between different
elements and do not belong to a particular element. This is why events are de-
clared outside a specific element and are types in their own right. In particular,
events do not have a caller or callee. Therefore, event parameters can be con-
tributed in many different ways, and by different elements. It is not defined in
advance, who will provide and who will use the parameters or in which direction
the values are propagated. The execution engine of ECNO, however, guarantees
that all elements participating in an interaction have the same parameters for
the same event – if two partners contribute inconsistent values to an event, the
interaction would not be possible.

In our example, we can also see inheritance on events: the coffee and tea
event extend the more general event drink. This is an extension with respect to
[2], but, we do not go into details here.

2.3 Local Behaviour

The local behaviour of an element defines when the element can participate in an
event or a combination of events, and it defines what happens when the element
participates in such an interaction. We use a slightly extended version of Petri
nets for modelling the local behaviour of an element, which we call ECNO nets
[3]. We will discuss the main concepts of ECNO nets by the help of our example.

We start with the ECNO net for the coffee brewer, which is shown in Fig. 3.
Except for the annotations associated with the transitions, this is a conventional
P/T-system. A transition annotation relates each transition of the ECNO net
to one or more events; we call this annotation an event binding. After the event
coffee, which represents the user pressing the coffee button, the coffee is brewed,
which will be dispensed, when a cup is inserted (event cup in). The reset event
is possible only when the coffee machine is in the initial state (no coffee is being
made). In this example, the notation for event bindings might appear overly

147

init

1

inserted

i = insert(self, none); self.getSlot().remove(i.slot);

r = return(none); self.getSlot().add(r.slot);

end
p = pass(self, none);

Fig. 4. Local behaviour of the coin

verbose. The reason for denoting an event binding as an assignment will become
clear in the next example.

To explain some more details, let us have a look at the local behaviour of
a coin, which is modelled by the ECNO net shown in Fig. 4. Here, the event
bindings and the involved events have parameters. Let us consider the transition
that is bound to the insert event first: as we have seen in Fig. 1, the event
insert has two parameters: a coin and a slot. The annotation refers to these two
parameters. The first one, self, assigns the coin itself as the first parameter (coin)
to this event. The second parameter is none, which is the keyword indicating
that, in this case, the coin does not assign a parameter to the event insert (in
this case, this parameter is provided by another partner of the interaction). The
other annotation of this transition is the action, which will be executed when all
partners of an interaction are found and the interaction is executed. In this case,
the coin deletes the link to the slot. The link to the slot is removed by using
the API generated by EMF from the class diagram; self is an ECNO construct,
which represents the object to which this behaviour is attached, the coin. The
method getSlot() is the EMF generated API of the coin, returning a list of all
slots the coin is close to, from which the involved slot is removed. This slot is
denoted by i.slot, where i is the variable to which the insert event was assigned,
and slot refers to the respective parameter, which, in this case, is assigned to the
event by the element slot (see Fig. 5), which will be part of that interaction.

Once the coin is inserted, the ECNO net for the coin allows two things to
happen: either the coin can be passed to the safe by the transition that is bound
to event pass, or the coin is returned by the transition bound to event return.
In the case of a pass event, the coin assigns itself (self) as the coin parameter;
and there is no action. In the case of a return event, no parameter is assigned to
the event (none), but the action will add a link from the coin to the slot again,
where the slot is coming from the parameter r.slot of the event return.

Figure 5 shows the local behaviour of the slot. This is a rather degenerated
Petri net. As a P/T-system, all transitions would be enabled all the time since
their presets are empty. Due to the event bindings, however, the local behaviour
becomes a bit more interesting. We start with explaining the bottom transition:
This transition has two events bound to it: reset and return. This implies that the
events reset and return must be executed together; this way, the slot defines that
coins are returned during a reset. The slot assigns itself as a parameter to the
return event. In the action, the slot deletes all the links to the coins it contains

148

p = pass(none, self); self.getCoin().remove(p.coin);

i = insert(none, self);

self.getCoin().size() < 2

self.getCoin().add(i.coin);

res = reset();

r = return(self); self.getCoin().clear();

Fig. 5. Local behaviour of the slot

c = cancel(); r = reset();

p = pass(none,none); d = drink();

Fig. 6. Local behaviour of the control

using the EMF generated API: self.getCoin().clear(). At last, let us discuss the
top transition of Fig. 5. It is bound to an insert event, where the slot assigns
itself to the event’s slot parameter. In the action, it adds a link to that coin. In
this transition, another modelling concept is used: the condition which is shown
above the transition. This condition guarantees that an insert event can happen
only when there are less than two coins in the slot; to this end, the condition
refers to the list of coins of the slot (getCoin()). In general, a condition can refer
to the parameters of all involved events and to anything that the element can
access via the API of its object-oriented implementation.

The ECNO nets for the other elements are similar. In particular, the ECNO
net for the control uses two transitions (see Fig. 6). The first transition is bound
to the two events drink and pass, which is the reason why in the large interaction
of Fig. 2 must contain both of these events – this way making sure that a drink
is only be dispensed together with passing a coin from the slot to the safe. The
second transition combines events cancel and reset.

2.4 Discussion and Summary of Concepts

Altogether, the ECNO extends class diagrams by the explicit definition of events,
resp. event types, and coordination annotations, which define in which way dif-
ferent elements need to participate in an interaction. We call this extension on
top of class diagrams coordination diagrams.

The basic mechanism for defining these coordination requirements is annotat-
ing references of the class diagram with an event type and a quantification. Each
of these annotations defines a bilateral coordination. In combination, however,
they might require that many different elements participate in an interaction
(cf. Fig. 2): First, there might be different references for the same event, which
require different other elements to participate. Second, the other elements that
are required to participate might have references with annotations, which require
further elements to participate; in this way, establishing a chain or network of
required elements until all requirements are met. Third, an event annotation
with quantification ALL requires that all the elements at the other end of the
respective links participate. Forth, the local behaviour of an element can require

149

synchronization of two or more different events that all need to be part of the
interaction (see Fig. 6 for example); the required other event, may in turn im-
pose additional requirements on participating partners. This way, coordination
diagrams define the global behaviour of a system by coordination annotations
based on the local behaviour of its elements.

A coordination diagram does not say anything about the possible local be-
haviour of the elements. In our example, the local behaviour was defined by an
ECNO net; but this could be done with other formalisms too. In essence, the lo-
cal behaviour answers the following questions: when can an event be executed by
an element (to be more precise, when can an element participate in an event),
what is the local effect when the element participates in such an interaction,
and which events need to be executed together. The ECNO framework provides
an API for programming the local behaviour for every element [2]. This code,
however, can be generated fully automatically from ECNO nets.

3 ECNO Engine: Concepts, Algorithms, and Architecture

In this section, we discuss the main concepts and the architecture of the ECNO
execution engine: the algorithm for calculating interactions, the control mecha-
nisms for automatically updating possible interactions, and their execution.

3.1 Local Behaviour

In Sect. 3.2, we will briefly discuss how the execution engine calculates the possi-
ble interactions for some element. The possible interactions depend on the infor-
mation from the coordination diagram concerning global behaviour as well as on
the local behaviour. In our example, we used ECNO nets for defining the local
behaviour of an element. In order to be independent from a specific modelling
notation, however, the ECNO provides a general programming interface for the
local behaviour, which was discussed in [2]. For the calculation of the possible
interactions this programming interface is used. Here, we briefly recapitulate the
main functions of this interface.

The local behaviour of an element is represented by an interface ElementBe-
haviour. Its most important method provides, in any given situation, a list of all
possible choices, each of which is represented by an instance of class Choice. In
ECNO nets, each enabled transition would correspond to a choice. In general,
a choice defines events of which type are involved in the choice and methods
for assigning values to the parameters of the involved events. Since the value
assigned to a parameter of some event might depend on other event parameters,
the details are slightly more involved. The details of the parameter assignment,
however, are not relevant for understanding the computation of the possible in-
teractions. Therefore, we do not discuss this here (see [2] for more details). The
class Choice also has a method that, after all parameters have been assigned to
the events, checks the additional condition (as we have seen in Fig. 5). At last,
each Choice provides a method to execute the choice; this will make all the local

150

changes to the element, when the interaction eventually is executed. In ECNO
nets, this would be the change of the net’s marking as well as the execution of
the transition’s action.

3.2 Computing Interactions

Next, we discuss how the ECNO engine computes all the possible interactions
for a given element and for a given event type. The basic idea of this algorithm
is quite simple: it is a search in an AND/OR-Tree, which starts from the element
together with an event type, following systematically up all the possible alter-
natives. When the search starts or arrives at an element with some event type,
the possible alternatives are all the possible choices of the element with an event
of the respective type. Each of these choices represents one possible interaction
that needs to be followed up. Once a choice is fixed, we need to follow up all the
event types of the choice; note that for a choice with more than one event type,
we need to follow up all of them for the same interaction; therefore, there is no
alternative here. Following up an event type for an element means that we need
to follow up all the coordination annotation for that type – again all of them
need to be followed for a single interaction. Following up a coordination anno-
tation has two different cases: if the coordination annotation has cardinality 1,
each link of the element with respect to that reference is a possible alternative.
If the coordination annotation has cardinality ALL, there is no alternative; we
need to follow up all of the respective links of the element. Following a link, will
lead us to an element and an event type again, were the search continues. If this
element is already part of the currently computed interaction, we just need to
check whether the respective event type is already part of the choice for that
element. If it is, this branch of the search is successful. If the event type is not
part of that choice, the currently computed interaction fails unsuccessfully.

During the computation, a potential interaction is represented as a set of
elements that are determined to be part of the potential interaction along with
the respective choice of the local behaviour for that element and the events.
We call this a partial interaction. A partial interaction is complete, if all search
branches terminate successfully. Since the computation, ultimately, should be
able to compute all possible interactions for a given element and event type, the
search is actually not done recursively. It is done iteratively, where the stack of
all possible alternatives is stored explicitly along with each partial interaction in
a list. Whenever the search has more than one alternative, the partial interac-
tion along with its current stack of alternatives is copied for every possible new
alternative and the new alternatives are put on top of the stack.

The above algorithm will systematically compute all interactions that are
possible from the coordination point of view. For simplicity, the event parame-
ters will not be assigned during the search in the current implementation. The
parameters will only be assigned at the end of the search. This assignment could
result in failures too, when different elements assign different values to the same
event parameter. If the assignment of the event parameters was successful, the
conditions of all the choices are checked. If this is successful for all the choices

151

of all the interaction’s elements, the interaction is actually valid. Only in that
case, the computed interaction will be returned as a result.

Note that, technically, the ECNO engine does not compute and return the
set of all valid interactions in a single go. It returns an iterator that, on demand,
computes and returns one valid interaction after the other. We call this the
interaction iterator.

Executing an interaction is very simple, once it is computed: The execution
method on the choice attached to every element of the interaction is called one
after the other – in an arbitrary order.

3.3 Controllers, Updates, and Notifications

Based on the algorithm from Sect. 3.2, the ECNO engine provides a method
that returns an interaction iterator that can compute all currently possible in-
teractions for some element and some event type. Other parts of the program
can obtain these interaction iterators from the engine, obtain interactions and
then execute them. The idea of ECNO, however, is that there is no need for
a program that globally controls and selects the possible elements and events,
and which executes interactions. The idea is, that as soon as some interaction
is possible, it would be offered at some GUI so that the end-user could select it
– and it should automatically be disabled again when the interaction becomes
invalid again. To this end, ECNO has some features that allow us to indicate
which kind of elements and which event types should show up on the GUI.

But, it should not only be possible to trigger interactions from the GUI;
also other parts of the software should be able to trigger an interaction on
some element, once it become enabled. Moreover, this should work, even when
objects are added, removed, or its links are changed by some other parts of the
software – even when these changes are made independently from the ECNO
engine. To this end, the ECNO framework provides controllers, which can register
for some element and event type, and which are automatically notified when
interactions become enabled or disabled. The GUI mentioned above is just one
specific extension of these ECNO controllers. Other applications can use and
extend these controllers to be notified about enabled interactions and for issuing
their execution.

In order to make the controllers aware of any changes in the underlying
objects and their links, ECNO makes use of some notification and listener mech-
anisms. Here, we give an overview of these mechanisms and their interplay with
the controllers. For lack of space, however, we cannot go into the subtle details
of making these mechanisms re-entrant and thread-safe – most of which use
standard concepts of concurrent programming.

Since ECNO should work independently from the underlying implementation
of object-oriented models, the listeners actually register with the behaviour on
top of the object-oriented part of the software. In order to be aware of changes
in the underlying object-oriented parts, adapters need to be implemented, which
will be discussed in Sect. 3.5. For now, we assume, that the element’s behaviour

152

is notified of any change that might have an effect on the enabledness of some
interactions it could be involved in.

Note that also an interaction iterator must be aware of changes that po-
tentially invalidate the interactions it is computing. To this end, an interaction
iterator (see Sect. 3.2), registers itself as a listener with any new element, as soon
as it comes across it during the computation of its interactions. As soon as the
iterator receives a notification from one of the elements it had registered with, it
assumes that its computed interactions and partial interactions are invalid; and
it will not return any interactions anymore. Instead, it will raise an exception,
when asked for another interaction. Moreover, the iterator de-registers itself from
all the elements, since it is invalid already and nothing can change that.

In turn, a controller registers as a listener on the interaction iterator when
it obtains it from the engine. This way, the controller is notified as soon as the
interaction iterator becomes invalid. In that case, the controller, will obtain a
fresh interaction iterator from the engine. This way, the controller stays up to
date – and can select a new valid interaction from the new iterator.

Note that an iterator that did not find any interaction, remains registered
with all elements it came across in its search for possible interactions. The reason
is that any change in these elements could result in new possible interactions
– and only changes in these elements can make new interactions possible. This
way, an “empty” interaction iterator can notify a controller about possible new
interactions, once they become enabled. Then, the controller can create a new
interaction iterator which provides it with the currently possible interactions.

Once a controller has obtained a possible interaction, it should also be no-
tified when this interaction becomes invalid. Therefore, the interaction iterator
registers an interaction with all the elements the interaction is involved in be-
fore the interaction is returned to the controller. In turn, the controller registers
with the interaction that it obtained from the interaction iterator, so that the
controller can be updated when this interaction becomes invalid.

As long as such an interaction is not invalidated, the controller could execute
this interaction anytime. Since changes in the objects and their structure can be
made concurrently from different threads, it could happen that an interaction is
invalidated while it is executing; to avoid this, the ECNO engine comes with a
transaction mechanism, which will be discussed in Sect. 3.4.

The above mechanism result in a lot of notifications, which in turn would
result in many re-computations of possible interactions in the respective con-
trollers. The execution of a single interactions will make many changes: changes
of attributes of the involved elements, state changes in the local behaviour of
every element, and addition or deletion of links between some elements. Up-
dating the controllers after every of these intermediate changes would just waste
computation power. Therefore, notifications that happen due to changes of an in-
teraction should be deferred until the execution of the interaction is finished. To
this end, the notifiers of the ECNO engine are implemented in such a way that,
when they encounter a change resulting from the execution of an interaction,
they do not send out the notifications right away; they will register themselves

153

with the end of the interaction (actually with the end of the respective trans-
action – see Sect. 3.4), and send out only one notification to all listeners in the
end. We call this a deferred notification.

3.4 Transactions

As discussed before, controllers should be as independent from each other as pos-
sible, it should be possible that controllers run concurrently in different threads,
and interactions should be computed and executed concurrently. As long as the
sets of elements that are involved in two interactions are disjoint, there is no
harm in executing interactions concurrently. When two interactions have ele-
ments in common, however, this might cause some problems. The change made
by an action of one element might make the condition of the same element in the
other interaction invalid; likewise, links that are part of an interaction might be
deleted by the other, etc. The ECNO engine should make sure that interactions
do not interfere with each other. In the sense of the ACID principle, we want to
make sure that an interaction runs atomically (either completely or not at all)
and in isolation (no other interaction interferes with it once it is started).

To this end, the ECNO engine introduces a transaction concept with a simple
locking mechanism. When the execution of (a still valid) interaction is started,
a transaction will be started and locks on all the elements of this interaction
will be acquired. Acquiring the locks is actually done in some canonical order,
in order to avoid deadlocks due to cyclic waiting for a lock. This way, we are
sure that an interaction resp. its transaction eventually will be able to acquire
all locks. Once the transaction has obtained all locks, the interaction will be
executed – and we can be sure that it terminates. When the execution of the
interaction is finished, the locks on all its elements are released again. Note that,
this way, ECNO’s transaction mechanism provides slightly more than atomicity:
once successfully started2 the interaction will successfully terminate.

As long as interactions are executed by controllers derived from ECNO con-
trollers, interactions are executed atomically and in isolation – even when these
controller are running concurrently. When other parts of the software make
changes on the objects, they should also use transactions acquiring locks on all
changed elements. If they do, ECNO’s engine guarantees atomicity and isolation.
If changes are made outside of transactions, ECNO’s updating and notification
mechanism would still work. But, atomicity and isolation might be compromised.

As pointed out in Sect. 3.3 already, transactions are also used for another
purpose: In order to avoid unnecessary updates of the possible interactions of
the controllers, the notification of the invalidation of an interaction iterator or
an interaction is deferred to the end of the transaction (interaction), when a
change on the element is made from within a transaction.

2 It might happen that, while the transaction is still acquiring the locks, another
interaction invalidates the interaction. In that case, the interaction will abort. So,
“successfully started” for an interaction means, that the interaction is still valid after
the transaction has acquire all locks.

154

ElementType

name : EString

gui : EBoolean

EClass

(from ecore)

EReference

(from ecore)

EParameter

(from ecore)

EPackage

(from ecore)

EventType

name : EString

gui : EBoolean

Package

CoordinationSet

trigger : EString

Synchronisation

eventName : EString

type : SynchronisationType

<<enumeration>>

SynchronisationType

ONE

ALL

Reference

name : EString

upperBound : EInt

FormalParameter

label : EString

collective : EBoolean

eClass 1

coordinationSets 0..*

references

0..*

elementTypes

0..*
target

1

source

1

eReference 0..1ePackage 1

parameters

0..*

super

0..1

eventTypes

0..*

triggerEvent

0..1
eventType

1

uses 0..*

synchronisations 0..*

coordinationSet 1

reference 1

synchronisations

0..*

Fig. 7. ECNO model and EMF adapters

The ACID principle of transaction theory would also cover persistence or
durability of changes in data – meaning that the changes would be persisted in
a file or database, once the interaction is successfully completed. The ECNO
engine does not (yet) take care of that. The reason is that persisting data is
tightly coupled to the technology underlying the data model. Therefore, the im-
plementation of durability depends on the underlying object-oriented technology.
For models in EMF technology, for example, we are planning to use Hibernate
for that purpose. A general infrastructure for persisting object-oriented models
spanning different technologies, however, is beyond the scope of ECNO for now.

3.5 ECNO: Meta Model and Adapters

The concepts discussed up to now are independent from any technology and
implementation issues. One of the objectives of ECNO was that models for local
and global behaviour could be added on top of any other object-oriented tech-
nology. In this section, we discuss how this technology independence is achieved
in the ECNO engine and programming framework.

ECNO comes with its own light-weight meta model of object-oriented models,
on top of which the additional concepts for coordination diagrams are introduced.
For a particular object-oriented technology, there will be a meta model that
maps the concepts of ECNO’s light-weight meta model of the object-oriented
concepts to the concepts of the specific technology. Figure 7 shows the meta
model of ECNO and the mapping of its object-oriented concepts to the corre-
sponding concepts of the EMF technology. In the top row, you see the concepts
of EMF, which we ignore for a moment. The rest of the diagram shows ECNO’s
meta model. Actually it shows already the mapping, but since there is almost
a 1:1-correspondence, we use this diagram to explain the concepts of ECNO’s

155

meta model, which technically is just a set of Java interfaces (not visible in this
diagram).

The main concept of ECNO’s meta model for objects are the element types,
which can have references to other element types. Note that there are no mul-
tiplicities for references, since these would come from the actual object-oriented
model (the EMF model in our case).

The concepts specific to coordination diagrams are coordination sets (which
reflect the different possibilities an event type requires synchronisations with).
This is represented by the synchronisations that are contained in a reference
and are attached to exactly one coordination set of an element type. Each syn-
chronisation represents the coordination annotations of a reference (cf. Fig. 1),
which consists of an event type and a synchronisation type (either ONE or ALL).
Note that an event type can be derived from another event type (in the meta
model represented by super) and event types also can have parameters.

As mentioned above, Fig. 7 shows how the ECNO concepts are mapped to
the Ecore concepts: most importantly, an element type is referring to an EClass,
and an ECNO reference is referring to an EReference.

The important point here is, that the ECNO mapping refers to concepts of
the Ecore model, but there are no references in the opposite direction. Therefore,
the ECNO engine works on code that was generated from the Ecore model. The
Ecore objects, however, do not know anything about ECNO’s element types,
coordination sets, or synchronisations. In order for the ECNO engine to be able
to obtain that information when it calculates the possible interactions, the ECNO
engine uses so-called package adapters. For the EMF technology, these adapters
can be generated automatically from the coordination diagrams.

A package adapter, basically, does the following: for a given object, it will
check whether the object is of a type for which it provides a mapping; if so, it
returns the object’s element type. Based on the object, its element type, and
some of its references, the adapter will provide all the links of that object with
respect to that reference. This will be used by the engine to navigate to the
respective related elements when computing the interactions.

Another important function of the package adapter is to create an object
that represents the element’s local behaviour (ElementBehaviour) the first time
the engine encounters a new object. The ECNO engine will then use this element
behaviour throughout the life-cycle of this object. The main concepts of the
element behaviour have already been explained in Sect. 3.1. The package adapter
is responsible only for creating it, when a new object is encountered.

As mentioned above, the package adapter can be automatically generated
from a coordination diagram. The relevant package adapters are then registered
with the ECNO engine, when it is started.

For the prototype version 0.2.0 of this ECNO implementation and some
examples, we refer to the ECNO home page http://www2.imm.dtu.dk/~eki/

projects/ECNO/.

156

4 Conclusion

We briefly discussed the goals and objectives of ECNO, and its main ideas and
concepts. The ideas of ECNO and the related work have been discussed before
with the focus on the programming interface for local behaviour [2] and with the
focus on ECNO nets for modelling the local behaviour [3].

In this paper, we presented the ECNO engine and its architecture and design
in order to show that ECNO also technically can be used on top of different
object-oriented technologies. By the use of adapters, the ECNO engine can be
integrated with different technologies.

In addition, we have discussed the main ideas of the algorithm for computing
the possible interactions, and the control mechanisms that make it possible to
update and execute interactions completely independently of each other. No
additional control code is needed; the ECNO engine provides all the control
mechanisms for making the interactions update and execute – just triggered by
changes on the underlying model. The concepts of events and interactions allow
systems to be integrated without using method invocation or function calls at
all – and without explicitly thinking in terms of threaded programming.

The algorithm for computing the possible interactions has still much poten-
tial for optimizations. Since interactions are typically not very large and since
the computation of interactions is local, the complete approach should scale in
principle. Still, optimizations would depend on the kind of application, the size
of typical interactions, how different interactions are intertwined, and on the
timescale of their execution. Getting more experience with that, would require
case studies that are larger than our simple vending machine. With the current
version of the ECNO engine, we can now start working on examples – and case
studies – on a large scale, which would provide the necessary input for optimiza-
tions and an evaluation of the ECNO approach in practice.

Acknowledgements

I would like to thank David Schmelter for comments on earlier versions of this paper.

References

1. Kindler, E.: Model-based software engineering: The challenges of modelling be-
haviour. In Aksit, M., Kindler, E., Roubtsova, E., McNeile, A., eds.: Proceedings
of the Second Workshop on Behavioural Modelling - Foundations and Application
(BM-FA 2010). (2010) 51–66 (Also published in the ACM electronic libraries).

2. Kindler, E.: Integrating behaviour in software models: An event coordination no-
tation – concepts and prototype. In: Third Workshop on Behavioural Modelling -
Foundations and Application (BM-2011), Proceedings. (2011)

3. Kindler, E.: Modelling local and global behaviour: Petri nets and event coordi-
nation. In Duvigneau, M., Moldt, D., Hiraishi, K., eds.: Petri Nets and Software
Engineering. International Workshop PNSE’11, Newcastle upon Tyne, UK, June
2011. Proceedings. Volume 723 of CEUR Workshop Proceedings. (2011) 42–56

4. Budinsky, F., Steinberg, D., Merks, E., Ellersick, R., Grose, T.J.: Eclipse Modeling
Framework. 2nd edition edn. The Eclipse Series. Addison-Wesley (2006)

157

Motivation Modelling

for Human-Service Interaction

Ella Roubtsova

Open University of the Netherlands
ella.roubtsova@ou.nl

Abstract. Web services are goal-oriented software systems and often
need to influence or motivate particular behaviour of their communica-
tion parties: humans and other services. This paper investigates modeling
of motivation for human-service interaction. It shows why motivation
needs a separate model different from the service process model, how
to specify motivation and compose the motivation model with the ser-
vice process model. Depending on the goals, the same service process
model may have different motivation models. We provide an example of
a service model with different motivation models that stimulate different
behaviour of humans interacting with the web service.

Keywords: Motivation Model, Service, Process, Protocol Model

1 Introduction

In 2010, the Object Management Group and the Business Rules Group com-
pleted their work on the Business Motivation Model (BMM), Version 1.1 [13,
15]. The BMM provides a scheme or structure for developing, communicating,
and managing business plans. The schema covers four related elements:
1. The Ends of a business plan. “Among the Ends are things the enterprise
wishes to achieve, for example, Goals and Objectives” [15].
2. The Means of a business plan.“Among the Means are things the enterprise
will employ to achieve the Ends, for example, Strategies, Tactics, Business Poli-
cies, and Business Rules”.
3. “The Influences that shape elements of a business plan”.
4. “The Assessments that are made about the impacts of such Influencers on
Ends and Means (i.e., Strengths, Weaknesses, Opportunities, and Threats).”

The OMG predicts that “three types of people are expected to benefit from
the Business Motivation Model: developers of business plans, business modelers,
and implementers of software tools and repositories”. The Business Rule Group
believes that “Eventually specifications such as the Business Process Model-
ing Notation (BPMN) together with the Business Motivation Model (BMM)
should be merged into a single business-oriented modeling architecture, and im-
plemented in integrated tool suites”[15]. The BMM is not a full business model

158

and it does not prescribe in detail business processes, workflows and business vo-
cabulary. However, business processes are key elements of business plans and the
BMM does include a placeholder for Business Processes. The relations between
Goals and other elements of BMM are left open.

In this paper we make a step in direction of relating BMM with business pro-
cesses and show how business modelers can benefit from motivation modelling.
The motivation modelling is especially important for the modern electronic busi-
ness that covers any area of human life. Web services govern job application,
purchasing orders, booking requests, testing and requesting official documents -
the list of web services is endless. Depending on their goals, web services need
to motivate their users to choose particular actions among all possible actions.
If business services are provided by people, these people motivate actions of cus-
tomers. The web services themselves favour the choices of their customers and
therefore they should benefit from having well designed motivation models built
into them. This motivation of users is a some sort of intelligence that we need to
add to services. The first step to systematic use of this intelligence is propagating
the business Ends (Goals and Objectives) to the business process.

Goals are usually formulated as non-functional requirements. They are usu-
ally abstract. The goals can be even unrealisable. The Objectives corresponding
to goals are specific and measurable. They show realisability of goals. The moti-
vation modelling can be seen as transformation of Goals into the corresponding
Objectives described using elements of business processes and as a way to esti-
mate realisability of Goals.

This paper presents a model of Business Motivation in Business Processes.
We show how the semantics of Protocol Modelling [10] allows for localizing the
motivation model in the business processes.

The structure of the paper is the following.
In Section 2 we formally define a process and introduce a motivation model

on a process. Section 3 shows how to propagate the business goals and combi-
nation of goals to the motivation model of the process. Section 4 discusses the
advantages of our approach to motivation modelling. Section 5 discusses related
work. Section 6 concludes the paper and identifies future work.

2 Motivation Modelling

2.1 Process with can-semantics

In order to relate motivation and business process, we need a model of a process,
a state transition system. We take a state transition system which is usually
presented as a triple of P = (S, A, T), where
- S is a finite set of states {s1,si, ...sj ...},
- A is the alphabet of P , a finite set of environmental actions or events ranged
over {a, b, ...},
- T is a finite set of transitions (si, a, sj).

The set of transitions can be presented as a set of two relations [11]

T = {C, U} :

159

- C ⊆ (A × S) is a binary relation, where (a, s) ∈ C means that action a is a
possible action for P when in state s. C is called the can-model of P because it
models the actions that P “can do” in each state.
- U is a total mapping C → S that defines for each member of C the new state
that P adopts as a result of the action. U(a; si) = sj means that if P engages in
action a when in state si it will then adopt state sj. U is called the update-model
of P because it models the update to the state of P that results from engagement
in an action.

With separation of the can- and update-models a process P is a tuple:

P = (S; A; C; U).

This is the same process, it does not contain motivation yet.

2.2 Motivation Modelling

There sequences of states in the process that lead to achievement of a particular
goal. There are also sets of states when a particular goal is achieved. We name
these states goal states.

From the goal perspective the events triggering transitions to a goal state
are the priority actions in the states preceding the goal state. They need to
be motivated. So, a state preceding a goal state and the event that triggers a
transition that may lead to the goal state, form a new binary relation:

– M ⊂ (A × S), (a; s) ∈ M means that event a is a motivated action for
P when in state s. We call relation M the motivation-model to show its
semantic difference from the relation C [8].

In order to model motivation we propose to add the motivation-model M to
the process:

PM = (S; A; C; U ; M).

The can- and motivation-models of a process are independent of each other,
so when a process is in a given state, an action can have different combinations
of can- and motivation- alternatives:

{can happen; can not happen} × {motivated; not motivated}

In this paper we base the modeling of motivation on this extra relation M
added to the process.

2.3 Human-Computer Interaction

As motivation-models do not contribute to behaviour of the systems but moti-
vate the human communication with the service, the most simple application of
motivation models is the justified design of human-computer interfaces.

160

A service presents to a human the possibilities and wishes in form the can-
and motivation-model. For example, two events can be submitted, but only one
of them is motivated:

((a; sP) ∈ C) ∧ ((b; sP) ∈ C) ∧ ((a; sP) ∈ M).

The human can choose any possible action, but the action indicated by the
motivation-model leads to achieving a goal of the service:

((a; sP) ∈ C) ∧ ((a; sP) ∈ M)

Having a chosen goal in mind it is possible to favour the paths leading to the
goal states by indicating motivated actions in any state of the process.

2.4 Several Goals

The goals can be OR-composed or AND-composed [14] in requirement specifi-
cations. In this case several motivation-models should be taken into account.

Two goals forming an AND-composition are conflicting if the system has a
state from which it is impossible to reach a state where both goals are satisfied
simultaneously. In the case of conflicting goals the motivation model should
identify the subsequences in the process that lead to states from which achieving
of all AND-composed goals is possible.

2.5 Requirements for a Semantics that Relates Motivation and

Behaviour Models

Process PM contains a new relation M = (A × S).
Usually M ⊆ C and in this case the semantics of M means highlighting the

transitions that lead to the goals state.
However, the new goals emerging in the life cycle of the modeled system

may challenge the can-update process and may need transitions to other states
caused by both the events from the alphabet A and new events. In this case the
motivation model introduces a new subprocess.

Conventional behaviour modelling techniques use only can-update semantics
and therefore they do not provide means for motivation modelling.

For example, if a process is presented as a workflow, as an activity diagram,
then, to specify a motivation-model, extra means are needed to identify the
motivated outgoing transitions in each state. For, example, we can colour the
motivated transitions leading to a goal. The state of a workflow is a set of marked
nodes, so the combinations of nodes have to be built to formulate a motivation-
model. If several motivation-models should be presented, then an incomprehen-
sible spaghetti of coloured sub-diagrams will cover paths of the workflow. The
events submitted by the human are accumulated in this model as tokens in
places. The tokens are handled in a non-deterministic way and handling of them
cannot be motivated.

161

In another semantics, when a system is specified as a composition of commu-
nicating state machines, the model often contains states that cannot be described
as composition of states of composed state machines. Such states appear because
the semantics of state machines includes queues to keep the events which were
submitted to the system when the system was not able to accept them. Events
in queues are waiting for acceptance and may affect the motivated transitions in
any state. The non-determinism takes control of the process from the human.

These observations lead to requirements for the modeling semantics that
relates Motivation and Behaviour Models.

– The semantics should allow separating can-update and motivation models.
– The semantics should present all states and transitions of the process explic-

itly. The states should be visible as they are used for specification of goal
states and for motivation modelling. Having invisible states in the model the
user loses control over the process. The transitions should be visible as they
are used for specification of motivation.

– For the purpose of transformation of a goal into a objective the semantics
should be able to present abstractions on sets of goal states.

– The semantics should present deterministic models as the motivation spec-
ifies the choice of transitions. The human communicating with the model
should be able to choose, not the machine. Any queues of events submitted
by the human and the non-determinism caused by them take control from
the human.

– The determinism of the semantics should not restrict the concurrency of the
model as both can-update and motivation models should work in parallel in
the model.

3 Motivation Models In Protocol Modelling

The semantics of the Protocol Modelling approach [10] offers an easy and prac-
tical way to model motivation separately from the can-update model of the pro-
cess. The Modelscope tool [9] supporting Protocol Modelling enables execution
of the can-update models with motivation models.

A Protocol Model is a synchronous CSP parallel composition of protocol
machines [10]. This composition has its roots in the algebra Communicating
Sequential Processes (CSP) proposed by Hoare [4]. McNeile [10] extended this
composition for machines with data.

The CSP parallel composition means that a Protocol Model accepts an event
if all the protocol machines recognizing this event accept it. Otherwise the event
is refused.

A protocol model is deterministic, but this does not restrict concurrency as
the synchronized protocol machines work concurrently. A state of a protocol
model is always a composition of states of its protocol machines, so there are no
states hidden for specification and observation. All the transitions are caused by
the events initiated by environment, i.e. humans in our case.

162

We will introduce the relevant semantics of Protocol Modelling on a sim-
ple example. We show how reflect goals in a can-update protocol model, how
to model motivation and how the motivation model justifies different human-
computer interface for the same can-update model.

3.1 Web service: Pay by Credit Card.Goals and Requirements

Our simple case study is a Pay by Credit Card web service that can be seen
in many electronic booking systems. The user of the service instantiates the
service. The user is asked accept the privacy conditions of the service and to fill
in his credit card number. The user may fill in the credit card number without
accepting the privacy conditions and after accepting the privacy conditions. If
the user has filled in the credit card number, he is not able to accept the privacy
condition anymore (the service does not have the strict rule ”first accept and
then fill in”). The service can always be cancelled before the credit card number
is filled in.

����������	
�����	�

���	
�����	��������
���	���
��
���������������

�������	

����
������������������	�

����������������	
���������

���

���

��

Fig. 1. Goal model of the web service: Pay by Credit Card

The goal-oriented methods for requirements engineering (GORE) emphasize
the relations between the goals and requirements [3]. Usually, the top of a goal
tree represents abstract goals that are refined with sub-goals and requirements.
Requirements are the leaves of goal trees. In any set of requirements there are
goals and other concerns.

The goal of a seller having the service Pay by Credit Card is to receive
payment. This goal is refined by the sub-goal ”Pay by Credit Card”. We don’t
show the complete goal tree. Figure 1 shows a sub-tree of the goal tree in the
notation of the KAOS method [3]. We recognize two goals (requirements) for
this service, namely,

1. credit card number is filled in and

2. privacy statement accepted by the user.

The possibility of service cancelation is yet another concern. It is obvious that
cancelation cannot be called a goal of the service.

163

filled in

Input

not

accepted
accepted

instantiated

Fill in

Instantiate Accept

Decision

Cancel,Accept

Instantiate

cancelled

Cancelation

not

cancelled

Cancel
Instantiate

Fill In, Cancel

Include

Include

Fill In, Cancel

Fill In,Accept

Fig. 2. Can-Update-Model: Pay by Credit Card

1 MODEL Pay by Credit Card

2 OBJECT Input

3 NAME Session

4 ATTRIBUTES Session: String,

5 Credit Card Number: Integer

6 STATES instantiated,filled in

7 TRANSITIONS @new*Instantiate=instantiated,

8 instantiated*Fill In=filled in,

9 instantiated*Accept=instantiated,

10 instantiated*Cancel=instantiated

11

12 BEHAVIOUR Decision

13 STATES instantiated,

14 not accepted, accepted, final

15 TRANSITIONS @new*Instantiate=not accepted,

16 not accepted*Accept=accepted,

17 not accepted*Cancel=not accepted,

18 not accepted*Fill In=not accepted,

19 accepted*Cancel=accepted,

20 accepted*Fill In=accepted,

21 BEHAVIOUR Cancelation

22 STATES not cancelled, cancelled

23 TRANSITIONS @new*Instantiate=not cancelled,

24 not cancelled*Cancel=cancelled,

25 not cancelled*Accept=not cancelled,

26 not cancelled*Fill In=not cancelled,

27 EVENT Instantiate

28 ATTRIBUTES Input:Input, Session:String,

29 EVENT Fill In

30 ATTRIBUTES Input: Input,

31 Credit Card Number: Integer,

32 EVENT Accept

33 ATTRIBUTES Input:Input,

34 EVENT Cancel

35 ATTRIBUTES Input:Input,

36

Fig. 3. Meta code of the Can-Update-Model: Pay by Credit Card

164

3.2 Process Model of the Service

We model the can-update process as a CSP composition of protocol machines
corresponding to goals and concerns: Input, Decision and Cancelation. The
graphical presentation of the protocol model is shown in Figure 2. The executable
meta code is presented in Figure 3.

The CSP composition of protocol machines allows us presentation abstract
goal states. State filled in of protocol machine Input is the goal state of
the first goal and state accepted of the protocol machine Decision is the goal
state of the second goal. The state space of a protocol model is a subset of the
Cartesian Product of the states of allprotocol machines. Every tuple from this
subset of states that contains a goal state is a goal state.

For example,
(not accepted, not cancelled, filled in),
(accepted, not cancelled, filled in)

are the goal states for the first goal.
The manually written meta code describing protocol machines (Figure 3)

is executable in the Modelscope tool. The generic user interface is generated
allowing submission events and observing the state of the model in form of
visible states and attributes.

The protocol machine Input is coded as OBJECT; every instance of it has
its identification name. The protocol machines Decision and Cancelation are
BEHAVIOURS. This means that their instances do not have identification names.
BEHAVIOURS present only parts of objects behaviour (so-called mixins). They are
included into each instance of object Input. This is shown as INCLUDE relations
depicted as arcs with half-dashed ends. If a BEHAVIOUR and an OBJECT have
an INCLUDE relation than for any instance of this OBJECT an instance of this
BEHAVIOUR is generated and the traces of this instance are CSP composed with
the traces of the OBJECT.

A human interacts with the service and with the protocol model by submit-
ting events. Each protocol machine has an alphabet of recognized events. The
events recognized by protocol machines are specified as data structures. Each
instance of an event type contains own values of specified types. For example,
each instance of event Fill In contains own identifier Input:Input and Credit

Card Number: Integer.

All three machines Input, Decision and Cancelation are synchronously
instantiated accepting event Instantiate.

Similar to a state machine, a protocol machine has a set of states and the
local storage presented with attributes. However, the semantics of a protocol
machine is different:

– A transition label of a state machine presents the pre-condition and the post-
condition for enabling event to run to completion. A transition from state
s1 to state s2 is labeled by

(s1, [precondition] event/ [postcondition], s2)[12].

165

The label shows that the transition in a state takes place only if the pre-
condition is satisfied. If the pre-condition is not satisfied, the behaviour is
defined by the semantic rules. Namely, the event is kept in a queue and waits
for a state change to fire the transition.

– A transition label of a protocol machine presents an event that causes this
transition. The storage information is localized in the state. Being in a qui-
escent state in which the protocol machine can accept the submitted event,
the protocol machine accepts one event at a time and handles it until an-
other quiescent state. If the protocol machine cannot accept the event in its
current state, the event is refused [7, 10].

The default type of protocol machines is ESSENTIAL. Essential protocol ma-
chines are composed (synchronized) using the CSP parallel composition and
these machines are used to present the can-update model, i.e. the the business
process.

3.3 Protocol Machines of Motivation Models

There are some semantic properties of Protocol Modelling that allow for local-
ization of motivation models and separation them from the can-update model.

1. Thanks to the abilities of protocol machines to read but not modify the
state of other protocol machines and to have an associated state function, it
is possible to build protocol machines with derived states.
A derived state is a state that is calculated from the states of other machines
using the state function associated with the protocol machine.

2. Thanks to different types of protocol machines, the use of composition can be
changed. The protocol machines of type DESIRED are not composed using the
CSP parallel composition technique. These machines can be used to model
the motivated behaviour.

3. It is also important that the refusal of events that arrive, when the system
is not able to accept them, guarantees that any state of a protocol model
is always described as a composition of states of a final subset of composed
protocol machines.

According to the definition given in section 2.2, a state of a motivation model
is related to some states of the process. Therefore, a motivation-model is pre-
sented as a protocol machine that does not have stored states but only derived
states.

A motivation model cannot forbid any transition in the can-update model
and does not participate in the event synchronization with the can-update mod-
els. Therefore, the motivation models are not composed using the CSP parallel
composition and have type DESIRED.

Summarizing, we can say that the semantic of Protocol Modelling meets the
requirements to specify motivation.

The motivation models for goals 1 and 2 are depicted in Figure 4,5.

166

The meta code and the corresponding call-back functions in Figure 6 show
how motivation models corresponding to each goal are modelled as protocol
machines. The code is added manually and it executed together with the meta
code of protocol machines in the Modelscope tool.

The meta code presentations of protocol machines Motivate Insert and
Motivate Accept have exclamation marks that show to the Modelscope tool
that there are call-back functions in java files with the same names. Each call-
back function derives state of the motivation model from the state of the objects
and behaviours of the can-update model.

For example, if the state of object Input is instantiated or the state of the
behaviour Decision is accepted then state motivate fill in is derived for
protocol machine Motivate Fill In.

motivate

fill in

Motivate Fill In

Fill In

motivate

accept

Accept

Motivate Accept

INCLUDE

INCLUDE

If (Decision.not accepted)

return Motivate Accept,

motivate accept

If (Input.instantiate or

Decision.accepted) return

Motivate Fill In, motivate

fill in

filled in

Input

not

accepted
accepted

instantiated

Fill in

Instantiate Accept

Decision

Cancel,Accept

Instantiate

cancelled

Cancelation

not

cancelled

Cancel
Instantiate

Fill In, Cancel

Include

Include

Fill In, Cancel

Fill In,Accept

Fig. 4. Graphical Presentation: OR-combination of goals

3.4 Combination of Goals

If the goals are OR-composed then achieving any of the goals is a goal on its
own and both call-back functions shown in Figure 6 are CSP parallel composed
with the can-update model.

Motivation model of the AND-combination of goals should not direct to states
where at least one of goals cannot be achieved.

The motivation model should lead to goals states. The goal state of the
AND-composition of goals in our case is

{Input.filled in} × {Decision.accepted}.

167

motivate

fill in

Motivate Fill In

Fill In

motivate

accept

Accept

Motivate Accept

INCLUDE

INCLUDE

If (Decision.not accepted)

return Motivate Accept,

motivate accept

If (Decision.accepted)

return Motivate Fill In,

motivate fill in

filled in

Input

not

accepted
accepted

instantiated

Fill in

Instantiate Accept

Decision

Cancel,Accept

Instantiate

cancelled

Cancelation

not

cancelled

Cancel
Instantiate

Fill In, Cancel

Include

Include

Fill In, Cancel

Fill In,Accept

Fig. 5. Graphical Presentation: AND-combination of goals

Event Fill In should not be motivated in state

{Input.instantiated}× {Decision.notaccepted}

because acceptance of this event in this state leads to the state

{Input.filled in} × {Decision.not accepted}

where the privacy statement can not be accepted anymore.
The new call-back function MotivateFillIn as shown in Figure 7.

4 Discussion

4.1 Context-Dependent Decisions

It is known from the phycology studies that decisions of people are context-
dependent [2]. The human-computer interface may provide the context that leads
to the choices that lead to goal states.

The motivation model can be transformed into human-computer interface of
different sort: different visual elements, different colour or different position on
the screen or another output device. In the generic interface of the the Mod-
elscope tool, the wanted events are presented in green.

The visual elements of the human interface can be generated from the mo-
tivation model with the context related to the specified goals. The user of the
system gets extra context information to choose the right action.

168

1 MODEL Pay by Credit Card

2 OBJECT Input

3 NAME Session

4 INCLUDES Decision, Cancelation, Motivate

5 ATTRIBUTES Session: String, Card Number: Integer

6 STATES instantiated,filled in

7 TRANSITIONS @new*Instantiate=instantiated,

8 instantiated*Fill In=filled in

9 BEHAVIOUR Decision

10 STATES instantiated ,not accepted, accepted, final

11 TRANSITIONS @new*Instantiate=not accepted,

12 not accepted*Accept=accepted,

13 accepted*Rethink=not accepted,

14 accepted*Finalize=final,

15 not accepted*Finalize=final

16 BEHAVIOUR Cancelation

17 STATES not cancelled, cancelled

18 TRANSITIONS @new*Instantiate=not cancelled,

19 not cancelled*Cancel=cancelled,

20

21 EVENT Instantiate

22 ATTRIBUTES Input:Input, Session:String,

23 EVENT Fill In

24 ATTRIBUTES Input: Input, Credit Card Number: Integer,

25 EVENT Accept

26 ATTRIBUTES Input:Input,

27 EVENT Rethink

28 ATTRIBUTES Input:Input,

29 EVENT Cancel

30 ATTRIBUTES Input:Input,

31 GENERIC Finalize

32 MATCHES Fill In, Cancel

33

1 package PayByCreditCard;

2 import com.metamaxim.modelscope.callbacks.*;

3 public class MotivateFillIn extends Behaviour {

4 public String getState() {

5 String y=this.getState("Input");

6 String x=this.getState("Decision");

7 if (y.equals("instantiated") || x.equals("accepted")

8) return "motivate fill in";

9 else return "other";

10 }

11 }

1 package PayByCreditCard;

2 import com.metamaxim.modelscope.callbacks.*;

3 public class MotivateAccept extends Behaviour {

4 public String getState() {

5 String x=this.getState("Decision");

6 if (x.equals("not accepted")

7) return "motivate accept";

8 else return "other";

9 }

10

11 }

Fig. 6. Protocol Model with Motivation Model for OR-combination of goals

169

1 package PayByCreditCard;

2 import com.metamaxim.modelscope.callbacks.*;

3 public class MotivateFillIn extends Behaviour {

4 public String getState() {

5 String x=this.getState("Decision");

6 if (x.equals("accepted")

7) return "motivate fill in";

8 else return "other";

9 }

10 }

11

Fig. 7. Call-back function Motivate Fill In for AND-composition of goals.

4.2 BMM and BPM

Relating the OMG Business Motivation and Business Process Models serves to
better understanding between managers making strategic decisions and require-
ment engineers preparing requirements for implementation.

In our approach the Ends of the Business Motivation model are presented as
abstract goal states.

The Means are events included into motivating protocol machines. They
present the strategies.

The Influences can be modelled as protocol machines. The choice of the
objects included into the model as Influences is made on the basis of the
Assessments about the impact of Influences relevant for the business process.

5 Related Work

There are many approaches that try to relate goals and processes.
The User Requirements Notation (URN) [5] is a standard that recommends

languages for software development in telecommunication. The URN consists
of the Goal-Oriented Requirements Language (GRL), based on i* modelling
framework [17], and Use Case Maps (UCM) [1], a scenario modelling notation.
The GRL provides a notation for modelling goals and rationales, and strategic
relationships among social actors [18]. It is used to explore and identify system
requirements, including especially non-functional requirements. The UCM is a
convenient notation to represent use cases. The use cases are selected paths in
the system behaviour and they can be related to goals by developers. The goals
are used to prioritize some use cases. If a use case presents alternative behaviours
or cycles, then the goals prioritize alternatives. The use cases can be simulated.
However, use cases do not model data and the state of the system and they
present only selected traces. This means that behaviour model as well as the
motivation model shown by use cases are incomplete and cannot be used for
code generation.

Letier at al. [6] derive event-based transition systems from goal-oriented re-
quirements models. The goal-oriented models are defined in the well known
declarative approach KAOS (Knowledge Acquisition in autOmated Specifica-
tion) [3].

170

Goals are specified in Linear Temporal Logic and organized using the AND
and OR refinement structures. Then the operations are derived from goals as
triples of domain pre-conditions, trigger conditions and post-conditions for each
state transition. The declarative goal statements are transformed into the op-
erational model. To produce consistent operational models, a required trigger
condition on an operation must imply the conjunction of its required precondi-
tions.

Van at al [16] propose goal-oriented requirements animation. The modelling
formalism is the UML State Diagrams that are generated from the goal specifica-
tions and called Goal State Machines (GSMs). A GSM contains only transitions
that are justified by goals. The GSMs are synchronized through event broadcast.
A GSM that can’t accept an event in its current state keeps it in a queue. These
events will be submitted to goal state machines internally. This means that the
composition of GSMs contains extra states that cannot be composed from the
states of separate GSMs and can prevent achieving of goals.

The problems are mostly caused by different semantics used by process mod-
elling and goal modelling techniques. Letier at al [6] explained that the opera-
tional specification and the KAOS goal models use different formalisms. KAOS
uses synchronous temporal logics that are interpreted over sequences of states
observed at a fixed time rate. The operational models use asynchronous tem-
poral logics that are interpreted over sequences of states observed after each
occurrence of an event. Most operational formalisms have the asynchronous se-
mantics. Letier at al. [6] admit that in order to be semantically equivalent to
the synchronous KAOS models, the derived event-based models need to refer
explicitly to timing events.

6 Conclusion and Future Work

This paper has presented an approach to motivation modelling. The approach is
based on an extra binary relation included into the process model. This relation
is used to identify the transitions in the process that lead to goal states.

The presented motivation model uses the semantics of Protocol Modelling
which combines the CSP parallel synchronous composition and concurrency and
therefore avoids the semantic mismatch between process modelling and goal
modelling techniques, identified by Letier at al. [6]. Synchronous goal models
can be rendered in protocol models. The motivation model relates the processes
to system goals and transforms them into objectives in terms of goal states in the
business process of services. Goal states as objectives are specific and measurable
and motivation models can make services more effective by motivating actions
leading to the goal states.

Reflecting the objectives in the models is important for requirements engi-
neering. New goals can challenge the business process. Such questions as, if the
process model supports some needed Means or if an End is no longer relevant to
the enterprise, are the elements of business process analysis [15].

171

The most interesting direction for future work is connecting web services on
the basis of matching motivation models. Motivation model can be used to direct
communication of collaborative services and to verify the realizability of service
collaboration.

Acknowledgement. The author thanks A.McNeile for sharing ideas and fruit-
ful discussions.

References

1. A. Alsumait, A. Seffah, and T. Radhakrishnan. Use Case Maps: A Vi-
sual Notation for Scenario-Based Requirements. 10th International Con-
ference on Human - Computer Interaction, http://wwwswt.informatik.uni-
rostock.de/deutsch/Veranstaltungen/HCI2003/, 2003.

2. A.Tversky and I. Simonson. Context-Dependent Preferences. Management Sci-
ence, 39(10):1179–1189, 1993.

3. A. Dardenne, A. van Lamsweerde, and S. Fickas. Goal-directed requirements ac-
quisition. Sci. Comput. Program., 20(1-2):3–50, 1993.

4. C. Hoare. Communicating Sequential Processes. Prentice-Hall International, 1985.
5. ITU. Formal description techniques (FDT). User Requirements Notation Recom-

mendation Z.151 (11/08). http://www.itu.int/rec/T-REC-Z.151-200811-I/en.
6. E. Letier, J. Kramer, J. Magee, and S. Uchitel. Deriving event-based transition

systems from goal-oriented requirements models . Automated Software Engineering
archiveD, 15(2):1–22, 2008.

7. A. McNeile and E. Roubtsova. Composition Semantics for Executable and Evolv-
able Behavioural Modeling in MDA. BM-MDA’09, pages 1–8, 2009.

8. A. McNeile and E. Roubtsova. Motivation and Guaranteed Completion in Work-
flow. submittered to SOSYM, 2011.

9. A. McNeile and N. Simons. http://www.metamaxim.com/.
10. A. McNeile and N. Simons. Protocol Modelling. A Modelling Approach that Sup-

ports Reusable Behavioural Abstractions. Software and System Modeling, 5(1):91–
107, 2006.

11. R. Milner. A Calculus of Communicating Systems. volume 92 of Lecture Notes in
Computer Science. Springer, 1980.

12. OMG. Unified Modeling Language: Superstructure version 2.1.1 formal/2007-02-
03. 2003.

13. OMG. Business Motivation Model. Version 1.1.formal/2010-05-01. 2010.
14. K. Pohl and C. Rupp. Requirements Engineering Fundamentals. Rocky Nook,

2011.
15. The Business Rules Group. The Business Motivation Model. Business Governance

in a Volatile World. 2010.
16. H. T. Van, A. van Lamsweerde, and C. P. Philippe Massonet. Goal-oriented re-

quirements animation. In RE, pages 218–228, 2004.
17. E. Yu. Modelling Strategic Relationships for Process Reengineering. Ph.D. Thesis.

Dept. of Computer Science, University of Toronto, 1995.
18. E. Yu, L. Liu, and Y. Li. Modelling Strategic Actor Relationships to Support

Intellectual Property Management. LNCS 2224 Spring Verlag. 20th International
Conference on Conceptual Modeling Yokohama, Japan, pages 164–178, 2001.

172

A Metamodelling Approach to Behavioural Modelling

Adrian Rutle1, Wendy MacCaull1, Hao Wang1, and Yngve Lamo2⋆

1 Centre for Logic and Information, St. Francis Xavier University, Canada
{arutle, wmaccaul, hwang}@stfx.ca

2 Bergen University College, Norwayyla@hib.no

Abstract In this paper we propose a metamodelling approach to behavioural
modelling. The approach combines diagrammatic modelling with formal found-
ations based on category theory and graph transformations. The static semantics
of behavioural models is represented by instances of (meta)models, while their
dynamic semantics is represented by transition systems. Transitions are described
by coupled model transformations. To illustrate the approach, we present a run-
ning example of a workflow model for health services delivery.

1 Introduction
Model-driven engineering (MDE) promotes models as the primary artefact of the soft-
ware development process. Unlike traditional approaches where models are used merely
for documentation purposes, the relation between the final results of the development
process – the executable software systems – and the models remains synchronized dur-
ing the software development process (design, maintenance, deployment, testing, etc.).
A software model is an abstract representation of some aspect of a software system,
such as the system’s structure, design, behaviour, etc. In MDE, the software models
are automatically transformed to program code. Currently, many different MDE tech-
nologies automatically generate code from models. These technologies are particularly
suited to specifying the structural aspects of software systems. Generally, the actual
behaviour is still programmed manually. Some technologies for behavioural model-
ling in MDE exist, e.g., [23,12]. However, there are still some challenges to overcome
before these technologies fully benefit from MDE. Current approaches are often at a
low level of abstraction and lack domain concepts for specifying behaviour [17]. To
overcome this issue, the use of domain specific modelling languages (DSMLs) is pro-
posed. However, existing DSMLs for behavioural modelling have limited support for
metamodelling and it is difficult to reuse the models and their transformations.

This paper presents a metamodelling approach to behavioural modelling, allowing
us to reason about behavioural models at different levels of abstraction. Following the
MDE methodology, each state of the software system corresponds to an instance of
the model; and, each execution path allowed by the software system corresponds to
a sequence of instance transitions. The dynamic semantics of behavioural models is
described using a transition system.

To describe the transition system, we employcoupled model transformations[27,4],
an adaptation ofcoupled software transformations[20]. Coupled transformations are
useful in several areas of computer science such as schema evolution, grammar evol-
ution, format evolution, etc. The idea is to couple a model with each of its instances

⋆ Currently W.F. James Chair Professor at St. Francis Xavier University

173

and define coupled transformation rules which simultaneously transform themodel and
its instances. We use a particular kind of coupled transformations where only instances
evolve (the models stay unchanged). The transitions begin with thestart instance, rep-
resenting the start state of the system. By applying the rules, we get reachable instances
that are on at least one execution path from the start instance. In this way, we obtain the
set of reachable instances, a subset of the set of instances of the model.

To illustrate our approach, we present a running example of a workflow model for
health services delivery. Workflow models are behavioural models used in the develop-
ment of software to support complex business processes. A workflow consists of steps
(calledtasks) performed by various participants, e.g., persons, robots or software com-
ponents, in order to achieve a business goal. Despite their popularity, most workflow
modelling languages lack a solid formal foundation; e.g., there is no complete formal
semantics for all constructs of the Business Process Modelling Notation (BPMN) [7].
In our approach, static and dynamic semantics are well formalised in a metamodelling
hierarchy; thus model transformations and code-generation techniques can be used in
refinement processes to obtain executable workflow software systems from workflow
models. Although we use workflow models in our example, our approach may be adap-
ted to other kinds of behavioural models. Currently we are considering fault tolerance,
especially compensation [6], another aspect of behavioural models. We have already
considered behaviour wrt. real time information in [29].

In modeling in general and behavior modeling in particular, correctness of models
are usually ensured by translating the models into a formalism that provides language
and tool support to express and verify semantic consistency conditions [19]. Such sup-
port is complicated by the fact that results of verification are given in terms of the formal
language and usually requires complex backtracking methods to be represented in the
original model because of the semantic gap between the formal method and the original
modelling language. Our approach tackles this challenge by combing formal semantics
and diagrammatic syntax in one formalism. In this way, correctness of the models can
be ensured without translation to another language; we inspect the models with respect
to type and constraint conformance, moreover the model transformation system ensures
that the models have the intended dynamic behavior.

Section 2 outlines our metamodelling approach. Section 3 presents the semantics
of behavioural modelling. Section 4 presents the transition system and discusses some
analysis techniques to check the correctness of the models. Sections 5 and 6 present
some related and future work and conclude the paper.

2 Metamodelling

A simple metamodelling hierarchy consists of metamodels, models and instances of
models. Modelling languages are represented by metamodels, software systems are rep-
resented by models, and the possible states of each software system are represented by
the instances of the models. The metamodel defines syntax of the modelling language;
i.e., it defines the types and relations between types. Each model mustconform tothe
language’s metamodel; i.e., it must respect the typing and other constraints of the lan-
guage; we will explain this below. Instances, in turn, must conform to models.

174

:XOR
h

TaskFlow

[irr]

Task

flow

PC team

planning

Check

eligibility

Reject

patient

[isNotEligible]

g

f

[xor]

[isEligible]

TaskFlow

PC team

planning

Check

eligibility

Reject

patient

[isNotEligible]

g

f

[isEligible]

XOR

inheritance

[xor_split, c]

Types

Constraints

Metamodel

Model editor

Model

Metamodel

Model editor

Model

(a) (b)

Guard1:Str.

Guard2:Str.

Task

flow

Types

:XOR

source

target
isIrref=true

...

Figure 1: Two metamodels and their corresponding model editors

To create and modify models, a model editor is constructed from a metamodel. For
example, consider a metamodel where we have the generalconceptsTask andFlow
(see Fig. 1a). The associated model editor will allow users to define models consist-
ing of specific tasks and flows, e.g.,Check eligibility and f, respectively. In order to
understand how the represented software system will behave, it is necessary to inspect
the instances of the models; instance editors are used to create these instances. In fact,
constructing an instance editor from a model is analogous to constructing a model ed-
itor from a metamodel since a metamodel is just a model that has the role of being a
metamodel wrt. models defined by the associated model editor [21]. In this way we can
construct a metamodelling hierarchy in which a model at any level can be considered a
metamodel wrt. models at the level below it, known as multi-level metamodelling.

Model editors must deal with constraints at two meta-levels. First, there aremetamodel
constraints; that is, the editor should not allow definition of models which violate the
constraints of the metamodel. For example, if in the metamodel we require that flows
are irreflexive (see Fig. 1a) the model editor should not allow users to define loops in
models. Second, there aremodel constraints; that is, if users want to define models with
a satisfactory degree of precision, they sometimes need to add constraints to the mod-
els. Instances of these models should satisfy these constraints. Examples of this kind of
constraint are routing constraints such asXOR, AND, OR, etc.

Metamodel constraints are usually enforced by the model editor’s validation mech-
anisms. These mechanisms prevent the definition of models which do not conform to
the language’s metamodel. In most current modelling techniques, model constraints are
coded as types in the metamodel; e.g., anXOR constraint is coded as a typeXOR which
has two guards as its attributes (see Fig. 1b). A model element:XOR (typed byXOR
in the metamodel) describes the property that exactly one of the two flows (e.g.,f or g
in Fig. 1b) can be followed, based on the guards (e.g.,isEligible andisNotEligible).

In our approach, model constraints are coded as diagrammatic predicates over mod-
els; e.g., in Fig. 1a, the predicate[xor_split,c]is used to describe the same prop-
erty as described by:XOR, wherec is a parameter for the guard (or condition)[isE-
ligible]. We chose this technique since it clearly distinguishes between types (such as
Task, Flow, etc.) and constraints (such asXOR,OR, etc.). Defining all model constraints
as types, however, will complicate the metamodel. Another commonly used alternative
is, despite the graph-based nature of models, to define model constraints using textual

175

languages such as the Object Constraint Language (OCL) [22]. This introduces several
challenges to the maintainance of links between constraints and models, especially wrt.
model transformations [26]. Use of diagrammatic predicates avoids these challenges.

No matter which approach is chosen for coding constraints, they must be encoded
in the software system which will be generated from the model. Most importantly with
regard to MDE, to enable reasoning about models – i.e., before code-generation – the
semantics of these constraints must be well-defined already in the modelling language.
For models, the semantics is all about which structures are qualified as their instances;
that is, in the same way a metamodel defines certain restrictions or language require-
ments and each model which conforms to the metamodel must satisfy these require-
ments, a model also defines certain domain requirements and each instance which con-
forms to the model must satisfy these requirements.

The approach of this paper is based on the Diagram Predicate Framework (DPF),
which provides a formalisation of multi-level (meta)modelling and model transforma-
tions based on category theory [3] and graph transformations [10]. We briefly review the
basic concepts of DPF used for the formalisation of modelling; for details and formal
definitions, the interested reader can consult [8,9,25,24,26]. In DPF, a model is rep-
resented by aspecificationS = (S, CS : Σ) which consists of agraphS and a set of
constraintsCS specified by apredicate signatureΣ. A predicate signature consists of a
collection ofpredicates, each having a name and an arity (or shape graph). A constraint
consists of a predicate from the signature together with the subgraph of the model’s
underlying graph which is affected by the constraint; e.g., anXOR constraint with a
conditionc in the model in Fig. 1a consists of[xor_split,c]and a subgraph of the
model which in this case is the whole underlying graph of the model. We use the terms
“specification” and “(meta)model” interchangeably.

We define the semantics of a predicate as the set of graphs satisfying the predicate,
called the instances of the predicate. For example, for the[irreflexive] predicate
all graphs which do not include a loop are in the set of its instances. The semantics
of a specificationS = (S, CS : Σ) is given by the set of its instances. Similar to the
semantics of predicates, the set of instances of a specificationS consists of all graphs
which are (i) typed by the underlying graphS and (ii) satisfy the constraintsCS .

To facilitate the discussion of metamodelling hierarchies, we will define the con-
formance relation between models at adjacent levels of a hierarchy. We distinguish
between two kinds of conformance:typed byandconforms to. A specificationS is
typed by a graphT if there exists a graph homomorphismι : S → T, called thetyping
morphism, betweenS, the underlying graph ofS, andT. A specificationS is said to
conform to a specificationT if S is typed byT andS is an instance ofT; e.g., imagine
adding a new flowf’ from the taskCheck eligibility to itself in Fig. 1a; then the model
would still be typed by the metamodel, however, it would not conform to it because of
the violation of the irreflexivity constraint.

In DPF, a modelling language is described as a modelling formalismFi = (Σi,Si, Σi+1).
The figure below shows the correspondence between the elements of modelling formal-
isms and modelling languages as was explained in Fig. 1a. The correspondingmetamodel
of the modelling language is represented by the specificationSi which has its con-
straints formulated by predicates (e.g.,[irreflexive]) from the signatureΣi+1.

176

These constraints should be satisfied by all specifications (e.g.,Si−1 = (Si−1, CSi−1:
Σi) in the figure) which are specified byFi. The constructs used for defining constraints
at the next level (e.g.,[xor_split,c])
which are available for the users of the
modelling language are located in the sig-
nature Σi. As we see from the figure,
there is no difference between metamodel
editors and model editors. In DPF, a mod-
elling formalism may represent a model-
ling language at any level of a metamod-
elling hierarchy (indicated by the use of
the subscriptsi − 1, i, i + 1) whether it
is used for creation of meta-metamodels,
metamodels, models, instances, instances
of instances, etc.

PC team

planning

Check

eligibility

Reject

patient

[isNotEligible]

g

f

[xor]

[isEligible]

Model

TaskFlow

[irr]

Metamodel

Si

Metamodel editor

Si-1
Task

flow

[xor_split, c]

Types

Constraints

Model editor

[irreflexive]

Constraints

Node

Arrow

Types

Σi+1

Σi

3 Behavioural Modelling
We now adapt DPF to behavioural modelling. We introduce the needed concepts and
illustrate them with a running example of an excerpt of a workflow model for Palliative
Care [11]. We start by defining a workflow modelling formalism, then we define the
static semantics of workflow models as reachable instances. We will provide a concep-
tual framework which can be used to describe fine-grained states of software systems,
and, may be used to deal with some of the challenges existing in workflow modelling,
such as flexibility in the definition of various diagrammatic routing constraints.

TaskFlow

[irr]

Visualisation

X

f[irr]

Visualisation

[xor_split,c]

2

3

S
2

S
1

[irreflexive]

Σ

Σ

PC team

planning

Check

eligibility

Reject

patient

[isNotEligible]

g

f

[xor]

[isEligible]

X
f

[c]

g

[!c]

Y

Z

[xor]

F2 = (Σ2,S2, Σ3)

Predicate

Predicate

Figure 2: The modelling formalismF2 = (Σ2,S2, Σ3) and the workflow modelS1

Workflow modelling languages provide constructs to define tasks and their routing
flows. In this section we introduce the modelling formalismF2 = (Σ2,S2, Σ3) used
for the specification of workflow models (see Fig. 2). The signatureΣ2 contains pre-
dicates for splitting and merging; the metamodelS2 includes the typesTask andFlow;

177

the signatureΣ3 constains predicates used to constrain the metamodel. The figure also
shows an excerpt of a workflow modelS1 which is specified byF2.

Table 1 shows the signatureΣ2 with some predicates useful for workflow model-
ling. The predicates have spans or sinks of two arrows as arity, and are used to define
relations between different flows. In general, these predicates may have spans or sinks
of any finite number of arrows as arities, but two arrows suffice to explain the modelling
formalism. The predicate[xor_split,c]indicates that exactly one of the two flows
must be followed. The parameter conditionc is a proposition that may evaluate to true
or false. One of the two flows will havec as a condition, the other one will have the
negation ofc. The predicate[and_merge] is used to indicate that both flows must be
followed. To save space, we omit from Table 1 the other usual splitting and merging pre-
dicates used in workflow modelling, such as[or_split,c1, c2] and[or_merge].

Table 1: A sample signatureΣ2 used for workflow modelling
p Visualisation Semantics (set of instances)

[and_split] X f

g

Y

Z

[and]

x:X :f

:g

y:Y

z:Z

[and_merge] X
f

Y

Z

g

[and’]

x:X
:f

y:Y

z:Z

:g

[xor_split,c] X
f

[c]

g

[!c]

Y

Z

[xor]

x:X
:f

y:Y x:X

:g

z:Z

[xor_merge] X
f

Y

Z

g

[xor’]

x:X
:f

y:Y x:X
:f

y:Y

z:Z

y:Y

z:Z

:g

x:X y:Y

z:Z

:g

We now illustrate how the modelling formalism can be used to define a workflow
model. Fig. 3 shows a simplified version of the team-building workflow modelS1 used
for Palliative Care (PC). The specificationS1 is compliant with the following:

R1 A patient’s eligibility has to be checkedbeforeany other tasks are performed;
R2 If the patient is eligible for PC, then build PC team;
R3 If the patient is not eligible for PC, then reject patient;
R4 The patient iseithereligibleor not eligible for PC, but not both;
R5 After PC team planning, assignbotha general practitioner (GP)anda PC nurse;
R6 If both the GP and the PC nurse are assigned, then submit the team information.

In S1, R1 is specified by the taskCheck Eligibility which is the only task with no
incoming flows. R2 is specified by the taskPC team planning, R3 is specified by the

178

1
S

PC team

planning

Check

eligibility

Reject

patient

Assign

GP

Assign

PC nurse

[isNotEligible]

g

f

i

j

[and]

[xor]

[isEligible]

Submit

team info

i'

j'

[and']

Figure 3: PC team-building workflow represented by the specificationS1

taskReject patient, and R4 is specified by the two flowsf andg, and the constraint
[xor_split,isEligible]. R5 is specified by the tasksAssign GP andAssign PC
nurse, and the flowsi andj with the constraint[and_split]. R6 is specified by the
taskSubmit team info and the flowsi’ andj’, and the constraint[and_merge].

In general, thestatic semanticsof a model is given by its set of instances, which
represent the states of the actual software systems. To analyse a software system which
is developed from a model – before the system is implemented – the modelling environ-
ment should facilitate instantiation of the model, i.e., creation of instances of the model.
Except for EMF [28] which facilitates instantiation of structural models, there is limited
support for instance creation in most existing modelling environments.

Recall that the set of instances of a modelS consists of graphs that are typed by the
underlying graph ofS and satisfy the constraints ofS. To determine whether a graph
satisfies the constraints of a model, we need to check the graph against the semantics of
the corresponding predicates. The semantics of the predicates in Table 1 is illustrated
by listing the set of their valid instances. We usex:X to denote the typing morphism
ι : x 7→ X, and we write:X if x is the only instance of typeX. Fig. 4 shows three graphs
which are instances of the workflow modelS1 in Fig. 3.

0
S'

:PC team

planning

:Check

eligibility

:Assign

GP

:Assign

PC nurse

:f

:i

:j

0
S''

:PC team

planning

:Assign

GP

:Assign

PC nurse

:i

:j

:Submit

team info

:i'

:j'

0
S

:PC team

planning

:Check

eligibility

:f

Figure 4: Three sample instancesS0, S′

0 andS′′

0 of S1 from Fig. 3

As we see from Fig. 4, the graphs alone are not enough to represent the states of the
software system. For example, although the graphS′′

0 is both well-typed and satisfies
the constraints ofS1, it does not represent a “reachable” state of the system. This is
because the flowf from the taskCheck eligibility to the taskPC team building in the
workflow model indicates that the task instance:Check eligibility must be “executed”
before the task instance:PC team building is “executed”; however, this requirement is
not satisfied inS′′

0 since the fact that the task instance:Check eligibility does not exist
implies that it is not executed yet (see Section 4 for the details). Throughout this paper,
we use these conventions: “Task” and “Flow” indicate the concepts at the metamodel
level; “task” and “flow” indicate model elements typed by “Task” and “Flow”, respect-
ively; “task instance” and “flow instance” indicate instances of “task” and “flow”, at the
instance level, respectively.

179

Since a behavioural model represents a software system’s dynamics, we need to de-
termine the set of “reachable” instances of models; that is, one of the instances (which
we call start instance) must represent the start state of the system, and the other in-
stances must be narrowed down to those which are reachable from the start instance.
We first extend DPF with the necessary techniques to support the creation of reachable
instances. In Section 4 we will give a further explanation of the start instance and the
transition rules which are used to generate the reachable instances.

We use a modelling formalismF1 = (Σ1,S1, Σ2) to specify the reachable in-
stances of a workflow modelS1 (see Fig. 5). The signaturesΣ2 andΣ1 are shown
in Tables 1 and 2, respectively. Fig. 5 shows an excerpt of a reachable instanceS0 of
S1. S0 is again a specification(S0, CS0 : Σ1) consisting of a graphS0 and a set of
constraintsCS0 formulated by predicates fromΣ1.

The role of these new constraintsCS0 is to distinguish between reachable and non-
reachable instances. At any state of the workflow software system, the task instances,
e.g.,:Check eligibility inS0 in Fig. 3, are eitherenabled, running or finished, according
to the constraints specified in the workflow modelS1. We use the signatureΣ1 shown
in Table 2 to annotate the task instances inS0 accordingly. Moreover, the conditionc of
the predicate[xor_split,c]may be evaluated to either true or false; the signature
Σ1 also includes predicates to denote this. As we see from Table 2, the signatureΣ1

has no semantic counterpart since for this modelling environment instances ofS0 do
not have any practical meaning. We call these constraints “annotations” since they are
just syntactic markings on the task instances in the specificationS0.

Visualisation

[xor_split,c]

2

Visualisation

[true] X
f

<T>
Y

1 S
1

Σ

Σ
PC team

planning

Check

eligibility

Reject

patient

[isNotEligible]

g

f

[xor]

[isEligible]

X
f

[c]

g

[!c]

Y

Z

[xor]

<F>
<T>

:PC team

planning

:Check

eligibility

:f

S
0

[finished] X

[enabled] X

<F>

<E>

<E>

F1 = (Σ1,S1, Σ2)

Predicate

Predicate

Figure 5: The modelling formalismF1 = (Σ1,S1, Σ2) used for creation of reachable
instances of the workflow modelS1, and a reachable instancesS0

Fig. 6 shows two specificationsS0 andS′

0 which are reachable instances ofS1. In
S0 both task instances:Check eligibility and:PC team planning are finished (annot-
ated with<F>). InS′

0 the task instance:Assign GP is running (annotated with<R>), and
the task instance :Assign PC nurse is enabled (annotated with<E>).

180

<F> <E>

<F>

<R>

<T>

0S'

:PC team

planning

:Check

eligibility

:Assign

GP

:Assign

PC nurse

:f

:i

:j

0S

<F>

<F>

<T>

:PC team

planning

:Check

eligibility

:f

Figure 6: Two reachable instancesS0 andS′

0 of S1 in Fig. 3

4 Transition System

In this section, we describe the dynamic semantics of worflow models by a transition
system. The transition system can be used to calculate the reachable instances of work-
flow models as well as the transitions between them. The state of a workflow soft-
ware system is changed according to certain rules during an execution. For example, a
task which is enabled may either remain enabled or change to running, a task which is
running may either remain running or change to finished, etc. Correspondingly, for
the workflow modelS1, a task instance (in a reachable instance ofS1) annotated
with the predicate[enabled] may either remain annotated with[enabled] or
become annotated with[running]; a task instance which is annotated with the pre-
dicate[running] may either remain annotated with[running] or become annot-
ated with[finished], etc. Table 3 shows two rules,t1 and t2, which are used to
change the annotation of a task instancex from[enabled] to[running] and from
[running] to [finished], respectively. In rulet1, the annotation of the task in-
stancex is changed in two steps, first the annotation[enabled] is deleted, then the
annotation[running] is added.

When a task instance is finished, if its type in the model has a consecutive task,
we will create a new, enabled task instance which is typed by the consecutive task. In
this way, the control flow will be passed from the finished task instance to the next task
instance. In our transition system, the addition of an enabled task instance is done by
applying rulet8 in Table 4, which is used to create a task instancey with the annotation
[enabled] (and a flow instancea) when the preceding task instancex is finished.

Other legal changes which task instances undergo during execution are described
by transformation rules shown in Table 4. Rulest3 andt4 are used to describe the trans-
itions of spans of flow instances, andt5, t6 andt7 are used to describe the transitions of

sinks of flow instances. For rulet6, we have usedx:X
<E|R|F>

to denote the case where

we have one of the following:x:X
<E>

, x:X
<R>

or x:X
<F>

. The rulet7 expresses that
even if the task instancez is does not exist yet, the transition can go forward and enable
y. For the[xor_split,c]and[xor_merge] predicates, there are analogous rules
for generation ofz andb, however, we have omitted these rules to save space.

Table 2: A signatureΣ1 used for annotation of workflow instances
q Visualisation q Visualisation

[enabled] X
<E>

[true] X
f

<⊤>
Y

[running] X
<R>

[false] X f

<⊥>
Y

[finished] X
<F>

181

Table 3: The coupled transformation rulest1 andt2 of our transition system
t (L0 99K L1) (K0 99K K1) (R0 99K R1) t (L0 99K L1) (K0 99K K1) (R0 99K R1)

t1 X

x
<E>

X

x

X

x <R>

t2 X

x
<R>

X

x

X

x <F>

A sequence of changes represents one execution path of the workflow software sys-
tem. These changes are formulated by transformation rules (see Tables 3 and 4) which
describe the transition system. Given a workflow modelS1, the start instanceSs

0 is a
specification which conforms toS1 and consists of only task instances with no incom-
ing flows, annotated with[enabled]. All possible sequences of rule applications
starting from the start instance gives the set of reachable instances; these sequences
define the dynamic semantics of our behavioural models.

Table 4: Some coupled transformation rules for the transition system
t (L0 99K L1) = (K0 99K K1) (R0 99K R1) t (L0 99K L1) = (K0 99K K1) (R0 99K R1)

t3 X
A

B

Y

Z

<F> x

ix

[and]

X
A

B

Y

Z

<F> x

ix

a

b

y
<E>

iy

z
<E>

iz

[and]

t4 X
A

[c]

B

[!c]

Y

Z

<F> x

ix

[xor]

X
A

[c]

B

[!c]

Y

Z

<F> x

ix

a

<⊤>
y

<E>

iy

[xor]

t5 X A Y

Z
B

<F> x

ix

<F> z

iz

[and’]

X A Y

Z
B

<F> x

ix

a
y

<E>

iy

<F> z

iz

b

[and’]

t6 X A Y

Z
B

<F> x

ix

<E|R|F> z

iz

[xor’]

X A Y

Z
B

<F> x

ix

a
y

<E>

iy

<E|R|F> z

iz

[xor’]

t7 X A Y

Z
B

<F> x

ix

[xor’]

X A Y

Z
B

<F> x

ix

a
y

<E>

iy

[xor’]

t8 X A Y

<F> x

ix

X A Y

<F> x

ix

a
y

<E>

iy

Since the routing constraints of the models determine the behaviour of the mod-
els, it is necessary to inspect these constraints in order to decide which rules to ap-
ply. For example, for[and_split], all of y, a, z and b will be created, while

182

for [xor_split,c], eithery and a, or z and b will be created, but not both. To
facilitate “generic” rules which apply to any occurences of the[and_split] and
[xor_split,c]constraints, we keep track of the (conformance) relation between
models and their instances. We do this by employing coupled model transformations
to describe transitions between the instances of workflow models. In more detail, for a

workflow modelS1, a transitionS0

<t>
S′

0 is given by an application of a coupled

transformation rulet, where both specificationsS0,S′

0 are reachable instances ofS1.
We omit the technical details of the application of (coupled) transformation rules (for
details see [10,14,27,25,20,15]), and our specific case in which the model part remains
unchanged will be elaborated in a future work. Here, we briefly outline the general
structure and ingredients of coupled transformation rules and the necessary details to
understand our approach to the definition of dynamic semantics for behavioural models.

S1

φ1

S′

1

S0

φ0

ιS0

S′

0

ι
S

′

0

Specification morphisms are used to formaly describe
the relation between specifications. A specification morph-
ism [25] is a constraint preserving graph homomorph-
ism [10] between the underlying graphs of the specifica-
tions. A coupled specification(S0 99K S1) consists of
a specificationS1 together with one of its instancesS0; i.e., S1, S0 and the typ-
ing morphismιS0 : S0 → S1 from the underlying graphS0 of S0 to the underly-
ing graphS1 of S1. A coupled specification morphism is a mappingφ : (S0 99K

S1) → (S′

0 99K S′

1) given by two specification morphismsφ1 : S1 → S′

1 and
φ0 : S0 → S′

0 such thatφ0(S0) conforms toφ1(S1). A coupled transformation rule

t = (L0 99K L1) (K0 99K K1)
l r

(R0 99K R1) consists of three coupled spe-
cifications and two coupled specification morphismsl, r.

In a coupled transformation rule,t = (L0 99K L1) (K0 99K K1)
l r

(R0 99K R1) ,

(L0 99K L1) is theleft-hand side(LHS) and(R0 99K R1) is theright-hand side(RHS)
of t, and(K0 99K K1) is their interface.(L0 99K L1) \ l((K0 99K K1)) describes the
part of a specification which is to be deleted,(R0 99K R1) \ (K0 99K K1) describes
the part to be added, and(K0 99K K1) describes the overlap between(L0 99K L1)
and (R0 99K R1). Note that the rules in Table 3 are deleting rules, while the rules
in Table 4 are non-deleting rules. Non-deleting rules could be seen as special cases of
deleting rules where(L0 99K L1) = (R0 99K R1).

As mentioned, a transition from one stateS0 to anotherS′

0 of a workflow specific-
ationS1 is given by an application of a coupled transformation rule. We remark that
after applying a rule, the instances are decoupled from their models, and indicate the

transition S0

<t>
S′

0 by a double arrow and the name of the applied rule.

Transition systems in general may be or may not be terminating [10,25]. That is,
starting withSs

0, it may always be possible to apply more rules. To achieve termination
of our transition system, we control the application of transformation rules through (i)
the use ofnegative application conditions(NACs) and (ii) priorities [10]. To ensure that
the rules can be applied only once via the same match, we require that the RHSs of the
rules in Tables 3 and 4 are NACs for themselves. Moreover, we require that the rulet8

has the lowest priority, which avoids changing the annotation on a single task instance

183

if it is part of a bigger structure. This priority definition is necessary since in a bigger
structure there may be dependencies between flow and task instances.

In Fig. 7 we show an execution path of the workflow modelS1 in Fig. 3. For the
sake of illustration, we also show a specificationS

⋄

0 which is not a reachable instance
since it violates the semantics of the[xor_split,c]constraint.

<F> <F>

<F>

<F>

<F>

<T>

:PC team

planning

:Check

eligibility

:Assign

GP

:Assign

PC nurse

:f

:i

:j

:Submit

team info

:i'

:j'

<F> <E>

<F>

<R>

<T>

:PC team

planning

:Check

eligibility

:Assign

GP

:Assign

PC nurse

:f

:i

:j

<F>

<E>

<T>

<E><T>

0S

:PC team

planning

:Check

eligibility

:Reject

patient

:g

:f

◇

<F>

<F>

<T>

:PC team

planning

:Check

eligibility

:f

:Check

eligibility

<F>
:Check

eligibility

<R>
:Check

eligibility

<E> t1 t2

t4;t1;t2

Not reachable

instance

t3;t1

t2;t1;t2;t5;t1;t2

0S
s

Start instance

End instance

0S
e

Figure 7: An execution path of the workflow modelS1, the dashed double arrows rep-
resent sequences of transitions, the specificationS⋄

0 is not a reachable instance

One of the advantages of formalising workflow modelling languages is to facilitate
automatic analysis of workflow models. We now outline some properties of workflow
models which have to be satisfied in order to make sure that each execution scenario
(of workflow software systems developed from the workflow models)terminatesin an
appropriateway [1]. Workflow models which have the option to terminate, have proper
termination, and, lack dead tasks (i.e., tasks which are not enabled in any execution
scenario), are said to besound[2].

184

Since our transition system is based on graph transformations, we use the termin-
ation property from graph transformations [10]. More precisely, we have defined our
transformation rules in such a way that for any start state of a workflow model, we can
guarantee that the transformation system will eventually terminate and produce an end
state; termination in this sense means that no more transformation rules are applicable.
Proving that the transformation rules from Tables 3 and 4 together with the control
structures are terminating is straightforward, but outside the scope of this paper. In ad-
dition to the termination property of the transition system, we need also to require that
each task will be annotated with[enabled] at least in one state.

We defineend statesas follows (see the last modelSe
0 in Fig. 7). Given a workflow

modelS1, an end stateSe
0 is a reachable instance ofS1 such that no more transform-

ation rules are applicable toSe
0, and, at least one task instance with no outgoing flows

is annotated with[finished]. We useES1 to denote the set of all end states ofS1.
Now the properties which a workflow modelS1 must satisfy in order to be sound

can be expressed as: (i)Proper termination: the transition system terminates always
resulting in one of the end states inES1 ; (ii) No dead tasks: for each taskX in S1, the
specificationSX

0 is one of the reachable instances in the transition system, whereSX
0 is

an instance ofS1 in which a task instancex:X is annotated with[enabled].
We could prove that for each workflow modelS1 the transition system (described

by the rules in Tables 3 and 4) starting from the start stateSs
0, will terminate in one

of the end states inES1 . That is, given the start state and the transition system, we
can construct all possible sequences of transformation rule applications and inspect
the resulting target specifications – those that cannot be transformed anymore– to check
whether they are end states. The non-existence of dead task can be checked analogously.

5 Related Work

Kindler [16] advocated MDE, particularly theModel-driven Architecture(MDA) for
Process-Aware Information Systems (PAIS). He also argued for the suitability of MDE
in PAIS; while many MDE concepts were explained and put in relation to PAIS, a
specific modelling language for behavioural and process modelling was not proposed.

Brüning et al. [5] present a strict metamodelling approach to workflow modelling,
which makes it possible to easily express semantics of sophisticated transition rela-
tionships between activities using UML class diagrams and OCL constraints. Due to
shortcomings of UML and OCL wrt. constraint evaluation combined with multi-level
metamodelling, this approach flattens the three levels – metamodel, model and instance
– into two levels. OCL constraints are defined at the metamodel level and they are forced
at the model/instance level. Our approach allows multi-level metamodelling with a uni-
fication of structural and OCL constraints in one formalism, and clearly distinguishes
between the different levels of the metamodelling hierarchy.

Ghamarian et al. [13] employ a graph transformations-based framework, GROOVE,
to provide semantics for behavioural models. Our approach extends graph transform-
ations by using constraint-aware model transformations – i.e., considering diagram-
matic constraints in transformation rule definitions and applications – which facilitate
the definition of more fine grained rules and better control of their applications [26].

185

6 Conclusion and Future Work

This paper presents a formal approach to behavioural modelling following MDE meth-
odologies. As a running example, we provide a visually appealing technique for work-
flow modelling. Two modelling formalisms are used for the specification of workflow
models and their instances. Coupled model transformation rules are used to describe
a transition system. All possible sequences of rule applications starting from the start
instance gives the set of reachable instances; these sequences define the dynamic se-
mantics of our behavioural models. Use of coupled transformation rules avoids the
proliferation of rules associated to types; i.e., one rule can be used for each predic-
ate regardless of the types. The approach is illustrated with an application to work-
flow modelling, but its generalisation to other kinds of behavioural models should be
straightforward.

In our coupled model transformations only the instances are changed, while the
models remain the same. This category of model transformation falls between tradi-
tional model transformations and coupled model transformations. We will explore this
new kind of coupled model transformations in future work.

Workflow models often change, even when their corresponding software system
is running. Migrating these changes to the software system affects its future and past
states. In future work, we will elaborate on this kind of workflow model evolution. We
plan to extend our formalism with support for composition of behavioural models with
structural models, as found in [18]. As a proof of concept, the proposed approach will
be implemented as a plugin to the DPF Workbench [21], a workbench that supports
multi-level, diagrammatic (meta)modelling.

Acknowledgments. This research is sponsored by Natural Sciences and Engineering
Research Council of Canada and by the Atlantic Canada Opportunities Agency.

References

1. van der Aalst, W.M.P., van Hee, K.: Workflow Management: Models, Methods, and Systems.
MIT Press (2002)

2. van der Aalst, W.M.P., ter Hofstede, A.H.M.: YAWL: yet another workflow language. In-
formation Systems 30(4), 245–275 (2005)

3. Barr, M., Wells, C.: Category Theory for Computing Science (2nd Ed.). Prentice Hall (1995)
4. Becker, S.: Coupled model transformations. In: WOSP 2008: 7th international workshop on

Software and performance. pp. 103–114. ACM (2008)
5. Brüning, J., Gogolla, M., Forbrig, P.: Modeling and Formally Checking Workflow Properties

Using UML and OCL. In: BIR 2010. LNBIP, vol. 64, pp. 130–145. Springer (2010)
6. Butler, M.J., Hoare, C.A.R., Ferreira, C.: A trace semantics for long-running transactions.

In: Abdallah, A.E., Jones, C.B., Sanders, J.W. (eds.) 25 Years Communicating Sequential
Processes. LNCS, vol. 3525, pp. 133–150. Springer (2004)

7. Dijkman, R.M., Dumas, M., Ouyang, C.: Semantics and analysis of business process models
in bpmn. Information & Software Technology 50(12), 1281–1294 (2008)

8. Diskin, Z.: Encyclopedia of Database Technologies and Applications, chap. Mathematics of
Generic Specifications for Model Management I and II, pp. 351–366. Information Science
Reference (2005)

186

9. Diskin, Z., Kadish, B., Piessens, F., Johnson, M.: Universal Arrow Foundations for Visual
Modeling. In: Anderson, M., Cheng, P., Haarslev, V. (eds.) Diagrams 2000. LNCS, vol. 1889,
pp. 345–360. Springer (2000)

10. Ehrig, H., Ehrig, K., Prange, U., Taentzer, G.: Fundamentals of Algebraic Graph Transform-
ation. Springer (March 2006)

11. Fazle, R., MacCaull, W., Wang, H., Rutle, A.: A Model Slicing Method for Workflow Veri-
fication. ENTCS To appear (2012), 9th International Workshop on Formal Engineering ap-
proaches to Software Components and Architectures, Satellite event of ETAPS

12. Fujaba Developer Team: The Fujaba Tool Suite,http://www.fujaba.de/
13. Ghamarian, A., de Mol, M., Rensink, A., Zambon, E., Zimakova, M.: Modelling and analysis

using GROOVE. STTT pp. 1–26 (2011)
14. Heckel, R.: Graph Transformation in a Nutshell. ENTCS 148(1), 187–198 (2006)
15. Herrmannsdoerfer, M., Benz, S., Jürgens, E.: Automatability of Coupled Evolution of

Metamodels and Models in Practice. In: Czarnecki, K., Ober, I., Bruel, J.M., Uhl, A., Völter,
M. (eds.) MoDELS 2008. LNCS, vol. 5301, pp. 645–659. Springer (2008)

16. Kindler, E.: Model-based software engineering and process-aware information systems.
Transactions on Petri Nets and Other Models of Concurrency II, Special Issue on Concur-
rency in Process-Aware Information Systems 2, 27–45 (2009)

17. Kindler, E.: Model-based software engineering: the challenges of modelling behaviour. In:
BM-FA 2010. pp. 4:1–4:8. ACM (2010)

18. Kindler, E.: Integrating behaviour in software models: an event coordination notation – con-
cepts and prototype. In: BM-FA 2011. pp. 41–48. ACM (2011)

19. Küster, J.M.: Towards Inconsistency Handling of Object-Oriented Behavioral Models.
ENTCS 109, 57 – 69 (2004), proceedings of the Workshop GT-VMT

20. Lämmel, R.: Coupled Software Transformations (Extended Abstract). In: 1st International
Workshop on Software Evolution Transformations (November 2004)

21. Lamo, Y., Wang, X., Mantz, F., MacCaull, W., Rutle, A.: DPF Workbench: A Diagrammatic
Multi-Layer Domain Specific (Meta-)Modelling Environment. In: Roger, L. (ed.) Com-
puter and Information Science, Studies in Computational Intelligence, vol. 429, pp. 37–52.
Springer (2012)

22. Object Management Group: Object Constraint Language Specification (February 2010),
http://www.omg.org/spec/OCL/2.2/

23. Object Management Group: Semantics of a Foundational Subset for Executable UML Mod-
els (FUML) (February 2011),http://www.omg.org/spec/FUML/1.0/

24. Rossini, A.: Diagram Predicate Framework meets Model Versioning and Deep Metamodel-
ling. Ph.D. thesis, Department of Informatics, University of Bergen, Norway (2011)

25. Rutle, A.: Diagram Predicate Framework: A Formal Approach to MDE. Ph.D. thesis, De-
partment of Informatics, University of Bergen, Norway (2010)

26. Rutle, A., Rossini, A., Lamo, Y., Wolter, U.: A formal approach to the specification and
transformation of constraints in MDE. JLAP 81/4, 422–457 (2012)

27. Schulz, C., Löwe, M., König, H.: A categorical framework for the transformation of object-
oriented systems: Models and data. J. Symb. Comput. 46(3), 316–337 (2011)

28. Steinberg, D., Budinsky, F., Paternostro, M., Merks, E.: EMF: Eclipse Modeling Framework
2.0 (2nd Edition). Addison-Wesley Professional (2008)

29. Wang, H., Rutle, A., MacCaull, W.: A formal diagrammatic approach to timed workflow
modelling. In: TASE 2012. IEEE Computer Society (2012), to appear

187

http://www.fujaba.de/
http://www.omg.org/spec/OCL/2.2/
http://www.omg.org/spec/FUML/1.0/

 188

Workshop on

Graphical Modeling Language Development

at ECMFA 2012 Conference

3 July, 2012, Kgs. Lyngby, Denmark

189

190

Welcome to the workshop on

Graphical Modeling Language Development

Heiko Kern
1
, Juha-Pekka Tolvanen

2
, Paolo Bottoni

3

1University of Leipzig, Germany

kern@informatik.uni-leipzig.de
2MetaCase, Finland

jpt@metacase.com
3University of Roma, Italy

bottoni@di.uniroma1.it

Preface

Models play an important role in software development. They not only support com-

munication and understanding, but are increasingly used in automating software de-

velopment tasks such as code generation, testing, simulation and analysis. While

many languages are created for software developers others may be created for busi-

ness analysts, interaction specialists, test engineers, or persons responsible for product

configuration and deployment. Often these languages are domain-specific, created for

a narrow application area or for use only inside one company.

The workshop on Graphical Modeling Language Development
1
 aims to cover all

the phases of language development, including definition, testing, evaluation, and

maintenance of modeling languages. Particular attention is given to the principles of

modeling language development, especially graphical modeling languages for do-

main-specific needs. It also includes papers that discuss challenges and new trends.

 The workshop does not focus on tools, but recognizes the need for metamodel-

based tools, which significantly ease the production of modeling environments. These

tools also enable experimentation with the language as it is built, and remove the bur-

den of tool creation and maintenance from the language creator.

In response to the call for papers, 8 submissions were received. Submitted papers

were formally peer-reviewed by three referees, and 5 papers were finally accepted for

presentation at the workshop and publication at the proceedings.

The workshop program is composed of two parts: paper presentations and group

work. Selected papers describe experiences at a practical level, or propose new ideas

and approaches. Group work sessions aim at discussing in more detail the topics

found most relevant during the paper presentations. Results of the group work will be

presented at the end of the workshop.

1 http://www.dsmforum.org/events/GMLD12/

191

We would like to thank the ECMFA 2012 organization for giving us the opportuni-

ty to organize this workshop. Thanks to those that submitted papers, and particularly

to the contributing authors. Our gratitude also goes to the members of the GMLD

2012 Program Committee for their reviews and help in choosing and improving the

selected papers.

We hope that you will enjoy the workshop and find the information within the pro-

ceedings valuable toward your understanding of the current state-of-the-art in devel-

oping graphical modeling languages.

Program committee of the workshop on

Graphical Modeling Language Development

Matthias Biehl, KTH Royal Institute of Technology

Michel Bourdellès, THALES

Ulrich Frank, University of Duisburg-Essen

Jeff Gray, University of Alabama

Kenji Hisazumi, Kyushu University

Emilio Insfran, Universitat Politècnica de València

Teemu Kanstren, VTT

Steven Kelly, MetaCase

Christian Kreiner, Technical University of Graz

Ivan Lukovic, University of Novi Sad

Vojislav B. Mi�ic, Ryerson University

Pedro Sánchez Palma, Technical University of Cartagena

Andreas Prinz, University of Agder

Mark-Oliver Reiser, Technical University of Berlin

Keng Siau, University of Nebraska-Lincoln

Jonathan Sprinkle, University of Arizona

Stefan Strecker, University of Hagen

Alain Wegmann, EPFL Swiss Federal Institutes of Technology

Markus Völter, Independent

192

Domain-Specific Language Architecture for

Automation Systems: An Industrial Case Study

Christopher Preschern, Andrea Leitner, and Christian Kreiner

Institure for Technical Informatics
Graz University of Technology, Austria

christopher.preschern@tugraz.at
andrea.leitner@tugraz.at

christian.kreiner@tugraz.at
http://www.iti.tugraz.at

Abstract. This paper presents a domain-specific language (DSL) design
for automation systems. We describe basic components of the language,
its mapping to automation devices and to automation software elements.
The DSL design achieves low domain model complexity and is easy to
maintain. Furthermore, it allows easy and intuitive modeling of systems
in a domain. We present an industrial case study using the proposed
DSL design and evaluate it regarding its maintainability and complexity.
For this evaluation we use existing metrics to evaluate the domain model
complexity and we introduce novel metrics to evaluate the code generator
complexity.

Keywords: domain-specific language, automation system, domain model
metrics, code generator metrics

1 Introduction

Domain-specific languages (DSL) allow product modeling on a high level of ab-
straction and enable structured software reuse through code generation from
these models. To develop a DSL, a meta-model has to be constructed for a
specific product family. Meta-model development requires careful design of the
domain model structure and the mapping of DSL elements to artifacts in the
solution space. This is a sophisticated task and several guidelines on how to con-
struct a good domain model exist. Such guidelines can be more detailed if they
just address specific domain families, but are rarely present for domain families
where DSLs are not often applied. An example for such a domain family where
no detailed guideline for DSL development exists is the automation domain.

In this paper we present a flexible design to develop automation system DSLs.
We discuss design decisions and their rationale concerning the meta-model and
the mapping of DSL elements to automation devices and to generated artifacts
like the automation system software. We present and evaluate PISCAS (Piscicul-
ture Automation System), an industrial case study which applies the discussed

193

2 Christopher Preschern, Andrea Leitner, Christian Kreiner

DSL design guidelines. For the evaluation of the DSL complexity, we use exist-
ing domain model metrics and we introduce novel metrics to measure the code
generator complexity. Furthermore, we evaluate the DSL in terms of modeling
effort and maintainability.

2 Related Work

Issues regarding the construction of domain models for automation systems are
discussed in [9], where experiences with different domain model granularities
are presented. Hierarchical, nested domain models are suggested for automation
systems to provide different levels of granularity and abstraction. In Leitner’s
work [8] an evaluation method for the domain model complexity for DSLs and
for feature oriented modeling is presented. We use the proposed DSL metrics in
our domain model evaluation.

Graphical domain-specific languages are used in [4] to model home automa-
tion systems. Eclipse GMF is used to create DSLs where systems can be modeled
on different levels of abstraction which is shown on an industrial case study. A
graphical DSL for automation systems in the railway domain is presented in [3]
where special focus is put on safety constraints of the system. Here, the DSL is
used as a formal specification of the system containing system verification func-
tionality. The MetaEdit+ tool suite is used in [2] to model high rack warehouse
information systems. These literature examples show case studies for automa-
tion system DSLs. None of them, however, handles the topic on a more abstract
level and discusses generic design decisions for these DSLs.

Automation system modeling is handled on a more general level by the Chris-
tian Doppler Laboratory in Linz, Austria. They developed a tool for variability
management and show several case studies in the automation domain [1]. In [11]
a textual DSL for general automation systems is suggested. In a more recent work
of the Doppler Laboratory, a DSL is applied to the automation domain using
hierarchical structuring of the domain model [10]. Compared to our paper they
do not focus on specific automation domains, but address generic automation
system solutions.

3 Domain-Specific Language Design for Automation

Domains

In this section we present general design decisions for the development of au-
tomation system DSLs. First we present the required meta-meta-model which
we later use to provide guidelines for the development of a DSL for automa-
tion domains. We present the DSL mapping to automation devices and to the
automation software. Finally, we discuss the rationale of the presented design
decisions.

194

DSL Architecture for Automation Systems 3

3.1 Meta-Meta-Model

The DSL design suggested in the next section requires the GOPPRR (Graph-
Object-Property-Port-Role-Relationship) meta-meta-model [6]. This meta-meta-
model allows defining the meta-model in form of a DSL. Objects as basic DSL
elements can be connected with Relationships which define a Role for the con-
nection to an Object. The connection to an Object can be further refined by a
Port to which the connection is attached. The Port is attached to the Object,
while the Role is attached to the Relationship. Objects and their Relationships

can be gathered in a Graph. Properties can be added to each of these elements
(Object, Relationship, Role, Port and Graph).

3.2 DSL Design

Physical automation devices connected to the automation hardware (e.g. to the
PLC) are represented as basic DSL Objects. Variants for device types are de-
fined by Properties of an Object. Automation I/O modules are also modeled as
Objects. Wire connections between the automation devices are directly modeled
as Relationships between Objects. The semantics of the Relationship is given by
the Port it is connected to. Each DSL Object has a minimum set of basic ele-
ments: Property ’Name’, Property ’Voltage’, Port ’Input’, Port ’Output’. This
set of basic DSL elements represents our meta-model for the automation domain
which is shown in Figure 1. Additional Relationships or Ports can be used to
connect concrete objects with additional semantics, but concrete Objects still
have to adhere to the rules specified for the abstract automation domain object.

All GOPPRR entities apart from Roles are used in the mapping of DSL
elements to the automation domain. When using the proposed DSL design, Roles
might still be of interest for some domains which might need additional semantics
for their interfaces. The Port entity of GOPPRR is especially useful due to its
straight semantic mapping to wire connections of automation devices.

Fig. 1. Suggested meta-model for the automation domain

195

4 Christopher Preschern, Andrea Leitner, Christian Kreiner

In the automation software, each Object is represented by a function block.
Function blocks at least implement the interface variables ’input’ and ’output’
which represent the corresponding Ports in the DSL. Function Block parameters
allow configuring the variants modeled with Object Properties. Relationships be-
tween DSL Objects are mapped to function block connections (e.g. in a function
block diagram). Table 1 contains an overview of the mapping between the DSL,
the automation software, and the physical automation devices.

Figure 2 illustrates this mapping and shows how two different aspects of the
automation system (physical devices and source code) can be represented by
the DSL using the proposed design. This direct mapping between the DSL, the
automation software, and the physical devices is possible, because of the nature
of the automation domain, which already provides a tight relationship between
concepts in the physical world such as physical wires, and corresponding concepts
in the automation software such as function block connections representing wires.

Physical system GOPPRR concepts Automation software

automation plant Graph overall software

device Object function block

wire Relationship connecting function block interface variables

- Role -

wire connection Port function block interface variables

device attribute Property function block parameters
Table 1. Mapping of the physical system to GOPPRR concepts and to the automation
software

3.3 DSL Design Rationale

Graphical DSL - choosing a graphical model representation allows capturing
information about the assembly and position of physical objects. This informa-
tion can be used to generate the system documentation and the visualization,
which is an essential part for automation systems.

Directly mapping of physical devices to DSL Objects - Directly mapping
physical devices to DSL Objects and physical wires to DSL Relationships, makes
modeling of the automation system more intuitive for domain experts, because
then the DSL is quite similar to function block diagrams which are well known
to automation system developers.

Explicit modeling of I/O modules integrates the physical view of the au-
tomation system into the DSL and allows capturing all physical wires of the
project. Information on the system topology and the electrical wiring is then

196

DSL Architecture for Automation Systems 5

Fig. 2. Mapping between the DSL, physical devices, and automation software

present in the model. Explicit modeling of the I/O modules is not absolutely
necessary, because the information about the I/O module type to which a de-
vice has to be connected to, is implicitly present in the device type. This would
allow automatic generation of the wiring connections, which might not always
be desired. To model systems with already installed hardware, this automatic
wiring plan generation would most likely be inconsistent. The labels for wiring
closets can be generated from the information of the module connections. The
Property ’Voltage’ adds the necessary information to a model with explicitly
modeled I/O modules for generating the complete wiring plan for the automa-
tion system as well as the list of hardware parts required for the automation
project.

Abstract DSL Object - The convention that each Object has an ’Input’ and
’Output’ Port and a Property ’Name’, makes the code generators much sim-
pler, because they can use this abstract Object interface. The generators for
the visualization, the graphical system overview in the documentation, and the
mapping between automation system function blocks can be made independent
from the Object type. Therefore, adding new Object types to the DSL or chang-
ing existing ones does not affect those code generators. The reason for explicitly
makingObject types rather flexible is that in the automation domain the ba-
sic automation elements, which are represented as Objects in our meta-model,
change rather often [9].

197

6 Christopher Preschern, Andrea Leitner, Christian Kreiner

4 Case Study: PISCAS

In this section the industrial case study is presented. The automation domain
and the developed DSL are described and advantages regarding the use of the
proposed DSL design are evaluated.

PISCAS is a product line for fish farm automation systems. The project was
carried out as a master’s thesis at the Institute for Technical Informatics at Graz
University of Technology [12]. The core functionality of PISCAS includes water
oxygen control and fish feeding. Additionally, water level supervision including
an alarm system and standard automation system functionality like steering
actuators, such as lights, are part of PISCAS. The automation system can be
controlled and configured with a visualization integrated into a web portal. Typ-
ically fish farms just vary in the amount of ponds and the functionality for ponds
like feeding and oxygen supervision. Fish farm automation elements are rather
independent from each other and do not interact a lot. Further information on
the PISCAS project can be found on the PISCAS website1.

A graphical DSL was developed to model fish farm projects. The information
in the model is used to parametrize a generic fish farm automation software. Fully
executable automation code is created including the hardware mapping and the
visualization of the automation project. Additionally PISCAS generates a system
documentation including an electrical wiring plan and a list of needed hardware
components. Configuration files for the web portal and for network devices are
generated. For the web portal, SQL configuration files needed for system ini-
tialization are generated. The network routers installed for PISCAS automation
systems require configuration of a VPN connection which is needed for remote
maintenance of the fish farm automation systems. Furthermore, Configuration
files for the router to set up this VPN connection are generated. Figure 3 gives
an overview of generated artifacts.

Fig. 3. PISCAS - generated artifacts

1 http://www.piscas.eu

198

DSL Architecture for Automation Systems 7

Bernecker+Rainer2 (B&R) automation products were used for the PISCAS
project. The reason for choosing B&R is that compared to other automation sys-
tem vendors, the B&R software is easier to generate. All project files including
the visualization and hardware mapping files are stored in XML format. There-
fore, they are easy to parse and to modify. Metaedit+3 was used for development
of the DSL and for system modeling. Several DSL tools were evaluated accord-
ing to an evaluation method suggested in [7]. The tools were evaluated regarding
technical, management, and product line related criteria. The full evaluation is
available in [12]. MetaEdit+ implements the GOPPRR meta-metamodel [5] and
is therefore suitable to apply the DSL design proposed in Section 3.2.

4.1 PISCAS DSL

The PISCAS DSL consists of Objects representing basic fish farm automation
devices, such as a feeder or an oxygen control unit. Each Object implements an
abstract Object definition as presented in Figure 1. The abstract object con-
sists of two Ports (Input and Output) and two Properties (Name and Voltage).
Different variants of a concrete Object (e.g. different feeder types) are config-
ured via additional Properties. The DSL consists of one Relationship type (wire
connection) and two Roles. A Relationship represents an actual physical wire
connection.

Fig. 4. MetaEdit+ DSL elements of the PISCAS language

Figure 4 gives an overview of PISCAS language elements. PISCAS consists
of 7 basic DSL elements (2 Roles, 1 Relationship, 2 Ports, (at least) 2 Proper-

ties). These elements are needed to use the proposed DSL design. Additionally,
18 Properties and 12 Objects, are used for domain-specific elements. Therefore,
the PISCAS DSL consists of overall 37 elements. Code generators are kept as

2 http://www.br-automation.com
3 http://www.metacase.com

199

8 Christopher Preschern, Andrea Leitner, Christian Kreiner

independent as possible from the Object type. This means that each Object pro-
vides a well defined interface (defined minimum set of Properties and Ports)
which is accessed by the code generators. General code for the generation of the
visualization, the wiring plan, the documentation and the automation software
function block parametrization and connection can be generated by Object in-
dependent generators which access this interface. The DSL is independent from
basic functional changes or bug fixes in the automation code, because model
is just used to configure a generic fish farm automation software. This generic
software has a well defined interface to the DSL through the function blocks and
their interface variables. Therefore, the generic fish farm automation software
can be maintained independently from the DSL as long as the interface between
the automation software and the DSL is not affected by a change. Figure 5 shows
an example for a fish farm model constructed with the PISCAS DSL.

Fig. 5. Example for a PISCAS fish farm model in MetaEdit+ Modeler

4.2 Evaluation

This section contains experiences from applying the suggested DSL decisions
presented in Section 3.2 to the PISCAS project.

Application modeling - Two fish farm systems were modeled with the PISCAS
DSL and are currently in operation. Both systems could actually be modeled dur-
ing meetings with the fish farm owner. This was possible due to the intuitive

200

DSL Architecture for Automation Systems 9

Fish Farm element
modeling (ponds,
switches, lights, ...)

B&R I/O module
modeling

Fish farm A 2h 3h

Fish farm B 1h 1.5h

Add new components to B
(model approximately doubled)

1h 2h

Table 2. Time spent on application modeling for the PISCAS systems

system representation and allowed the fish farm owner to directly check the fish
farm DSL model.

Explicitly modeling the hardware connections took the most time during
the modeling process. Table 2 shows the effort (in hours) required for system
modeling for different PISCAS fish farms. The high modeling effort is caused by
the high number of connections in the hardware mapping. To reduce this effort,
we suggest to generate the hardware mapping in the model automatically the
first time. The mapping can still be changed in the model after initial generation.

Bug fixes - Most PISCAS changes were related to bugs in the automation
software. Therefore, decoupling automation software maintenance from the DSL
maintenance is very important for PISCAS and allows decreasing the overall
maintenance effort.

For the generation of a concrete PISCAS system, a generic fish farm automa-
tion software is configured with the information in the DSL model. The generic
automation software is a complete automation program which compiles and can
be used to maintain and debug the automation code without the need to work
with the DSL tools. This from the DSL decoupled, generic code allowed easy
bug fixes and did not require PISCAS DSL modifications often.

Decoupling the generic automation software allows to test new features in the
generic automation system without the need work with MetaEdit+. Therefore,
MetaEdit+ did not have to be installed on the computer which was used to
develop the fish farm automation software. New automation code can easily be
integrated later on into the DSL as long as the interface constraints regarding the
automation software (physical automation elements are mapped to configurable
function blocks with input and output interfaces representing wire connections)
are met. Taking this thought one step further, the generic automation software
could even be programmed by someone who does not construct the DSL, as long
as the constraints regarding the automation code interfaces where the DSL is
mapped to, are met.

DSL Complexity - To assess the complexity of the DSL, two different metrics
were used. One metric describes the domain model complexity and one describes
the code generator complexity.

201

10 Christopher Preschern, Andrea Leitner, Christian Kreiner

The domain model was assessed with the metrics suggested by Leitner [8].
The domain model complexity consists of values describing the complexity of in-
terfaces, elements, and properties. These complexities are defined in general and
explicitly for the GOPPRR meta-meta-model used in MetaEdit+. The metrics
are shown in Equation 1 where C stands for the complexity and n is the number
of items. We modified the element complexity metric, by taking the number of
Ports (nPort) into account. This number is added to the element complexity,
because Ports are attached to Objects. The reason for preferring these metrics
to other domain model metrics such as presented in [13] is that they separately
handle the complexity of DSL interfaces and DSL elements which allows us to
reason about the element complexity, which is especially interesting in the au-
tomation domain due to the high semantics these elements usually carry [9].

Cinterface = nRelationships + nRoles + nConstraints

Celement = nObjects + nPorts

Cproperties = nProperties

(1)

To assess the code generator complexity, Leitner’s metrics [8] have been
adopted. The interface complexity of the code generators consists of the number
of lines of code (#LOC) where any Role or Relationship type is explicitly used
in the generator source code. The element complexity describes the same for the
number of Objects and Ports and the properties complexity handles the occur-
rence of Property types in the code generators. Equation 2 shows these metrics
which describe the dependence (D) of the code generators on DSL items. The
code generator dependence is a metric describing the affect of domain model
changes on the code generator. A lower code generator dependence value sug-
gests less necessary changes in the code generators if DSL items are changed.

Dinterface = #LOCRelationships +#LOCRoles +#LOCConstraints

Delement = #LOCObjects +#LOCPorts

Dproperties = #LOCProperties

(2)

We calculated the two metrics for two versions of the PISCAS DSL. The
first version (PISCASv1) did not follow the DSL design guidelines given in Sec-
tion 3.2. The interface Roles carried semantic information which was in some
cases redundant. In some other cases this semantic information was later, in
the second version, put into the simple ’input’ and ’output’ Ports. The sec-
ond version (PISCASv2) is a refactored version of PISCASv1 and adheres to
the guidelines given in this paper. Objects follow the specified interface conven-
tions (input Port, output Port, name Property, voltage Property) and, therefore,
most Relationships became unnecessary for the PISCAS DSL. This makes the
domain model a lot simpler, because many Roles could be deleted. For the tran-
sition from PISCASv1 to PISCASv2, the two Port types ’input’ and ’output’
had to be added. The Properties and the number of Objects did not change.
Most of the Roles were removed leading to a much lower interface complexity
(see Figure 6(a)). This reduced domain model interface complexity, obviously,
lead to a decrease of the code generator interface dependence (see Figure 6(b)).

202

DSL Architecture for Automation Systems 11

The code generator element dependence also decreased even though the element
complexity of the domain model increased. The lower code generator dependence
suggests, that the DSL can easier be modified, because less changes to the code
generators are required if domain model items are changed. In particular changes
of Objects in the domain model seem to have lower affect on the code generators
in PISCASv2 due to the decreased code generator object dependence.

(a) Complexity of the PISCAS domain
models

(b) Dependence of the code generators
from the domain model

Fig. 6. Complexity of the PISCAS domain models

5 Conclusion

In this paper, we presented design decisions to develop a flexible DSL for au-
tomation systems. We presented the domain model design and the mapping of
automation elements to the DSL. The presented design decisions can be taken
as a guideline for automation system DSL developers and can help to develop a
flexible and easily maintainable automation DSL.

The proposed DSL design was applied to a fish farm automation system
DSL (PISCAS) which was evaluated in terms of modeling effort and maintain-
ability. The maintainability is evaluated by measuring the DSL complexity with
domain model and code generator complexity metrics. The introduced code gen-
erator dependence metric used for this evaluation works very well to describe the
PISCAS code generator complexity. For future work it would be very interesting
to evaluate the maturity of the proposed code generator metric by applying it to
other code generator based systems. It would also be of high interest to evaluate
the proposed DSL design, by developing automation DSLs in other domains by
following the proposed DSL guidelines.

Acknowledgments. We would like to thank the company HOFERNET IT So-
lutions and the FFG for financing the PISCAS project with an ’FFG Innovations-
scheck’.

203

12 Christopher Preschern, Andrea Leitner, Christian Kreiner

References

1. Dhungana, D., Grünbacher, P., Rabiser, R.: The dopler meta-tool for decision-
oriented variability modeling: a multiple case study. Automated Software Engi-
neering 18 (2011)

2. Haselsberger, A.: Design and implementation of a domain specific architecture for
programmable logic controllers. Master’s thesis, Graz University of Technology,
Institute for Technical Informatics (2009)

3. Haxthausen, A.E., Peleska, J.: A domain specific language for railway control sys-
tems. In: Proceedings of the Sixth Biennial World Conference on Integrated Design
and Process Technology. ACM (2002)

4. Jiménez, M., Rosique, F., Sánchez, P., Álvarez, B., Iborra, A.: Habitation: A
Domain-Specific Language for Home Automation. IEEE Software 26 (Jul 2009)

5. Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User and
Multi-Tool CASE Environment. In: Proceedings of CAiSE’96, 8th Intl. Conference
on Advanced Information Systems Engineering. Springer (1996)

6. Kern, H., Hummel, A., Kühne, S.: Towards a Comparative Analysis of Meta-
Metamodels. In: 11th Workshop on Domain-Specific Modeling. ACM (2011)

7. Leitner, A.: A software product line for a business process oriented IT landscape.
Master’s thesis, Graz University of Technology, Institute for Technical Informatics
(2009)

8. Leitner, A., Kreiner, C., Weiß, R.: Analyzing the complexity of domain models.
In: IEEE International Conference and Workshop on the Engineering of Computer
Based Systems (2012)

9. Maga, C., Nasser, J., Göhner, P.: Reusable Models in Industrial Automation: Ex-
periences in Defining Appropriate Levels of Granularity. In: 18th World Congress
of the International Federation of Automatic Control (IFAC). vol. 18 (Aug 2011)

10. Prähofer, H., Hurnaus, D.: Monaco - a domain-specific language supporting hier-
archical abstraction and verification of reactive control programs. In: 8th IEEE
International Conference on Industrial Informatics (2010)

11. Prähofer, H., Hurnaus, D., Wirth, C., Mössenböck, H.: The Domain-Specific Lan-
guage Monaco and its Visual Interactive Programming Environment. In: IEEE
Symposium on Visual Languages and Human-Centric Computing. IEEE (2007)

12. Preschern, C.: PISCAS - A Pisciculture Automation System Product Line. Mas-
ter’s thesis, Graz University of Technology, Institute for Technical Informatics
(2011)

13. Rossi, M., Brinkkemper, S.: Complexity metrics for systems development methods
and techniques. Information Systems 21(2), 209–227 (Apr 1996)

204

Domain-specific front-end for virtual system modeling

Janne Vatjus-Anttila, Jari Kreku, Kari Tiensyrjä

VTT, Technical Research Centre of Finland, Oulu Finland

{janne.vatjus-anttila, jari.kreku, kari.tiensyrja}@vtt.fi

Abstract. The complexity of software and hardware in embedded systems has

risen rapidly due to convergence of diverse applications and adoption of multi-

core technologies. Consequently, the abstraction level of system design, model-

ing and exploration needs to be raised to manage the complexity. The Y-chart

approach, typically applied in the system-level performance evaluation, allo-

cates/maps a model of application on a model of execution platform and the re-

sulting system model is simulated to obtain performance data. In this work,

Domain-Specific Modeling (DSM) has been adopted as means of raising the

abstraction level for building, composing, configuring and checking of high-

level models in the virtual system performance modeling and simulation ap-

proach, called ABSOLUT. Domain-Specific Languages (DSL) were defined to

serve as front-ends for application workload, platform and allocation modeling

using the MetaEdit+ tool. The results are demonstrated with a video player case

example. First experiences indicate that in performance evaluation related tasks

the modeling productivity, model management and ease of learning have im-

proved.

Keywords: DSM, DSL, embedded system, virtual system, SystemC, perfor-

mance exploration

1 Introduction

The complexity of hardware and software has risen rapidly particularly in advanced

embedded system domains, like communication systems, during the recent years due

to extensive adoption of multi-core technologies. Real-time embedded systems are

often computationally intensive and constrained with limited resources, e.g. pow-

er/energy, size and cost. The systems accommodate a large number of on terminal

and/or downloadable applications offering the users with numerous services related to

telecommunication, video, digital television, internet etc. More flexibility, scalability

and modularity are expected from the execution platforms to support the applications.

The digital processing architectures will evolve from current system-on-chips to mas-

sively parallel computers consisting of heterogeneous subsystems connected by a

network-on-chip.

The design complexity requires the elevation of the design process to a higher level

of abstraction. At the system level, models of entire platforms can be built that enable

hardware-software co-development and rapid, early design space exploration. Such

205

models provide quick feedback for the designers about the effect of their design deci-

sions to critical system metrics like performance. Complex interactions and the highly

dynamic nature of systems make their static analysis difficult, which is why such

executable models are indispensable [1].

In this work we use ABSOLUT [2] methodology and toolset as a backend for early

phase system level performance simulation of embedded systems. The main modeling

phases in the virtual system modeling include specifying computing platform�s capac-

ity model, application workload and allocation of workload to computing resources of

the platform. The result of an allocation is a virtual system model, which can be simu-

lated using the OSCI SystemC simulator to measure performance data, e.g. utilization

of platform resources.

Domain-Specific Modeling (DSM) raises the level of abstraction beyond pro-

gramming by specifying the solution directly using domain concepts. It is used in

many application domains and in particular embedded application development with

domain specific language (DSL) has been adopted in many companies [3].The final

products are generated from these high-level specifications [4]. The benefits of DSM

come in many forms like easier modeling/programming, productivity increase, better

code quality and maintenance ability [5].

In this paper we propose applying DSM in virtual system modeling domain and

present a MetaEdit+[6] based prototype DSL that can be used as a front-end to the

ABSOLUT performance modeling and simulation approach. It resembles a traditional

Graphical User Interface (GUI) of modeling tool and it can be used like one. We ap-

plied the DSL in an example case study and present the enhanced performance evalu-

ation workflow using DSM.

The rest of the paper is structured as follows. In Chapter 2 system-level perfor-

mance modeling and evaluation and used ABSOLUT approach are described. Chapter

3 discusses Domain-Specific Modeling. Chapter 4 presents the DSL front-end for

ABSOLUT approach through applying the DSM method for virtual system model

development phases. In Chapter 5 the ABSOLUT workflow and the use of the DSL in

it is presented and results of the case study are shown. Chapter 6 gives conclusions.

2 System-level performance modeling and evaluation

Performance evaluation approaches can be divided into three categories: analytical

approach, simulations and measurements [7]. The analytical approach is suitable for

early performance evaluation, but the accuracy of results is low because it requires

many simplifications and assumptions. In simulations, the execution of an application

is simulated using a computer program. Simulation provides more accurate results

than analysis since it is possible to incorporate more details of the system in the mod-

els. Simulations are suitable for early evaluation, since they can be performed before

implementations of hardware and/or software are completed. Measurements can be

done with real applications, prototypes of applications or benchmark programs that

mimic real software. An implementation of the execution platform is, however, re-

quired in all cases and therefore measurements are not suitable for early evaluation.

206

Performance simulation approaches are categorized in the European EDA

Roadmap [8] into virtual systems, virtual platforms and virtual prototypes:

• Virtual system approaches combine abstract application models with an abstract

execution platform model. The applications are represented using e.g. workload

models, traces or task graphs but not as real instructions of processors. The plat-

form model typically has a high abstraction level and capacity models of compo-

nents instead of instruction set simulators.

• Virtual platform approaches use real application software compiled to binary

form in simulations. The execution of the applications is simulated on top of a

virtual platform model, which contains one or more instruction set simulators.

The platform models need to be functionally complete and use accurate memory

maps to be able to execute the application binaries.

• Virtual prototype approaches also use real application binaries with instruction

set simulators. The virtual prototype approaches model full functionality of the

execution platform using hardware description languages like VHDL or Verilog.

ABSOLUT [2] is a virtual system performance simulation approach intended for

early evaluation of embedded computer systems and for exploring the design space. It

is also a set of tools, which assist the designer with application and platform model-

ing, allocation and configuration, simulation and result visualization. It has been ap-

plied to several case studies ranging from contemporary mobile phone platforms to

future high-performance systems consisting of hundreds of components. Fig. 1 pre-

sents the main phases of ABSOLUT performance modeling method.

Fig. 1. Y-chart model of ABSOLUT performance modeling

Applications are modeled as layered workload models, which ultimately consist of

abstract, instruction-like workload primitives. Several techniques have been devel-

oped to create workload models from information sources such as application specifi-

cations or execution traces. A compiler-based tool exists to create workload models

automatically from application source code [9].

207

As application functionality is abstracted, the complexity of execution platform

models is also reduced especially with respect to the processing elements. The data

paths of processing elements need not be modeled in detail and data transfers and

storage are simulated only from the performance point of view. A capacity model of

platform can be rapidly constructed from components in a model library with the help

of a platform generation tool.

The virtual system model, constructed by allocating workload models on top of the

platform components, is simulated using the IEEE standard SystemC [10] simulation

kernel and models based on the TLM standard [11]. Performance, power and energy

consumption is obtained from simulation by instrumenting the workload and/or plat-

form models with custom performance probes. Designer can freely set the probes and

extract e.g. resource utilization, execution latencies or interconnection traffic.

3 Domain-Specific Modeling

Basically, Domain-Specific Modeling is creating and using modeling languages for

specific purposes. Domain-specificity of modeling means that key concepts of each

domain can be used as the modeling elements of the language. Modeling elements can

have graphical symbols and the use of DSL is actually placing these elements on dia-

gram according language modeling rules. Diagrams made with DSL are formal de-

scriptions of systems and applications and as such suitable for documentation, analy-

sis and transforming them to other forms like source code or other artifacts. In par-

ticular, the generation features complete the benefits that DSM and DSLs provide.

Tool support for applying DSM exists in commercial, academic and open source

tools [12]. True DSM tools enable developing of new DSL, which can be run on top

of the tool or as a standalone program depending of the tool. Increasing interest to-

wards DSM has brought DSM features also to IDEs [13].

DSLs are often made to very specific domains inside companies, which are not in

public use. However, DSLs are applied in the graphical user interfaces of some em-

bedded system development tools, too. For example, CoFluent Studio [14] and Simics

[15] include DSL that can be used for modeling of explored system. These apply for

somewhat similar purposes as ABSOLUT and have therefore similar modeling phas-

es. However, the modeling notions differ due methodology differences. In addition, it

is important to notice the fundamental difference between the ABSOLUT DSL front-

end and the DSLs of mentioned tools. Neither GUIs nor DSLs of the mentioned tools

are implemented on an actual DSM tool as the front-end presented in this paper is.

4 DSL front-end for virtual system modeling

Virtual systems for performance simulations are often made from existing compo-

nents and in an ideal case, the modeling should not require much coding. However,

the platform model needs to be composed and configured. The application modeling

requires making a high-level model of application. The allocation of application ele-

ments to the processing elements of platform model is one of the modeling phases.

208

In this work, the DSM approach is applied to the modeling phases. The same DSM

environment that consists of a DSM tool, a few DSLs and ABSOLUT tools applies

also for building simulateable models, running simulations and analyzing results.

4.1 DSM workflow and environment

Although every domain has its special features, a workflow consisting of the next four

phases for developing DSLs for different domains can be used [16]:

1. Identifying abstractions and how they work together

2. Specifying the language concepts and their rules (meta-model)

3. Creating the visual representation of the language (notation)

4. Defining the generators for model checking, code, documentation, etc.

In our case, the Y-chart model shows clearly the modeling phases and their inter-

relations. Consequently, it was natural to proceed towards modeling phase specific

abstractions. The existing ABSOLUT model library and experiences of tools of the

domain were the basis according which the language concepts, properties, rules and

notations were defined. The notation design in prototype development phase had nat-

urally low priority. In the generator definitions, the goal was to enable the usage of

the existing ABSOLUT tools and generation of compatible mid- representations.

Proceeding according to the workflow requires expertise of both the problem do-

main and the DSM. Additionally an appropriate DSM tool is needed. In this work, the

DSM tool MetaEdit+ 4.5 Workbench [6] developed by MetaCase has been used and

the solution presented here contains some tool specific notions. The tool provides

different diagram editors for modeling with the DSM languages, support for the DSL

and generator definition and is upgraded with new versions by the tool vendor.

4.2 DSL for workload modeling

The workload modeling DSL is developed for the compiler based workload generator

of ABSOLUT, which produces workload models from normal C/C++ code. Any ap-

plication modeling DSL that can generate C code can therefore be used in producing

the ABSOLUT compatible workload model. Existing C code is also used for work-

load generation. The workload modeling DSL of ABSOLUT front-end is targeted for

workload model and workload trace configuration and generation.

The workload modeling is made with the diagram presentations of Workload Mod-

eling Graph, on which the DSL objects and connections are placed. Fig. 2 presents an

example of such a diagram. It contains two Workload Model objects, which both are

linked to two Workload Trace objects. The object symbols contain symbol names and

information about the status of the workload models and traces. The MetaEdit+

toolbar contains the modeling elements of the graph type and the generator buttons.

The workload modeling scheme consists of two phases and both have an own ob-

ject notation in this solution. The Workload Model object is used for defining and

generating the workload model according to the object properties. Properties are used

209

to select the valid external workload model generator, the generation script and the

source code folder. The MERL workload model generator uses the property infor-

mation and generates the workload model. Several Workload Model objects can be

used in a single diagram to generate different workload models from the same source

code or from many different source codes.

The Workload Trace object is used to make the workload trace that can be allocat-

ed to the platform model. It needs a link to the Workload Model object defining the

workload model that is executed in trace generation. The properties of the Workload

Trace object define all the parameters that are needed to execute the workload model.

The object has also a property, which defines path used to store the generated trace.

Fig. 2. Diagram presentation of Workload Modeling Graph

The MERL generator first runs the workload model that produces the workload trace

and then stores the trace files to defined path. Generated workload trace consists of

files of which each contains trace of one workload model thread. Several Workload

Trace objects can be linked to single Workload Model object, which enables produc-

ing different workload traces from the workload model based on the parameters.

4.3 DSL for platform modeling

The key concepts that are needed in the platform modeling are the various hardware

elements (see Table 1). The element types and their properties are specified with dif-

ferent property sets. In addition to the objects, some relationship types and role types

210

are needed for linkage between hardware elements. If large platforms are modeled,

the sub-system object could be applied in the DSL too. Modeling rules can be includ-

ed in the DSL to prevent the designer from making impossible or erroneous connec-

tions between elements or other kind of modeling mistakes.

A diagram editor is the only alternative for a block based platform modeling. Mod-

eling work convenience depends of the modeling elements. By using different sym-

bols for the language concepts, perceiving of the platform model is easier. Different

shapes, colors and text of the component objects symbols enable this. The relationship

and role symbols can also have tuned symbols, if there are many of them or if they

have properties.

Generators can have more than one purpose in the platform modeling DSL.

Checkup generators are another way to confirm the platform validity in addition to the

rules set in the DSL definition. The main purpose of the generator in the platform

modeling is to produce a description of a platform that can be used in the simulation

phase. Generators can also be used to update the modeling element list, which is im-

portant when the components are modeled elsewhere.

Our DSL for platform modeling consists of platform objects, their relationships,

roles, modeling rules and the platform model to XML generator. The objects and

other elements of the platform modeling DSL are listed in Table 1.

Table 1. Modeling elements of platform modeling DSL.

Element Description

Processor Object is used to model processor and accelerator components.

Memory Object is used to model memory components.

Bus Object is used to model bus components.

Interface Object is used to model interface of subsystem.

Subsystem Object is used to model subsystems of platform.

Router Object is used to model connections between subsystems.

Connection Relationship used to model all connections in the platform diagram.

Master Role that connects master component to connection.

Slave Role that connects slave component to connection.

The integration of the DSL with ABSOLUT and its component library is established

by importing the component library description to the DSL. The import updates the

pull down list of each hardware element. For example, a new processor type can be

selected from the pull down list of Processor object types when an updated

ABSOLUT component library definition has been imported.

An example ARM processor platform, modeled in a diagram presentation of the

Platform Modeling Graph is presented in Fig. 3. Using of the platform modeling DSL

resembles the use of many other platform-modeling tools. Components are picked

from toolbar, placed, connected to other components and configured from the proper-

ties of the particular component type.

Subsystem objects are also defined in the DSL to help the modeling of large plat-

forms in smaller parts. When they are used, the top level of platform is composed

from Subsystem and Router objects. The architecture of each subsystem can be mod-

211

eled with a separate platform diagram as Subsystem object decomposition. The inter-

face objects are used inside them to define how they are connected to other subsys-

tems.

Fig. 3. Platform model made with platform modeling DSL

The MERL generator is used to generate XML descriptions of the modeled platforms.

The generator goes through all the platform diagrams that are related to the platform

model and includes their connections, components and the whole platform structure

into the XML file.

4.4 DSL for allocation

An allocation DSL should contain objects presenting application model elements and

computing resources of platform. Some way to link application model elements to

selected platform model elements is also required. A generator for generating alloca-

tion file belongs also to allocation DSL.

Object locations on a diagram can be utilized with the used DSM tool for building

the allocation DSL. The links between application and platform elements can be

based on object locations. The allocation DSL uses the Allocation Area and the Allo-

cation to Resource allocation objects. The application elements are items of the work-

load, and the Workload Thread objects and the Workload Thread Group objects are

used in the allocation diagram in addition to the allocation objects. The location of

workload objects with respect to the allocation objects defines the allocation.

There are several ways to bring workload item objects to the diagram. They can be

picked from the object list, which shows existing objects, or they can be created man-

ually from the scratch. They can also be generated according to corresponding work-

load traces or according prompt input.

The MERL generator producing the allocation file detects all the Allocation to Re-

source objects that are placed on the Allocation Area object. The generator also de-

tects items of the workload on top of the Allocation to Resource objects and forms the

allocation file accordingly. When a workload item is on the Allocation to Resource

212

object, which has the valid resource property and the Allocation to Resource object is

on the Allocation Area object, the workload item is correctly placed. Warnings are

generated on the allocation objects when the objects are placed wrongly. The Alloca-

tion Area object contains also a listing of the allocation, which changes according to

the locations of the other objects in the diagram. The generator producing the listing

can also print warnings, because the Allocation Area object has information of the

workload items and the platform resources, which can be used in composing the allo-

cation.

Dynamic symbols are used as guidance for the designer towards valid allocations.

The symbols of workload objects are made dynamic and the symbols are changing

during the allocation work depending how they are placed. A correctly placed work-

load item has symbol, which is emphasized with yellow. Wrongly placed workload

item has two different symbols.

Fig. 4 shows an example allocation, modeled in a diagram presentation of the Allo-

cation Modeling Graph. It contains the Allocation Area object, Allocation to Resource

objects and Workload Thread objects. The allocation in it contains errors, which are

reported in the allocation listing.

Fig. 4. Allocation is illegal because two workload items, irrelevant to selected workload, are

placed on the allocation area and one relevant item of workload is not inside allocation objects.

213

5 Modeling with ABSOLUT DSL

The updated workflow of the ABSOLUT modeling enhanced by the developed DSLs

is described using a video player as a demonstration case.

5.1 ABSOLUT workflow with DSL

The ABSOLUT workflow presented earlier in Fig. 1 does not change dramatically

because of DSLs. The Y-chart flow is still the basis of the modeling method. The

main changes are related to the modeling phases, which are enhanced with the DSLs.

The developed front-end can also be used for performance simulations and simulation

result analysis but this does not change the overall workflow.

The workload modeling DSL gathers all workload modeling information to one di-

agram. The workload modeling can be therefore managed more efficiently. Different

versions of workload models and workload traces can be generated in a controlled

way and stored in an appropriate location.

The platform modeling DSL speeds up the composition of platform models from

the ABSOLUT model library components and makes it less error prone by avoiding

manual editing of XML documents. The platform description generator produces an

XML file, which ABSOLUT tools need to produce the platform source code.

Allocation DSL enables drag and drop like method for allocation of workload

items to platform resources. Workload items can be imported which reduces effort. It

guides the designer and alerts from illegal allocations. In addition to the graphical

allocation, a textual allocation listing is visible during the allocation phase. Allocation

description files are generated in a format suitable for the ABSOLUT tools.

The generators are used to start ABSOLUT tools and compilers, which produce the

simulation model. There is also a generator, which runs the performance simulation.

5.2 Case study

The video player case study has been made with the described front-end. The player

uses H264 high definition video coding which is used in high quality mobile devices.

The ABSOLUT workload model was generated from the open source FFMPEG [17]

source code. The workload generation DSL was used to set the Workload Model con-

figuration and single and two thread configurations of the Workload Trace object.

Workload traces were generated by the generator that is used to execute the workload

models.

Our test case used an OMAP4 like platform [18]. The platform model was com-

posed from platform modeling elements with our platform modeling DSL. The plat-

form model is a simplified version of the OMAP4 but e.g. includes the dual-core CPU

for testing of different allocations. The XML description of the modeled platform was

produced with the platform description generator.

Two different allocations were made with the allocation DSL so that the effect of

changing the workload allocation could be detected. The workload items were im-

214

ported and allocation objects instantiated. Then the allocation was composed and the

allocation description files generated. The same was done for both of the workloads.

SystemC simulations were performed with the OMAP4 platform model and two

pairs of allocation files and workload models. The utilization of the ARM cores was

the property, which was measured from the simulations. The single-threaded version

of the application utilizes the Core 0 100 %, but the Core 1 is not used at all. In the

dual-threaded version, the load is evenly divided to both cores, which shows that plat-

form capacity is nicely harnessed. The observed utilization rates for the dual-core

CPU of the multi-threaded case are presented in Figure 5.

Fig. 5. Data processing load of both cores in the two thread video coding case.

6 Conclusions

This paper describes a way of utilizing the DSM method on the domain of virtual

system modeling. The resulting prototype DSL set can be used as a modeling and

simulation front-end to the ABSOLUT virtual system modeling tools.

Our experience of DSM was near to zero when the work began and notion of DSM

has become clearer in the course of the work. The experiences of the DSM and from

the used DSM tool are positive. The DSLs were developed incrementally in smalls

steps and they were tested with example data. All three DSLs have evolved steadily

without major tool or DSM approach related problems.

The developed DSLs improve the usability of the ABSOLUT, which so far has

been used without a graphical front-end. Especially the learning curve shortens due

more user-friendly modeling. In particular, the DSL front-end makes modeling easier

for designers who are not experienced with SystemC [10] and TLM [11].

The phases of the ABSOLUT virtual system modeling - workload modeling, plat-

form modeling and allocation modeling - were carried out with the developed DSL in

a video player case study. The performance simulation was carried out for two system

models from which the performance data was recorded. According to our experiences,

the DSL-aided workload, platform and allocation modeling is a workable idea.

Our work continues with the refinement of the ABSOLUT DSL. The usage of a

DSM tool for simulation observation and simulation result analysis front-end is also

an interesting research direction that has already been pretested. There are also possi-

bilities to explore how this sort of DSM approach suits to other embedded system

modeling phases.

215

Acknowledgements. This work is supported by the European Commission and Tekes

� the Finnish Funding Agency for Technology and Innovation - under the grant

agreement ARTEMIS-2010-1-269362 PRESTO.

The adoption of DSM principles and environment was guided by experts of

MetaCase. Especially Mr. Janne Luoma contributed in solving issues faced during the

work. Dr. Juha-Pekka Tolvanen receives also our gratitude for professional com-

ments.

7 References

1. Gerstlauer, A., Chakravarty, S., Kathuria, M., Razaghi, P.: Abstract System-Level Models

for Early Performance and Power Exploration. In 17th Asia and South Pacific Design Au-

tomation Conference, pp. 213-218. IEEE (2012).

2. Kreku J., Hoppari M., Kestilä T., Qu Y., Soininen J.-P., Andersson P., Tiensyrjä K. Com-

bining UML2 Application and SystemC Platform Modelling for Performance Evaluation

of Real-Time Embedded Systems, 18p. EURASIP Journal on Embedded Systems.

Hindawi Publishing Corporation (2008).

3. Sprinkle, J., Mernik, M., Tolvanen, J-P., Spinellis, D., What Kinds of Nails Need a Do-

main-Specific Hammer?, IEEE Software, July/Aug, 2009.

4. DSM Forum, http://www.dsmforum.org/ (2012).

5. Kelly, S., Tolvanen, J.-P.: Domain-Specific Modeling: Enabling full code generation,

Wiley-IEEE Computer Society Press (2008).

6. Domain-Specific Modeling with MetaEdit+, http://www.metacase.com (2012).

7. Jain, R.: The Art of Computer Systems Performance Analysis: Techniques for Experi-

mental Design, Measurement, Simulation and Modeling, 685 p.. John Wiley & Sons, Inc.

(1991).

8. European EDA Roadmap. Technical report, 352 p. CATRENE (2009).

9. Kreku, J., Tiensyrjä, K., Vanmeerbeek, G.: Automatic workload generation for system-

level exploration based on a modified GCC compiler. In Design, Automation & Test in

Europe Conference & Exhibition (DATE), pp. 369-374. IEEE (2010).

10. Grötker, T. and Liao, S. and Martin, G. and Swan, S.: System design with SystemC.

Springer, 2002.

11. SystemC Transaction-level Modeling Standard, TLM-2.0, http://www.accelera.org (2012).

12. DSM Tools, http://www.dsmforum.org/tools.html (2012)

13. Eclipse Modeling Project, http://www.eclipse.org/modeling/ (2012).

14. CoFluent Studio, http://www.cofluentdesign.com (2012).

15. Wind River Simics, http://www.windriver.com/products/simics/ (2012).

16. Tolvanen, J.-P.: Domain-Specific Modeling: How to Start Defining Your Own Language,

http://www.devx.com/enterprise/Article/30550 (2006).

17. FFmpeg, http://www.ffmpeg.org/ (2012).

18. OMAP Mobile Processors, http://www.ti.com/ (2012).

216

A Comparison of Ecore and GOPPRR through an

Information System Meta Modeling Approach

Vladimir Dimitrieski, Milan �elikovi�, Vladimir Ivan�evi� and Ivan Lukovi�

University of Novi Sad, Faculty of Technical Sciences

Trg Dositeja Obradovi�a 6, 21000 Novi Sad, Serbia

{dimmy, milancel, dragoman, ivan}@uns.ac.rs

Abstract. In this paper we present a comparison between the main concepts of

the Ecore meta-meta-model and the GOPPRR meta-language. Through our pre-

vious research we have specified the PIM concepts of our model driven soft-

ware development tool for information system design IIS*Case using Ecore

implementation of Meta object Facility 2.0 in Eclipse Modeling Framework

(EMF). We have also modeled the same concepts by Graph-Object-Property-

Port-Role-Relationship (GOPPRR) meta-modeling language provided by the

MetaEdit+ meta-modeling environment. Both MetaEdit+ and EMF provide the

environment for the meta-models specification. In this paper we give a brief

overview of MetaEdit+�s and EMF�s main concepts and syntax, as well as an

example of IIS*Case PIM concepts modeling using Ecore and GOPPRR meta-

meta-models. We also present the main differences between two meta-modeling

environments, EMF and MetaEdit+, from the PIM concept modeling point of

view.

Keywords: Model Driven Approaches, Domain Specific Languages, Domain

Specific Modeling, EMF, MetaEdit+, Information System Modeling.

1 Introduction

Domain-specific languages (DSLs) are special-purpose languages designed to solve a

particular range of problems. DSLs are tailored to a specific application domain. They

offer substantial gains in expressiveness and ease of use in their domain of applica-

tion, compared with general-purpose programming languages.

Nowadays, DSLs are of increasing importance for the development of software and

other systems. In specifications of DSLs, visual notations are often used. They are to

be supported by a tool environment consisting of visual editors, simulators and model

transformers. Existing approaches for generating or adjusting the desired tool envi-

ronments rely on meta-modeling concepts, grammars, or some kind of logics. De-

pendent on the underlying concepts, different kinds of editors are generated.

Several Eclipse projects are heading towards meta-technology to define DSLs.

Eclipse Modeling Framework (EMF) [1] mainly generates the underlying models of

visual and textual editors that may be extended by additional syntax checks, imple-

menting certain rules, using Object Constraint Language [2]. A graphical view of

217

visual editors can be hand coded on the basis of Eclipse Graphical Editor Framework

(GEF) [3] or generated using Graphical Modeling Framework (GMF) project [4].

MetaEdit+ [5] is the metaCase tool for development of DSLs. MetaEdit+ is an in-

tegrated, repository-based tool aimed at creating and using modeling languages and

code generators. It provides a tool support for different modeling languages by con-

figuring the generic tool set with meta-models.

DSLs may take a distinguished role in the modern information system (IS) devel-

opment process. In IS development DSLs may be used for various purposes, such as:

conceptual modeling, specification of rules and constraints, code generation, genera-

tion of test cases, specification of transformations between models etc. A detailed

overview of DSL usage in the context of Model Driven Software Development

(MDSD) and IS development may be found in [6]. Through our research, we are de-

veloping a textual DSL, named IIS*CDesLang. It is aimed at modeling PIM specifi-

cations of an IS. Our research goals are to couple it with our model driven software

development tool, named Integrated Information Systems CASE Tool (IIS*Case).

IIS*Case provides IS modeling and prototype generation. At the level of PIM specifi-

cations, IIS*Case provides conceptual modeling of database schemas and business

applications. Performing a chain of model-to model and model-to-code transfor-

mations of PIM models, we obtain executable program code of software applications

and database scripts for a selected platform.

In order to provide design of various platform independent models (PIM) by

IIS*Case, we have created a number of modeling, meta-level concepts and formal

rules that are used in the design process. Our experience from previous research [6, 8,

10], leads to the conclusion that there was a strong need to have PIM concepts speci-

fied formally in a platform independent way, i.e. to be fully independent of repository

based specifications that typically may include some implementation details.

Our current research is based on three related approaches to formally describe

IIS*Case PIM Concepts. The first one is based on the attribute grammars through

which we are developing the textual DSL, named IIS*CDesLang. In [8], we present

IIS*CDesLang. It formalizes IIS*Case PIM concepts and provides modeling in a

formal way. IIS*CDesLang meta-model is developed under a visual programming

environment for attribute grammar specifications named VisualLISA [9].

The second approach is based on Meta Object Facility (MOF) [7]. MOF 2.0 is a

common meta-meta-model proposed by Object Management Group (OMG) where a

meta-model is created by means of UML class diagrams and Object Constraint Lan-

guage (OCL). This approach is presented in [10]. As we could not find standardized

implementation of MOF, we selected Ecore meta-meta-model to implement PIM

model, since MOF 2.0 is widely used meta-modeling framework. Ecore is the Eclipse

implementation of MOF 2.0 in Java programming language which is provided by

EMF. We deploy it to implement a meta-model as a basis for textual and graphical

DSL we plan to build in the future.

In the last approach, we deploy MetaEdit+�s GOPPRR [5, 14, 15] as a meta-

modeling framework to describe our PIM concepts. MetaEdit+ provides an integrated

environment for definition of PIM concepts as well as the definition of their graphical

representation using graphical symbol editor. After the definition of meta-model,

218

specified concepts are to be loaded into the MetaEdit+�s repository and then used to

define IS models through graphical representation of these concepts. Through our

previous research, we have gained a valuable experience in the practical application

of Domain Specific Modeling (DSM) for creating our PIM meta-model using differ-

ent environments and paradigms.

In this paper we present a comparison of EMF and MetaEdit+�s meta-modeling

environments and their respective frameworks through modeling of the same PIM

concepts. This comparison comprises our previous practical experiences. It is based

on the evaluation of environments� meta-language concepts through the comparison

of their ease of use. Our goal is to identify the advantages and disadvantages of each

environment as both of them are used in implementation of meta-models as a basis for

further textual and graphical DSL development. Although we have modeled all

IIS*Case PIM concepts using both environments, in this paper we chose to present

most representative parts of our PIM concepts, on which we are able to see the true

difference between EMF and MetaEdit+.

Apart from Introduction and Conclusion, the paper is organized in three sections.

In Section 2 we present related works. In Section 3 we present a comparison of EMF

and MetaEdit+�s basic concepts, while in Section 4 we give a presentation of

IIS*Case�s FormType and FormTypeUsage PIM concepts specified through the meta-

models implemented in MetaEdit+ and EMF.

2 Related Work

Nowadays, meta-modeling is widely spread area of research and there is a huge num-

ber of references covering this area. However we could not find a lot of papers, rele-

vant to the comparison of DSM tools. We have found only three of them, presenting

EMF and MetaEdit+ concepts and providing their comparison.

In [11] , the author presents the comparison between GEF workbench environment

and MetaEdit+. The author also proposes a DSL named Logic Gate Language, for the

description of logic circuits models. The language was developed both under

MetaEdit+ and GEF. The author reported that, in general, the process of the imple-

mentation was much faster in MetaEdit+ than in GEF. GEF also required much more

Java language coding, than MetaEdit+.

In [12], the author presents a mapping between MetaEdit+ and EMF meta-meta-

level concepts. He proposes the M3-Level-Based Bridges solution that provides in-

teroperability between MetaEdit+ and EMF, i.e. an interface for the exchange of me-

ta-models and models between the two tools. Transformations between models at the

M2-level and M1-level have been implemented as the Eclipse plug-in. In this way, the

bridge may be used for the model re-usage.

In [13] the authors analyzed a set of meta-modeling languages including Ecore and

GOPPRR. To compare the selected meta-meta-models, they defined criteria for their

comparison and proposed a comparison framework consisting of abstractions of meta-

modeling concepts available in each meta-modeling language. As the last step, the

authors evaluated obtained results according to the three aspects: availability of the

219

meta-modeling concepts, definition of relationships and the concepts of structuring,

reuse and modularization in meta-modeling.

In [11], development of a graphical DSL is considered. However, we base our

comparison on the modeling of PIM concepts that can be later used for development

of either textual or graphical DSLs. In [12] the focus is set to mappings between con-

cepts of two meta-languages, only. In [13], the authors compared meta-modeling

languages with respect to diversity of the meta-modeling concepts. However, we fo-

cus not only to the similarities and differences of the concepts, but also considerations

regarding their practical usage.

3 The Main Concepts of EMF and MetaEdit+

Here we give a brief overview of main Ecore and GOPPRR concepts used in the spec-

ification of IIS*Case PIM concepts. We make a comparison between the concepts

existing in both meta-meta languages that are used in conceptual specification of me-

ta-models. Although the Ecore provides only conceptual structures, GOPPRR con-

cepts also include information about graphical representation of elements. Concepts

used in our PIM specification that are specific to one of the meta-meta languages

only, are also described. A presentation of basic concepts of both meta-languages is

based on a comparison of the corresponding meta-modeling concept classes.

A grouping concept allows to structure meta-model elements in defined parts or

modules. Regarding their grouping characteristics, Ecore and GOPPRR contain simi-

lar concepts. EPackage is the Ecore concept used for the model organization. It

groups the instances of all Ecore concepts into one logical unit. EPackage's name

need not be generally unique. Instead, a URI is used to uniquely identify the package.

GOPPRR�s concept for grouping elements is the Graph concept. Graph is a collection

of objects, relationships, roles and bindings. Graph contains all elements and their

explosions to other graphs. Explosion allows each object, relationship or role in a

graph to be linked to other graphs. Additionally, Graph can contain properties that

describe it further.

A class concept defines a class of objects with the same characteristics. A class is

the blueprint from which the individual objects are created. EClass is an Ecore con-

cept used to define set of model entities. The corresponding concept used in GOPPRR

is the Object.

A relationship concept describes a connection between elements of the model and

is a subset of the Cartesian product over the participating object types. EReference is

an Ecore concept that defines a set of relations between objects. It establishes the link

from one EClass instance to another. As the EReference instance links at most two

objects, it represents the binary relationship. GOPPRR owns a similar concept named

Relationship. An instance of Relationship differs from EReference instance, as it may

have own properties describing the relationship. It can also link more than two Object

instances, of the same or different Object concept. GOPPRR Relationship instances

attach to objects via roles and they can define properties for the objects� connections.

They are used to form bindings with objects and roles. Role concept exists only in

GOPPRR and no direct equivalent concept exists in Ecore. This concept specifies the

220

lines and end-points of relationships and describes how an object participates in a

relationship. Object Set and Bindings are also the concepts existing in GOPPRR only.

An object set describes a collection of objects with the same role in a binding. Bind-

ings contain the information about how the objects, ports, roles and relationships in a

Graph are connected. Inheritance is a special kind of a relationship that allows creat-

ing subtypes of other language concepts. Both Ecore and GOPPRR provide this con-

cept. In Ecore only the class concept can be inherited, whereas in GOPPRR all meta-

types can be inherited.

An attribute concept is a property of a meta-model element. At a model level an at-

tribute can hold concrete values. EAttribute is the Ecore concept used to define the

characteristics of the EClass instances. EDataType is another Ecore concept used for

the specification of the EAttribute instances type. The similar concept to EAttribute in

GOPPRR is the Property concept. Both of them have the same behavior in the usage

for primitive attribute data types. Additionally, Property concept may represent the

link to another object, specifying it as an object member. In Ecore this is accom-

plished using the EReference concept.

4 IIS*Case Meta-model

Through our previous research we have formally described IIS*Case PIM models

using Ecore and GOPPRR meta-modeling languages and attribute grammars. As we

used Ecore and GOPPPR to describe same PIM concepts we found some similarities

and some differences in these approaches. In this chapter we describe those findings

through detailed description of FormType and FormTypeUsage PIM concepts. We

also give a brief overview of other main PIM concepts: Project, ApplicationSystem,

ApplicationType, BusinessApplication and Fundamentals. Modeling of the IIS*Case

PIM concepts is organized through the package concept in EMF. In order to provide

grouping of elements inside a graph in MetaEdit+, we added a GraphGroup concept

to the graphical meta-model of MetaEdit+. It is represented in form of dotted rectan-

gle surrounding concepts that need to be grouped as one logical unit. GraphGroup

element contains a name of the group shown in the top left corner of the graphical

representation.

4.1 A Brief Overview of Main PIM Concepts

Everything that exists in IIS*Case�s repository is always stored in a context of a pro-

ject. Therefore, the central concept of the meta-model illustrated in Figures 1 and 2 is

the concept of a Project. In MetaEdit+ model we restricted the number of Project

instances to one instance per graph. As one project is one IS specification, a designer

may have only one instance of Project in a single MetaEdit+�s graph. Also, a designer

may not create two projects with the same name as the project�s name must have

globally unique value.

As it is shown in Figures 1 and 2, ApplicationSystems and Fundamentals are subu-

nits of a Project. Every instance of a Project may be connected to zero or more in-

stances of the ApplicationSystem and zero or more instances of any descendant of

221

Fundamentals. ApplicationSystems are organizational parts, i.e. segments of a project.

Designers of an IS may create application systems of various types. By the

ApplicationType concept, designers introduce various application system types and

then associate each application system instance with one application type.

Fig. 1. A Meta-Model of the Main IIS*Case PIM Concepts in MetaEdit+

Fig.2. A Meta-Model of the Main IIS*Case PIM Concepts in EMF

Fundamentals (Fundamental concepts) are formally independent of any application

system. They are created at the level of a project and may be used in various applica-

tion systems latter on. Fundamentals comprise zero or more: Attributes, Domains,

ProgramUnits, Reports and InclusionDependencies.

222

BusinessApplication represents an IS functionality and is organized through a

structure of form types. Each business application has a mandatory name and descrip-

tion. One of the form types included into the application system structure must be

declared as the entry form type of the business application. It represents the first

transaction program invoked upon the start of the business application.

4.2 FormType

Form type is the main concept in IIS*Case. The meta-models of this concept are pre-

sented in Figures 3 and 4. It abstracts document types, screen forms, or reports that

end users of an IS may use in a daily job. By means of the Form type concept, a de-

signer indirectly specifies at the level of PIMs a model of a database schema with

attributes and constraints included, as well as a model of transaction programs and

applications of an IS.

Each form type has a name that identifies it in the scope of a project, a title, fre-

quency of usage, response time and usage type. All these properties are mandatory. In

MetaEdit+ there is no built-in mechanism to declare mandatory properties. Instead, a

user is to specify a regular expression option for every property. In EMF this kind of

constraint is easier to specify by setting the lower and upper bounds of cardinality. In

MetaEdit+, the regular expression option provides a more powerful mechanism for

specifying properties� value characteristics.

Frequency is an optional property that represents the number of executions of a

corresponding transaction program per time unit. Response time is also an optional

property specifying expected response time of a program execution. By the usage type

property, we classify form types as: a) menus and b) programs.

Menu form types are used to model menus without data items. Program form types

model transaction programs providing data operations over a database. They may

represent either screen forms for data retrievals and updates, or just reports for data

retrievals. As a rule, a user interface of such programs is rather complex.

Apart from creating form types in an application system, a designer may include

form types created in other application systems. Therefore, we classify form types as:

a) owned and b) referenced. A form type is owned if it is created in an application

system. It may be modified later on through the same application system without any

restrictions. A referenced form type is created in another application system and then

included into the application system being considered. All the referenced form types

in an application system are read-only. In EMF we have modeled the Form Type con-

cept by the Inheritance rule. We have the abstract class named FormType. It is super-

ordinated to the classes: OwnedFormType and ReferencedFormType.

A main advantage of GOPPRR�s relationship properties may be used in the model-

ing of referenced form type concept. Through GOPPRR�s concepts we have modeled

referenced form type as the relationship named CallFT. This relationship is illustrated

in Figure 3. The relationship has a property named �Options�, which is an instance of

Options object. Similarly, property named �CalledFTParameters� is a collection of

CalledFormTypeParameter object instances.

223

Fig.3. A Meta-Model of FormType concept in MetaEdit+

Fig.4. A Meta-Model of FormType concept in EMF

Calling referenced form requires some options and form parameters to be set. Options

contain CallingMode, CallingMethod and UIPosition of the element calling the form.

Every form can be called in a modal or non-modal mode. Modal called form must be

closed before a user can continue to work in a calling form. Non-modal form specifies

that a calling and the called form may exist simultaneously opened on the screen.

CallingMethod specifies two parameters �Select on open� and �Restricted select�.

Select on open specifies if a called program, generated from the called form type, will

be opened with an automatic data selection, during the call execution, or not. Restrict-

ed select parameter specifies if a called program, generated from the called form type,

will be opened in a way to allow only selection of data restricted to the values of

passed parameters. UIPosition specifies if a called form is shown as a menu item or

button in the calling form.

224

CalledFormTypeParameter in MetaEdit+�s meta-model or Binding in EMF�s me-

ta-model, is a definition of parameter that is being passed in a form type call. For each

form type call parameter we may select this parameter for binding and, if it is select-

ed, to define how a real argument value will be passed to that parameter.

4.3 FormTypeUsage

All FormTypeUsage concepts are presented in Figures 5 and 6. Each program form

type is a tree of component types. A component type has a name, title, number of

occurrences, allowed operations and a reference to the parent component type, if it is

not a root component type. Name is the component type identifier. All the subordinat-

ed component types of the same parent must have different names. Each instance of

the superordinated component type in a tree may have more than one related instance

of the corresponding subordinated component type. The number of occurrences con-

strains the allowed minimal number of instances of a subordinated component type

related to the same instance of a superordinated component type. It may have one of

two values: 0-N or 1-N. The 0-N value means that an instance of a superordinated

component type may exist while not having any related instance of the corresponding

subordinated component type. The 1-N value means that each instance of a superordi-

nated component type must have at least one related instance of the subordinated

component type. The allowed operations of a component type denote database opera-

tions that can be performed on instances of the component type. They are selected

from the set {query, insert, update, delete}.

A designer can also define component type display properties that are used by the

program generator. The concept of component type display is defined by properties:

window layout, data layout, relative order, layout relative position, window relative

position, search functionality, massive delete functionality and retain last inserted

record.

Each component type attribute provides defining a �List of values� (LOV) func-

tionality. To do that, a designer needs to reference a form type that will serve as a

LOV form type. He or she should also define how an end user can edit attributes:

�Only via LOV� or �Directly & via LOV�. Each component type has one or more

keys and uniqueness constraints. Both elements comprise one or more component

type attributes. Component type keys and unique constraints with non-null values

represent the unique identification of a component type instance but only in the scope

of its superordinated component instance.

Due to limited space we omit descriptions of many other properties concerning

FormTypeUsage concept. Their detailed descriptions may be found in [10].

Through the specification of FormTypeUsage concepts we have modeled the same

concepts in EMF and MetaEdit+. Those concepts are modeled in the same way and

using similar constructs in both environments. Our goal in this subsection was to

show that despite all the differences between environments, both of them can be used

equally to model the same concepts.

225

Fig. 5. A Meta-Model of FormTypeUsage concept in MetaEdit+

Fig.6. A Meta-Model of FormTypeUsage concept in EMF

226

5 Conclusion

In this paper we presented a comparison between two DSM tools: EMF and

MetaEdit+. For this purpose, we explored the MetaEdit+ language definition concepts

and Ecore meta-meta-model. The concepts used by MetaEdit+ are described by

GOPPRR meta-language that actually represents the meta-meta-model language defi-

nition. Ecore is MOF 2.0 implementation used by EMF meta-modeling environment.

Unlike EMF modeling environments that we have worked in, MetaEdit+ allows us

to easily generate meta-objects in the repository from our meta-model. Further we can

use MetaEdit+�s environment to produce graphical DSL by importing the meta-

model. Unlike MetaEdit+�s environment, EMF modeling environment provides only

the abstract syntax development. The concrete syntax of some DSLs may be devel-

oped under some other Eclipse frameworks, such as Xtext, EMFText or GMF Tool-

ing. These frameworks rely on EMF, and they also use Ecore meta-meta-model. EMF

modeling environment is widely used. Using the Ecore meta-meta-model, users have

the opportunity to model using the MOF 2.0 concepts as a de facto standard. The

meta-model specified under the EMF environment can be further used in the devel-

opment of some textual or graphical DSLs, using some other Eclipse tools.

Both MetaEdit+�s and EMF�s workbenches may be deployed to make an IS model

containing this meta-objects. MetaEdit+�s symbol editor also allows instances of me-

ta-objects to have distinctive graphical representation. Therefore designers can easily

read and specify models in a graphical way. By specifying IS models, designers have

better opportunities for mental testing the ideas and checking validity of their models.

We conclude that MetaEdit+ is an environment well suited with concepts to devel-

op fully functional graphical DSLs. It provides all-in-one environment for defining

meta-models as well as the representations of graphical DSLs. On the other hand side,

EMF provides developing meta-models only. MetaEdit+ is extensible at the level of

graphical meta-language, with new concepts that can make modeling more precise

and easier. However, the resulting set of concepts still needs to be mapped onto the

actual GOPPRR concepts in MetaEdit+. Unlike the MetaEdit+ tool, EMF does not

allow introducing new concepts at the meta-meta-level. EMF is the modeling envi-

ronment, and majority of its concepts are not used when developing a modeling lan-

guage. Other tools, like GMF, are also needed when specifying the modeling lan-

guage. On the other hand all GOPPRR is built for the definition of graphical modeling

languages and all of its meta-concepts are well suited for fulfilling its purpose. Ecore

concepts are supported by many other tools and environments through standard im-

port and export mechanisms, such as XML Metadata Interchange (XMI). This stand-

ardization makes a usage of an environment easier for users already familiar with

MOF 2.0 concepts.

Our further research will be directed towards the implementation of mapping be-

tween the meta-models using GOPPRR and Ecore specification. One goal is to pro-

vide a bridge that will support the transformation from the model specified by one

meta-model to the other. One of the goals is to deploy MetaEdit+-EMF-Bridge [12] to

import IIS*Case GOPPRR meta-model into EMF and then use a transformation en-

gine like Epsilon or XPand, to define a model-to-model transformation. It should

provide the users with the ability to deploy both modeling environments utilizing their

advantages. This mapping will also allow exchanging models between coworkers

227

using different environments and thus make them easier work on the same problem

with tools they already have.

6 Acknowledgements

The research presented in this paper was supported by Ministry of Education and

Science of Republic of Serbia, Grant III-44010.

7 References

1. Eclipse Modeling Framework. http://www.eclipse.org/modeling/emf/.

2. Object Management Group (OMG), OCL Specification Version 2.0.

http://www.omg.org/docs/ptc/05-06-06.pdf, 2005.

3. Graphical Editing Framework. http://www.eclipse.org/gef/.

4. Graphical Modeling Framework. http://www.eclipse.org/modeling/gmp/.

5. Kelly, S., Lyytinen, K., Rossi, M., MetaEdit+: A Fully Configurable Multi-User and Mul-

ti-Tool CASE and CAME Environment. CAiSE 1996: pp. 1-21

6. Lukovi�, I., Ivan�evi�, V., �elikovi�, M., Aleksi�, S.: DSLs in Action with Model Based

Approaches to Information System Development. In the book: Formal and Practical As-

pects of Domain-Specific Languages: Recent Developments, IGI Global, 2012. (Accepted

for publication, Chapter 17)

7. Meta-Object Facility. http://www.omg.org/mof/

8. Lukovi�, I., Varanda Pereira, M. J., Oliveira, N., Cruz, D., Henriques, P. R.: A DSL for

PIM Specifications: Design and Attribute Grammar based Implementation. ComSIS,

ISSN: 1820-0214, DOI: 10.2298/CSIS101229018L, Vol. 8, No. 2, 2011, pp. 379-403.

9. Oliveira, N., Varanda Pereira, M. J., Henriques, P. R., Cruz, D., Cramer, B.: VisualLISA:

A Visual Environment to Develop Attribute Grammars. ComSIS, ISSN:1820-0214, Vol. 7,

No. 2, 2010, pp. 265-289.

10. �elikovi�, M., Lukovi�, I., Aleksi�, S., Ivan�evi�, V.: A MOF based Meta-Model of

IIS*Case PIM Concepts. Proceedings, IEEE Computer Society Press & Polish Information

Processing Society, ISBN: 978-83-60810-22-4, Szczecin, Poland, 2011, pp. 833-840.

11. Kelly, S.: Comparison of Eclipse EMF/GEF and MetaEdit+ for DSM, Proceedings of the

OOPSLA & GPCE Workshop on Best Practices for Model Driven Software Development

at OOPSLA'04, 2004.

12. Kern, H.: The Interchange of (Meta) Models between MetaEdit+ and Eclipse EMF Using

M3-Level-Based Bridges, 8th OOPSLA Workshop on Domain-Specific Modeling at

OOPSLA, 2008.

13. Kern, H., Hummel, A., Hühne, S.: Towards a Comparative Analysis of Meta-Metamodels,

11th Workshop in Domain-Specific Modeling, 2011.

14. Welke, R.J.: CASE Repositories: More than another DBMS Application, Challenges and

Strategies for Research in Systems Development, Cotterman, W. and J. Senn (eds.), J.

Wiley, Chichester, UK, 1992, pp. 181-214.

15. GOPPRR: MetaEdit+ Workbench User's Guide, Version 4.5, MetaCase, [Online]

http://www.metacase.com/support/45/manuals/mwb/Mw-1_1.html

228

SeMFIS: A Tool for Managing Semantic

Conceptual Models

Hans-Georg Fill1

University of Vienna
Research Group Knowledge Engineering,

1210 Vienna, Austria,
hans-georg.fill@univie.ac.at,

WWW home page: http://homepage.dke.univie.ac.at/fill

Abstract. Several approaches have been discussed in the past to man-
age semantic aspects of semi-formal conceptual models based on map-
pings of their elements to ontologies. In the paper at hand we describe the
foundations for these approaches, derive requirements for an according
tool support and present the design and implementation of the SeMFIS
toolkit together with use cases where it has been successfully applied.
In contrast to other approaches, SeMFIS is based on a meta modeling
approach that can be easily adapted and extended to support arbitrary
conceptual modeling languages. In addition it will be made freely avail-
able for the scientific community in the context of the Open Models
Initiative.

Keywords: Conceptual modeling, Semantics, Meta modeling, Open Mod-
els

1 Introduction

In the last years several approaches have been discussed in the literature that
focus on the enrichment of semi-formal conceptual models about information
systems with semantic aspects, e.g. [27]. Thereby, the elements of a modeling
language or of models whose labels are given in natural language are mapped
to a semantic schema. Typically, the semantic schema comes in the form of an
ontology, i.e. a computer-usable definition of basic concepts of a domain and the
relationships among them [26]. In this way, additional semantic information can
be made explicit and processed by machines. In comparison to approaches that
are targeted towards an a-priori description of the semantics, these mappings
can also be added ex-post, i.e. after the creation of a modeling language or the
instantiation of models. This not only leads to enhanced flexibility in terms of
processing because the semantic mappings and according processing functional-
ities are not tightly coupled to a particular model or modeling language. It also
enables a stepwise semantic enrichment of models, where the degree of formal-
ity of the underlying ontology can be chosen according to a user’s needs [13]:
for some applications it may be sufficient to use vocabularies or thesauri as an

229

ontology, whereas for other scenarios the use of logic-based languages may be
necessary to conduct inferencing [26,32].

Based on these approaches several tools have been developed that support
the handling of such aspects. However, in practice most of them have two major
shortcomings: Firstly, they are often tied to one particular type of modeling lan-
guage and/or one particular type of ontology. Although this may be acceptable
for realizing a concrete usage scenario, the scientific community would greatly
benefit from an approach that can be applied to arbitrary modeling and on-
tology languages without the need for a complete re-implementation of similar
concepts. Secondly, only some of the tools are available on an open source basis
or in some other way open to the further development by the scientific com-
munity. Therefore, we will describe in the following the necessary foundations
and considerations for realizing a flexible, open accessible solution to address
these issues. Subsequently, we will present SeMFIS, a tool based implementa-
tion that has been realized using concepts from meta modeling and that will be
shared using the Open Models Initiative. The remainder of the paper is struc-
tured as follows: in section 2 we will clarify some terms and briefly describe the
foundations for our approach. Section 3 will discuss the requirements for man-
aging semantic aspects and review existing approaches in this area. Section 4
will present the approach of SeMFIS including its goals, implementation and
use cases. The paper will be concluded with an outlook on the next steps in the
development in section 5.

2 Foundations

In order to clarify our understanding of the terms modeling method, modeling
language, modeling procedure and algorithms in this context, we will revert to
a framework proposed by Karagiannis and Kühn [20] - see also figure 1. In their
view a modeling method is composed of a modeling technique and mechanisms
and algorithms. The modeling technique is further split into a modeling language
and a modeling procedure that defines the application of the modeling language
by defining steps and delivered results. The modeling language is composed of
syntax, semantics, and a notation. Thereby, the notation part is used to explicitly
define the visualization of the syntax while obeying the meaning of the syntax
elements as defined by the semantics. The semantics itself consists of a semantic
mapping and a semantic schema. The mapping connects the elements of the
syntax, i.e. the grammar, to the elements of the semantic schema through a
reference relationship.

The mechanisms and algorithms are used in the modeling procedure and are
applied to the modeling language. They can either be generic, i.e. applicable to
arbitrary modeling languages, specific, i.e. applicable only to a particular mod-
eling language or hybrid, i.e. configurable for multiple modeling languages. As
our approach builds upon concepts of meta modeling, we will also explain our
notion of a meta model. Therefore we revert to the definition given in [28] who
consider a meta model to be a model of the abstract syntax of a modeling lan-

230

Steps Results

Refers to

De!nes grammar

Seman"cs

De!nes meaning

Seman"c

Schema

Syntax

Seman"c

Mapping

connects
obeys

Nota"on

De!nes applica"on of language
delivers

Used in

Modelling

Procedure

Modelling

Method

Modelling

Technique

Mechanisms

& Algorithms

Modelling

Language
Generic

Mechanisms

& Algorithms

Hybrid

Mechanisms

& Algorithms

Speci!c

Mechanisms

& Algorithms

Steps Results
Seman"cs

Seman"c

Schema

SyntaxNota"on

Modeling

Procedure

Modeling

Method

Modeling

technique

Mechanisms

& Algorithms

Modeling

Language
Generic

Mechanisms

& Algorithms

Hybrid

Mechanisms

& Algorithms

Speci!c

Mechanisms

& Algorithms

Used for

De!nes visualiza"on

visualizes

Seman"c

Mapping

De!nes

meaning of

Fig. 1. Components of Modeling Methods [20]

guage. However, as our focus is on conceptual models, we also need to take into
account the specificities of these types of models here. In contrast to other views
on models such as in software engineering or knowledge representation, concep-
tual models are primarily intended to be used by humans for communication
and understanding and not machines [25].

This in turn also affects how semantics is viewed: whereas for models that
are intended for machine usage, the addition of some kind of formal semantics is
obligatory, conceptual models often revert to natural language descriptions for
explaining their use and behavior, cf. [21,25]. The combination of a formal syntax
and a natural language description of its use, which is also denoted as a semifor-

mal specification, directly affects the application of algorithms [14]: in contrast
to formal specifications with a rigourously defined syntax and semantics that
offers a theoretical model against which descriptions can be verified, semiformal
specifications have only limited checking facilities. Based on the specifications
in the meta model, the types of the elements in the model can be identified
and accordingly processed based on the instantiation relationship defined by the
syntax. However, when it comes to the meaning/behavior of the types and the
meaning that is assigned to their instances during modeling, only natural lan-
guage descriptions in the form of labels that are attached to the elements are
available.

To enable the processing of such models, additional semantic specifications
are required. These can be added on the level of the meta models and/or the
level of the models and may be described using different degrees of formality. A
common approach, in particular for conceptual modeling languages in the area
of process and workflow modeling, is to map the elements of a meta model to
formal semantic schemata. These can be formalisms such as Petri nets [1] or
also appropriately represented system runs that are linked to the models via
algorithms [15]. Thereby, the behavior of a modeling language can be unam-

231

biguously defined and the resulting models can be checked for conformance to
these formalisms.

Another direction is to use computer-usable definitions of a domain vocab-
ulary, i.e. ontologies, as a semantic schema [24,2]. This permits e.g. to analyze
the structure of a modeling language in terms of semantic phenomena such as
synonymity or similarity. It also provides a basis for the application of algo-
rithmic analyses and logic-based inference mechanisms. Furthermore, the use
of standardized languages such as OWL or RDF for describing the domain vo-
cabulary allows to exchange the semantic specifications with other tools and
services [30,24]. However, when a user instantiates a meta model and adds se-
mantic information in the form of natural language descriptions by using labels
for the elements in the models, this information is not known at the design-time
of the modeling language as the user does not face any constraints which in-
formation to assign. A solution to this is to map the labels to ontologies that
contain machine-processable entities of natural language [3,17]. In this way for
example semantic similarities between model instances can be determined [7] as
well as integration points for services [16] and other modeling languages can be
discovered [17].

3 Requirements for Semantic Conceptual Models and

Related Approaches

With these foundations we can now derive some basic requirements for tools to
handle semantic aspects in conceptual models. Subsequently we will review re-
lated approaches in this area and then discuss our approach and implementation
of the SeMFIS toolkit that is based upon semantic conceptual models. For the
derivation of the requirements we took into account the work by Uren et al. that
dealt with similar issues in the context of knowledge management [31].

3.1 Requirements

Regarding functional requirements, an according tool ideally has the ability to
deal with arbitrary conceptual modeling languages, because we would like to
address semantic aspects of conceptual modeling languages and models from a
general perspective. It should thus be possible to map elements of a meta model
or a model of any type to various types of semantic schemata. In this way, the
approach would be highly re-usable for a large range of application scenarios
and domains. This also includes that the content of models, the semantic map-
pings and the semantic schemata should be exchangeable, i.e. that interfaces for
accessing their content are available.

To detail requirements concerning interfaces and the exchange of informa-

tion, a tool needs to support widely accepted IT-standards to reduce the effort
of learning new methods and simplify the re-use of the contained information. In
the area of ontologies based on description logics for example, the web ontology

232

language OWL is one of the most widely used standards. Therefore, any tool
dealing with such types of ontologies should be able to support OWL.

From the persepctive of user interaction requirements, a tool has to focus on
a user-centered design and meet the intended users’ abilities and thus ease the
handling of semantic aspects. This concerns in particular the effort for dealing
with formal issues of the definition of mappings and the use of the underlying
semantic schemata. Due to the large effort that may be involved in defining the
mappings, a tool should permit the collaboration of multiple users, ideally also
in distributed environments. Furthermore, the tool should support the handling
of the evolution of the modeling languages, the models, the semantic mappings
and the semantic schemata so that the consistency between all these parts can be
ensured. As already mentioned in the introduction, the tool should be open for
the further development by the scientific community. From an implementation
perspective it should also be easily adaptable and extensible so that researchers
can implement new functionality and re-use existing ones without much effort.

3.2 Related Approaches

When investigating existing approaches for handling semantic aspects in the
ways mentioned above, a large number of tools can be found that have been
developed in the context of semantic web. For realizing the vision of semantic
web, a core feature is to define mappings between textual resources and machine
understandable semantic schemata - for a comprehensive overview of approaches
in this field we refer to [31]. Although some of the concepts developed for seman-
tic web can be re-used, these approaches and tools do not focus on the specific
properties of conceptual modeling languages or models.

Regarding approaches that do focus on conceptual models, several contri-
butions have been made in the area of semantic business process management.
However, only very few publications can be found that deal with these issues
from a modeling language independent view, e.g. [5]. Apart from business pro-
cess modeling also the field of software engineering and service modeling have
discussed these aspects [34,18] - but also these approaches are tied to particular
modeling languages, e.g. UML class diagrams and SoaML. In semantic business
process modeling five tools can be directly related to the above mentioned re-
quirements: the SemPeT tool by the University of Karlsruhe [7], Maestro for
BPMN by SAP Research [4], an extension for the ARIS toolkit [29], WSMO
Studio [6], and Pro-SEAT [23]. Maestro, WSMO Studio and PRO-SEAT sup-
port the BPMN notation for defining process models, SemPeT supports Petri
nets and ARIS event driven process chains. SemPet, Pro-SEAT and WSMO Stu-
dio support the web ontology language OWL whereas Maestro, ARIS and also
WSMO Studio revert to ontologies expressed in the WSML/WSMO format. To
the best of our knowledge none of these tools currently explicitly supports the
handling of evolutions of semantic aspects. Concerning the licensing strategies
only WSMO Studio is explicitly available under an open source license. Each
of these tools has been developed for a particular use case: SemPeT has been
applied for determining the semantic similarity of process models described by

233

Petri nets, Maestro for BPMN, the ARIS extension and WSMO studio target the
automatic discovery and composition of web services during process execution
based on annotations of BPMN process models. PRO-SEAT focuses on enabling
the semantic interoperability of process models between different enterprise in-
formation systems.

4 The Approach of SeMFIS

In this section we will present the approach of the SeMFIS1 tool for managing
semantic conceptual models. The core parts of SeMFIS have been developed
in the course of a research project conducted at Stanford University and are
today being further developed by the author at the University of Vienna. The
implementation of SeMFIS is provided via the Open Models Initiative [19,22]2.
We will first describe the goals and concepts of the SeMFIS approach and then
the concrete implementation and use cases.

4.1 Goals and Concepts

The main goal of the SeMFIS approach is to provide an open platform for de-
scribing the semantic aspects of multiple conceptual modeling languages and
models. Besides this, SeMFIS also aims at establishing a community for the
exchange of know-how on handling these semantic aspects and according imple-
mentations. For this purpose it provides a set of semantic conceptual model types

that are described using meta models, a set of algorithms and support tools and
a set of web services. In the basic configuration these semantic conceptual mod-
els comprise a semantic annotation model type, an OWL ontology model type, a
frames model type, and a term model type - for an excerpt of the meta models
see figure 4 in the appendix. The meta models underlying these model types can
then be added to other existing meta models as required. The OWL ontology
model type is used to represent ontologies based on the OWL specification by
W3C in the form of visual models. Similarly, the frames ontology model type
represents frames ontologies based on the Protégé frames ontology implementa-
tion of the OKBC Knowledge Model as described in [33]. Whereas the support
of OWL ontologies originates from the wide spread use of this type of ontologies,
frames ontologies were chosen because of advantages in certain scenarios: as they
are based on the closed-world assumption where everything is prohibited until
it is permitted, they sometimes require less effort for their specification and are
easier to handle than OWL ontologies. In addition, for both types of ontolo-
gies powerful programming libraries and additional tools such as reasoners and
rule engines are available. In addition to these ontology types, the term model
type provides a way to represent an extended form of controlled vocabularies.
Thereby, terms, their synonyms and a simple generalization/specialization hier-
archy of the terms can be defined. Although similar results can be achieved by

1 SeMFIS stands for Semantic based Modeling Framework for Information Systems
2 See the project website at http://www.openmodels.at/web/semfis/

234

using one of the two full-fledged ontology types, in industry scenarios where only
limited knowledge about ontologies is available, such a ’reduced ontology type’
may better meet the users’ abilities [13].

For defining the mappings between conceptual modeling languages and mod-
els and the different types of ontology models, the semantic annotation model
type has been defined based on a previous concept for linking models and ontolo-
gies in [10]. It provides constructs for expressing triple statements that contain a
reference to a particular meta model or model element, the type of annotation,
and a reference to an ontology element. Currently ten types of annotations are
pre-defined, however these may extended based on particular needs: ’is equal to’,
’is broader than’, ’is narrower than’, ’is instance of’, ’is subclass of’, ’is superclass
of’, ’is instance using fromClass’, ’is instance using toClass’, ’transfers Value to
Slot’, and ’is annotated with’. Thereby, the two types referencing ’fromClass’
and ’toClass’ are used to map from the endpoints of a relation or relationclass.

In addition to the model types, several algorithms were specified to handle
the exchange of model information and provide certain processing functionalities
required by various use cases as will be described below. These currently include
algorithms for: exchanging the models in XML format; exporting frames ontol-
ogy models in the Protégé frames project format; transferring information from
models that are mapped to a frames ontology into instances of that ontology; and
obfuscating model information based on mapppings to a subsumption hierarchy
expressed in an OWL ontology [12,11]. In order to easily support interaction in
distributed web environments, a number of web services were specified. These
include functionalities such as the access to the contents of the models and the
generation of various graphical formats of the model representation.

4.2 Implementation and Use Cases

The meta models described above were implemented using the ADOxx meta
modeling platform3 that is provided by BOC AG through an open access licence
for projects of the Open Models Initiative - see figure 2 for a screenshot of the
model editors. From the functionality provided by ADOxx, several components
were re-used for the realization of SeMFIS - see figure 3. These encompass not
only the modeling component for the automatic generation of model editors from
the meta models but also the analysis, simulation and evaluation components
as well as the HTML generation and import/export component for exchanging
model information. The algorithms for SeMFIS were implemented in the ADOxx
scripting language ADOscript. For the implementation of the web services, the
ADOxx web service component was used that provides a WSDL interface for the
remote execution of ADOscript code. This provided the basis for the implemen-
tation of the SeMFIS REST web services. To interact with these services a web
based user interface was implemented using the Google web toolkit (GWT) and
the LGPL SmartGWT library4. Currently this user interface does not provide

3 For a detailed discussion of the formal aspects of the ADOxx meta modeling ap-
proach see [9].

4 See http://www.smartclient.com/

235

all functionalities of the desktop application, however it is planned to add these
in the future.

Fig. 2. Model Editors for Semantic Conceptual Models

To ease the handling of OWL ontologies the Protégé5 ontology management
toolkit was integrated in the architecture through a plug-in. With this plugin
parts of OWL ontologies can either be exported in an XML file format and im-
ported in ADOxx or directly submitted to a SeMFIS web service. In this way the
vast range of functionalities provided by Protégé and its plug-ins can be re-used
for managing ontologies. Although the SeMFIS implementation currently does
not provide a specific semantic aspect evolution mechanism, the generic ADOxx
functionality for managing model changes and the functionalities of Protégé for
handling the evolution of ontologies is available. As all relevant information for
expressing semantic aspects is stored in ADOxx, also the generic ADOxx consis-
tency functions, e.g. for ensuring that only existing elements and concepts can
be linked, can be re-used.

The SeMFIS tool has already been successfully applied for several use cases in
the research on semantic aspects of conceptual models. In [12] the tool has been
applied to support tasks in business process benchmarking. Thereby, semantic
analyses of business processes could be conducted for the purpose of performance
management and confidential information could be obfuscated based on semantic

5 See http://protege.stanford.edu

236

SeMFIS

Algorithmic

Extensions

Modeling Analysis Simulation Evaluation

HTML

Generation

Import /

Export

Web Service

Component

CORE (Modeling subsystem (CORE))=

Database

User interaction (Windows)
User

interface

Application

components

Repository

SeMFIS

Rest

Services

User

interaction

(Web)

ADOxx Platform Web Environment Protégé Platform

Protégé

Desktop

Application

SeMFIS

Protégé

Plugin

Fig. 3. Architecture of SeMFIS

annotations with concepts from an OWL ontology. For the approach described
in [13], annotation and term models were used to provide input for a visualization
algorithm that creates user-specific views on process models. Finally, in [8] a
mapping between process models and concepts from a frames ontology are used
to make risks and their impact on business processes explicit and thus serve as
input for simulations.

5 Conclusion and Outlook

In this paper we have described the foundations and conceptions for the devel-
opment of the SeMFIS tool. Based on the provided meta models, algorithms and
services this tool can be linked to arbitrary types of modeling languages for real-
izing semantic conceptual models. The next steps in the development will be the
further development of the web interaction functionalities. These are currently
being designed and implemented in several students’ projects. Furthermore, also
the provision of specific evolution and change handling functionalities will be
investigated and integrated in the implementation. In parallel, it is planned to
evaluate the practical application of the tool in research and industrial projects.

Acknowledgement

Parts of the work on this paper have been funded by the Austrian Science Fund
(FWF) in the course of an Erwin-Schrödinger scholarship grant number J3028-
N23.

References

1. Van der Aalst, W.M.P.: Formalization and Verification of Event-driven Process
Chains. Information and Software Technology 41(10), 639–650 (1999)

237

2. Abramowicz, W., Filipowska, A., Kaczmarek, M., Kaczmarek, T.: Semantically
enhanced business process modelling notation. In: Hepp, M., Hinkelmann, K.,
Karagiannis, D., Klein, R., Stojanovic, N. (eds.) Proceedings of the Workshop on
Semantic Business Process and Product Lifecycle Management. vol. 251. CEUR
Workshop Proceedings (2007)

3. Boegl, A., Karlinger, M., M., S., Pomberger, G.: EPCs Annotated with Lexical and
Semantic Labels to Bridge the Gap between Human Understandability and Ma-
chine Interpretability. In: Smolnik, S., Teuteberg, F., Thomas, O. (eds.) Semantic
Technologies for Business and Information Systems Engineering. pp. 214–241. IGI
Press (2012)

4. Born, M., Hoffmann, J., Kaczmarek, T., Kowalkiewicz, M., Markovic, I., Scicluna,
J., Weber, I., Zhou, X.: Semantic Annotation and Composition of Business Pro-
cesses with Maestro. In: ESWC 2008. Springer (2008)

5. Diamantini, C., Boudjlida, N.: About semantic enrichment of strategic data models
as part of enterprise models

6. Dimitrov, M., Simov, A., Stein, S., Konstantinov, M.: A BPMO based Semantic
Business Process Modelling Environment. In: Hepp, M., Hinkelmann, K., Kara-
giannis, D., Klein, R., Stojanovic, N. (eds.) SBPM 2007. CEUR Workshop Pro-
ceedings (2007)

7. Ehrig, M., Koschmider, A., Oberweis, A.: Measuring Similarity between Semantic
Business Process Models. In: Roddick, J., Hinze, A. (eds.) APCCM 2007. Aus-
tralian Computer Science Communications, vol. 67, pp. 71–80. ACM (2007)

8. Fill, H.G.: An Approach for Analyzing the Effects of Risks on Business Processes
Using Semantic Annotations. In: accepted for ECIS’2012 (2012)

9. Fill, H.G., Redmond, T., Karagiannis, D.: FDMM: A Formalism for Describing
ADOxx Meta Models and Models. In: Maciaszek, L., Cuzzocrea, A., Cordeiro, J.
(eds.) to appear in: ICEIS’2012, Wroclaw, Poland (2012)

10. Fill, H.-G.: On the Conceptualization of a Modeling Language for Semantic Model
Annotations. In: Salinesi, C., Pastor, O. (eds.) Advanced Information Systems
Engineering Workshops, CAiSE 2011. pp. 134–148. Springer (2011)

11. Fill, H.-G.: Using Obfuscating Transformations for Supporting the Sharing and
Analysis of Conceptual Models. In: Robra-Bissantz, S., Mattfeld, D. (eds.) MKWI
2012. GITO Verlag (2012)

12. Fill, H.-G.: Using Semantically Annotated Models for Supporting Business Process
Benchmarking. In: Grabis, J., Kirikova, M. (eds.) 10th International Conference
on Perspectives in Business Informatics Research. pp. 29–43. Springer (2012)

13. Fill, H.-G., Reischl, I.: Stepwise Semantic Enrichment in Health-related Public
Management by Using Semantic Information Models. In: Smolnik, S., Teuteberg,
F., Thomas, O. (eds.) Semantic Technologies for Business and Information Systems
Engineering: Concepts and Applications. vol. 195–212. IGI Press (2012)

14. Fraser, M., Kumar, K., Vaishnavi, V.: Strategies for incorporating formal spec-
ifications in software development. Communications of the ACM 37(10), 74–86
(1994)

15. Harel, D., Rumpe, B.: Meaningful Modeling: What’s the Semantics of ”Semantics”?
IEEE Computer October 2004, 64–72 (2004)

16. Hepp, M., Leymann, F., Domingue, J., Wahler, A., Fensel, D.: Semantic business
process management: a vision towards using semantic web services for business
process management. In: ICEBE 2005. pp. 535–540 (2005)

17. Höfferer, P.: Achieving Business Process Model Interoperability Using Metamod-
els and Ontologies. In: Oesterle, H., Schelp, J., Winter, R. (eds.) 15th European
Conference on Information Systems. pp. 1620–1631. University of St. Gallen (2007)

238

18. Juicheng, X., Zhaoyang, B., Berre, A., Brovig, O.: Model Driven Interoperabil-
ity through Semantic Annotations using SoaML and ODM. Information Control
Problems in Manufacturing 13(0314) (2009)

19. Karagiannis, D., Grossmann, W., Höfferer, P.: Open Model Initiative - A Feasibility
Study (04-04-2010 2008), http://cms.dke.univie.ac.at/uploads/media/Open_
Models_Feasibility_Study_SEPT_2008.pdf

20. Karagiannis, D., Kühn, H.: Metamodeling platforms. In: Bauknecht, K., Min Tjoa,
A., Quirchmayr, G. (eds.) Third International Conference EC-Web 2002 Dexa
2002. p. 182. LNCS2455, Springer, Aix-en-Provence, France (2002)

21. Kaschek, R.: On the evolution of conceptual modeling. In: Dagstuhl Seminar Pro-
ceedings. vol. 08181 (2008)

22. Koch, S., Strecker, S., Frank, U.: Conceptual Modelling as a New Entry in the
Bazaar: The Open Model Approach. In: Open Source Systems. vol. 203/2006, pp.
9–20. IFIP (2006)

23. Lin, Y.: Semantic Annotation for Process Models: Facilitating Process Knowledge
Management via Semantic Interoperability. Ph.D. thesis (2008)

24. Lin, Y., Strasunskas, D.: Semantic annotation of business process templates. In:
Smolnik, S., Teuteberg, F., Thomas, O. (eds.) Semantic Technologies for Business
and Information Systems Engineering. IGI Press (2012)

25. Mylopoulos, J.: Conceptual Modeling and Telos. In: Loucopoulos, P., Zicari, R.
(eds.) Conceptual Modelling, Databases and CASE: An Integrated View of Infor-
mation Systems Development. pp. 49–68. Wiley (1992)

26. Obrst, L.: Ontologies for semantically interoperable systems. In: Proceedings of the
12th International Conference on Information and Knowledge Management. ACM
Press (2003)

27. Smolnik, S., Teuteberg, F., Thomas, O.: Semantic Technologies for Business and
Information Systems Engineering: Concepts and Applications. IGI Press (2012)

28. Sprinkle, J., Rumpe, B., Vangheluwe, H., Karsai, G.: Metamodelling - state of the
art and research challenges. In: Giese, H. et al. (ed.) MBEERTS. vol. LNCS 6100,
pp. 57–76. Springer (2010)

29. Stein, S., Stamber, C., El Kharbili, M.: ARIS for Semantic Business Process
Management. In: Business Process Management Workshops. vol. 17, pp. 498–509.
Springer (2009)

30. Thomas, O., Fellmann, M.: Semantic Business Process Management: Ontology-
based Process Modeling Using Event-Driven Process Chains. IBIS 2(1), 29–44
(2007)

31. Uren, V., Cimiano, P., Iria, J., Handschuh, S., Vargas-Vera, M., Motta, E.,
Ciravegna, F.: Semantic annotation for knowledge management: Requirements and
a survey of the state of the art. Web Semantics: Science, Services and Agents on
the World Wide Web 4, 14–28 (2006)

32. Uschold, M.: Where Are the Semantics in the Semantic Web? AI Magazine 24(3),
25–36 (2003)

33. Wang, H., Noy, F.N., Rector, A., Musen, M.A., Redmond, R., Rubin, D., Tu, S.,
Tudorache, T., Drummond, N., Horridge, M., Seidenberg, J.: Frames and OWL
Side by Side. In: 9th International Protege Conference. Stanford University (2006)

34. Yuxin, W., Hongyu, L.: Adding Semantic Annotation to UML Class Diagram.
International Conference on Computer Application and System Modeling (2010)

239

A
p
p
e
n
d
ix

A

Semantic Annotation

Model Type
Frames Ontology

Model Type

OWL Ontology

Model Type

Term Model

Type

o
w

l:
C

la
ss

o
w

l:
su

b
c
la

ss

O
f

C
la

ss

o
w

l:
P

ro
p

e
rt

y

In
st

a
n

c
e

rd
f:

ty
p

e

rd
fs

:d
o

m
a

in

rd
fs

:r
a

n
g

e

M
o

d
e

l

R
e

fe
re

n
c
e

O
n

to
lo

g
y

R
e

fe
re

n
c
e

A
n

n
o

ta
to

r

A
n

n
o

ta
ti

o
n

E
le

m
e

n
t

Is
 I

n
p

u
t

R
e

fe
rs

 T
o

A
n

n
o

ta
ti

o
n

T
y
p

e

O
W

L
 E

le
m

e
n

t

IN
T
E
R
R
E
F

IN
T
E
R
R
E
FIN
T
E
R
R
E
F

IN
T
E
R
R
E
F

to

fr
o
m

to
IN
T
E
R
R
E
F

fr
o
m

F
ra

m
e

s

E
le

m
e

n
t

F
ra

m
e

s
F

il
e

R
e

fe
re

n
c
e

F
ra

m
e

s
C

la
ss

F
ra

m
e

sS
lo

t

F
ra

m
e

s

In
st

a
n

c
e

S
lo

tI
n

st
a

n
c
e

in
st

a
n

c
e

 o
f

IN
T
E
R
R
E
F

S
lo

t
v
a

lu
e

s

IN
T
E
R
R
E
F

In
st

a
n

c
e

 o
f

sl
o

t

IN
T
E
R
R
E
F

D
o

m
a

in

IN
T
E
R
R
E
F

A
ll

o
w

e
d

C
la

ss
e

s

IN
T
E
R
R
E
F

IN
T
E
R
R
E
F

IN
T
E
R
R
E
F

U
n

iq
u

e
 I

D

T
e

rm
Is

 B
ro

a
d

e
r

T
e

rm

fr
o
m

to

D
e

sc
ri

p
ti

o
n

S
y
n

o
n

y
m

T
e

rm
s

IN
T
E
R
R
E
F

IN
T
E
R
R
E
F

A
ll

 c
la

ss

in
st

a
n

c
e

s

C
o

n
n

e
c
to

r

R
e

fe
re

n
c
e

fr
o
m

In
st

a
n

c
e

re
fe

re
n

c
e

A
ll

 c
o

n
n

e
c
to

r

in
st

a
n

c
e

s

In
st

a
n

c
e

re
fe

re
n

c
e

s

R
e

la
ti

o
n

 c
la

ss

re
fe

re
n

c
e

A
tt

ri
b

u
te

re
fe

re
n

c
e

o
w

l:
su

b
P

ro
p

e

rt
y
O

f

IN
T
E
R
R
E
F

o
w

l:
d

is
jo

in
tW

it
h

IN
T
E
R
R
E
F

R
e

st
ri

c
ti

o
n

s

F
ig
.
4
.
E
x
ce
rp
t
o
f
th
e
S
eM

F
IS

M
et
a
M
o
d
el
s

240

Towards collaboration between sighted and

visually impaired developers in the context of

Model-Driven Engineering

Filipe Del Nero Grillo, Renata Pontin de Mattos Fortes, and Daniel Lucrédio⋆⋆

Computer Science Department, Institute of Mathematics and Computer Sciences at
University of São Paulo, São Carlos, Brazil. Av. Trabalhador São-carlense 400 -

Centro, P.O.Box 668. 13560-970 - São Carlos/SP, Brazil
{grillo,renata}@icmc.usp.br,daniel@dc.ufscar.br

http://www.icmc.usp.br

Abstract. Model-Driven Engineering is rapidly emerging as a power-
ful way to increase quality and productivity in software development
projects. However, its focus on modeling, specially with graphical nota-
tions, makes its adoption very difficult to blind and visually impaired
users, who have always been able to program with the help of assistive
technologies such as screen readers. Without a comprehensive and up-
dated alternative text, this type of software artifact is of little use to
a developer with visual impairment. In this paper we present ongoing
research and the proposal of a tool to enable the collaboration between
sighted and blind/visually impaired software developers. The tool will
provide alternative textual representation to models in a web environ-
ment, so that collaboration can effectively occur. Details on the technical
viability and basic functionality of the tool are presented. We believe
these are of great interest to the MDE community, as other researchers
and practitioners may build upon our initial ideas to develop their work.
We also discuss future investigation possibilities, and the expected con-
tributions of our research.

Keywords: MDE, Graphical, Textual, Accessibility

1 Introduction

Computer programming has historically been a field in which the visually im-
paired were able to work and teach, because programs are essentially text and,
therefore, accessible by the use of assistive technologies such as screen readers.
However, the use of visual models became more popular with the growth of the
software engineering discipline and visual languages such as the Unified Model-
ing Language (UML). Visual languages were designed to capture and structure
complex problems such as architectural design and requirement specification [1],

⋆⋆ Computing Department at Federal University of São Carlos, Rod. Washington Lúıs,
Km 235 - 13565-905 São Carlos-SP

241

but as they rely on complex visual-dependent software to be developed and read,
the blind and visually impaired have many restrictions or do not have access to
them at all [9, 13].

As a workaround, blind developers often depend on others to read and explain
the concepts to them. This is not a serious problem if we consider traditional
software development, where models are used mainly as support and documen-
tation that help programmers to understand what needs to be done in terms
of a software solution. The actual software, i.e. the code, is still accessible by
the blind and visually impaired. But with the rise of Model-Driven Engineering
(MDE), many types of models and their corresponding visual notations gained
a new importance in the software project life cycle. On the model-driven ap-
proach, models are the main artifact of the development process [7], and are
actually used as input to automatic software transformation and code genera-
tion. As a consequence, direct access to them is essential, which poses a serious
issue to people with visual disabilities.

In theory, every visual model can be translated into a corresponding tex-
tual model. For instance, most UML tools are capable of importing/exporting
models to the XMI format (XML Metadata Interchange) [15], which is a tex-
tual representation. Of course, XMI has many readability issues, but we believe
a similar translation process can be applied to produce a much more readable
representation, thus making visual models accessible through screen readers. In
a model-driven scenario, blind and visually impaired developers could use this
alternative representation to read and modify models directly, thus actively col-
laborating in the development process.

This paper presents an ongoing work towards a multiple representation of
models using graphical and textual notations and proposes the Accessible Web
Modeler (AWMo), a web-based tool that aims to leverage collaboration with
visually impaired users by using multiple presentations for models. Figure 1
demonstrates how the collaboration will happen: with the use of a screen reader,
a blind or visually impaired software developer will be able to interact with the
textual model while other developers can interact with a traditional graphical
model they are used to, when working on the same model. Changes made to one
of the views will be shown on the other view and vice-versa.

The remainder of this paper is organized as follows: Section 2 introduces
Model-Driven Engineering concepts. Section 3 shows some of the related work
found in the literature. Section 4 presents more details about the ongoing re-
search and proposal of the AWMo tool. In Section 5 we present a discussion
on the future possibilities of how valuable research data can be extracted from
evaluations involving AWMo. Finally, in Section 6 we conclude the paper with
some final remarks.

2 Model-Driven Engineering

Model-Driven Engineering (MDE) is the combination of generative program-
ming, domain-specific languages and software transformations, concepts that

242

Fig. 1. Schematic of how the AWMo tool will work. Developers should be able to edit
the model on both graphical and textual views and achieve the same results.

have been explored since 1980 [14, 11]. Its purpose is to reduce the semantic
gap between the problem and the solution/implementation, through high level
models that shield developers from the complexities of the underlying platform
[7]. In MDE, models are used to express domain concepts more effectively, while
transformations automatically generate the artifacts that reflect the solutions
contained in the models [19].

As a result, the task of the developer becomes simpler and less repetitive.
With the use of automations and the higher level of abstraction, the developer
can work on a much more conceptual level, leaving implementation details to
the responsibility of the code generators.

A particularly effective way of specifying models in the context of MDE is
Domain-Specific Modeling (DSM). In contrast with generic modeling approaches
like those using UML, DSM uses a Domain-Specific Language (DSL), a smaller,
more focused language, designed specifically to provide maximum expressiveness
in a particular area or domain [3]. DSLs are normally used in MDE due to
some problems with general-purpose languages: UML, for instance, requires that
special markings are inserted in order to facilitate transformations, which ends up
polluting the models [10]. Even extension mechanisms, which are used in practice
to solve part of the problems, are insufficient when MDE is being adopted [10],
given its low expressiveness, flexibility and inadequate notation [22].

In MDE, models with different levels of abstraction may be used, from models
that have no relation with any computation platform to models that are highly
specialized to a specific platform such as Web or mobile development.

Transformations are procedures used to transform a model into another ar-
tifact during the software development life cycle. With transformations it is
possible to transform a model into a different model, documentation artifacts or
even executable code.

243

3 Related work

In [8], Guerra et al. explore multiple graphical views for the same model,
maintaining the consistency between them by the use of a global model and
triple grammars. In a later evolution of their work, the authors explore the use
of multiple notation on the metamodeling tool AToM3 with the goal of allowing
users to use either visual and textual notations on what they called Multi-View

DSLs (Domain-Specific Languages). The main goal of their project was to allow
the user to model on the notation that is better suited for different perspectives
or viewpoints [16].

The TeDUB project (Technical Diagram Understanding for the Blind) tried
to address some of the issues of access of blind users to UML by creating a UML
reader for the blind, where the users were able to open common UML diagram
files like XMI (XML Metadata Interchange), navigate and access its contents
with the use of a joystick, sound cues and text to speech [9].

The work of Metatla et al. [12] and Bryan-Kinns et al. [1] explore the use
of cross-modality to make diagrams more accessible to workers with visual dis-
abilities. In this context, cross-modality means using more than one sensorial
channel to convey or acquire information. A workshop was organized to help the
researchers better understand the issues they were dealing with and the needs
of their target users. As a result of the workshop they identified that the two
limitations that all current aproaches share are the inability to create and edit
the diagrams without the assistance of a sighted person and the inefficiency on
use of collaborative interaction.

Our approach is closer to the work of Guerra et al. [8, 16], however we in-
tend that the two views represent the whole model, instead of submodels or
projections of the model, creating different perspectives. This is required mainly
because the different views in our approach are not meant to be used together,
in fact, they should be able to completely replace each other in terms of model
understanding. We believe a consistent mapping between visual and textual no-
tations can bring better results, given the familiarity that the blind and visually
impaired users have with text and screen readers.

The literature also has some reports about Web modeling environments and
applications. One of them is SLiM (Synchronous Lightweight Modeling). SLiM
is an environment that allows users to collaborate on modeling activities in a
synchronized way. It uses techniques such as COMET [2] for server communica-
tion and Scalable Vector Graphics [6] for the diagram visual representation over
the Web. The main goal of SLiM is to allow the collaboration of users that are
geographically apart [20].

Another example is GEMSjax [5], a Web implementation of GEMS (Generic
Eclipse Modeling System [23]). GEMS is a project that was created by the
Eclipse Foundation to bring together the experience about visual metamodeling
tools of the GME community at Vanderbilt university and Eclipse communities
such as EMF and GMF. The GEMSjax uses the Google Web Toolkit framework
to create a Web interface for modeling and metamodeling activities. There are
some other examples that are not Web applications, but Desktop, such as COMA

244

(COllaborative Modeling Architecture tool) that focus on collaboration [18] and
the Eclipse Foundation GEMS that inspired and was used by the GEMSjax
mentioned earlier.

Our approach is also web-based, and aimed at leveraging collaboration, and
thus we intend to employ well-known techniques for this kind of tool. However,
our focus is on the inclusion of blind and visually impaired users, and therefore
the support for synchronization and real-time collaboration will be limited.

4 Proposed tool and methods

In this section we discuss the building blocks of our approach. We discuss
the technical viability of AWMo and then present more details on how the tool
should work.

4.1 Viability

The web environment of AWMo will be based on JSF (Java Server Faces),
which will be used to construct the menus and basic interaction functionality.
Accessibility guidelines [21] will be adopted during the construction of this base
environment, helping to make the interface accessible.

For the textual representation, we intend to use Xtext [4]. Xtext provides a
set of tools that allows the definition of a grammar in EBNF (Extended Backus–
Naur Form) notation and generation of a textual editor resources such as a lan-
guage parser, validators and code generators. Xtext can also generate an Ecore
metamodel and EMF (Eclipse Modeling Framework) classes from the language
grammar. This makes the programmatic management of the parsed (textual)
models and metamodels possible.

One of the advantages of Xtext is that the generated tools are independent
from the Eclipse environment and can be used, for instance, in a JSF Web
application. This indicates that the integration of the Xtext tools with JSF for
the development of the AWMo tool is possible and will happen naturally.

For the visual modeling functionality, such as diagram creation and dispo-
sition of the visual elements, we intend to use some pre-existing web-based li-
brary for graph rendering and construction. Some examples include Raphaël JS1,
jsUML22 and Joint JS3. From these, we intend to adopt the jsUML2, which is a
JavaScript library that already implements many aspects of UML modeling in
a web application.

With Xtext, EMF and a visual library, much of the desired functionality is
already available: textual language definition, parsing, model manipulation and
the creation of visual diagrams. What is left is the mapping between the parsed
(textual) model and the appearance and disposition of the visual elements, which
will have to be built by hand. However, the generated EMF classes will greatly
facilitate this task.
1 http://raphaeljs.com/
2 http://code.google.com/p/jsuml2/
3 http://www.jointjs.com/

245

4.2 Our approach

Initially, we intend to build a simplified UML class model, mainly because of
jsUML2. However, other than that, we see no reason why the idea could not be
later extended to other types of models.

Once the textual grammar is defined using Xtext, and the respective textual
language infrastructure is generated, they will be integrated into the AWMo
JSF Web application. The language parser will be used to parse the defined
textual class model and create an EMF-based representation of the model. This
representation will be used, along with external positioning data, to transform
the textual model into a notation that is accepted by the jsUML2 JavaScript
library on the application view.

The following code shows an example of a typical textual class model in
AWMo:

Example of the AWMo class diagram textual model

class Person {

attribute firstName, type string, visibility public

attribute lastName, type string, visibility public

method getName, return null

}

class Student {

inherit Person

attribute grade, type float, visibility private

method setGrade, return void, parameters {

parameter grade, type float

}

method getGrade, return float, no parameters

}

One of the issues faced by having both graphical and textual views for the
same model is that some of the information about the model will be only present
on the graphical view. As an example we can cite the spatial information regard-
ing a class such as its X and Y coordinates on the diagram. We intend to store
any spatial information apart from the model itself, so it can be used when dis-
playing the graphical editor but will not be represented or even parsed during
the use of the textual editor. If spatial information is not available, for example
when a developer creates a new element in the textual view, default coordinates
will be assigned to it on the graphical representation. This position may not be
adequate, however it could be later changed by another user, without any effect
on the textual view.

246

Figure 2 shows the basic AWMo textual and visual modeling scheme. The
AWMo model is made of the combination between the textual model, which
contains all the semantic and information about the model that conforms to
the Ecore metamodel generated by Xtext, and the spatial information which
contains all the data required to display the textual model in a graphical way.
Every time the model is saved from one of the views, the entire AWMo model
will have to be checked in order to maintain the relation between the textual
model and the spatial information. For example, if a class is removed from the
textual view, its spatial information must also be removed. In the case a new
class is added, its the spatial information must be created with default values,
as mentioned earlier.

Fig. 2. Representation of the data structure store on database for the AWMo models
including both textual and graphical information that are stored apart.

Figure 3 shows an example of use of the proposed tool. At first, on (A), the
graphical view is shown and the user added a Person class along with its methods
and attributes in the same way he would have done on his preferred UML tool.
When the textual view is accessed, the user should see a textual representation
of the Person class that is semantically equivalent to the graphical model (B).
Then on the same textual view, the user adds a second class, Student (C). Once
again, when accessing the graphical view, both Person and Student classes will
be visible, reflecting the changes performed by the user on the textual view (D).
At last, the developer adds as specialization between the Student and the Person
classes (E); This last change is also reflected on the graphical view (F). This

247

simple use case illustrates the bidirectional nature of the approach and gives an
idea on how the collaboration between users of the different views will happen.

Fig. 3. Illustration of a usage scenario for the AWMo where both graphical and textual
views are used to build a simple class model

5 Discussion

With the AWMo tool, there are many evaluation areas to explore. One of the
possibilities is to evaluate how it leverages the collaboration between blind or
visually impaired and sighted software engineers when modeling with the pro-
posed tool. We expect to completely eliminate the need for an auxiliary person
to read diagrams, thus making this collaboration possible in a MDE scenario.

Another common problem we faced while contacting computer programmers
with disabilities is that some of them never came to learn UML class diagram

248

because of their special needs and the lack of accessible tools. This makes the
process of gathering initial requirements for AWMo a challenge. For that reason
we plan on developing AWMo on an interactive way, building a first version that
will be incrementally evolved in constant contact with real users, in order to
identify their needs with the working tools and then iterate on improvements
and validations.

Another – more delicate – issue is the so-called “secondary notation”. Usually
on a model, there are many ways to convey the same information, however the
clarity and readability of the information relies on something that is not always
on the language syntax. This is called ’secondary notation’, and is defined as
additional visual cues that are not part of the language itself but greatly affects
the way the information on the model is perceived [17]. An example of such cues
is when elements of a graphic that are closely related are represented near each
other in a diagram. This information is not part of the language itself and an
alternative graphic with the two elements far from each other does not make the
graphic wrong according to the visual language syntax, but strongly affects the
way the graphic will be read. Another example is inheritance: classes on the top
of a diagram are usually higher on the class hierarchy. The same happens with
textual models. In most languages, indentation is not part of the syntax, and
yet they play an important part on readability. The exact part played by this
notation and its importance to blind and visually impaired developers will have
to be investigated.

Another possibility of investigation is how these visual cues pointed by Petre
(1995) [17] can influence the use of the graphical representation and if, in such
cases, the textual representation presents any advantages to help the users un-
derstand the models. This comparison transcends the accessibility scenario, and
may be useful even without considering the blind and visually impaired devel-
opers. We believe there are many interesting issues that could be identified by
means of usability and HCI evaluation techniques.

6 Concluding remarks

Visual modeling has been a major problem for blind and visually impaired
developers. Without the natural capacity of understanding visual information,
these types of model are of little use to these people, who depend on other types
of mental abilities to develop software. Most are able to program through the
use of screen readers, but in the new MDE scenario the increased importance of
models makes this task nearly impossible.

In this paper we present an ongoing work and a proposal for a tool that will
allow the collaboration between sighted and blind/visually impaired users in
a model-based software development project. We discuss its technical viability
and our ideas of how such functionality will be implemented in a web tool.
We believe this information can generate healthful discussion and provide some
insight for other researchers and practitioners interested in web-based modeling
and accessibility.

249

We also discuss the future possibilities for investigation, highlighting different
types of data that could be gathered once the tool is ready. We expect to be able
to identify interesting issues and draw important conclusions in the MDE and
software engineering areas, helping to advance our knowledge and deliver such
inclusion benefits for our society.

References

1. Bryan-Kinns, N., Metatla, O., Stockman, T.: ”collaborative cross-modal inter-
faces”. In: Proceedings of Digital Futures ’10 RCUK Digital Economy All Hands
Meeting (2010)

2. Crane, D., McCarthy, P.: Comet and Reverse Ajax: The Next-Generation Ajax
2.0. Apress, Berkely, CA, USA (2008)

3. Deursen, A.v., Klint, P., Visser, J.: Domain-specific languages: An annotated bib-
liography. SIGPLAN Notices - ACM Press 35(6), 26–36 (2000)

4. Eysholdt, M., Behrens, H.: Xtext: implement your language faster than the quick
and dirty way. In: Proceedings of the ACM international conference companion on
Object oriented programming systems languages and applications companion. pp.
307–309. SPLASH ’10, ACM, New York, NY, USA (2010)

5. Farwick, M., Agreiter, B., White, J., Forster, S., Lanzanasto, N., Breu, R.: A web-
based collaborative metamodeling environment with secure remote model access.
In: Proceedings of the 10th international conference on Web engineering. pp. 278–
291. ICWE’10, Springer-Verlag, Berlin, Heidelberg (2010)

6. Ferraiolo, J., Jackson, D.: Scalable vector graphics (SVG) 1.1 specification. W3C
recommendation, W3C (Jan 2003), http://www.w3.org/TR/2003/REC-SVG11-
20030114/

7. France, R., Rumpe, B.: Model-driven development of complex software: A research
roadmap. In: 29th International Conference on Software Engineering 2007 - Future
of Software Engineering. pp. 37–54. IEEE Computer Society, Minneapolis, MN,
USA (2007)

8. Guerra, E., Diaz, P., de Lara, J.: A formal approach to the generation of visual lan-
guage environments supporting multiple views. In: Visual Languages and Human-
Centric Computing, 2005 IEEE Symposium on. pp. 284 – 286 (sept 2005)

9. King, A., Blenkhorn, P., Crombie, D., Dijkstra, S., Evans, G., Wood, J.: Presenting
UML Software Engineering Diagrams to Blind People. In: Miesenberger, K., Klaus,
J., Zagler, W., Burger, D. (eds.) Computers Helping People with Special Needs,
Lecture Notes in Computer Science, vol. 3118, pp. 626–626. Springer Berlin /
Heidelberg (2004)

10. Kühne, T.: Making modeling languages fit for model-driven development. In:
Fourth International Workshop on Software Language Engineering, Nashville, USA
(2007)

11. Lucrédio, D., Fortes, R.P.d.M., Almeida, E.S.d., Meira, S.R.d.L.: The Draco ap-
proach revisited: Model-driven software reuse. In: VI WDBC - Workshop de De-
senvolvimento Baseado em Componentes. pp. 72–79. Recife - PE - Brazil (2006)

12. Metatla, O., BryanKinns, N., Stockman, T., Martin, F.: Designing for collabora-
tive cross-modal interaction. In: Proceedings of Digital Engagement ’11: The 2nd
Meeting of the RCUK Digital Economy Community (2011)

13. Metatla, O., Bryan-Kinns, N., Stockman, T.: Comparing interaction strategies
for constructing diagrams in an audio-only interface. In: Proceedings of the 22nd

250

British HCI Group Annual Conference on People and Computers: Culture, Cre-
ativity, Interaction - Volume 2. pp. 65–69. BCS-HCI ’08, British Computer Society,
Swinton, UK, UK (2008)

14. Neighbors, J.M.: Software Construction Using Components. Ph.d. thesis, Univer-
sity of California at Irvine (1980)

15. OMG: MOF 2 XMI Mapping Specification. Dispońıvel em
http://www.omg.org/spec/XMI/2.4.1/. Acesso em 15/01/2012 (08 2011)

16. Pérez Andrés, F., de Lara, J., Guerra, E.: Domain specific languages with graphical
and textual views. In: Schürr, A., Nagl, M., Zündorf, A. (eds.) Applications of
Graph Transformations with Industrial Relevance, Lecture Notes in Computer
Science, vol. 5088, pp. 82–97. Springer Berlin / Heidelberg (2008)

17. Petre, M.: Why looking isn’t always seeing: readership skills and graphical pro-
gramming. Commun. ACM 38, 33–44 (June 1995)

18. Rittgen, P.: COMA: A tool for collaborative modeling. In: CAiSE Forum - CEUR-
WS.org. pp. 61 – 64 (2008)

19. Schmidt, D.C.: Guest editor’s introduction: Model-driven engineering. IEEE Com-
puter 39(2), 25–31 (2006)

20. Thum, C., Schwind, M., Schader, M.: SLIM - A Lightweight Environment for
Synchronous Collaborative Modeling. In: Proceedings of the 12th International
Conference on Model Driven Engineering Languages and Systems. pp. 137–151.
MODELS ’09, Springer-Verlag, Berlin, Heidelberg (2009)

21. W3C: Web Content Accessibility Guidelines (WCAG) 2.0 - W3C Recommenda-
tion. Dispońıvel em http://www.w3.org/TR/WCAG20/. Acesso em 23/01/2012
(12 2008)

22. Weisemöller, I., Schürr, A.: A comparison of standard compliant ways to define do-
main specific languages. In: Fourth International Workshop on Software Language
Engineering, Nashville, USA. megaplanet.org, Grenoble, France (October 2007)

23. White, J., Schmidt, D.C., Mulligan, S.: The Generic Eclipse Modeling System.
In: Model-Driven Development Tool Implementer’s Forum at 45th International
Conference on Objects, Models, Components and Patterns (2007)

251

 252

Second Workshop on Process-based
approaches for Model-Driven Engineering

(PMDE)
July 3, 2012

Lyngby, Denmark

In conjunction with
ECMFA 2012 conference,

July 4 & 5, 2012, Lyngby, Denmark

253

254

Foreword

Welcome to the second edition of the Process-centered approaches for Model-Driven
Engineering (PMDE), held in Lyngby, Denmark, on July 3rd , 2012.

The PMDE Workshop aims to gather researchers and industrial practitioners working
in the field of Model- Based Engineering, and more particularly on the use of
processes to improve software reliability and productivity. Indeed, despite the
benefits brought by the Model-Driven Engineering approach, the complexity of
today's applications is still hard to master. Building complex and trustworthy
software systems in the shortest time-to- market remains the challenging objective
that competitive companies are facing constantly. A more challenging objective for
these companies is to be able to formalize their development processes in order to
analyze them, to simulate and execute them, and to reason about their possible
improvement.

The PMDE workshop’s goal in this edition is to present research results or work-in-
progress in all areas of process-based approaches for model-driven engineering. The
main topics that where targeted this year by accepted papers range from collaborative
processes, formal semantics in processes, processes integration to the presentation of
new methodologies and visions in the area of process modeling and enactment.

The organization of this second edition of the PMDE workshop would not have been
possible without the dedication and professional work of many colleagues. We wish
to express our gratitude to all contributors who submitted papers. Their work formed
the basis for the success of this year’s edition and we hope, for the upcoming editions
of PMDE. We would also like to thank the Program Committee members and
reviewers for volunteering their time to help assess the submissions and guarantee
the quality of the workshop.
Finally, we are also grateful to the ECMFA 2012 organizing Committee, particularly
to Harald Störrle and Ekkart Kindler for their help and valuable advices.

July, 2012, The Organizing Committee.

Reda Bendraou
Redouane Lbath
Marie-Pierre Gervais
Bernard Coulette

255

Organization

Program committee

- Behzad Bordbar (University of Birmingham, UK)

- Combemale Benoît (IRISA, Rennes, France)

- Garousi Vahid (University of Calgary Alberta, Canada)

- Larrucea Uriarte Xabier (TECNALIA - ICT/European Software Institute, Spain)

- Jason Xabier Mansell (TECNALIA - ICT/European Software Institute, Spain)

- Leon J. Osterweil (University of Massachusetts, USA)

- Tran Hanh Nhi (ENSTA, Brest, France)

Organizers

Bendraou Reda (LIP6, France)

Lbath Redouane (IRIT, France)

Coulette Bernard (IRIT, France)

Gervais Marie-Pierre (LIP6, France)

256

Specifying the Interaction Control Behavior of a
Process Model using Hierarchical Petri Net

Fahad R. Golra and Fabien Dagnat

IRISA / Université Européenne de Bretagne
Institut Mines-Télécom / Télécom Bretagne

Brest, France
{fahad.golra,fabien.dagnat}@telecom-bretagne.eu

Abstract. Management of software development processes is indispens-
able for systematic development of all the artifacts required or provided
by the process. The nature of a software development process can vary
from manual to automatic, static to dynamic, concrete to abstract and
simple to complex. Thus, a process modeling approach should be able
to deal with all these variations. CAMA Process Modeling Framework
(CPMF) is a process modeling approach that caters the varying require-
ments of software development processes. It is inspired from the compo-
nent based paradigm, where each activity is taken as a component, and
the process itself is visualized as an architecture. It models the processes
in different abstractions in terms of development phases and multiple im-
plementations. Hierarchical Petri Net is mathematical modeling language
having proper definitions of its execution semantics and process analysis.
This article concerns the mapping of CPMF metamodel constructs onto
a Hierarchical Petri Net, so as to formally define the semantics of the
interaction control.

Keywords: Process Modeling, Activities, Petri Nets, Connectors

1 Introduction

All the disciplines of engineering tend to achieve their targets in a systematic
manner. Likewise, one of the important considerations for software engineering
domain is to develop artifacts in the same fashion. An important management
goal is to make the development process cost effective and time efficient, without
any compromise on the quality of software. This promotes the use of specific pro-
cess management methodologies that can help to design, model, execute, monitor
and optimize the processes involved in software development [16]. The number of
process modeling approaches devised in the recent decades reinforce the impor-
tance of process modeling. These approaches offer many different features like
support for execution and semantics [3, 12, 4]. The influence of business process
modeling over domain specific modeling methodologies has lead to a plethora of
languages that are based on the workflows or sequencing approaches [15, 2, 5].
Many of the these process modeling languages still seem to lack the support to

257

2 F.Golra, F.Dagnat

effectively model the dynamic processes [14]. These dynamic processes may ei-
ther be automated, having the authority of creating /destroying other processes
during execution or updating themselves on the fly. We believe that in specifying
a process as a collection of activities, the workflow should not be the principle
focus. Workflows and other sequential approaches are well adapted to model and
compose existing web services [2], but are insufficient for modeling a much wider
range of development processes. We argue that even though effective dataflow
and controlflow is indispensable for the process, still the principle focus should
remain on the semantics of the activities.

CAMA Process Modeling Framework (CPMF) targets to model processes
at different phases on development. Besides this, it also targets to model the
activities using multiple implementations for a single definition. It is presented
using three metamodels: Process Specification Metamodel, Process Implementa-
tion Metamodel and the Process Instantiation Metamodel. The structure of the
first two metamodels has been finalized [9, 10], however the Process Instantiation
Metamodel is still under development.

The implementation specific metamodel has all the implementation details,
which are not present in the specification model and at the same time it has
all the principal constructs of the process model, apart from instance specific
details. PN is a well known formalism for the qualitative analysis of a variety
of systems. Various attempts have been made to define the formal semantics of
different process modeling languages through Petri Nets. These endeavors have
translated BPMN [5], BPEL [6] and EPC [17] to Petri Nets. A complete survey
of the business process model mappings towards Petri Nets can be consulted
here [13]. This article focuses on the mapping of the implementation specific
metamodel to Hierarchical Petri Nets (HPN), because of its ability to formalize
abstractions. Our mapping of CPMF process to HPN describes the interaction
control behavior at business level logic of component based processes, and is
not targeted towards a complete formal specification. We have tried to exploit
the refinement mapping presented in the Hierarchical Petri Nets to formalize the
mapping between the abstract and concrete level constructs of CPMF. The focus
of this paper is to specify the behavior of connectors to control the interactions
between the activities at both abstraction levels and to specify the mappings
between these levels. The objective of this mapping is to verify the correctness
of the process modeling approach in CPMF in future. This would help in the
correct implementation of the tool as well.

2 CAMA Process Modeling Framework

The hallmark of MDE is the usage of multiple models along with defined trans-
formations amongst them. Models are created, modified, merged or split, as the
software development project advances. We argue that a unique process model
cannot capture all the semantics of the processes at different development stages.
For this reason, CPMF presents three metamodels: the Process Specification
Metamodel, the Process Implementation Metamodel and the Process Instantia-

258

Interaction Control Behavior of a Process Model using Hierarchical Petri Net 3

application execution

conforms-to conforms-to conforms-to

specific specific
Process Specification

Metamodel
Process Implementation

Metamodel

Process Instantiation
Metamodel

Implementation
 Injections

Instantiation
 Injections

transformation transformation
Process Specification

Model
Process Implementation

Model
Process Instantiation

Model

Fig. 1. Process metamodels for Multi-metamodel development

tion Metamodel, as illustrated in Figure 1. The Process Specification Metamodel
is used to document the process best practices. It is not specific to the orga-
nization or project. When this Process Specification Metamodel is applied to
a specific project by some organization, it is refined to guide the development
process. This refinement is carried out using a transformation that injects the
implementation details and provides the Process Implementation Metamodel.
Another transformation is used in the framework to transform the implemen-
tation specific metamodel to instantiation specific metamodel by injecting the
instantiation level details to it. The Process Instantiation Metamodel is respon-
sible for the execution of the processes for a project, thus it takes into account
various details like time plan and status of the project. For example, if we take
the ECSS software development standard[7], we can model it as a Process Speci-
fication Model. A specific implementation model for an application conforming to
this standard, can be modeled as Process Implementation Model. And finally, for
the execution of this application model, we have a Process Instantiation Model,
which provides support for project management. Model transformations are used
between the models conforming to their respective metamodels.

For reasons of brevity we are not discussing any of these metamodels, and the
readers are referred to the corresponding articles for the in-depth study [9, 10].
We are looking forward to provide the tool support for modeling the processes
using CAMA process framework. In this regard, we are working to extend an ex-
isting open source process modeling tool, Openflexo [1]. Openflexo uses BPMN
as the underlying process modeling approach. Its execution semantics have been
defined though a mapping towards Petri Nets. We want it to offer CPMF as
an alternate core process model. In order to validate our process modeling ap-
proach, we need to verify the executability of the concrete level process model
and the correctness of its mapping towards the abstract level process model. The
mapping of the CPMF concrete level process model towards Hierarchical Petri
Nets, would allow us in future to verify its executability.

3 Implementation specific process modeling

Process Implementation Metamodel presents the activities in two levels of ab-
stractions: activity types and activity implementations. Activity types at the

259

4 F.Golra, F.Dagnat

Pattern

Identification

Matching

Patterns

Input

Metamodel

Output

Metamodel

Chosen

Technology

Transformation

Tool

Input

Model

Output

Model

Transformation

Tool

Matching

Patterns

Transformation

Definition
Rule

Generation

Transformation

Execution

Technology

Decision

Tool

Procurement

Fig. 2. Abstract level model for transformation process example

abstract level have abstract contracts that deal with dataflow. The dataflow be-
tween the activities of a process is modeled through the abstract level process
model that deals with the activity definitions and their abstract contracts using
artifacts. The notion of connector is hidden within the semantics of the activ-
ity definitions. This dataflow is managed through the use of resource pools and
appropriate mechanisms of version control. These abstract constructs are shown
in the example depicted in figure 2 for a semi-automatic process with five ac-
tivities supporting model transformation. An activity type can be implemented
using multiple activity implementations. Each of these activity implementations
at the concrete level have concrete contracts that deal with controlflow. This
controlflow is managed using the underlying event management system. Though
CPMF does not offer a graphical notation yet. Figures 2 and 3 presents an
example with both abstraction levels, for illustration purpose only. The pat-
tern identification activity identifies the matching patterns in the input and the
output metamodels. It then passes on the matching pattern list to technology
decision for choosing the implementation technology and to rule generation for
generating the transformation rules. The rule generation activity waits for the
confirmation from tool procurement. Finally, the developed transformation defi-
nition is passed on to transformation execution that generates the output model,
using the input model.

Each activity definition at the abstract level is implemented by several ac-
tivity implementations at the concrete level. All these activity implementations
map to their activity definitions. Activity definitions at the abstract level are
bound together through artifacts, whereas the activity implementations at the
concrete level are bound together using events. Events at concrete level map
to the artifacts at the abstract level. Connectors at concrete level are defined
as separate nodes, outside of activity implementations. These connectors at the
concrete level map to the activity definitions at the abstract level, where con-
nector semantics is encoded within activity definition. Inputs to the activity
definition are always of OR-kind, whereas output are of AND-kind. There are
three type of connectors: and (∧), or (∨) and exclusive or (⊕). The concrete

260

Interaction Control Behavior of a Process Model using Hierarchical Petri Net 5

Input

Model

Available

Execute

Transformation

Decide

Technology

Identify

Patterns

Generate

Rules
Procure

Tooling

Output

Model

Available

Input

Metamodel

Available

Output

Metamodel

Available

Pattern

List

Available

Technology

Selection

Final

Transformation

Tool

AvailableTransformation

Definition

Available

Transformation

Tool

Inaccessible

Pattern

List

Available

Fig. 3. Concrete level model for transformation process example

level constructs of the transformation process example are shown in figure 3. The
activity implementations in this figure implement their respective activity defi-
nitions in the abstract level, for example Identify Pattern is an implementation
of Patten Identification. Contracts are based on events that map to respective
artifacts at the abstract level, for example Input Metamodel Available maps to
Input Metamodel. Connectors at this level are made explicit and they are used
for all types of branching or merging of the nodes.

In order to specify the interaction behavior of CPMF, we have chosen to map
the constructs of Process Implementation Metamodel to Hierarchical Petri Nets.
The main constructs of a CPMF process model are activity definitions (AD),
artifacts (W) and abstract arcs (Arca) at abstract level and activity implementa-
tions (AI), events (E), connectors (C) and concrete arcs (Arcc) at the concrete
level. All these sets are finite and we will use the term of abstract nodes (set Na)
and concrete nodes (set N c) for AD∪W and AI ∪E ∪C, respectively. The arcs
are directed and map nodes to nodes staying either at abstract level (Arca ⊆
(AD×W)∪(W×AD)) or at concrete level (Arcc ⊆ (N c×N c)\(AI×AI∪E×E)).
Lastly, each connectors is mapped to one of the three connector kinds: ∧, ∨ or
⊕ by a mapping noted MC .

A mapping between the concrete level and the abstract level ensures the
refinement of process functions from activity definitions to activity implemen-
tations. The contracts of the activity implementations need to conform to the
contracts of the activity definition. Altogether, this forms a CPMF process as
defined below.

Definition 1 (CPMF Process). Let P a = (AD,W,Arca) be an abstract pro-
cess and P c = (AI,E,C,Arcc,MC) be a concrete process. A CPMF process ag-
gregates them as sub-processes in a tuple (AD,W,AI,E,C,Arca, Arcc,MC , f),
where f defines the refinement mapping between the abstract and concrete level
(f : P c → P a):

261

6 F.Golra, F.Dagnat

– each event maps to an artifact, Imf (E) ⊂W
– each activity implementation and each connector maps to an activity defini-

tion, Imf (AI ∪ C) ⊂ AD
– each arc maps to an arc, Imf (Arcc) ⊂ Arca

A process may be viewed as a directed graph (N,Arc), where N = Na ∪N c

and Arc = Arca ∪Arcc. To manipulate a process, we reuse the usual notions of
input, output and path.

– for n ∈ N , in(n) = {m | (m,n) ∈ Arc},
– for n ∈ N , out(n) = {m | (n,m) ∈ Arc},
– a directed path from a node n1 to a node nk is a sequence 〈n1, n2, ..., nk〉

such that (ni, ni+1) ∈ Arc for 1 ≤ i ≤ k − 1.

As arcs are either at the abstract or at the concrete level, so are the paths.
The connectors can be classified in three sets depending on their semantics

defined by the MC mapping:

– CAND = {c ∈ C |MC(c) = ∧} is the set of AND kind connectors
– COR = {c ∈ C |MC(c) = ∨} is the set of OR kind connectors
– CXOR = {c ∈ C |MC(c) = ⊕} is the set of XOR kind connectors

These connectors can also be separated into two sets: merge connectors that
have more than one input and fork connectors that have more than one output:

– CM = {c ∈ C | |in(c)| ≥ 2},
– CF = {c ∈ C | |out(c)| ≥ 2}.

Having these definitions at hand, we can define a well formed CPMF process
representing the kind of correct processes that we will be able to translate to
hierarchical Petri Nets.

Definition 2 (Well formed CPMF Process). A well formed concrete pro-
cess in CPMF is a process (AD,W,AI,E,C,Arca, Arcc,MC , f) that satisfies
the following requirements:

– On any path in the CPMF process after an AD/AI (respectively W/E), one
may not find another AD/AI (respectively W/E) before an W/E (respec-
tively AD/AI).

– Events and artifacts can not have an indegree and outdegree of more than
one, ∀b ∈ E ∪W | {|in(b)| ≤ 1 ∧ |out(b)| ≤ 1}.

– There exists a start event with a zero indegree, ∃e ∈ E | {|in(e)| = 0}.
– There exists an end event with a zero outdegree, ∃e ∈ E | {|out(e)| = 0}.
– Activity definitions have an indegree and outdegree of at least one, ∀a ∈ AD |
{|in(a)| ≥ 1 ∧ |out(a)| ≥ 1}.

– Activity implementations have an indegree and outdegree of one, ∀a ∈ AD∪
AI | {|in(a)| = 1 ∧ |out(a)| = 1}.

– A connector has an indegree and outdegree of at least one, ∀c ∈ C | {|in(c)| ≥
1 ∧ |out(c)| ≥ 1}.

262

Interaction Control Behavior of a Process Model using Hierarchical Petri Net 7

– Connectors can be partitioned into disjoint sets of merge and fork connectors,
CM ∩ CF = ∅ ∧ CM ∪ CF = C.

The first requirement sets the path constraint such that no activity defi-
nition/ activity implementation can follow another activity definition/ activity
implementation, even if they are connected through a connector (at concrete
level). Same ways, no event/artifact can follow another event/ artifact, even if
there is connector in between (at concrete level). The next requirement states
that an event or artifact can not have more than one input/ output node. The
next two requirements precise that the start event has no input node and the
end event has no output node. Activity definitions and connectors should also
have at least one input and one output nodes, whereas activity implementations
should have exactly one input/output nodes. Connectors can be partitioned us-
ing two criteria: First by their type, which partitions them into CAND, COR

and CXOR and second by their position, which partitions them into CM and
CF . Having these two criteria, we can have six different kinds of connectors. A
connector that is XOR and merge, means that the process should not proceed,
if two synchronized inputs arrive to the node, which does not make any sense in
the process modeling, so we do not consider this connector. We have one more
connector, pipe connector, that is used to connect a single node to another single
node when no branching or merging is needed.

4 Mapping to Petri Net

The previous section defined the structure of a CPMF process, whereas in this
section we are going to define its interaction behavior by mapping its constructs
to Hierarchical Petri Nets. As described before this formalization is targeted to-
wards the business logic level of processes and not towards the formal specifica-
tion of the processes. Thus we are more concerned about the structural behavior
of the processes. As Hierarchical Petri Nets already have a formal specification,
we are going to map our process constructs to it.

4.1 Hierarchical Petri Nets

This subsection is a basic presentation of Hierarchical Petri Nets, the interested
reader is invited to read [8] to find a complete treatment and all the mathematical
definitions. Here, we will only give an intuitive presentation.

First, one has to recall what is a Petri Net. It is a bipartite graph N defined
as a triple (S, T, F) where S and T are finite sets of places and transitions
respectively and F is a finite set of directed arcs from places to transitions or
from transitions to places (F ⊆ (P × T)∪ (T × P)). It is required that S and T
are separated (S∩T = ∅) and their union is not empty (S∪T 6= ∅). Figure 4(a)
contains a simple example of a Petri Net where the places are depicted as circles
and transition as black bars.

Then, we are in position to define what is a Hierarchical Petri Nets (HN). It
is a Petri Net with a refinement function. This function links nodes (places or

263

8 F.Golra, F.Dagnat

suspend

start

stop

Parent Activity

Running

(a) A simple Petri Net

Parent Activity

Running

Child 1

Running

Child 2

Running

(b) A Hierarchical Petri Net

Fig. 4. Examples of Petri Nets

transitions) giving it a structure of tree (a bottom element ⊥ is added to become
the root) as illustrated in the figure 4(b). Formally, a HN is a tuple (S, T, F, f,⊥)
where (S, T, F) is a Petri Net and f is the refinement mapping from S ∪ T to
S ∪ T ∪ {⊥}. Moreover f must ensure that (a) it defines a tree structure on
S∪T ∪{⊥} where ⊥ is the root, (b) the arcs (F) only bind leaf nodes (i.e. nodes
refined by no other nodes) and (c) for any node n, all the leafs refining n that
are connected to leafs not refining n are of the same kind of n (both are either
places or transitions)1.

4.2 The translation

We need to map the constructs of CPMF to Hierarchical Petri Nets for this trans-
lation. Artifacts/Events are mapped to places, whereas the activity definitions/
implementations are mapped to a small Petri Net Pattern. The corresponding
pattern of the activity implementation takes the form of place-transition-place,
where the first place corresponds to its pre-conditions and the last to its post-
conditions. Activity implementations accepting more than one inputs/outputs
can have multiple input/output places. The corresponding pattern of the activ-
ity definition is in the form of transition-place-transition, as it has the connector
semantics(OR-kind input, AND-kind output) encoded within it. The mapping
of connectors also uses sub-Petri Nets, where each type of connector is mapped
to a different corresponding Pattern of small Petri Net. Places and transitions in
small Petri Nets corresponding to the logical connectors are also part of the Petri
Net formed by the process.We are postponing the arcs in between two connectors
for later discussion, as they would be resolved later, as complex connectors.

Definition 3 (Corresponding Petri Net). A well formed process in CPMF
is defined as a tuple CP = (Na, N c, AD,AI,W,E,C,Arca, Arcc) where Arcc ∩
(C×C) = ∅. Let HPN(CP) = (S, T ;F, f) be a Hierarchical Petri Net generated
by the process CP , where:

1 This last constraint is a form of well kindness property ensuring that f is really a
refinement. Any refinement of a place (resp. transition) is also known by the rest of
the system as a place (resp. transition).

264

Interaction Control Behavior of a Process Model using Hierarchical Petri Net 9

tc1

pc1

pc2

tc2

tc3

(a) CAND ∪ CF

tc3

pc2

pc1tc1

tc2

(b) CAND ∪ CM

pc
tc2

tc3

tc1

(c) CXOR ∪ CF

Fig. 5. Petri Nets translations of connectors

– S = W ∪ E ∪ (∪x∈AD∪AI Sx) ∪ (∪c∈C Sc) i.e. the places in the generated
Hierarchical Petri Net are the artifacts, events, places in the activity defini-
tion/implementation translation and connector places (representing connec-
tor behavior)

– T = (∪x∈AD∪AI Tx)∪ (∪c∈C Tc) i.e. the transitions in the generated Hierar-
chical Petri Net are the transitions in the corresponding pattern for activity
definitions/ implementations and connector transitions (representing con-
nector behavior)

– F = Arca∪Arcc∪(∪c∈C Fc) i.e. the arcs in the generated Hierarchical Petri
Net are both the abstract and concrete level arcs and the also the ones created
for representing connector behavior

– (f : X2 → X1) = f : N c → Na i.e. the mappings in the generated Hierarchi-
cal Petri Net are the ones between the concrete level sub process nodes and
the abstract level sub process nodes.

4.3 Connector translation

Connectors are translated to Petri Nets using sub nets i.e. each connector corre-
sponds to a small Petri Net in the translation. We were considering six different
types of connectors for this process model i.e. a pipe connector, two AND con-
nectors, a XOR connector and two OR connectors. Each connector is translated
in a manner that the entry node and the exit node of the translated connector
is a transition. The places (resp. transitions) created to map the behavior of the
connectors, do not correspond to any events or activities.

Pipe Connector: In order to connect an event with an activity directly,
where no branching or merging is required, we use a pipe connector. This con-
nector is translated to the Petri Net by a single corresponding transition.

Connectors Places PPN
c Transitions TPN

c Arcs FPN
c

c ∈ CAND ∩ CF {pcx | x ∈ out(c)} {tc} ∪ {tcx | x ∈ out(c)} {(tc, pcx) | x ∈ out(c)}∪
{(pcx, t

c
x) | x ∈ out(c)}

c ∈ CAND ∩ CM {pcx | x ∈ in(c)} {tcx | x ∈ in(c)} ∪ {tc} {(tcx, p
c
x) | x ∈ in(c)}∪

{(pcx, t
c) | x ∈ in(c)}

c ∈ CXOR ∩ CF {pc} {tc} ∪ {tcx | x ∈ out(c)} {(tc, pc)}∪
{(pc, tcx) | x ∈ out(c)}∪

Table 1. Corresponding constructs in Petri net for Logical Connectors

265

10 F.Golra, F.Dagnat

(a) COR ∪ CM

x1

y2y1
(b) COR ∪ CF

Fig. 6. Behavior of OR connectors in Petri nets

AND Connectors: We have two types of AND connectors in CPMF: merge
and fork. Like other connectors, this connector also follows the same structure,
where the boundary nodes of the translation are transitions that have places in
between them. These places and transitions generated for mapping AND con-
nectors are depicted in figure 5(a) and 5(b). Table 1 shows the formal generation
of Petri Net constructs, corresponding to each AND connector kind.

XOR Connectors: As discussed earlier, it makes no sense in process model-
ing that the controlflow should be stopped, if the inputs of the merge connectors
are synchronized. Thus we have only one XOR connector that behaves as fork.
The generated places and transitions for this connector can be seen in figure 5(c).
The formal generation of Petri Net constructs are shown in table 1.

OR Connectors: Just like AND connectors, we have two types of OR con-
nectors. The OR connector that is used for merging is a little more complex than
the rest of the connectors. It has to deal with multiple inputs, where the seman-
tics of parallel execution is complex to map to Petri Nets. We have mapped it to
a small Petri Net, that is inspired from the discriminator Petri Net [11]. A more
comprehensive structure to deal with this problem is presented through this dis-
criminator in synchronizing workflow models [11]. This enhanced discriminator
allows the mapping of OR connector to Petri Nets in order to avoid the gen-
eration of double tokens during synchronized parallel execution of the inputs,
as shown in the figure 6(a). A fork OR connector can be mapped by using a
combination of XOR and AND connectors, as shown in figure 6(b).

4.4 Complex Connectors

A fork behavior OR connector can be realized by using AND and XOR connec-
tors but this realization returns some complex connectors in the CPMF process
model i.e. (n × n′) ∈ Arc | n, n′ ∈ C. Such complex connectors can also be
intentionally added to meet the semantic requirements of the process model. In
order to resolve such complex connectors, we inject a ’dummy’ event between
the two connectors in the Petri Net i.e.

(n× n′) ∈ Arc | n, n′ ∈ C → (n× x) ∪ (x× n′) | x ∈ E

266

Interaction Control Behavior of a Process Model using Hierarchical Petri Net 11

PI RG TE

TD TP

IMM

OMM

MP

MP
TT

CT

IM

TT

OMTD

IP GR

ET

DT PT

IMMA

OMMA

PLA

TTI

TSF

IMA

TTA
OMA

TDA

PLA

Fig. 7. PN mapping of CPMF process

In order to translate a CPMF process in a corresponding HPN, it is first
checked for the complex connectors, which are resolved using these dummy
events. Then the rest of the translation is carried out. The translation of the
Transformation example of CPMF in corresponding Hierarchical Petri Net can
be seen in figure 7. The upper part of the figure depicts the abstract level transla-
tion, whereas the lower part depicts the concrete level. For the reasons of clarity,
the figure does not show all the mappings, however the portion with highlighted
background shows the mapping of constructs between the two levels i.e. the
Identify Pattern activity implementation along with its associated events, maps
to the Pattern Identification activity definition and its associated artifacts.

5 Conclusion

This paper formally defines the constructs of the CAMA Process Modeling
Framework both at the abstract and concrete level. It then takes the defini-
tion of Hierarchical Petri Nets and maps CPMF constructs to it. This mapping
takes into account the constructs presented in the Process Implementation Meta-
model of CPMF. Though this approach is not targeting to a formal specification
of the approach, still it describes the interaction behavior of the activities in the
process model. This interaction behavior is captured by specifying the behavior
of each connector at the abstract level and at the concrete level. The dataflow is
handled at the abstract level, whereas the controlflow is handled at the concrete
level. We are looking forward to use this mapping for the verification of the

267

12 F.Golra, F.Dagnat

execution semantics of CPMF. This would also help us in developing the tool
support for the CPMF framework, where we are planning to extend Openflexo,
an open source tool, whose semantics are already defined using Petri Nets.

References

1. Agile Birds. Openflexo. http://openflexo.com, 2011.
2. Boualem Benatallah, Marlon Dumas, Marie-Christine Fauvet, and Fethi A. Rabhi.

Patterns and Skeletons for Parallel and Distributed Computing. chapter Towards
Patterns of Web Services Composition, pages 265–296. Springer-Verlag, 2003.

3. Réda Bendraou, Benoit Combemale, Xavier Crégut, and Marie-Pierre Gervais.
Definition of an eXecutable SPEM2.0. In 14th Asian-Pacific Software Engineering
Conference (APSEC), pages 390–397, Nagoya, Japan, dec 2007.

4. Shih-Chien Chou. A Process Modeling Language consisting of high level UML-
based diagrams and low level Process Language. Journal of Object Technology,
1(4):137–163, sep 2002.

5. Remco M. Dijkman, Marlon Dumas, and Chun Ouyang. Semantics and Analy-
sis of Business Process Models in BPMN. Information and Software Technology,
50(12):1281 – 1294, 2008.

6. Haiqiang Dun, Haiying Xu, and Lifu Wang. Transformation of BPEL Processes to
Petri Nets. In Theoretical Aspects of Software Engineering, 2008. TASE ’08. 2nd
IFIP/IEEE International Symposium on, pages 166 –173, june 2008.

7. ECSS. ECSS-E-ST-40C: Space Engineering - Software. ECSS (European Cooper-
ation for Space Standardization), Noordwijk, Netherlands, March 2009.

8. Rainer Fehling. A concept of Hierarchical Petri Nets with building blocks. In
Grzegorz Rozenberg, editor, Advances in Petri Nets 1993, volume 674 of Lecture
Notes in Computer Science, pages 148–168. Springer Berlin / Heidelberg, 1993.

9. Fahad R. Golra and Fabien Dagnat. Using Component-oriented Process Models
for Multi-Metamodel Applications. In Proc. of the 9th International Conference
on Frontiers of Information Technology. IEEE, Dec 2011.

10. Fahad R. Golra and Fabien Dagnat. Generation of Dynamic Process Models for
Multi-metamodel Applications. In Proc. of the International Conference on Soft-
ware and System Process, ICSSP. IEEE, June 2012.

11. B. Kiepuszewski, Arthur H. M. Ter Hofstede, and W. M. P. van der Aalst. Fun-
damentals of Control Flow in Workflows. Acta Informatica, 39:143–209, 2002.

12. Ali Koudri and Joel Champeau. MODAL: A SPEM Extension to improve Co-
design Process Models. In New Modeling Concepts for Today’s Software Processes,
volume 6195 of LNCS, pages 248–259. Springer Berlin / Heidelberg, 2010.

13. Niels Lohmann, Eric Verbeek, and Remco Dijkman. Petri Net Transformations for
Business Processes - A Survey. In Transactions on Petri Nets and Other Models
of Concurrency II, volume 5460 of LNCS, pages 46–63. Springer, 2009.

14. Ruopeng Lu and Shazia Sadiq. A Survey of Comparative Business Process Mod-
eling Approaches. In Witold Abramowicz, editor, Business Information Systems,
volume 4439 of LNCS, pages 82–94. Springer Berlin / Heidelberg, 2007.

15. OMG. Software and Systems Process Engineering Metamodel Specification. Ver-
sion 2.0, April 2008.

16. Peter Rittgen. Paving the road to Business Process Automation. In Proceedings
of the 8th European Conference on Information Systems, pages 313–319, 2000.

17. W. M. P. van der Aalst. Formalization and Verification of Event-driven Process
Chains. Information and Software Technology, 41(10):639 – 650, 1999.

268

adfa, p. 1, 2011.
© Springer-Verlag Berlin Heidelberg 2011

Formal and Fault Tolerant Design

Ammar Aljer1, Philippe Devienne 2

1Faculty of Electrical and Electronic Engineering, University of Aleppo, Aleppo, Syria
Ammar.Aljer@lifl.fr

2 Lille’s Computer Science Laboratory, University of Lille, Lille, France
Philippe.Devienne@lifl.fr

Abstract. Software quality and reliability were verified for a long time at the
post-implementation level (test, fault scenario …). The design of embedded
systems and digital circuits is more and more complex because of integration
density, heterogeneity. Now almost ¾ of the digital circuits contain at least one
processor, that is, can execute software code. In other words, co-design is the
most usual case and traditional verification by simulation is no more practical.
Moreover, the increase in integration density comes with a decrease in the reli-
ability of the components. So fault detection, diagnostics techniques, introspec-
tion are essential for defect tolerance, fault tolerance and self repair of safety-
critical systems.
The use of a formal specification language is considered as the foundation of a
real validation. What we would like to emphasize is that refinement (from an
abstract model to the point where the system will be implemented) could be and
should be formal too in order to ensure the traceability of requirements, to man-
age such development projects and so to design fault-tolerant systems correct
by proven construction. Such a thorough approach can be achieved by the au-
tomation or semi-automation of the refinement process.
We have studied how to ensure the traceability of these requirements in a com-
ponent-based approach. Reliability, fault tolerance can be seen here as particu-
lar refinement steps. For instance, a given formal specification of a sys-
tem/component may be refined by adding redundancy (data, computation, com-
ponent) and be verified to be fault-tolerant w.r.t. some given fault scenarios. A
self-repair component can be defined as the refinement of its original form en-
hanced with error detection.
We describe in this paper the PCSI project (Zero Defect Systems) based on B
Method, VHDL and PSL. The three modeling approaches can collaborate to-
gether and guarantee the codesign of embedded systems for which the require-
ments and the fault-tolerant aspects are taken into account for the beginning and
formally verified all along the implementation process.

1 Introduction

The final decades of the 19th century and the first decades of the 20th century wit-
nessed many efforts to formulate mathematics. Some fruits of these essays are Set
theory, Propositional Logic, First Order Logic, etc. Introduced by Alonzo Church in

269

the 1930s, λ-calculus is a primitive method to formalize algorithms where many con-
cepts similar to those of programming languages are well defined such as: Recursion
and fixed points, Logic and predicates, Free and bound variables, Substitutions. In
the beginning of 1950s Von Neumann described a computer architecture in which the
data and the program are both stored in the computer's memory in the same address
space. This architecture is to this day the basis of modern computer design. In the
beginning programmers wrote their programs as strings of zeros and ones. A work
would often be an extremely frustrating activity. Rapidly this task is facilitated de-
pending on Assembly language and OpCode tables. Developed in the mid-1950s,
FORTRAN was intended for use in scientific and numerical computing applications.
It may be considered as the first high level language. From the outside, it uses formal
mathematical-like expressions but actually these expressions and instructions are
chosen to abstract the executive machine code. A compiler is written to convert each
FORTRAN program code into machine code. Programs were used to partially help
client with automatically and rapidly executing an algorithm. Most of later software
developments (such as structural programing then OOP) concentrated on the abstrac-
tion of the executive machine code. Nowadays writing the implementation is partially
automated and designer may give more attention on system structure. Actually with
CASE (computer Aided Software Engineering) tools and with techniques such as
MDA (Model Driven Architecture), programmer can graphically specify the compo-
nents of the design, precise the operation of each component and defines the relations
between components then executive code is automatically generated. Nowadays
computer is used not only to execute a program but to represent a complete system
and furthermore to simulate a complex of interacting systems. Verification becomes
more and more difficult because its cost increases exponentially with complexity.
Reusing is another aspect of complex systems. In most cases programmer reuses an-
cient classes or libraries (written by him or by others) in new projects. With COSTS
(Commercial, off-the-shelf), programmer reuses a complete software system. He
ought to adapt them to the novel environment.
Only few efforts are made to formulate the other side of the programming task; that is
client requirements. With the increasing machine power and augmenting complexity
of computer based systems, Software engineering developed many principles and
techniques to formulate client requirements. Comparing to the development of pro-
gramming language, these efforts rest primitive and a formal gap between what a
program do and what a client wants is always exists.
B method (1996) filled partially the gap. It defines what a formal refinement of soft-
ware is. So it guarantees the complete correctness of software regarding to its formal
specification. In our approach this method is generalized to be used in software,
hardware and in embedded systems. Proving the correctness of one component is
usually expensive comparing to the traditional methods of verification but this is rap-
idly compensated when the component is reused and when complexity augments;
proving the correctness of a system that consists of proven components needs only to
prove the correctness of the connections between the components. This approach also
facilitates the verification parallelism since each component could be independently
proven.
Components in real word (especially hardware ones) do not correspond 100% to their
formal specification. This is a cause for many failures in the system even if it was

270

proven to be correct or if its behavior is verified during the simulation. Another im-
portant feature of our approach is the possibility to prove the correctness of model
even with real failure scenario if it is combined with a suitable correcting treatment.

2 Domain Specific Languages

On the opposite of programming languages who are designed for experimented pro-
grammers, a Domain Specific Language (DSL), comes from a domain and is used by
users of this domain. Thus, a successful DSL is of course a used language and first
intuitively usable by users of the chosen domain.
One of the first Domain Specific Language (DSL) was introduced for children. Its
name was Logo and was designed by Seymour Papert at MIT in the sixties. He was
been nominated by Marvin Minsky as “the greatest living educator in Mathematics”.
In Mindstorms [5], Seymour Papert explained that some children have difficulties in
mathematics logic and this new language was specifically create to improve the way
that children solve mathematical problems. Excel and MatLab are two well-known
examples of DSL in mathematics too. Excel was even described as a killer application
because it is so easy and funny to use by anyone.
This is quite opposite to view of universality in general-purpose programming lan-
guage, such as C or Java, or a general-purpose modeling language such as UML.
Recently, the DSL approach has really been successful in two domains, web applica-
tions and cell phones. There are a lot of View/Edit WebDSLs from which we can
generate Java or PHP code, web pages and Seam session beans. For instance, SPIP is
a publishing system for the Internet in which great importance is attached to collabo-
rative working, to multilingual environments, and to simplicity of use for web authors
Developing a new DSL needs definitively a good understanding of the application
domain, then the next usual consist of finding programming patterns, designing a core
language, building syntactic abstractions on top of the core language. But this type of
design is a real complex activity and must be based on good tools, especially for veri-
fication. A lot of researches have to be lead to propose such an appropriate environ-
ment with good tools and libraries.
From the other hand, another challenge is appeared with embedded systems where
more or more communities (usually hardware and software) with totally different
methodologies, terminologies and measurements should design one common compo-
nent! The DSLs have to be combined and collaborate in the same final objet.

2.1 VHDL

Due to the difference between hardware product and software product, Production of
hardware or software component passes through two different sequences. Software
engineers concentrate on requirement collection, development, verification, deploy-
ment .etc. Hardware engineers emphasis on functional level, logic gate level, RTL
(Register Transfer Level) and printed circuit level. The increasing system complexity
obligates both communities to develop their tools towards abstract system level.
VHDL that is the dominant language in hardware design was the first to take system
level in account.

271

Even if VHDL was designed for electronic design automation to describe VLSI cir-
cuits, it argues that it can be used as a general-purpose language and even can handle
parallelism. From hardware community point of view, VHDL may be used to de-
scribe the structure of the system since any circuit may be defined as a black box
(ENTITY) where all the inputs and outputs are defined then by a white box
(ARCHITECTURE) where all the components and connections between these com-
ponents are declared. Components in the architecture are functionally defined and
they could be mapped later to the real word components by an additional level
(CONFIGURATION). So it is supported with libraries that contain all specifications
of electronic units known in the world. These layers permit to simulate the real circuit
in order to verify the design. ARCHITECTURE layer in VHDL may define the be-
havior of the circuit instead of its structure.

2.2 B METHOD, MOCHA, B-Event

B method [1,2] is known in software engineering as a formal method to specify and to
develop finely the specification towards an executable program basing on set theory
and first order logic notation. B draws together advances in formal methods that span
the last forty years (pre and post notations, guarded commands, stepwise refinement,
the refinement calculus and data refinement). During the software development in B
method, many versions of the same component may be found. The first and the most
abstract one is the abstract machine where client needs are declared. Then the follow-
ing versions should be more concrete and precise more and more how we obtain the
needed specifications. These versions are called refinements except the last one where
there is no more possible refinement. This deterministic version is called implementa-
tion. B generates the necessary proof obligations to verify the coherence of each com-
ponent and correctness of the development. Furthermore, B tools help to execute the-
se proofs.

Like B, Mocha [3] is a interactive verification environment for the modular and hier-
archical verification of heterogeneous systems. Mocha supports the heterogeneous
modeling framework of reactive components and based on Alternating Temporal
Logic (ATL), for specifying collaborations and interactions between the components
of a system.

Event B is an evolution of B Method. Key features of B Event are the extensions to
events for modeling concurrency. The primary concept in doing formal developments
in Event-B is that of a model. A model contains the complete mathematical develop-
ment of a Discrete Transition System. It is made of several components of two kinds:
machines and contexts. Machines contain the variables, invariants, theorems, and
events (section 2) of a model, whereas contexts contain carrier sets, constants, axi-
oms, and theorems of a mode. The Rodin platform is an open source Eclipse-based
IDE for Event B is further extendable with plugins. The overall objective of this open
platform is to propose a toll for the cost effective rigorous development of dependable
complex systems and services. It focus on tacking complexity (1) caused by the envi-
ronment in which the software I to operate (2) which comes from poorly conceived

272

architectural structure. Mastering complexity in the shortest time-to-market requires
design techniques that support clear thinking and rigorous validation and verification.
Coping with complexity also requires architectures that are tolerant of faults and un-
predictable changes in environment. This is addressed by fault tolerance design tech-
niques.

3 Formal Hardware Design In BHDL Project

In this section, we are going to focus of the collaboration of two DSL languages, one
for mathematics and logic (Event B) and the other to design VLSI (VHDL). Both
have been widely validated by complex large industrial applications. Here we try to
combine the advanced notion of formal refinement in B with the formal conception of
HDL. The core of the work, from which the name of the project BHDL comes, is to
create the correspondence between a VHDL design and a B one. In VHDL, the transi-
tion from an Entity into a corresponding Architecture is usually performed in one
step. In BHDL, this may be performed finely by many steps or levels. We may con-
sider the refinement of a component in BHDL as a replacement by other components.
Also we may refine a component by another one which has the same structure and
links but with more strict logic property. In all cases the refinement is performed to-
wards lower levels where the behavior of the system becomes more deterministic.
The principal relation between the interface (external view) and its refinement (or
between two levels of refinement) is Connection(1, 2,, …n) which means
that the logical connection between the properties of the sub-components should satis-
fied the properties indicated in the abstract machine that represents the Entity. The
property () in the interface is not original in VHDL, it is inserted in special com-
ments in VHDL code so BHDL code does not affect the design portability.
The principle of B refinement permits not only to prove the consistency of Architec-
ture but also to prove the correctness of the design w.r.t. the abstract specification in
the external view (VHDL Entity). Furthermore it allows hardware community to built
their pattern throw many smooth phases instead of one rough phase from all the com-
ponents should be specified. The main components of BHDL project are:

Fig. 1. Structural refinement and proof obligation.

21 n

1 2 n links

Implementation

Interface

273

3.1 A graphical interface for System Entry (VGUI)

It is a Graphical User Interface for Hardware Diagrams. It is an open source tool that
may be considered as a simple component description tool. VGUI may be used to
create generic interconnected boxes. Each box may be decomposed hierarchically into
sub-boxes and so on. The boxes and the connections of VGUI are typed. In coopera-
tion with VGUI developer, we added the possibility to attach logic property to each
box and hide data. Eventually, VGUI generates VHDL code annotated with B ex-
pressions. This step is optional; designer may use a textual editor to directly write the
annotated code to be analyzed by the following step.

3.2 B Model Generator

Here a B model that corresponds to the annotated VHDL model is created. The
ANTLR compiler is used to generate B code. From the external view of VHDL or
from an entity in VHDL model, it generates the suitable B Abstract Machine that
contains the necessary properties of the Entity and traces the structure of VHDL mod-
el.
In a similar way, the internal view in VGUI is translated into Architecture in VHDL
then into a refinement in B. Because that design in VHDL usually depends of some
predefined standard libraries, we created some B components that correspond to some
VHDL libraries (such as the Standard logic 1164).

Fig. 2. Main transformations of BHDL.

The compiler is the most important practical part of BHDL project. It is built on
ANTLR compiler generator. ANTLR (Another Tool for Language Recognition) is a
powerful tool that accepts grammatical language descriptions and generates programs
(compliers or translators) that can recognize texts in the described languages, analyzes
these texts, constructs trees corresponding to their structure and generates events re-
lated to the syntax. These events, written in C++ or in Java, may be used to translate
the text into other languages. It can generate AST (Abstract Syntactic Trees) which
can stock a lot of information about the analyzed text, provides tree rewriting rules for
easily translating these ASTs. The correction of such a translator depends only on the

Abstract Ma-

Refinement

Entity

Architec-

Exter-
nal

Internal
View

VGUI VHDL B

Libraries Libraries

274

correction of every elementary rewriting rule (declarative semantics). As VGUI,
ANTLR is open source software written in Java. The translation from VHDL+ to B in
is performed over many steps:

 BHDL Lexer/Parser : which analyses the input VHDL+, verifies the syntax and the
semantic of VHDL code, then it generates a pure VHDL tree (AST) with inde-
pendent branches that contain the B annotations

 TreeWalker: this tree parser parses the previous AST in order to capture the neces-
sary information to construct a new AST that corresponds to B model.

 B-Generator: It traverses the AST produced by the TreeWalker in order to generate
B code.

Even if a corresponding B model is automatically created, the design correctness is
not automatically proven. The generated B code should be proven to be correct. B
tools (AtelierB, Rodin, B4Free, B-Toolkit) render the task easier. It generates the
necessary proof obligations (POs), automatically produces an important quantity of
these proofs, cooperates with the programmer to prove the remaining POs. Here, if
the model is not completely proven, some defects may be detected and the original
VHDL design should be modified.

4 PCSI Project

BHDL project is developed in the LIFL (Lille’s Computer Science Laboratory). This
research first conducted into the AFCIM project (LIFL, INRETS, HEUDIASYC
Lab). Eventually the main concepts of BHDL have been extended and implemented
with support of PCSI project (Zero Defect Systems) between Lille University, Aleppo
University and Annaba University. The main new features of the project are the fol-
lowing:

Fig. 3. basic augmentation in the PCSI project (Zero Defect Systems) vs. BHDL.

4.1 Including PSL

Instead of special comments used in the first version of BHDL to represent the logical
behavior of VHDL components, we use here a formal language, PSL, standardized in

VHDL

PS

Temporal

PS

RODIN

Eclipse

 HDL

Software
Event B

275

2005. PSL (Property Specification Language) is a language for the formal specifica-
tion of hardware. This language is essentially based on Linear Temporal Logic “LTL”.
It is used to describe properties that are required to hold in the design under verifica-
tion. It contains Boolean, Temporal, Verification and modelling layers. The flavour of
PSL could be added to many HDL (Hardware Description Language) such as VHDL,
Verilog, SystemVerilog. This enlarges the usability of our tool since PSL is expres-
sive and standard.
In this project, we generate a software model which is B representation of a model
described by Property Specification Language “PSL” using Event B Systems. Gener-
ated model can be proven by using B method techniques; this means a proof of the
original PSL model.

4.2 Extending scope of VHDL treated in BHDL

 While the first version of BHDL mainly manipulates the design structure decorated
with logical properties, here we enlarge the model to accept important concepts of
VHDL such as signals where the concept of Time appears.

4.3 Creating the target model using Event-B instead of Classical
B

 The purpose of Event-B is to model full systems (including hardware, software and
environment of operation). Classical B is not suitable to represent temporal properties
which are important in hardware design. Furthermore, Event-B facilitates the repre-
sentation of many subsystems in a global one.
After the creation of a HDL model, it will be traced in B. in order to facilitate the
proof of the consistency and the formal refinement of the model; we integrated our
work in Eclipse environment. Eclipse is generic platform to develop multi-language
software comprising an integrated development environment (IDE) and an extensible
plug-in system. The Rodin Platform is an Eclipse-based IDE for Event-B that pro-
vides effective support for refinement and mathematical proof. The platform is open
source, contributes to the Eclipse framework and is further extendable with plugins.
Such integration renders the integration between hardware community and software
community easy since they work on the same environment. All the tools used in our
platform are freely used and distributed (Rodin, Eclipse, Antlr, …).

4.4 Completion wrt robustness

Robustness or Fault-Tolerance is by definition “The ability of a system to respond
gracefully to an unexpected hardware or software failure”. There are many levels of
fault tolerance, the lowest being the ability to continue operation in the event of a
power failure. Many fault-tolerant computer systems mirror all operations -- that is,
every operation is performed on two or more duplicate systems, so if one fails the
other can take over. Multitolerance refers to the ability of a system to tolerate multi-
ple classes of faults. [19] illustrates a compositional and stepwise method for design-

276

ing programs and handling Byzantine failures [18]. It proposes also a component
based method, starts with a intolerant system and adds a set of components, one for
each desired type of tolerant. The complexity of multitolerant design is reduced to
that of designing the components and of correctly adding them to the intolerant one.

Indeed, fault tolerance is often based on replication and redundancy. This is involved
by the use of hybrid systems with different sources of energy (electric, mechanic).
This duplication can be also seen as component refinement or algorithmic refinement.
For instance, nowadays, because of the integration of circuits, stuck-at–fault is a more
and more frequent fault model. According that the probability that a circuit contains at
least k stuck-a-fault is too high, we can generate an equivalent circuit, except that it is
k-stuck-at-fault tolerant. We focus here on the problem in evolving a fault-intolerant
program to a fault-tolerant one. The question is “Is It possible to add a default scenar-
io to an existing model or program and generate the tolerant model or program?” This
problem occurs during program evolution new requirement (fault-tolerance property,
timing constraints, and safety property) change. We argue here that refinement can
handle this evolution. In others words a fault-tolerant program is a refined form of its
intolerant one. We have shown how to apply this formalism to characterize fault-
tolerance mechanisms and to then reason about logical and mathematical properties.
For instance, the hamming code is a kind of “minimal” + data refinement. By adding
data redundancy (extra parity bits), error-detection and even error-correction are pos-
sible. This can generalize to handle Byzantine properties. For instance, masking toler-
ance considers that in the presence of faults each step in the system computation satis-
fies Validity and Agreement properties. Weakly, Stabilizing tolerance considers that
each step in the system computation will satisfy in a near future (reachable state) Va-
lidity and Agreement. What we show here is that fault-tolerant design is composi-
tional (component-based method), adaptive (stepwise and hierarchical approach) and
formal (these completions are refinements which have to be formally proven). The
fault-tolerant design appears as a logico-mathematical completion of an intolerant
model in order to tolerant multiple classes of faults.

5 CONCLUSION

The novel aspects of this proposal are the pursuit of a process-based approach,
the combination of Formal Methods with Fault Tolerant techniques, the de-
velopment of FM support for component reuse and composition and the ex-
tension of an open and extensible tools platform for formal development. It is
clear that the open tools platforms will have a more and more important im-
pact on future research, but they have to be adapted to users and their lan-
guages as VHDL. We believe that proposing intelligent interfaces between
DSL approaches (as VHDL+PSL) and FM tools (as RODIN) is the shortest
way to make these techniques more popular and will encourage greater indus-
trial uptake.

277

References

1. Abrial J.R. The B-Book: assigning programs to meanings. UK: Cambridge University
Press, 1996.

2. Abrial J.R, Modeling in Event-B, System and Software Engineering. UK: Cambridge Uni-
versity Press, 2010.

3. Rajeev Alur, et al. Mocha: Modularity in model checking. In Proceedings of the Tenth In-
ternational Conference on Computer-aided Verification, Lecture Notes in Computer Sci-
ence 1427, Springer-Verlag, 1998..

4. Seymour Pappert, Mindstorms: Children, Computers, and Powerful Idea, 1980.
5. Ammar Aljer, Co-design and refinement in B, Ph.D. Thesis, Lille University, 2004.
6. Philippe Devienne , Rabih Oueidat, Formal Tolerant Software/Harware Architecture, In

Specification and Verification of Component-Based Systems, Workshop at SIGSOFT
2008/FSE 16 (SAVCBS 08), Atlanta, Nov 2008

7. Philippe Devienne, Ammar Aljer, Extended Model Driven Architecture to B method,
Ubiquitous Computing and Communication Journal, 2011

8. Y. Herve, VHDL-AMS – Applications et enjeux industriels (in french), Durand, France,
2002.

9. RODIN : http://www.event-b.org/platform.html
10. Flaviu Cristian, Understanding Fault-Tolerant Distributed Systems, ACM, Feb 1991,

34(2): 56-78
11. Terence Parr, The definitive ANTLR Reference, 384 pages, May 2007
12. DOULOS, PSL Golden Reference guide, Book, 2005.
13. Anish Orora, Gray-Box Component-Based Fault-Tolerance, Logical Aspects of Fault Tol-

erance (LAFT), a LICS 2009 Workshop.
14. Kenneth E. Kendall et Julie E. Kendall, 2010, Systems Analysis and Design, 8/E, Prentice

Hall.
15. Ian Sommerville, 2008, Software Engineering: International Version , 8/E, Addison-

Wesley
16. The Rascal Domain Specific Language, INRIA Report, 2009
17. L. Lamport, R. Shostak and M.Pease. The Byzantine generals problem. ACM Transactions

on Programming Languages and Systems, 1982.
18. S.S. Kulkarni, A.Arora, Composition Design of Multitolerant Repetitive Byzantine

Agreement, 17th Conference on Foundations of Software Technology and Theoretical
Computer Science, 1997

278

Towards an Agile Foundation for the Creation and
Enactment of Software Engineering Methods: The

SEMAT Approach

Brian Elvesæter1, Michael Striewe2, Ashley McNeile3 and Arne-Jørgen Berre1

1 SINTEF ICT, P. O. Box 124 Blindern, N-0314 Oslo, Norway
{brian.elvesater, arne.j.berre}@sintef.no

2 University of Duisburg-Essen, Gerlingstrasse 16, D-45127 Essen, Germany
michael.striewe@s3.uni-due.de

3 Metamaxim, 48 Brunswick Gardens, London W8 4AN, UK
ashley.mcneile@metamaxim.com

Abstract. The Software Engineering Method and Theory (SEMAT) initiative
seeks to develop a rigorous, theoretically sound basis for software engineering
methods. In contrast to previous software engineering method frameworks that
rely on separate method engineers, the primary target of SEMAT are practition-
ers. The goal is to give software development teams the opportunity to them-
selves define, refine and customize the methods and processes they use in soft-
ware development. To achieve this goal SEMAT proposes a new practitioner-
oriented language for software engineering methods that is focused, small, ex-
tensible and provides formally defined provides formally defined behaviour to
support the conduct of a software engineering endeavour. This paper presents
and discusses how the proposed language supports an agile creation and enact-
ment of software engineering methods. The SEMAT approach is illustrated by
modelling parts of the Scrum project management practice.

Keywords: Method engineering, software engineering methods, SEMAT,
SPEM, ISO/IEC 24744, Scrum

1 Introduction

The Software Engineering Method and Theory (SEMAT)1 initiative seeks to develop
a rigorous, theoretically sound basis for software engineering methods. Previous
software engineering frameworks and standards such as the Software and Systems
Process Engineering Metamodel (SPEM) 2.0 [1] mainly target method engineers by
providing rich but consequently often complex languages for detailed process defini-
tion; but generally not supporting enactment [2]. In contrast, the primary objective of
SEMAT is to target practitioners (i.e., architects, designers, developers, program-
mers, testers, analysts, project managers, etc.) by providing a focused, small, extensi-

1 http://www.semat.org

279

ble domain-specific language that allows them to create and enact software engineer-
ing methods in an agile manner.

An agile approach to software engineering methods is one that supports practition-
ers in dynamically adapting and customizing their methods during the preparation and
execution of a project, controlled through company-specific governance, use of ex-
amples and other means. This enables practitioners to accurately document how they
work and effectively share their experiences with other teams. To go beyond the cur-
rent state of the practice a robust and extensible foundation for the agile creation and
enactment of software engineering methods is required.

This paper presents and discusses the main new ideas and language concepts from
the Essence specification [3] which has been submitted by SEMAT as a response to
the Request for Proposal (RFP) “A Foundation for the Agile Creation and Enactment
of Software Engineering Methods” [4] issued by the Object Management Group
(OMG). The remainder of the paper is structured as follows: In Section 2 we present
and summarise the language requirements stated in the OMG RFP. In Section 3 we
present the language architecture of the Essence specification and its main language
constructs. In Section 4 we illustrate the SEMAT approach by modelling parts of the
Scrum project management practice. Section 5 discusses this approach to related
work. Finally, Section 6 concludes this paper and describes some future work.

2 Language Requirements and the Meta-Object Facility (MOF)

The OMG RFP “A Foundation for the Agile Creation and Enactment of Software
Engineering Methods” [4] solicits proposals for a foundation for the agile creation
and enactment of software engineering methods. This foundation is to consist of a
kernel of software engineering domain concepts and relationships that is extensible
(scalable), flexible and easy to use, and a domain-specific modelling language that
allows software practitioners to describe the essentials of their current and future
practices and methods. In this paper we focus on the language. The requirements for
the language are summarised in Table 1 below.

Table 1. Language definition (1.x) and language features (2.x) requirements

ID Name Description
1.1 MOF metamodel Abstract syntax defined in MOF.
1.2 Static and operational

semantics
Static and operational semantics defined in terms of the ab-
stract syntax.

1.3 Graphical syntax Graphical syntax that maps to the abstract syntax.
1.4 Textual syntax Textual syntax that maps to the abstract syntax.
1.5 SPEM 2.0 metamodel

reuse
Reuse SPEM 2.0 metamodel where appropriate.

2.1 Ease of use Easy to use by practitioners.
2.2 Separation of views Separation of two different views of a method for practitioners

and method engineers.
2.3 Specification of kernel

elements
Description, relationships, states, instantiation and metrics.

2.4 Specification of practices Cross-cutting concern, element instantiation, work products,
work progress, verification.

280

ID Name Description
2.5 Composition of practices Overall concerns, merging elements, separating elements,

practice substitution.
2.6 Enactment of methods Tailoring, communication, managing, coordinating, monitor-

ing, tooling.

The language definition (1.x) requirements mandate that the language must be com-
pliant with the MOF metamodel architecture. The Meta-Object Facility (MOF) speci-
fication [5] serves as a foundation for the OMG Model-Driven Architecture (MDA)
[6] approach and provides us with a formalism to define and integrate modelling lan-
guages. The left side of Fig. 1 illustrates the MOF four-layer architecture. MOF de-
fines a meta-metamodel or meta-language at the M3 layer which can be used to define
a metamodel or language to support method engineering at the M2 layer. A method
engineering modelling language typically defines language constructs to support the
definition and composition of methods out of reusable model fragments or templates.
These model templates at the M1 level are typically defined by method engineers and
are instantiated during a software endeavour, i.e., software development project, and
used by the software practitioners (M0 level).

The right side of Fig. 1 illustrates an instance tree. MDA positions MOF as the sin-
gle meta-language (M3), so there is only one top node for which different languages
(M2) can be defined. Each of these modelling languages can be used to define various
models (M1) of which different instantiations can be made (M0). In this paper we
focus our discussion on a single domain-specific language to support method engi-
neering. Thus in the remainder of this paper we will focus on the M2 layers and below
as illustrated by the dashed boxes.

Fig. 1. MOF metamodel architecture and instantiation tree

The language features (2.x) requirements focus in particular on the ability to specify
practices, compose practices into methods and enact those methods. The requirements
also state that existing foundations such as the SPEM 2.0 [1] should be reused where
appropriate.

3 The SEMAT Approach

The Essence specification [3], which is the initial response to the OMG RFP from the
SEMAT community, defines a kernel of essentials for software engineering and an

...

... ...

...
Endeavour

(process instance)

Model
(method template)

Metamodel
(language)

Meta-metamodel
(meta-language)

instance_of

instance_of

instance_of

M3

M2

M1

M0

281

associated
ardised b
Jacboson
nity is it
accepted

Fig. 2 illu
their prop
is a kerne
ware eng
engineeri
sential th
that are u
resents th
Support t

A Prac
specific
Checkpoi
hand. The
in [8] as “

The la
dynamic
namic sem

3.1 St

The static
describe t
to allow

2 http://ww

d language fo
baseline. This
n et al. in [7] w
erating and im
kernel and lan

ustrates the S
posed graphic
el, i.e., a com

gineering that
ing methods.
hings to work
universal to so
he essential th
the Team, etc.
ctice (e.g., Us
guidelines ex
int, Pattern an
e practices are
“a systematic
anguage conta
semantics and
mantics which

tatic Semanti

c semantics of
the kernel, pra
for easier und

ww.ivarjacobson

or describing p
approach dra

which is suppo
mproving on
nguage that ca

Fig. 2. Overv

EMAT appro
al notation. A

mmon ground,
can be used a
The kernel de
with (e.g., R

oftware engine
hings to do (e.
).

ser Story, Scru
xpressed usin
nd Work Prod
e composed to
way of doing

ains four part
d 4) graphica
h will be elabo

cs – Creation

f the language
actices and me
derstanding an

n.com/process_

practices and
aws inspiratio
orted by the to
these ideas w

an be standard

view of the SEM

oach and some
A key idea is t
, which includ
as a standardi
efines a comp

Requirements,
eering and a s
g., Prepare to

um, etc.) use t
ng language
duct addressin
o form a meth
g things in a pa
ts, 1) abstract
al syntax. This
orated in the f

n of Software

e specifies a m
ethods. The la
nd usage of di

improvement

methods usin
on from the i
ool EssWork2

with the goal
dised by the O

MAT approach

e of the key la
that in all soft
des a few esse
ised baseline
pact set of Alp
Work, Team,

small set of A
o do the Work

the kernel as a
constructs su

ng a particula
od. A definiti
articular discip
t syntax, 2) c
s paper focuse
following subs

e Engineering

metamodel tha
anguage has b
ifferent subse

_technology/ess

g the kernel a
deas presente
. The SEMAT

l of defining
OMG.

anguage cons
tware endeavo
ential element
for describing
phas that repr

Software Sys
Activity Spaces
k, Coordinate

a baseline and
uch as State,
ar aspect of th
on of a metho
pline”.
composition a
es on the stati
sections.

g Methods

at contains con
een structured
ts. Fig. 3 belo

work

as a stand-
ed by Ivar
T commu-
a widely-

structs and
ours, there

nts of soft-
g software
resents es-
stem, etc.)
s that rep-
the Work,

d provides
, Activity,
he work at
od is given

algebra, 3)
ic and dy-

nstructs to
d as layers
ow shows,

282

in a sligh
each laye

Fig. 3. La

The Kern
is a set o
neering e
represent
health of
whose ev
state grap
out its lif
that the A
alphas, e.
quiremen
in the sof
ware eng
without d
to the wo
states ma

The P
Work Pro
proach to
and teach

3 In the Es

layer is

htly simplified
er.

anguage specifi

nel layer conta
of elements us
endeavour. Alp
ts an essential
f a software
volution we wa
ph with well-d
fecycle. Each
Alpha must fu
.g., for splittin

nt Items. An A
ftware engine
gineering ende
defining or co
ork. When th

ay have change
Practice layer
oduct, Alpha
o doing somet
hable way of

ssence specifica
s divided into tw

d form3, the l

cation – static s

ains the const
sed to form a
lpha is short f
l element that
engineering e
ant to underst
defined states.
state has a co

ulfil to be in th
ng Software S
Activity Space
ering endeavo
eavour at an
nstraining how

he work is co
ed.

contains the
Manifest and
thing with a
addressing a p

ation, the langu
wo: for simple a

layers of the

semantics (mod

tructs Kernel,
a common gro
for Abstract-L
t is relevant to
endeavour. A
tand, monitor,
. The states de
ollection of ch
hat particular

System into Co
e provides a p
our. Activity S
abstract leve

w it is done. A
oncluded the A

e constructs P
d Pattern. A P
specific purp
particular asp

uage is actually
and advanced p

language and

dified and simpl

Alpha and A
ound for desc
Level Progres
o the assessm

Alphas are use
 direct and co
efine a contro
heckpoints th
state. An Alp

omponents or
laceholder for
Spaces frame

el, capturing w
Activity Spac
Alphas are up

Practice, Acti
Practice is a
ose in mind,

pect of the wo

structured as f
practices.

d the key con

lified metamode

ctivity Space.
ribing a softw
ss Health Attr
ent of the pro
ed to describe
ntrol. Each A

olled evolution
at describes th
pha may also
r Requirement
r something t
the activities

what needs to
es take Alpha
pdated and he

vity, Activity
general, repea
providing a s

ork at hand. A

four layers, as th

nstructs of

del excerpt)

 A Kernel
ware engi-
ribute and
ogress and
e subjects

Alpha has a
n through-
he criteria
have sub-

ts into Re-
to be done
s of a soft-
o be done
as as input
ence their

Manifest,
eatable ap-
systematic

An Activity

the Practice

283

defines o
Activity M
is an arte
Manifest
mechanis
tional alp

The M
how an en

3.2 Dy

In contras
ify a met
model at
ties for th
ing to the

Fig. 4 illu
main. Th
standard
lighted _E
semantic
and class

one or more k
Manifest binds
efact of value

binds a colle
sm for definin
phas or extend

Method layer c
ndeavour is ru

ynamic Sema

st to the static
tamodel at th
the M1 layer

he "run-time"
e MOF archite

Fig

ustrates the d
e M2:Metamo
proposed by
Ext class in M
domain defin

s instances of

inds of work
s a collection
and relevance
ection of wor

ng a structure
d existing alph
ontains the co
un. A Library

antics – Enac

c semantics of
e M2 layer in
r. This model
occurrences d

ecture.

g. 4. Language s

dualism of the
odel, M1:Kern

the Essence
M1:Dynamic a
nes constructs
f these metacl

and gives gu
of activities t

e for a softwa
rk products t
in a practice.

has with sub-a
onstructs Meth

includes a co

ctment of Soft

f the language
n the MOF ar
defines abstr

during the end

specification –

e static seman
nel and a set o
specification,
are extension

s such as Alph
lasses at M1

uidance on how
to an activity
are engineerin
to an alpha. A

The practice
lphas.
hod and Libra
ollection of pra

tware Engine

, the dynamic
rchitecture (se

ract superclass
deavour, i.e.,

dynamic seman

ntics and the
of M1:Dynami
, while the M
s added by a

ha, Activity an
such as Sprin

w to perform
space. A Wor
g endeavour.
A Pattern is
may also spe

ry. A Method
actices and me

eering Metho

 semantics do
ee Fig. 1), bu
ses that contai
at the M0 laye

ntics

dynamic sem
ic classes are p

M1:Static and
practitioner.

nd Work Prod
nt, Sprint Plan

these. An
rk Product
An Alpha
a general

ecify addi-

d describes
ethods.

ods

o not spec-
ut rather a
ain proper-
yer accord-

mantics do-
part of the
the high-

The static
duct at M2
nning and

284

Product
my_Alpha
Work Pro

The ge
er contain
semantic
such as ru
alphas, e
duration
fined in t
nism by d

The re
supported
Having s
methods
needs of t

4 Il

This sect
Scrum pr
mapped t
from a se
age of th
The Scru
ed with th

4.1 Cr

In this pa
principles
Essence s
such as R
activity s
Work, Sup

Backlog. Th
a, my_Activity
oduct class ins
eneralization m
n slots that ha
domains. Us

un-time endea
.g., my_Alpha
that should ap

the kernel. Mo
defining opera
elationship bet
d by tools an
such mechani
as described,
the endeavour

lustrative A

tion illustrate
roject manage
to the Essence
et of well-defi
he method is
um practice de
he alphas and

reating the S

aper we only p
s. Fig. 5 repre
specification
Requirements,
spaces for the
pport the Tea

Fig. 5. A

he dynamic s
y and my_Wo
stances from t
mechanism en
ave been defin
ing this mech
avour properti
a_Ext that con
pply to Sprint
oreover, dynam
ations using th
tween the stat

nd services th
sms in place
, but also refi
r.

Approach –

es the SEMA
ement practice
e Kernel and
ined Practices
supported by

efines specific
activity space

crum Practic

present a subs
esents a subse
[3]. The Kern
Software Sys

e endeavour s
m, Track Prog

Alpha and Activ

semantic dom
orkProduct fo
the static sema
nsures that the
ned both from
hanism one co
ies that shoul
ntains propert
t instances tha
mic semantics
he superclasse
tic elements an
hat allow prec

will provide
fine and custo

– Scrum

AT approach
e [9] and expl
Language. A
s that plugs in

y language's c
c work produc
es defined by

ce and Metho

set of the Ess
et of the alpha
nel defines a s
stem, Work an
such as Prepa
gress and Stop

vity Space subs

main defines
or the respecti
antic domain.
e instances on

m the static sem
ould also defi
d only apply
ties such as s
at are sub-alp
s can be form
es of the dynam
nd their dynam
cise definition
e practitioners
omize the me

by modelling
ores how the
particular Me

nto the Kerne
composition a
cts and activiti
the kernel.

od

ence Kernel i
as and activit
small set of un
nd Team, and
are to do the
p the Work.

et defined by th

superclasses
ive Alpha, Ac

the endeavou
mantic and the
ine specific ex
to certain sub
tateTime, end
has of Work t

malized with th
mic semantic
mic counterpa
n of these ass
s the ability t
thods accordi

g selected par
Scrum practic
ethod can be c
el. Compositio
nd dynamic s
ies that can be

in order to illu
y spaces defin
niversal alpha
their relation
Work, Coord

he Kernel

s such as
ctivity and

ur M0 lay-
e dynamic

extensions,
bclasses of
dTime and
that is de-

his mecha-
domain.

arts can be
sociations.
to use the
ing to the

arts of the
ce may be
composed

on and us-
semantics.
e associat-

ustrate the
ned in the
a elements

nships, and
dinate the

285

Since the
Work alp
the check

A checkp
can be us
points are
of descrip

We ex
typically
sprints. T
elled as a
own state
rules that
and its as
mapped t
right side

Fig. 7. T
(mid

e paper focus
ha. Fig. 6 sho

kpoints associa

Fig. 6. Stat

point describe
sed to measur
e typically ex
ptive checklist
xtend the Wor

used for the
Thus we defin
a work produc
e graph (see m
t should be de
ssociated chec
to correspondi
e of Fig. 7).

The Sprint sub-a
ddle) and mappi

es on the ena
ows the states
ated with each

tes of work, stat

s the entry cri
re the progres
xpressed in na
ts items that a
rk alpha for S
duration of a

ne a new sub-
ct that is assoc
middle part of
efined as part
ckpoints are m
ing activities a

alpha extends th
ng of Scrum ac

actment part w
of work, the

h state.

te descriptions

iteria for ente
ss of the alpha
atural languag
are interpreted
Scrum (see lef

development
-alpha called
ciated with the
f Fig. 7). Scrum
t of the practi
more general.
and associated

he Work alpha
ctivities to the A

we only elab
corresponding

and associated

ering a specifi
a in the softw

ge and provide
d by the practit
ft side of Fig.

project that m
Sprint. The S

e Sprint sub-a
m comes with
ce, whereas t
The identified
d with the pro

(left), the states
Activity Spaces

orate the deta
g state descrip

checkpoints

c state of the
ware endeavou
e a basis for g
tioners.
 7). The Wor
may cover a n
Sprint Backlo
alpha. The Spr
h its own spec
he Work state
d Scrum even

oper activity sp

s of the Sprint s
of the Kernel (

ails of the
ptions and

alpha and
ur. Check-
generation

rk alpha is
number of

og is mod-
rint has its
cific set of
e machine

nts may be
paces (see

sub-alpha
(right)

286

4.2 En

The enac
is a creat
deavour i
ing metho
vide mea
agents fo
laborates
supported
project m

The co
composed
purpose,
card for t
se cards c
gress the
checkpoin

Using the
a state ch
instead o
gress from
supports

5 R

One main
SPEM pr
project pl
mapping
workflow

nacting the S

tment support
tive process a
is done by hum
ods and pract
ans of monito
oremost and au

on decision-
d by method r

management an
oncrete syntax
d practices, i.
the concept o

the Sprint alph
can be used fo
states of the

nts are ticked

Fig.

e checkpoints
hange has occ
f the checklis
m one state t
the definition

Related Wor

n criticism of
rocesses are ty
lans and enac
processes to a

w engine [1]. D

crum Method

t in the Essenc
and most of th
man agents [1
ices must ack

oring and pro
utomation sec

-making, plan
repositories an
nd issue tracki
x of the lang
.e., the metho

of Alpha state
ha at the initia
or reading and
Sprint accord
off.

8. Sprint state c

of the Alphas
curred. These
st items one c
to another, or
of different v

rk and Disc

f SPEM 2.0 is
ypically done
cting these wi
a business flow
Designing nat

d

ce language r
he progress w

10]. Thus, proc
knowledge the
ogressing the
condly. In ena

nning and exe
nd process en
ing systems.

guage has bee
od, should be
cards is intro

al state (left) a
d understandin
ding to the che

card (initial stat

s it is at the d
state cards m

could get a lis
r which work
views suitable

cussions

s the lack of
through mapp
ith project pla
w or executio
tive dynamic s

ecognizes tha
within the sof
cess enactmen
e human know
software end
actment, a tea
ecution. Enact
ngines that are

en designed so
e easy for the
oduced. Fig. 8
and in the Pla
ng the practic
ecklist defined

te and planned

discretion of th
may also have
st of activities

k products to
for different k

enactment su
ping, e.g., (1)
anning and en
on language an
semantics into

t software dev
ftware develop
nt of software
wledge worker
eavour throug
am of practitio
tment may be
 linked to too

o that the usa
e practitioners
8 below show
anned state (ri
e, and also ho
d. This requir

state)

he team to dec
different view

s to do in ord
produce. The
kinds of pract

pport [8, 11].
mapping proc

nactment syste
nd executing t
o the language

velopment
pment en-

e engineer-
er and pro-
gh human
oners col-
e partially
ols such as

age of the
s. For this

ws the state
ight). The-
ow to pro-
res that all

cide when
ws so that
der to pro-
e language
titioners.

. Enacting
cesses into
ems or (2)
this with a
e is argua-

287

bly one o
ture.

The Si
related m
[13] that
the key c
metamod
linked to
powertyp
two types
our elem
have a
powertyp
Constrain
requiring

Since adv
MOF the
support d
leaves ou
that is M
semantics
at the M1
deavour p
using pow
illustrates
ProductK
WorkPro
fication.

of the main re

ituational Met
metamodelling

provides an a
classes in the
del that defin
ogether throu
pes to model s
s of methodol

ments which in
corresponding

pe relationship
nt, Outcome a
 the need for i

F

vanced metam
e ISO 24744
dynamic sema
ut the endeavo

MOF compliant
s and the mod
1 layer of the
properties at t
wertypes but
s the differen

Kind metaclas
duct (at M2 l
Standardised

equirements th

thod Engineer
approaches w

alternative to
ISO 24744 m

nes Methodolo
ugh the con
software deve
logy element
ncludes Stage
g methodolo
p. Resource

and Guideline,
instantiation a

Fig. 9. Overview

modelling cons
standard use

antics. This m
our M0 layer.
t and define t
del of the dyn
MOF archite

the endeavour
maintains co

ce between th
sses from the
ayer) and my_
endeavour p

hat will requi

ring (SME) co
which has resu

the OMG SP
metamodel. Th
ogy elements

ncept of pow
elopment met
classes, name

e, WorkUnit,
ogy element

constructs, w
, represents el
at the endeavo

w of the ISO 24

structs such as
s a different

metamodelling
. In the SEM
two separate d
namic semanti
ecture (see Fig
r M0 layer. T
ompatibility w
he two appro
e ISO/IEC 24
_WorkProduc
properties on

ire a redesign

ommunity [12
ulted in the IS
PEM 2.0 spec
he metamodel
 and Endeav

wertypes [14]
thods is descr
ely Template
WorkProduct
...Kind type

which include
lements that ar
our level.

4744 metamode

s powertypes a
metamodel a

g issue is not
AT approach
domains, the m
ics. We comp
g. 4) to suppo
This is very si
with the MOF
aches. The W

4744 standard
ct (at M1 layer

WorkProduc

of the SPEM

2] has been w
SO/IEC 24744
cification. Fig
l can be seen
vour elements
]. An explan
ibed in [11].
and Resource
and Produce

 represented
e Language,
re directly use

el

are not compa
architecture [1

present in SP
we propose

metamodel of
pose these two
rt both metho
milar to the c
F architecture

WorkProduct a
d are equivale
r) in the Essen

ct (ISO 24744

M architec-

working on
4 standard

g. 9 shows
n as a dual
s that are

anation of
There are

e. Endeav-
er, always

d using a
Notation,

ed without

atible with
11, 13] to
PEM as it
a solution

f the static
o domains
od and en-
concept of
e. Fig. 10
and Work-
ent to the
nce speci-
4) can be

288

represent
extension
done thro
(Essence)
both appr

6 C

In this pa
SEMAT
Enactmen
and dyna
by model

The pr
the M2 la
el on the
intended
tioners. T
examples
model fo
current an
enactmen
and simil
ISO/IEC

ted as proper
ns and proper
ough extension
). The resultin
roaches.

Fig. 10. C

onclusions

aper we have p
as a response

nt of Software
amic semantic
lling selected p
roposed langu
ayer in the MO
e M1 layer in

to simplify s
The concepts o
s of such requ
or software en
nd future prac
nt, in software
larities betwee
24744.

rties on my_W
rties such as
ns of the dom
ng slots in the

Comparison of

and Futur

presented the
e to the OMG
e Engineering
s of the Essen
parts of the Sc

uage contains
OF architectur

the MOF arc
software engi
of Kernel, Alp
uired language
ngineering an
ctices that afte
e endeavours.
en the Essence

WorkProduct
version on P

main classes as
e ProductBac

f the ISO 24744

re Work

main ideas o
G RFP “A Fo
g Methods” [4
nce language a
crum project m
a static seman
re and a dynam
chitecture. Th
ineering meth
pha, Activity S
e constructs.

nd provide a
erwards are ad
Our discussio
e approach an

(Essence). A
ProductBacklo
s shown using

cklog instance

 and Essence ap

f the Essence
undation for
]. This paper
and illustrated
management p
ntics part defi
mic semantics
he proposed l
hod modelling
Space and Pra
The kernel el
standardised b

dapted and cus
on has tried to
nd other relate

Additional use
og (ISO 24744
g my_WorkPro

at M0 are th

pproaches

language sub
the Agile Cre
has explained

d the enactmen
practice.
ined as a meta
s part defined
anguage cons

g adaptation f
actice are intr
lements form
baseline for d
stomized for u
o clarify the d
ed standards su

er-specific
44) can be
roduct_Ext
he same in

bmitted by
eation and
d the static
nt support

amodel on
as a mod-

structs are
for practi-
roduced as

a domain
describing
usage, i.e.,
differences
uch as the

289

We are currently progressing this work in the context of SEMAT where we are
preparing a revised submission to the OMG RFP. The aim is to take advantage of
recent development and experiences from software engineering and method engineer-
ing communities in order to give the best possible direct support towards software
practitioners.

Acknowledgments. This research was co-funded by the European Union in the frame
of the NEFFICS project (FP7-ICT-258076) (www.neffics.eu) and the REMICS pro-
ject (FP7-ICT-257793) (www.remics.eu), and SINTEF in the frame of the SiSaS pro-
ject (sisas.modelbased.net). The authors acknowledge and thank collaboration with
colleagues within SEMAT (www.semat.org) for foundational input and feedback.

References

[1] OMG, "Software & Systems Process Engineering Meta-Model Specification, Version
2.0", Object Management Group (OMG), Document formal/2008-04-01, April 2008.
http://www.omg.org/spec/SPEM/2.0/PDF/

[2] R. Bendraou, B. Combemale, X. Cregut, and M.-P. Gervais, "Definition of an Executable
SPEM 2.0", in 14th Asia-Pacific Software Engineering Conference (APSEC '07).
Nagoya, Japan, 2007, pp. 390-397. http://dx.doi.org/10.1109/APSEC.2007.38

[3] OMG, "Essence - Kernel and Language for Software Engineering Methods, Initial
Submission - Version 1.0", Object Management Group (OMG), OMG Document ad/12-
02-04, 20 February 2012. http://www.omg.org/cgi-bin/doc?ad/12-02-04

[4] OMG, "A Foundation for the Agile Creation and Enactment of Software Engineering
Methods RFP", Object Management Group (OMG), OMG Document ad/2011-06-26, 23
June 2011. http://www.omg.org/members/cgi-bin/doc?ad/11-06-26.pdf

[5] OMG, "Meta Object Facility (MOF) Core Specification, Version 2.0", Object
Management Group (OMG), Document formal/06-01-01, January 2006.
http://www.omg.org/spec/MOF/2.0/PDF/

[6] OMG, "MDA Guide Version 1.0.1", Object Management Group (OMG), Document
omg/03-06-01, June 2003. http://www.omg.org/cgi-bin/doc?omg/03-06-01.pdf

[7] I. Jacobson, P. W. Ng, and I. Spence, "Enough of Processes - Lets do Practices", Journal
of Object Technology, vol. 6, no. 6, pp. 41-66, 2007.
http://www.jot.fm/issues/issue_2007_07/column5

[8] C. Gonzalez-Perez and B. Henderson-Sellers, "Metamodelling for Software
Engineering", John Wiley & Sons, Ltd, 2008, ISBN 978-0-470-03036-3.

[9] K. Schwaber and J. Sutherland, "The Scrum Guide", Scrum.org, October 2011.
http://www.scrum.org/storage/scrumguides/Scrum_Guide.pdf

[10] P. Feiler and W. Humphrey, "Software Process Development and Enactment: Concepts
and Definitions", Software Engineering Institute, Technical report CMU/SEI-92-TR-004,
September 1992.

[11] B. Henderson-Sellers and C. Gonzalez-Perez, "The Rationale of Powertype-based
Metamodelling to Underpin Software Development Methodologies", in Proc. of the 2nd
Asia-Pacific conference on Conceptual modelling - Volume 43, 2005, ACM.

[12] M. A. Jeusfeld, M. Jarke, and J. Mylopoulos, "Metamodeling for Method Engineering",
The MIT Press, 2009.

[13] ISO/IEC, "Software Engineering – Metamodel for Development Methodologies",
International Organization for Standardisation (ISO), ISO/IEC 24744, 15 February 2007.

[14] J. Odell, "Power Types", Journal of Object-Oriented Programming, vol. 7, no. 2, pp. 8-
12, 1994.

290

Model-based Product and Process

Integration for Enhanced Collaboration

during Mechatronic Design Processes

Holger Seemüller1 and Holger Voos2

1 University of Applied Sciences Ravensburg-Weingarten
D-88241 Weingarten, Germany
seemueller@hs-weingarten.de

2 University of Luxembourg
L-1359 Luxembourg

voos@uni.lu

Abstract. The collaborative design of mechatronic systems is still a
challenging task as different engineering disciplines have to be consid-
ered and coordinated during the design process. Here, an independent
and isolated view on discipline-specific tools, model data and activities is
not appropriate. So, the integration of these aspects for improved collab-
oration is still a remaining task in industry and research. Former research
have already developed first solutions each directing into the integration
of distinct aspects among the involved disciplines. This paper claims
that a comprehensive view on the different aspects can bring significant
benefits for the design of mechatronic systems. In detail, it presents an
approach which combines interdisciplinary system modeling with design
activity management by describing and integrating these aspects on met-
alevel. This integration leads automatically to enhanced possibilities for
design activity coordination and monitoring.

1 Introduction

The mechatronics engineering discipline is one of the main innovation leader in
industry nowadays. It offers possibilities to achieve highly innovative products
offering high performance whilst getting cost related aspects under control [1].
The design of mechatronic systems describes the synergetic creation and integra-
tion of mechanical engineering, electrical engineering and information technology
for the specification and description of any kind of physical products [2]. How-
ever, mechatronic design is a manifold and challenging task as complexity of
such systems is increasing and the beneficial application of synergetic interdis-
ciplinary effects has to be considered. This implicates an amount of challenges
which have to be met while designing a mechatronic system. The structured
handling of the increasing complexity of mechatronic systems is one main chal-
lenge. For compliance with market demands, systems have to offer a wider range
of functionality with increasing performance. This can only be reached by the

291

combination of mechanical, electrical and control aspects into more and more
integrated devices where synergies can be exploited. This causes an increasing
amount of mutual interdependencies between different parts of the system. So,
mechanical space limitations resulting from the design of a chassis has direct
impacts on the assembly of electric components. However, nowadays distributed
development environments, discipline-specific terminologies and diverse model-
ing notations hinder direct communication and agreements. Nevertheless, the
needs and requirements of each engineering discipline have to be considered
equally. Therefore, systematic approaches for collaborative design even in the
early phases of the design process are needed and must be supported method-
ologically.

The presence and collaboration of diverse engineering disciplines also leads to
novel challenges in the management and coordination of the engineering design
process. Due to pressure for shorter time to market and so shorter development
time, an efficient coordination is crucial in nowadays design processes. It is ob-
vious that a reduction of development time can be achieved through concurrent
arrangement of design activities. However, real life projects come along with
mutual dependencies between different design steps, especially in cases of strong
discipline-spanning cooperation. This inhibits independent and parallel activity
processing and requires crucial planning and coordination efforts.

The growing complexity of mechatronic systems as well as the extensive
amount of design activities within several engineering domains results in an in-
creasing amount of design model data produced by diverse design tools. However,
complex interdependencies between these data exist and have to be considered to
allow engineers to work with a common set of information. This problem even
exacerbates with enhanced degree of integration and system complexity. The
resulting need for consistency management and model integration is therefore
evident for successful product design.

This paper intends to make a contribution to the mentioned problems and
presents a possibility for collaborative coordination of participated disciplines
during mechatronic design processes. This aims for an improved, collaborative
system design and an optimized way for design activity coordination. Partic-
ularly, the paper claims that a comprehensive view on these aspects will offer
extended possibilities for an improved collaboration between involved engineers.
Considerations about the relationship between product and process and the dif-
ferent kind of design model dependencies which can be deduced are the foun-
dation of the approach. Metamodels will be used to describe the syntax of a
mechatronic system, related design activities and their relations and possibili-
ties will be presented, how this approach can make a contribution to mechatronic
product design.

The remainder of the paper is structured as followed: Section 2 shows the
current state-of-the-art of mechatronic system modeling and design process man-
agement and shows remaining drawbacks. Section 3 presents the approach of an
integrated combination of system and process modeling. Section 4 provides a

292

discussion about the approach. Finally, section 5 concludes the paper and gives
an outlook for future work.

2 Related Work

The optimization of mechatronic designs has been the topic of a lot of research
and industrial projects. However, this field of research is wide and intensive work
has already been done in diverse areas. This section details current problems and
reviews the related works on which the proposed approach is based.

2.1 System Modeling

The rising complexity of mechatronic systems and their higher degree of dis-
cipline-spanning integration comes along with the need for extended systematic
approaches and methods. These have to address the needs of all involved engi-
neering domains equally even in early phases of the mechatronic design process.
This issue is also discussed in the VDI guideline 2206 [3] which suggests the col-
laborative creation of an interdisciplinary principle solution during the system
design phase. As the guideline lacks of a concrete realization for this principle
solution, several attempts have been developed which can be applied for the real-
ization. Whereas [4] proposes with Mechatronic UML a UML profile that extends
the common UML2 standard for mechatronic needs, [5] developed a novel speci-
fication notation for the description of the principle solution. Modelica [6] offers
possibilities for component-based modeling of complex systems with extensive
simulation capabilities. Furthermore, SysML is an approach for interdisciplinary
system modeling and defined as “a general-purpose graphical modeling language
for specifying, analyzing, designing and verifying complex systems that may in-
clude hardware, software, information, personnel, procedures and facilities” [7].
As it is defined as a standardized profile for UML2, tool support is widely given
and it gains more and more acceptance in industry. Several research projects have
already shown the general feasibility of this modeling notation for the creation
of an interdisciplinary system model [8–10]. Interviews with industrial partners
have shown that the idea of an interdisciplinary system model has not yet been
fully accepted in industry. As the creation of an additional model causes further
efforts, the concrete benefits must be demonstrated in advance. Furthermore, the
introduction of a collaboratively created system model requests novel method-
ologies and roles within the project. Finally, the continuous usage of a system
model during the overall development process of the mechatronic system has to
be shown precisely. This is still an ongoing research topic in industry.

2.2 Engineering Design Process Management

The efficient organization and management of engineering design processes is
a crucial factor for successful and cost efficient product development. As a
consequence, several process models have been developed [3, 11]. They offer a

293

framework to which engineering activities can be aligned and present common
methodologies for problem solving and designing engineering systems. However,
they are very abstract and give only few information to assist engineers in their
daily activities [12].

From business process management (BPM) the idea of modeling a workflow
of activities in a formal and computer interpretable way arose. Notations, such
as BPMN [13], have been developed to support process designers with standard-
ized modeling languages and, at the same time, workflow management systems
opened the possibility for process enactment. Also notations specialized to engi-
neering activities appeared, such as SPEM [14].

However, the established workflow modeling techniques from BPM cannot be
applied directly on the modeling of engineering design activities. Deterministic
and sequential business process chains are commonly performed several times
in the same manner. In contrast, design processes are knowledge intensive and
characterized by their weakly-structured and nondeterministic activity order.
Additionally, the long duration increases the degree of uncertainty and hinders
a complete planning in advance. [12] and [15] have identified that the process
depends very much on the product itself and already produced design artifacts.
So, results of former design steps influence the further process heavily and lead
to an evolutionary process model. Engineering design activities are additionally
characterized by very complex interdependencies as engineers have to exchange
informations and activities may depend on the results of others. Nevertheless, a
maximum degree of concurrency is desirable in order to optimize the process. In
industry it is a common practice to work with assumptions to avoid unnecessary
delays especially in early phases of the design process. However, this approach
leads to high consistency problems, as refined parameters need to be propagated
reliably. One approach for successful planning and modeling of design processes
is the determination of the right level of granularity of the considered activities.
So, Lindemann [16] identifies four levels of hierarchy, separated from micro to
macro logic, which can be used for structured planning. This categorization as
well the fact that the system and process depend on each other will also be used
in the current approach.

2.3 Model Integration

With rising complexity of mechatronic systems, also the amount of model data
produced during system design is increasing extensively. These models describe
the system from different views on several levels of abstraction, such as models for
requirements analysis, CAD models for geometric information or detailed mathe-
matical models for simulation. Whereas the storage and retrieval of physical data
can already be managed by established product data management systems, the
management of logical dependencies and the consistency between model data is
still a challenge. Several approaches exist trying to increase the interoperabil-
ity and consistency between design tools. Especially the idea of model-based
systems engineering lead to novel approaches as design models during the sys-
tems engineering process base on formal models. This increases determinism

294

and understandability [17] and offers automated processing by computers. The
Modelbus [18] project connects existing design tools with a common bus where
data can be exchanged flexibly. So tool chains can be created which automati-
cally transfer model data between the involved tools. Modelisar [19] is a project
which offers standardized interfaces between existing design tools which can also
be used to exchange model data and create tool chains. Other approaches use
the idea of a central system model where important information from several
disciplines and design tools are stored and related to design tool specific models
[20, 21]. Also the AGENTES project [22] follows the idea of a common system
model and applies a multi-agent system for change propagation from system
model to design tools and back.

3 Integration of System and Design Activity Modeling

This research continues with ongoing trends within the research field of collabora-
tive mechatronic design. Concretely, it deals with the planning and modelling of
design activities to enable concurrent enactment. However, waiting for availabil-
ity of information hinders the parallel processing and the usage of assumptions
leads to intense consistency issues. This approach is founded on the fact that
mechatronic design activity planning bases intensively on the characteristics and
the structure of the product to be developed. By using information and depen-
dencies of the system, design activities can be coordinated and synchronized.
We argue that the consideration of logical dependencies (originating from the
product) together with chronological dependencies (originating from the activity
sequence) enhances the concurrent processing of design activities. Supported by
an IT tool, engineers can be guided through the design process in a pro-active
way and inconsistencies can be detected and propagated.

The conceptual background of the approach will be introduced by two tech-
nology neutral metamodels that will narrow the terms down to our scope and
demonstrate the interrelation between the domains. The first metamodel repre-
sents the abstract syntax of a mechatronic product whereas the second meta-
model will demonstrate the concepts of mechatronic design activities. These
metamodels have been built based on common state-of-the-art insights about
mechatronic systems and borrows concepts from common modeling notations.
In that way, we make the approach portable to established notations. The mutual
integration between product and design activities is represented by cross refer-
ences between the metamodels. Further, a way will be demonstrated that offers
a possible realization of the concepts with common and well-known modeling
notations.

The remainder of this chapter shows the abstract syntax and composition of
a mechatronic product as well the syntax of mechatronic design activities. Next,
a possible application of these concepts is shown. Finally, tool support of the
approach is sketched.

295

3.1 Product Structure

The abstract syntax and composition of a mechatronic product have been defined
formally by a metamodel. The design considerations of the metamodel were
influenced by current insights about mechatronic systems and their structural
composition [22]. The following assumptions were taken and considered:

– An mechatronic system can be described in terms of its requirements, its
functional decomposition as well as the product structure. Tracing informa-
tion can exist to relate information between these different levels of abstrac-
tion.

– A mechatronic system is assembled of mechatronic subsystems and compo-
nents which themselves can be decomposed into an hierarchical structure of
mechatronic subcomponents.

– A mechatronic component is an interdisciplinary element which stores infor-
mation and parameters from diverse engineering disciplines, e.g. from me-
chanics and electronics [23].

– Mechatronic components are connected via uni- or bidirectional interfaces
which offer or use an interface definition

– Dependencies and mathematical relationships between parameters from dif-
ferent levels of abstraction, different components as well different disciplines
can exist.

Figure 1 shows an overview of the developed metamodel. The root element
of the metamodel is EngSystem, which represents the mechatronic system. This
system is defined on several levels of abstraction, namely: (1) as the set of require-
ments (Requirement) the system has to fulfill; (2) the set of functions (Function)
that refine the requirements; and (3) the set of concrete components (Compo-
nent) that realize the functions. A Requirement is specified by a textual descrip-
tion. Furthermore the metaclass Property can be used to express the requirement
more formally with a set of properties. Each requirement can be refined by a
function hierarchy represented as Function metaclasses. The idea of functional
decomposition is common in mechatronic engineering and offers a means to de-
scribe a system in a solution independent way [24]. The concrete realization is
expressed as a hierarchy of the Components and decomposes the EngSystem.
The EngSystem as well as each Component is a subclass of StructuralElement
and so owns a set of Property, Interface and Constraint metaclasses: A Property
can be used to express any discrete parameter by stating its Name, the Unit
and the respective Value of the Property. Additionally, a PropertyState can be
attached which holds information about the maturity of the value. Theses states
can be used to support evolutionary development of the product. An Interface
serves as a connection point between distinct StructuralElement instances. The
connection between two interfaces is realized via a common InterfaceDefinition.
It describes an interface in terms of its name and id as well as a set of properties
which are again expressed with the metaclass Property. An InterfaceDefinition
is offered by exactly one Interface and can be used by several other Interfaces.
The Constraint metaclass allows an engineer to express dependencies between

296

any level of hierarchy within the system model. Therefore, a mapping between
a Parameter of the constraint and an arbitrary Property can be defined and the
relation between the parameters can be expressed with mathematical expres-
sions. In that way, dependencies within the system can be expressed formally
and consistently.

Fig. 1. The engineering metamodel

3.2 Process Modeling

The description of the flow of activities in a formal and computer interpretable
way has shown its effectiveness already in business process management. It in-
creases transparency between involved engineers, improves coordination and as-
sistance, allows better planning and management capabilities and leads finally to
shorter development cycles [25]. However, as discussed in section 2, engineering
design processes have special characteristics that make traditional process mod-
eling not directly applicable to them. According to Lindemann [16] engineering
processes can be described on different levels of abstraction. This paper focuses
on the operational level ”with interrelated activities” [12]. These are character-
ized by their strong dependencies on mutual exchanged information but weak
possibilities for a predictable order. This is the reason why the metamodel con-

297

tains possibilities to express pre- and postconditions rather than explicit control
flow elements.

Principally, it is assumed that engineering design activities consume informa-
tion about the mechatronic system, e.g. requirements, functionalities or impor-
tant parameters of previous design decisions. These knowledge is used to produce
new design knowledge which can be reflected to the mechatronic product and
influences further design steps. The reflection of information may lead to itera-
tions or repetitions of former activities. So, an aligned and synchronous planning
of design activities parallel to the evolution of the product is meaningful. This
paper performs the integration on metamodel level by adding cross references
between the activity and the product metamodel.

For the design of the metamodel, the following assumptions are taken:

– An activity describes a work package with defined input and output infor-
mation for a single or a group of engineers.

– Activities are coupled via their interdependencies of produced and consumed
information.

– The inputs of an activity are specified by a textual description of the work
package, related requirements and functions, existing work products such as
previously created simulation models as well as a context within the system
model. Depending on the level of maturity of the system, some inputs may
be optional.

– The output is again a set of properties. These properties can refine existing
properties or give new properties an initial value.

– An activity produces or refines work products such as e.g. a simulation model
of a specific tool.

– Pre- and post-conditions can specify extended dependencies between activi-
ties.

These assumptions lead to the metamodel presented in figure 2. As the process
in this paper deals with operational level, the process model shall be declared as
an activity model and be represented via the metaclass ActivityModel. A model
contains a set of independent activities (Activity) which are specified by a name,
a textual description as well as an optional deadline. One ore more Roles which
are instances of the metaclass Role have to be assigned to an activity indicating
the responsibilities. A Role is part of a RoleCollection storing available roles of
the project. Similarly, a Tool, which is again part of a ToolCollection, can be
attached to an Activity. Furthermore, produced and consumed WorkProducts
can be specified by their filenames. With subclasses of the abstract metaclass
Condition, additional activity flow information can be attached to an Activity.
The integration with the system metamodel is realized with the metaclasses
StructuralElement, Property, Function and Requirement. These classes origin
from the system metamodel and specify directly the context as well as attached
requirements and functions which deliver additional information for the engineer.
Further, the abstract metaclass ActivityProperty reflects a concrete Property of
the system model and offers as optional alias name. Subclasses of an Activi-
tyProperty are used to specify input and output properties for an activity.

298

Fig. 2. The process metamodel

3.3 Application

The abstract metamodels can be applied on real life projects in several ways.
Several modeling notations have been developed which offer possibilities for the
creation of a system model according to the presented metamodels (see sec-
tion 2). For broader acceptance and generic applicability, some notations have
intentionally been designed without clearly defined semantics. So, the project-
specific definition of the semantics of syntax elements have been evolved to a
common practice at the beginning of a project. By having the structure of
a mechatronic product defined formally, the approach can be realized by any
modeling notation which allows the modeling of system in these terms. The
system modeling language SysML is an example of such a language. In [26] a
modeling approach with SysML which can be aligned to the presented meta-
model has already been shown. Hence, the authors used the block definition
diagram to model the hierarchical structure of the system with the SysML ele-
ment <block>. The single components have been connected within an internal
block diagram and constraints between parameters of the system have been mod-
eled with <constraint>-elements within a parametric diagram. So, that model
is expressive enough to describe a system in the presented syntax. Nevertheless,
other modeling approaches - also with SysML - are suitable to model such a
representation, too.

The creation of an activity model is more complex as the cross references
to the system model have to be implemented. Actually, in the domain of en-
gineering processes, no standard modeling notation have been revealed so far.
Even proprietary models in Microsoft Excel or Powerpoint are still a common
means to express design activities in industry. Nevertheless, the approach can

299

be applied as long as the notation is expressive enough to obtain a model that
satisfies the syntax of the metamodel. The implementation of the references to
the system model can be realized in several ways. So, for prototypical realization,
even referencing a property by its string identifier is a valid option. Extended
possibilities for cross-referencing include the adaption of the modeling tool for
direct access of the system model elements. This extension is currently under
development.

3.4 Tool support

Necessarily, the presented approach has to be supported by an IT tool for several
reasons: First, change impacts due to modeled dependencies and constraints
within the product can only be evaluated reliably by an application that owns
this knowledge. Second, the modeled activities need to be enacted in a way
similar to traditional business process workflow management systems. Third,
timing information of enacted activities have to be traced to take advantage of
the chronological dependencies for extended change impact analysis.

The initial architecture of an IT tool has already been presented in [26]. The
paper at hand shows the configuration of that system. The presented metamodels
are used as a data structure that serves as the interface to the proposed frame-
work. Rather than bounding an existing modeling notation to the semantics of
our need, we define a metamodel that specifies our syntax of a mechatronic sys-
tem as a distinct metamodel and offer transformation possibilities from existing
notations. So, established modeling notations can still be used and the approach
stays technology neutral.

4 Discussion

The presented approach offers possibilities for activity planning and modeling
based on information of the system model. The combination of these two mod-
eling levels possesses two kinds of dependencies and tracing information that
can be used for consistency management: First, modeled constraints and asso-
ciations on system model level define system internal dependencies centrally in
one model. These information can be used for change impact analysis after a
parameter has been refined by an engineer. So, other elements can be updated
based on the new information and affected engineers can be informed. The sec-
ond kind of dependency are chronological dependencies that come along with the
enactment of activities. As each property can serve as an input or be the output
of design activities, these properties are related in a chronological order. This
enables an extended change impact analysis, as affected design activities can be
considered and, if necessary, be restarted with updated information. Further, the
coupling of activities by their input/output relationship offers dynamic ordering
and automatic enactment of activities by availability of necessary information.

Furthermore, activity modeling bridges the gap between information mod-
eled in the system model and corresponding information with discipline-specific

300

engineering tools. As an activity possesses knowledge about input properties,
the used tool as well as the produced work product, implicit mappings between
system model properties and tool parameters can be created and used.

Finally, as our description of the system and the activities base on a formal
metamodel, they can be used as the input for an IT system that is able to enact
the activity model.

5 Conclusion and future work

This paper presented an integrated approach for system and activity modeling
in the context of mechatronic design processes. Two metamodels that describe
a mechatronic system and related design activities have been developed. It has
been highlighted that the combined usage can enhance the coordination of en-
gineers in distributed environments and improves collaboration and consistency
management. Furthermore, model data consistency can be ensured by the com-
bined consideration of system model and chronological dependencies.

Future work will deal with the realization of the approach. For beneficial ap-
plication, IT-based tool support is necessary and the mentioned prototype [26]
has to be refined by integrating the demonstrated metamodels and concepts.
Next, transformations from established system and process modeling notations
to the metamodels will be developed. Furthermore, process management has to
be integrated into the existing multi-agent system in a way we already described
in [26]. So, chronological dependencies can also be considered. Additionally, spe-
cialized tool adapters will be needed that serve as interfaces to discipline specific
modeling and simulation tools. So, automatic mappings between properties of
the system model and the parameters within an IT tool are possible to automate
model consistency. In parallel, the metamodels will be revised and use cases will
show the applicability in real life projects.

References

1. Tomizuka, M.: Mechatronics: from the 20th to 21st century. Control Engineering
Practice 10(8) (2002) 877–886

2. Möhringer, S., Stetter, R.: A research framework for mechatronic design. In:
International Design Conference - Design 2010, Dubrovnik, Croatia (May 2010)

3. VDI, V.D.I.: Entwicklungsmethodik für mechatronische Systeme. VDI Richtlinie
2206. Beuth Verlag (2004)

4. Schäfer, W., Wehrheim, H.: Model-driven development with Mechatronic UML.
In: Graph transformations and model-driven engineering. Springer-Verlag, Berlin,
Heidelberg (2010) 533–554

5. Frank, U.: Spezifikationstechnik zur Beschreibung der Prinziplsung selbstopti-
mierender Systeme. PhD thesis, Universität Paderborn, Heinz Nixdorf Institut,
Rechnerintegrierte Produktion (2006)

6. Tiller, M.: Introduction to Physical Modeling with Modelica. 1 edn. Springer US
(May 2001)

301

7. OMG: OMG Systems Modeling Language (OMG SysML) 1.2. available at
http://www.omgsysml.org.

8. Follmer, M., Hehenberger, P., Punz, S., Zeman, K.: Using sysml in the product
development process of mechatronic systems. In: International Design Conference,
Dubrovnik, Croatia (May 2010)

9. Wlkl, S., Shea, K.: A computational product model for conceptual design using
sysml. In: ASME 2009 International Design Engineering Technical Conferences
Computers and Information in Engineering Conference, San Diego, USA (August
2009)

10. Rosenberg, D., Mancarella, S.: Embedded systems development using sysml. Ieee
Transactions On Audio Speech And Language Processing 17(1) (2009) C1–C4

11. Pahl, G., Beitz, W., Feldhusen, J., Grote, K.H.: Engineering Design: A Systematic
Approach. 3rd ed. edn. Springer London, London (2007)

12. Roelofsen, J., Lauer, W., Lindemann, U.: Product model driven development. In:
14th European Concurrent Engineering Conference, Ghent (April 2007)

13. OMG: Business Process Model and Notation (BPMN)) 2.0. available at
http://www.omg.org/spec/BPMN/2.0/.

14. OMG: Software & Systems Process Engineering Meta-Model Specification 1.2.
(2008) available at http://http://www.omg.org/spec/SPEM/2.0.

15. Schwarz, J., Adameck, N., Frank, D., Siebert, R., Haasis, S.: The use of feature-
based workflow techniques in automotive product development. In: 7th Interna-
tional Conference on Concurrent Enterprising, Bremen, Germany (June 2001)

16. Lindemann, U.: Methodische Entwicklung technischer Produkte: Methoden flexibel
und situationsgerecht anwenden. Springer (2009)

17. Ogren, I.: On principles for model-based systems engineering. Systems Engineering
Journal 3(1) (2000) 38–49

18. Hein, C., Ritter, T., Wagner, M.: Model-Driven tool integration with ModelBus.
In: Workshop Future Trends of Model-Driven Development. (2009)

19. Consortium, M.: Fmi. http://functional-mockup-interface.org/ accessed:
2011/11/23.

20. Thramboulidis, K.: The 3+1 sysml view-model in model integrated mechatronics.
JSEA 3(2) (2010) 109–118

21. Qamar, A., Wikander, J., During, C.: Designing mechatronic systems: A model-
integration approach. In: 18th International Conference on Engineering Design,
ICED11, Copenhagen, Denmark (August 2011)

22. Stetter, R., Voos, H.: Agentes - agent based engineering of mechatronic products.
In: Proceedings of the 8th International Symposium on Tools and Methods of
Competitive Engineering (TMCE) 2010, Ancona, Italy (April 2010)

23. Thramboulidis, K.: Challenges in the development of mechatronic systems: The
mechatronic component. In: ETFA. (2008) 624–631

24. Lamm, J.G., Weilkiens, T.: Funktionale architekturen in sysml. In Maurer, M.,
Schulze, S.O., eds.: Tag des Systems Engineering 2010, Munich, Germany (Novem-
ber 2010)

25. Fricke, E., Negele, H., Schrepfer, L., Dick, A., Gebhard, B., Haertlein, N.: Modeling
of concurrent engineering processes for integrated systems development. In: Digital
Avionics Systems Conference, Bellevue, WA, USA (October 1998)

26. Stetter, R., Seemüller, H., Chami, M., Voos, H.: Interdisciplinary system model
for agent-supported mechatronic design. In: 18th International Conference on En-
gineering Design, ICED11, Copenhagen, Denmark (August 2011)

302

Design Deisions for UML and MOF based

Domain-spei� Language Models: Some Lessons

Learned

∗

Bernhard Hoisl

1,2
, Stefan Sobernig

1
, Sigrid Shefer-Wenzl

1,2
, Mark

Strembek

1,2
, and Anne Baumgrass

1,2

1
Institute for Information Systems, New Media Lab,

Vienna University of Eonomis and Business (WU Vienna)

2
Seure Business Austria Researh (SBA Researh)

{firstname.lastname}�wu.a.at

Abstrat. In reent years, the development of domain-spei� modeling

languages (DSMLs) that are based on the MOF and/or UML has beome

a popular option in the model-driven development ontext. As a result,

the model-driven software engineering ommunity olleted many design

and implementation experienes. However, most researh ontributions

on this topi do not aim at supporting the DSML development proess as

a repetitive deision-making proess. In this paper, we doument some of

our experienes gathered from developing ten MOF/UML-based DSMLs

and present our experienes in a reusable manner via deision templates.

In partiular, this paper fouses on design deisions for the initial phase

of the DSML development proess, i.e. the de�nition of the DSML's ore

language model.

Keywords: Domain-spei� modeling, Domain-spei� languages, De-

sign deisions, UML, Model-driven development

1 Introdution

In model-driven development (MDD), a domain-spei� modeling language

(DSML) is a speialized modeling language tailored for a partiular appliation

domain (e.g., aess ontrol, bakup poliies, or system auditing) (see, e.g.,

[1,2,3,4℄). Thus, a DSML's abstration level, its expressiveness, and onrete

syntax are ustomized for software developers and for experts in the DSML's

appliation domain. Often DSMLs are developed based on the Uni�ed Model-

ing Language (UML) [5℄. The UML an leverage industry-grade tool support,

sienti� evaluations of its semanti foundations, and standardized modeling

extensions (e.g., SoaML for servie-oriented systems [6℄). The UML bene�ts

∗

This work has partly been funded by the Austrian Researh Promotion Ageny

(FFG) of the Austrian Federal Ministry for Transport, Innovation and Tehnology

(BMVIT) through the Competene Centers for Exellent Tehnologies (COMET K1)

initiative and the FIT-IT program.

303

2 Deisions for UML and MOF based DSL Models: Lessons Learned

from its organizational maintenane through the Objet Management Group

(OMG) and builds upon a standardized metamodel: the Meta Objet Faility

(MOF) [7℄. With this, the MOF and the UML provide a rih DSML development

toolkit.

In reent years, a number of ontributions disussed the development of

domain-spei� languages (DSLs). Examples inlude empirial researh evidene

(e.g., ase study researh [8,9,10℄), DSL development proesses [1℄, develop-

ment guidelines and patterns [2,3,4,11℄, or seleted faets of UML-based DSMLs

[12,13℄. Despite the availability of suh soures of design knowledge, most ontri-

butions fall short in one or several respets: Many experienes lak empirially

gathered evidene (e.g., an expliitly doumented researh design). Many are

not spei�ally tailored toward DSMLs in general, or MOF/UML-based DSMLs

in partiular, but rather toward textual DSLs. Others re�et design knowledge

whih is spei� to a partiular toolkit (e.g., the Elipse Modeling Framework,

EMF). Our work omplements the experienes mentioned above by providing

reusable design knowledge for designing the ore language model of MOF/UML-

based DSMLs; i.e. spei� options, onsequenes, and dependenies of deisions

in this partiular phase of DSML development.

The purpose of this paper is to present our experienes, lessons learned, and

some of the hallenges we faed while developing ten MOF/UML-based DSMLs

over the last years. For an overview of these projets see Table 1 (P1�P10). From

these experienes, we extrated two deision points with orresponding deision

options for the initial DSML development phase of onstruting the ore language

model. The ore language model aptures all relevant domain abstrations and

spei�es the relations between these abstrations. Aordingly, we de�ned a ore

language model for eah of our DSMLs. We doument the design deisions in

a reusable manner by adopting deision templates inspired by related work on

doumenting arhitetural design deisions (see, e.g., [3℄). The basi phases of

DSML development are adopted from [1℄.

The remainder of the paper is strutured as follows: In Setion 2, we intro-

due the proess model of DSML development aording to [1℄. In Setion 3, we

desribe the relations between the deisions and the respetive deision options

in a strutured manner. Limitations of our ontribution are disussed in Setion

4. Setion 5 provides an overview of related work and Setion 6 onludes the

paper.

2 Bakground: DSML Development Phases

Before we outline the lessons learned from our DSML projets (see Table 1), we

give an overview of the DSML development proess applied in our projets (for

a detailed disussion see [1℄). The following steps were performed iteratively to

build the DSMLs:

De�ne DSML ore language model One �rst de�nes an initial ore lan-

guage model and the orresponding language model onstraints for the target

domain. By following a domain analysis method, suh as domain-driven design

304

Deisions for UML and MOF based DSL Models: Lessons Learned 3

Objetives Domain

P1

An approah to model interdependent onern behavior using

extended UML ativity models [14℄.

Separation of onerns

P2

An integrated approah for modeling proesses and proess-

related RBAC models (roles, hierarhies, statially and dynam-

ially mutual exlusive tasks et.) [15℄.

Business proesses, role-

based aess ontrol

(RBAC)

P3

A UML extension for an integrated modeling of business pro-

esses and proess-related duties; partiularly the modeling of

duties and assoiated tasks in business proess models [16℄.

Business proesses,

proess-related duties

P4

An approah to provide modeling support for the delegation of

roles, tasks, and duties in the ontext of proess-related RBAC

models [17℄.

Business proesses, delega-

tion of roles, tasks, and du-

ties

P5

A UML extension to model on�dentiality and integrity of ob-

jet �ows in ativity models [18℄.

Data on�dentiality and

integrity

P6

UML modeling support for the notion of mutual exlusion and

binding onstraints for duties in proess-related RBAC models

[19℄.

RBAC (onsisteny heks

for duties)

P7

Inorporation of data integrity and on�dentiality into the

model-driven development of proess-driven servie-oriented ar-

hitetures [20℄.

Integrity and on�dential-

ity for servie invoations

P8

Integration of ontext onstraints with proess-related RBAC

models and thereby supporting ontext-dependent task exeu-

tion [21℄.

Business proesses, RBAC,

ontext onstraints

P9

A generi UML extension for the de�nition of audit requirements

and spei�ation of audit rules at the modeling-level [22℄.

Audit rules

P10

An approah based on model transformations between the valid

strutural and behavioral runtime states that a system an have

[23℄.

Model transformation

Table 1. Overview of onduted DSML development projets.

(see, e.g., [24℄), domain abstrations are identi�ed and form the language model

of a DSML. Beause the language model often annot apture all restritions

and/or semanti properties of the DSML elements, language model onstraints

are added, if neessary. This phase results in the DSML ore language model and

a atalog of DSML language model onstraints.

De�ne DSML onrete syntax In this phase, graphial or textual notation

symbols as well as omposition and prodution rules are de�ned. The DSML

ore language model and the DSML language model onstraints serve as input

to produe the DSML onrete syntax spei�ation.

De�ne DSML behavior The behavior spei�ation of a DSML determines

how the DSML elements interat to produe the behavior intended by the DSML

designer. Syntax and behavior of a DSML are usually de�ned in parallel. The

DSML behavior spei�ation (e.g., ontrol �ow models, formal textual spei�a-

tions) is the output of this phase.

DSML platform integration All artifats de�ned for a DSML are mapped

to the features of a seleted platform, either by extending an existing platform

or by developing a new tool set. Platform integration is ahieved by de�ning

model transformations (see, e.g., [25℄) to onvert a model into another platform-

spei� model (model-to-model transformation, M2M) or into mahine-readable

software artifats (model-to-text transformation, M2T).

305

4 Deisions for UML and MOF based DSL Models: Lessons Learned

#
Deision/Option

P1 P2 P3 P4 P5 P6 P7 P8 P9 P10

D1
Language model formalization

O1.1
M1 lass model

O1.2
Pro�le de�nition × × × × ×

O1.3
Metamodel extension × × × × × × × × × ×

O1.4
Metamodel modi�ation

O1.5
Combination of options

1

⊂ ⊂ ≍ ⊂ ⊂

D2
Language model onstraints

O2.1
Expliit onstraint expressions × × × × × × × × × ×

O2.2
Code annotations

O2.3
Constraining M2T transformations × ×

O2.4
Textual annotations × × × ×

O2.5
Combination of options

1

≍ ⊂ ≍ ⊂ ⊂ ⊂

O2.6
None

Table 2. Overview of design deision points and options.

3 Colleted Deisions on the Core Language Model

Most of our DSMLs (see Table 1) provide modeling support for di�erent types of

seurity aspets in a business proess ontext. P10 [23℄ is an exeption and aims

at desribing program transformations in dynami programming environments.

Eah of the ten DSML projets adopted the development proess skethed in

Setion 2. However, due to di�ering requirements, we did not always perform all

DSML development phases. For example, we do not provide platform integration

for P10. Thus, to doument our experienes from the ten projets, we fous on

a single phase and on two spei� deisions that appeared in eah of the ten

projets. In partiular, this paper reports on the ore language model de�nition

and on the respetive design deisions.

For eah ase presented in Table 1, we identi�ed di�erent deision options.

The development of a DSML ore language model requires two important dei-

sions: DSML language model formalization (Setion 3.1) and de�ning language

model onstraints (Setion 3.2). Table 2 summarizes these options for both de-

sign deision points and lists the options adopted for eah of the ten ases. Fig.

1 depits an overview of the two deisions, the orresponding options, as well as

the interdependenies between the deisions and their options. These relations

are then disussed for eah deision in the respetive Consequenes sub-setion

(see below).

3.1 D1 Language Model Formalization

Deision In whih way should the domain onepts be formalized?

Context Domain abstrations are identi�ed and form the language model of

a DSML (i.e., the abstrat syntax). This language model de�nition an be ex-

pressed, for instane, in a narrative text form, with mathematial expressions

(e.g., set algebra), or via a modeling language (e.g., the UML). The language

model de�nition serves as input for the phase of formalizing the domain on-

struts into the ore language model expressed via the UML.

1

⊂ options omplementary; ≍ options equivalent

306

Deisions for UML and MOF based DSL Models: Lessons Learned 5

D1

Language model

formalization

O1.1 Class

model

O1.2 Profile

definition

O1.3 MM

extension

O1.4 MM

modification

O1.5 Combi-

nation

D2

Language model

constraints

O2.1 Explicit

constraints

O2.2 Code

annotations

O2.3 M2T

constraints

O2.4 Textual

annotations

O2.6 None

O2.5 Combi-

nation

R4

R6

R5

R2

R1

R3

Fig. 1. Relations (R1�R6) between deision options.

Options For UML-based DSMLs, the language model an be de�ned within the

boundaries of the modeling language via dediated language extension onstruts

(suh as UML pro�les) or by extending the modeling language to provide the

required semantis (see, e.g., [5,26℄).

O1.1 M1 lass model : UML lass models are an ad-ho instrument to for-

malize domain abstrations. Domain onepts an be expressed as lasses and

relationships as assoiations.

O1.2 Pro�le de�nition: Pro�les are a language extension option to tailor the

UML for di�erent purposes. A pro�le onsists of a set of stereotypes whih de�ne

how an existing UML metalass may be extended.

O1.3 Metamodel extension: A metamodel extension introdues, for instane,

new metalasses and/or new assoiations between metalasses (MOF-based ex-

tension [7℄).

O1.4 Metamodel modi�ation: In ontrast to a metamodel extension, existing

metalasses of the UML metamodel are modi�ed; e.g., by hanging the type of

a lass property or by deleting existing assoiations (MOF-based extension [7℄).

O1.5 Combination of options : A ombination may inlude the de�nition of a

metamodel extension as well as an equivalent pro�le de�nition (e.g., P7). Simi-

larly, stereotype de�nitions an be provided to aompany a metamodel modi�-

ation (e.g., P9).

Drivers

Domain spae: The degree of overlap between the domain spae of the DSML

onepts and the general purpose language onstruts (i.e., the UML spei�a-

tion) has a diret impat on whether a pro�le de�nition is su�ient or on whether

a metamodel extension/modi�ation is needed (O1.2�O1.4). In general, a UML

extension is reusable if it is ompliant with the UML standard.

DSML expressiveness : For instane, a UML pro�le (O1.2) an only speialize

the UML metamodel in suh a way that the pro�le semantis do not on�it with

the semantis of the referened metamodel. Therefore, pro�le onstraints may

307

6 Deisions for UML and MOF based DSL Models: Lessons Learned

only de�ne well-formed rules that are more onstraining (but onsistent with)

those spei�ed by the metamodel [5℄. In ontrast, a metamodel extension/modi-

�ation (O1.3 and O1.4) is only limited by the onstraints imposed by the MOF

metamodel.

Portability and evolution: A metamodel extension/modi�ation (O1.3 and

O1.4) reates a fork of a ertain version of the UML spei�ation. The metamodel

does not inherit revisions oming from newly released OMG spei�ations and

an deviate from the UML or MOF standard.

DSML integration: Available DSMLs, software systems, and tool support

have a diret impat on the design proess of a DSML in terms of integration

possibilities. For instane, the UML spei�ation de�nes a standardized way to

use ions and display options for pro�les (O1.2). Tool support for authoring

UML lass models and pro�les (O1.1 and O1.2) is widely available.

Consequenes (see Fig. 1)

R1 Constraint limitations for lass models : A lass model de�nes a language

model at the UML instane level (i.e. at the M1 level, see [7℄). This means,

no metamodel is de�ned to re�et the domain spae and, thus, domain onepts

an neither be instantiated nor expliitly onstrained for their usage as modeling

onstruts. Thus, restritions an only be de�ned in terms of text annotations

attahed to the language model.

R2 Pro�le dependeny : Dependenies an our from ombined language

model formalizations. For instane, pro�les are dependent on the UML meta-

model. If a pro�le is ombined with a metamodel modi�ation, hanges to the

metamodel an lead to impliit and unwanted hanges a�eting the de�ned

stereotypes (e.g., if a stereotype-extended metalass is modi�ed).

Examples In all DSML projets, we formalized the language models as meta-

model extensions (O1.3). Additionally, pro�les (O1.2) were employed in P1, P3,

P7, P9, and P10. Therefore, we e�etively adopted ombined strategies (O1.5).

In order to be ompliant with the OMG spei�ations, we did not onsider modi-

fying the UML metamodel (O1.4). As an example, Fig. 2 depits an exerpt from

a UML extension (taken from P7). On the left hand side, it shows a UML pakage

de�nition alled SeureObjetFlows::Servies as an example of a metamodel

extension, on the right hand side, it shows a UML pro�le spei�ation named

SOF::Servies. Mappings between these two language-model representations

are provided as M2M transformations. Both UML ustomizations provide the

same modeling apabilities for using one of our UML seurity extensions (for

details see [18,20℄) with the SoaML spei�ation [6℄.

3.2 D2 Language Model Constraints

Deision Do we have to de�ne onstraints over the ore language model(s)? If

so, how should these onstraints be expressed?

Context A ore language model has been formalized in the UML, using either a

UML metamodel extension/modi�ation, a UML pro�le, or a UML lass model

(see Setion 3.1). The resulting language model desribes the domain-spei�

language in terms of its language elements and their interrelations. The de�nition

308

Deisions for UML and MOF based DSL Models: Lessons Learned 7

<<metamodel>>

SecureObjectFlows::Services

<<metaclass>>

ServiceInterface
(from SoaML::Services)

+ isStrict:Boolean = false

<<metaclass>>

SecureInterface

<<metaclass>>

SecureActivityParameterNode

<<metaclass>>

SecurePin

<<metaclass>>

SecureDataStoreNode

<<profile>>

SOF::Services

<<metaclass>>

Class
(from Kernel)

+ isStrict:Boolean = false

<<stereotype>>

SecureInterface

<<stereotype>>

secure

<<stereotype>>

ServiceInterface
(from SoaML)

Fig. 2. Exemplary UML metamodel extension and pro�le de�nition [20℄.

of these interrelations is limited through the expressiveness of the MOF and

the UML (e.g., part-of relations). A strutural UML model, however, annot

apture ertain ategories of onstraints over domain onepts that are relevant

for the desription of the target domain. Examples are invariants for domain

onepts, pre-onditions and post-onditions, as well as guards (referred to as

stati onstraints, hereafter). As a result, the language model formalization ould

be inomplete or ambiguous.

If the language model has been realized by reating multiple formalizations

(e.g., multiple pro�les), there is an additional risk of introduing inonsistenies

provided that the DSML an be used in di�erent on�gurations (e.g., di�erent

pro�le ompositions). Consider, for example, pro�les whih provide a bridge

between two UML extensions.

Options

O2.1 Constraint-language expressions : One an make language model on-

straints expliit using a onstraint-expression language, for instane, via the Ob-

jet Constraint Language (OCL) or via the Epsilon Validation Language (EVL)

in Elipse.

O2.2 Code annotations : The language model and its elements are enrihed

through annotations whih ontain expressions in the host language (or a lan-

guage embedded within the host language). For example, this an be realized by

using model annotations and UML's OpaqueExpression [5℄.

O2.3 Constraining M2T transformations : The onstraints over the language

model are expressed at the level of transformation templates. That is, template

expressions ontain heks (e.g., onditional statements based on model nav-

igation expressions) whih test model instanes for the impliit �t with orre-

sponding domain onstraints; e.g., onditional Epsilon Transformation Language

(ETL) statements based on Epsilon Objet Language (EOL) expressions.

O2.4 Textual annotations : Certain onstraints (e.g., temporal bindings)

eliited from the target domain annot be aptured su�iently via evaluable

expressions (i.e., onstraint language expressions, ode annotations) and/or the

onstraints serve a doumentary purpose (to the domain expert). In suh ases,

309

8 Deisions for UML and MOF based DSL Models: Lessons Learned

unstrutured text annotations may apture onstraint desriptions meant for

the human reader only (e.g., via UML omments).

O2.5 Combination of options : For instane, textual annotations are used as

an addition to onstraint-language expressions.

O2.6 None: Stati onstraints over the language model are not made expliit

in (or along with) the language model.

Drivers

Constraint formalization: In early iterations (e.g., DSML prototyping), on-

straints might not be expressed via well-formed, syntatially valid onstraint-

language expressions, but rather as pseudo-expressions or unstrutured text.

With the language model maturing during subsequent iterations these annota-

tions an be transformed into evaluable expressions.

Automated language model heking : Depending on whether tool integration

for model heking is a requirement, the options O2.1�O2.3 are andidates. A

driver toward either option is the intended model-heking time. Relevant points

in time follow from the model formalization option adopted (e.g., lass model

vs. metamodel-based) and the platform-support (model-level or instane-level

heks). Language-model heking based on template expressions (O2.3) real-

izes the latest possible heking point. Therefore, this option does not o�er any

onstraint-based feedbak during model development.

Native language model onstraints : Constraint-language expressions are de-

veloped with the purpose of integrating (i.e., navigating and heking) with the

(meta-)model representations. Examples are standard-ompliant and vendor-

spei� OCL expressions for the UML, as well as EVL expressions and Java-

oded onstraints over seondary Eore representations of UML models (Elipse

EValidator framework).

Maintainability : Expliitly stating model onstraints (O2.1 through O2.3)

reates strutured text artifats whih must be maintained along with the model

artifats (e.g., the XMI representation). Toolkits and their model representations

o�er di�erent strategies for this purpose, for instane, embedding onstraints into

model elements (i.e., model annotations, suh as UML omments), maintaining

onstraint olletions as external resoures (e.g., separate text �les), or editor

integration. Eah strategy a�ets the artifat omplexity and the e�ort needed

to keep the onstraints and the models synhronized.

Portability : If the portability of onstraints between di�erent MDD toolkits

(e.g., Elipse MDT, Rational Software Arhitet, MagiDraw, Dresden OCL)

is a mandatory requirement, the platform-dependent options O2.2 and O2.3

an be exluded. However, due to the version inompatibilities and the di�erent

vendor-spei� onstraint-language dialets (e.g., Elipse MDT OCL), even O2.1

does not guarantee portability for the underspei�ed setions of the OCL/UML

spei�ations (e.g., navigating stereotypes in model instanes or for transitive

quanti�ers suh as losure [27℄).

Consequenes (see Fig. 1)

R3 Conformane between language model and onstraints : Constraints on the

language model an be de�ned separately from the referening metamodel (e.g.,

310

Deisions for UML and MOF based DSL Models: Lessons Learned 9

using ode annotations; O2.2) or at a later stage (e.g., for M2T transformations;

O2.3). It must be ensured that languagemodel onstraints do not ontradit their

language model formalization and vie versa. Moreover, onstraints may need to

be adapted when the orresponding metamodel hanges (e.g., OCL navigation

expressions).

R4 Constraint inonsistenies : A ombination of di�erent language model

formalizations (e.g., a UML pro�le and a metamodel extension; O1.5) may re-

quire the dupliation and modi�ation of expliit onstraint de�nitions.

R5 Unambiguous language model : If no further onstraints to the language

model are spei�ed, the language model must be fully and unambiguously de-

�ned using the hosen formalization option and their impliitly enfored restri-

tions (e.g., by using pro�les and, thus, inheriting all semantis from the UML

metamodel; O1.2).

R6 Impossible onstraint evaluation: Some onstraints annot be aptured

by the means of onstraint languages and the underlying language models, ode

annotations, or model transformation templates (see, e.g., [5℄; O2.1�O2.3). Suh

onstraints have to be provided as text annotations in a natural language (O2.4).

These onstraints either have a doumentation purpose only, or they serve for

porting the onstraints to another environment as they are not bound to a

onrete expression form.

Examples In our DSMLs, we enountered all options but ode annotations

(O2.2) and entirely unonstrained language models (O2.6). So far, we provide

onstraint-language expressions (O2.1) in the OCL for all of our ases. This is

beause preise exeution semantis were to be expressed in terms of the founda-

tions of UML ativities (token �ows, e.g., in P1) and of the UML state mahines

(state/transition; in P10). In eight out of ten DSMLs (P2�P9), these semantis

are desribed by a generi and MOF-ompliant metamodel, as well as orre-

sponding metamodel extensions. The generi onstraints were then mapped to a

UML-based language formalization (i.e. the atual language model and the re-

spetive OCL expressions). Code annotations (O2.2) were not onsidered beause

the additional model onstraints should not be spei� to a partiular platform

(e.g., model representation APIs, generator language). For two DSMLs (P7, P9),

we additionally inorporated onstraining M2T transformations (O2.3). Textual

annotations (O2.4) are either used to omplement OCL onstraints (P5, P8,

P10) or as full substitutes (P2) for otherwise formally expressed onstraints.

Constraint 1 : The operands spei�ed in a ContextCondition are either ContextAt-

tributes or ConstantValues.

ontext ContextCondition inv:

self.expression.operand .olAsType(OperandType)->forAll(o |

o.olIsKindOf(ContextAttribute) or

o.olIsKindOf(ConstantValue))

Constraint 5 : The ful�lled

CD

Operations must evaluate to true to ful�ll the orrespond-

ing ContextCondition.

311

10 Deisions for UML and MOF based DSL Models: Lessons Learned

As an example for these two di�erent purposes, onsider the above exerpt

from P8: For an ativity, eah ation an be guarded by a onstraint whose on-

ditions refer to a set of operands and heking operations. At the instane-level

(M0), the operations are alled to evaluate whether an ation should be entered,

depending upon some ontextual state. Constraint 1 shows a omplementary

textual annotation. Constraint 5 exempli�es a onstraint expressed in natural

language due to a model-level mismath: While the onstraint is aptured at the

language-model level (M2), the operation alls (whose boolean return values are

ombined to yield the runtime evaluation of the guard) beome manifest at the

ourrene level of an ativity instane (M0) only.

4 Limitations

The most important limitations of the work presented in this paper are that

1) our lessons learned result only from a olletive experiene and that 2) the

underlying deisions were taken by the same group of researhers who developed

the ten DSMLs. We reported deisions being harateristi for a single phase

(i.e. de�ning the DSML ore language model) and their interdependenies. Do-

umenting the remaining phases (see Setion 2) is future work. Moreover, there is

the risk of a tehnology bias given that the ten DSML projets were all performed

in a spei� tehnology ontext (e.g., MOF/UML, OCL, Elipse modeling tools).

Methodially, this paper presents the results of a narrative synthesis [28℄ of

our DSML development experienes. Therefore, by emphasizing a preseleted

proess model and one of its phases [1℄, we may have negleted design deisions

beyond the sope of this approah. Other risks are the disagreement among the

authors during the synthesis proess and the dependene of the synthesis results

on the review performane of eah author (time onstraints, level of experiene).

To mitigate these, we onduted multiple re�ning iterations over the deision

templates and the deision relations, under shifting roles of data heker and

data extrator.

5 Related Work

Related work on DSL development [1,2,3,4,8,9,10,11,12,13℄ was already outlined

in Setion 1. Below, we review the work relevant for our methodial approah.

For re�eting and synthesizing the deision-related �ndings from our DSML-

development projets, we adapted the guidelines on onduting narrative synthe-

ses proposed by [28℄. That is, we seleted a proess model and its phases as the

impliit �theory� underlying our DSML projets. We then olleted meta-data

about the primary works (e.g., partiipants, setting, outomes, target domain,

MDD tehnologies). Based on the seleted �theory� (i.e., phases and develop-

ment artifats), we then haraterized the deisions taken in eah development

projet. In partiular, we adopted previously de�ned deision templates.

The pratie of doumenting design deisions in a template-based or model-

based manner has been proposed for arhitetural design deisions (see, e.g.,

312

Deisions for UML and MOF based DSL Models: Lessons Learned 11

[29℄). In our work, we share the primary motivation of doumenting reusable

design deisions, i.e., deisions and options whih are harateristi for every

deision-making proess in a given tehnial domain.

6 Conluding Remarks

In this paper, we presented lessons learned from ten DSML development projets

in the form of a narrative synthesis. We doumented MOF/UML-based deision

options and relations between them for the phase of de�ning the ore language

model for a DSML in a strutured and reusable form. By doing so, we pro-

vide deision support for future deision-making proesses, failitate deision

doumentation, and o�er sa�olding for making deisions under inomplete or

hanging requirements (i.e., in early stages of developing or prototyping). Al-

though we espeially fous on design deisions for MOF/UML-based DSMLs,

ertain deision options do also apply to other modeling languages used in MDD

proesses. In our future work, we will doument additional deision points to

over the remaining phases of the DSML development proess.

Referenes

1. Strembek, M., Zdun, U.: An Approah for the Systemati Development of

Domain-Spei� Languages. Software: Pratie and Experiene (SP&E) 39(15)

(2009) 1253�1292

2. Mernik, M., Heering, J., Sloane, A.: When and How to Develop Domain-spei�

Languages. ACM Computing Surveys (CSUR) 37(4) (2005) 316�344

3. Zdun, U., Strembek, M.: Reusable Arhitetural Deisions for DSL Design: Foun-

dational Deisions in DSL Projets. In: Pro. of the 14th European Conferene on

Pattern Languages of Programs (EuroPLoP). (2009)

4. Spinellis, D.: Notable Design Patterns for Domain-spei� Languages. Journal of

Systems and Software 56(1) (2001) 91�99

5. Objet Management Group: OMG Uni�ed Modeling Language (OMG UML), Su-

perstruture � Version 2.4.1. Available at: http://www.omg.org/spe/UML (2011)

6. Objet Management Group: Servie oriented arhiteture Modeling Language

(SoaML) � Version 1.0. Available at: http://www.omg.org/spe/SoaML (2012)

7. Objet Management Group: OMG Meta Objet Faility (MOF) Core Spei�ation

� Version 2.4.1. Available at: http://www.omg.org/spe/MOF (2011)

8. Zdun, U.: A DSL Toolkit for Deferring Arhitetural Deisions in DSL-based

Software Design. Information and Software Tehnology 52(9) (2010) 733�748

9. Wile, D.: Lessons Learned from Real DSL Experiments. Siene of Computer

Programming 51(3) (2003) 265�290

10. Kelly, S., Pohjonen, R.: Worst Praties for Domain-Spei� Modeling. IEEE

Software 26(4) (2009) 22�29

11. Karsai, G., Krahn, H., Pinkernell, C. et al.: Design Guidelines for Domain Spei�

Languages. In: Pro. of the 9th OOPSLA Workshop on Domain-Spei� Modeling

(DSM). (2009)

12. Seli, B.: A Systemati Approah to Domain-Spei� Language Design Using

UML. In: Pro. of the IEEE International Symposium on Objet-Oriented Real-

Time Distributed Computing (ISORC), IEEE (2007)

313

12 Deisions for UML and MOF based DSL Models: Lessons Learned

13. Robert, S., Gérard, S., Terrier, F. et al.: A Lightweight Approah for Domain-

Spei� Modeling Languages Design. In: Pro. of the 35th Euromiro Conferene

on Software Engineering and Advaned Appliations, IEEE (2009)

14. Strembek, M., Zdun, U.: Modeling Interdependent Conern Behavior using Ex-

tended Ativity Models. Journal of Objet Tehnology 7(6) (2008) 143�166

15. Strembek, M., Mendling, J.: Modeling Proess-related RBAC Models with Ex-

tended UML Ativity Models. Information and Software Tehnology 53(5) (2010)

16. Shefer, S., Strembek, M.: Modeling Proess-Related Duties with Extended UML

Ativity and Interation Diagrams. In: Pro. of the International Workshop on

Flexible Work�ows in Distributed Systems. (2011)

17. Shefer, S., Strembek, M.: Modeling Support for Delegating Roles, Tasks, and Du-

ties in a Proess-Related RBAC Context. In: Pro. of the International Workshop

on Information Systems Seurity Engineering (WISSE), Springer, LNBIP (2011)

18. Hoisl, B., Strembek, M.: Modeling Support for Con�dentiality and Integrity of

Objet Flows in Ativity Models. In: Pro. of the 14th International Conferene

on Business Information Systems (BIS), Springer, LNBIP (2011)

19. Shefer, S.: Consisteny Cheks for Duties in Extended UML2 Ativity Models.

In: Pro. of the International Workshop on Seurity Aspets of Proess-aware In-

formation Systems (SAPAIS), IEEE (2011)

20. Hoisl, B., Sobernig, S.: Integrity and Con�dentiality Annotations for Servie In-

terfaes in SoaML Models. In: Pro. of the International Workshop on Seurity

Aspets of Proess-aware Information Systems (SAPAIS), IEEE (2011)

21. Shefer-Wenzl, S., Strembek, M.: Modeling Context-Aware RBAC Models for

Business Proesses in Ubiquitous Computing Environments. In: Pro. of the 3rd

International Conferene on Mobile, Ubiquitous and Intelligent Computing. (2012)

22. Hoisl, B., Strembek, M.: A UML Extension for the Model-driven Spei�ation of

Audit Rules. In: Pro. of the 2nd International Workshop on Information Systems

Seurity Engineering (WISSE'12), Springer, LNBIP (2012)

23. Zdun, U., Strembek, M.: Modeling Composition in Dynami Programming Envi-

ronments with Model Transformations. In: Pro. of the 5th International Sympo-

sium on Software Composition, LNCS, Vol. 4089, Springer (2006)

24. Evans, E.: Domain-driven Design: Takling Complexity in the Heart of Software.

Addison-Wesley (2004)

25. Mens, T., Gorp, P.v.: A Taxonomy of Model Transformation. Eletroni Notes in

Theoretial Computer Siene 152 (2006) 125�142

26. Bruk, J., Hussey, K.: Customizing UML: Whih Tehnique is Right for You?

Available at: http://www.elipse.org/modeling/mdt/uml2/dos/artiles/

Customizing_UML2_Whih_Tehnique_is_Right_For_You/artile.html (2008)

27. Objet Management Group: OMG Objet Constraint Language (OCL) � Version

2.3.1. Available at: http://www.omg.org/spe/OCL (2012)

28. Cruzes, D., Dybå, T.: Synthesizing Evidene in Software Engineering Researh.

In: Pro. of the International Symposium on Empirial Software Engineering and

Measurement (ESEM). ACM (2010)

29. Obbink, H., Kruhten, P., Kozazynski, W. et al.: Software Arhiteture Review

and Assessment (SARA) Report, Version 1.0. Available at: http://kruhten.om/

philippe/arhiteture/SARAv1.pdf (2002)

314

 315

 316

Tools and Posters Track

Julia Rubin (ed.)

IBM Research, Haifa, Israel

317

Preface

ECMFA 2012 holds tool demonstration and poster sessions whose goals are to
provide an opportunity for researchers and practitioners to present their most
recent experiences in the field of model-based engineering, show-case their tools
and have informal discussions about both the latest advances and the challenges
ahead. These proceedings provide the tool papers and poster abstracts of those
sessions.

This year we accepted 6 out of 9 tool presentations and 4 posters. The sub-
missions cover a spectrum of topics related to model-based engineering, including
model-based engineering of embedded systems, architecture design optimization,
model query languages, performance modelling and prediction, and model-driven
product line engineering.

June 2012 Julia Rubin
Tools and Posters Chair

ECMFA 2012

318

Tool Papers

319

CommentTemplate: A Lightweight
Code Generator for Java Developers

Jendrik Johannes, Mirko Seifert, Christian Wende, and Florian Heidenreich

DevBoost GmbH
D-10179, Berlin, Germany

Technische Universität Dresden
Chair of Software Technology
D-01062, Dresden, Germany

{firstname.lastname}@devboost.de

Abstract. In this demo we show CommentTemplate, which realises
code generation features, as known from model-driven development tools,
as a Java language extension. As such, CommentTemplate makes con-
cepts from model-driven development easily accessible to Java program-
mers. It is realised with Eclipse modelling technology.

1 Introduction

One of the fundamental technologies of model-driven development approaches
is code generation. Hence, many code generation technologies emerged over the
years (e.g, [1–9] and many more).

An issue model-driven development approaches, and code generation in par-
ticular, face when originating from academia, is their adoption by the “common”
developer in industry. First, an approach needs adequate tool support above the
level of academic prototyping. Second, such tools should be easily accessible for
the developer. That is, the developer should be able to immediately start work-
ing with the tools without the need to acquire more theoretical knowledge in the
beginning (flat learning curve).

We previously developed the Java Model Printer and Parser (JaMoPP) [10],
to bring Eclipse modelling and the Java language closer together. JaMoPP con-
sists of a Java metamodel (defined in EMF’s Ecore) and the tooling to parse
Java source (and byte) code into instances of that metamodel as well as to print
instances back to Java source code. This increases integration of modelling and
Java both on the modelling and metamodelling level.

CommentTemplate is implemented based on JaMoPP. It takes the important
features of existing code generation languages, which are not offered by Java
itself already, and implements those as a light-weight extension for Java instead
of providing a new language. This demonstrates how fundamental features of
model-driven technology can be realised closely to an existing and well-accepted
programming language to make these features, which are valuable in their own
right, more accessible for programmers.

320

1 @CommentTemplate
2 public String helloWorld() {
3 String greeting = "Hello";
4 /*<html>
5 <head><title>greeting world!</title></head>
6 <body>*/
7 for (int i = 1; i <= 5; i++) {
8 String greeted = "World" + i;
9 /*

10 greeting greeted!
*/
11 if (greeted.equals("World2")) {
12 /*
13 greeted, you are the best!
*/
14 }
15 }
16 /*
17 </body>
18 </html>*/
19 return null;
20 }

Listing 1. HelloWorld @CommentTemplate method

2 Demo Description

CommentTemplate is a Java language extension that makes use of and extends
the following Java language elements: multi-line comments, methods, local vari-
ables and annotations. It is realized as an open-source Eclipse plugin that Java
developers can install without effort into their Eclipse Java development envi-
ronment. (cf. Section 3 for installation instructions). In the Demo, we will first
explain CommentTemplate on an example—described in the following—and then
show different cases of how CommentTemplate is used in customer projects.

A code generation template written in CommentTemplate is shown in List-
ing 1. A template is defined as a Java method annotated with @CommentTemplate
that has the return type String. Inside the Method, one can use multi-line com-
ments (/* */ notation) to define fragments of the template. Around these frag-
ments, arbitrary Java code can be written and used to formulate, for example,
loops (Line 7) or conditions (Line 11). Furthermore, one can refer to local vari-
ables of type String that are declared before the corresponding template frag-
ment. In the example, the variable greeting (declared in Line 3) is referred to
two times inside template fragments (Lines 5 and 10).

A @CommentTemplate method can be called as any Java method inside arbi-
trary Java code. However, it will return the expanded template as String. That
is, all template fragments are appended and the variables inside the fragments
are filled with their values. In the example of Listing 1, the String shown in
Listing 2 is produced.

This sums up the basic features of CommentTemplate. However, Comment-
Template offers two additional annotations which help with syntax conflicts be-
tween templates and output syntax.

First, one can observe, that no special quotation is used to mark variables
in a template fragment in the example (e.g. greeting in Line 5). Other code
generation tools usually define a fixed symbol for escaping such variables. This

321

1 <html>
2 <head><title>Hello world!</title></head>
3 <body>
4 Hello World1!

5 Hello World2!

6 World2, you are the best!

7 Hello World3!

8 Hello World4!

9 Hello World5!

10 </body>
11 </html>

Listing 2. Expanded Hello World template of Listing 1

is sometimes problematic, because depending on which output is generated,
escape symbols can conflict with the output syntax. CommentTemplate does
not define such a symbol itself. However, it allows the user to do so by of-
fering the @VariableAntiQuotation annotation which takes a String format-
ting pattern as argument. In the example, we could add an annotation like
@VariableAntiQuotation("#%s#") to define that variables should be enclosed
in # characters. In the example in Line 5, we would then need to write #greeting#
to a access the greeting variable.

Second, CommentTemplate still relies on one problematic fixed symbol, which
is */ to end a template fragment. To generate this symbol in the output (e.g.,
when generating Java code with comments), an additional feature is needed.
Again, usually, a fixed escape symbol, to escape such symbols which are part
of the template language itself, is offered. CommentTemplate makes this con-
figurable by offering the @ReplacementRule annotation. This annotation takes
two arguments, a pattern and a replacement, which allows the specification of a
replacement for a certain String. For the problem described above, one can use
@ReplacementRule(pattern="#/", replacement="*/"), which replaces all oc-
curences of #/ with */. #/ can then be used as an alternative for */.

Both @VariableAntiQuotation and @ReplacementRule can be applied on
the level of single @CommentTemplate methods but also on the level of classes.
This allows a fine grained control of which escape characters are used where and
helps to avoid syntax conflicts with the output syntax.

CommentTemplate was motivated by the functionalities and ideas behind
existing code generation languages and language features such as JET, EGL,
Acceleo, Xpand, Xtend2, MOFScript Velocity, StringTemplate or JSP [1–9]. The
idea of compiling the templates to Java source code can be found in JET [1],
Xtend2 [5] and JSP [9]. The separation of template and output formatting by
a smart handling of tab characters was adopted from Xtend2 [5]. A limitation
of CommentTemplate is that it does not support expressions inside templates.
This can also be seen as a strength which forces the user to separate model
and view as publicized by StringTemplate [8]. Unique to CommentTemplate is
its closeness to Java and its lightweightness reflected in its low number of new
features added to Java and the fact that compiled templates consist of plain Java
code without any dependencies despite Java itself.

322

3 Installation Instructions and Screencast

CommentTemplate can be installed from the DropsBox update-site available at
http://www.dropsbox.org/update_trunk (category CommentTemplate).
A screencast of the CommentTemplate installation and usage is available at
http://www.dropsbox.org/CommentTemplate

Acknowledgments

This work is supported by:

References

1. Eclipse Foundation: JET Project. www.eclipse.org/emft/projects/jet (April 2012)
2. Rose, L.M., Paige, R.F., Kolovos, D.S., Polack, F.A.C.: The Epsilon Generation

Language. In: Proc. of ECMDA-FA’08. Volume 5095 of LNCS., Springer (2008)
3. Eclipse Foundation: Acceleo Project. www.eclipse.org/acceleo (April 2012)
4. Eclipse Foundation: Xpand Project. www.eclipse.org/modeling/m2t/?project=xpand

(April 2012)
5. Eclipse Foundation: Xtend Project. www.eclipse.org/xtend (April 2012)
6. Eclipse Foundation: MOFScript Project (April 2012)
7. Apache Software Foundation: Apache Velocity Project. velocity.apache.org (April

2012)
8. Parr, T.: StringTemplate. www.stringtemplate.org (April 2012)
9. Oracle: JavaServer Pages Technology. www.oracle.com/technetwork/java/javaee/jsp

(April 2012)
10. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between

Modelling and Java. In: Proc. of SLE’09. LNCS, Springer (March 2010)

323

A Model-based Tool for Automated
Quality-driven Design of System Architectures

Ramin Etemaadi and Michel R. V. Chaudron

Leiden Institute of Advanced Computer Science
Leiden University, Netherlands
{etemaadi,chaudron}@liacs.nl

Abstract. For designing a software system architecture, a large number
of quality properties needs to be addressed in nowadays complex software
systems. These quality properties are mostly conflicting and make the
problem very complex. In practice, software architects manually try to
come up with a set of different architectural designs and then try to iden-
tify the most suitable one among these. This process is time-consuming
and may lead the architect to suboptimal designs. We propose a tool
which is named AQOSA (Automated Quality-driven Optimization of
Software Architecture) to tackle this problem. AQOSA aids architects by
automatically synthesizing optimal solutions. To this end, AQOSA uses
a model-based approach to evaluate component-based software architec-
ture quality properties. It uses multi-objective evolutionary algorithms
to alternate architectural solutions. Finally, it suggests optimal solutions
along with the trade-offs between multiple quality objectives.

Keywords: AQOSA Tool ; Architecture Design Optimization ; Software
Design Quality ; Model-Driven Software Development (MDSD) ;

1 Introduction

The quality of the architectural design is critical factor for the successful de-
velopment of a software system. The architecture has deep impact on quality
properties such as performance, safety, security, energy consumption and cost.
Hence, methods and techniques are needed for designing good architectures to
be able to address various quality constraints in the early phases of system de-
velopment. In this paper the authors introduce an architect assistant tool for
automated software architecture design.

The contribution of this paper is introducing a tool for automated software
architecture design optimization that supports multiple quality attributes in-
cluding response time, processor utilization, bus utilization, safety, and cost. It
optimizes multiple quality attributes at once and supports multiple degrees of
freedom for varying architectural solutions.

The paper is organized as follows: Section 2 describes AQOSA tool briefly. In
Section 3 the demonstration plan for the tool is discussed. Finally, conclusions
are given in Section 4.

324

Options for

Additional Evaluators

AQOSA Architecture

Modeling Module

AQOSA IR Model

Evaluation Module

Optimization Module

Optimized

Architectures

Evaluator
Evaluator

Evaluator

Optimization

Module

Optimization

Algorithm

Input Model

Evaluator for

Quality Property X

Fig. 1: AQOSA Architecture

2 AQOSA Toolkit

2.1 Process

To describe the process of using the AQOSA tool, let us to start with inputs.
The tool takes as input:

– an initial functional-part of the architecture (i.e. components that provide
the needed functionality and their connections),

– a repository that contains a set of (specifications of) hardware and software
components,

– a set of typical usage scenarios,
– objective functions which are typically defined and normalized as the dis-

tance between the ideal performance for non-functional quality properties
and the actual performance.

Then, the AQOSA iterates through the following steps as a generation in the
evolutionary optimization. It iterates until some stopping criteria holds. This
can be number of generations or related to the objective function:

1. generate a new set of candidate architecture solutions. To this end, AQOSA
should know the degrees of freedom in the design. So, by using the repository
and these degrees of freedom it generates new alternative solutions.

2. evaluate the new set of candidate architecture solutions for multiple quality
properties. This works by generating analysis models from the architecture
model using model transformations and then analyzing these models.
Currently, the tool can support performance (response time, processor uti-
lization, bus utilization), safety and cost quality properties.

3. select a set of optimal (i.e. Pareto-front) solutions as parents to generate the
next offsprings in next iterations.

2.2 Modules

Figure 1 shows the architecture of the AQOSA toolkit. It contains three main
module which are collaborate together based on a central model (AQOSA-IR). It
generates the optimized architecture as output which is described in section 2.3.

325

Modeling Module Because AQOSA is designed to optimize architectures in a
wide range of domains, it aims to be independent on specific modeling languages.
Hence, it uses its own internal architecture representation, AQOSA intermediate
representation (AQOSA-IR). Figure 2a shows its editor.

Optimization Module The AQOSA optimization module tries to optimize the
architecture with respect to potentially contradicting quality attributes based on
evolutionary algorithms. To this end, it automatically generates new architecture
designs. This module has been implemented based on the Opt4J optimization
framework[1]. It supports Evolutionary Multi-Objective Algorithms (EMOA)
to improve the architecture such as NSGA-II, SPEA2, SMS-EMOA. Figure 2b
demonstrates the optimizer interface during optimization process.

Evaluation Module The AQOSA evaluation module gets an evaluation model
which is transformed from an AQOSA-IR and a decoded genotype for specific
evaluation purpose. It feeds these models to each evaluator and returns the
results to the optimization module. Rather than having built-in evaluators for
quality properties, the AQOSA tool allows state-of-the-art external evaluators to
be easily plugged into the framework. Performance attributes are implemented
by extending of JINQS[2] Queueing Networks (QN) library and safety by a Fault
Tree Analysis (FTA) method inspired by [3]. For instance in safety analysis, the
evaluation model contains a fault-tree which is derived from genotype and the
failure characteristics of components. This model will be sent to safety evaluator.

2.3 The Results

As output, AQOSA reports a set of optimal architectural solutions. This set is
a Pareto-front set of solutions with respect to the trade-off between different
quality objectives. For the analysis of the trade-off between solutions we have
developed a separate tool which plots solutions in 3D and allows architect to
manipulate solutions interactively.

(a) AQOSA-IR Editor Interface (b) Optimization Interface

Fig. 2: Tool Screenshots

326

3 Demonstration

The demonstration of the tool includes three major parts:

Model Inputs: Modeling of the tool input ingredients includes:

– model the system components that provide the needed functionality and
their connections,

– define the repository of hardware and software components which gives al-
ternatives to AQOSA for replacements,

– model some typical usage scenarios,
– specify the required objectives.

Optimization Setup: There are various settings which should be configured
properly for optimization process. This part shows how to configure optimization
algorithm, number of generations, mutation or crossover rates and etc.

Results Analysis: Afterward, a seperate tool could be used by the architect to
analyze the results of AQOSA tool interactively. So, he would be able to choose
the best suitable solution among the set of optimal candidates.

4 Conclusion

This paper introduces a tool for automated software architecture optimization
that supports multiple quality attributes. It offers a new tool to aid architects
finding good designs in complex design situations with many potentially con-
flicting quality requirements. This tool reduces development time and improves
the quality of the architecture design. We presented the details of the AQOSA
tool which supports response time, processor utilization, bus utilization, safety,
and cost. Future work is defining the knowledge-based methods for implementing
software tactics as means to generate alternative architectural solutions.

Acknowledgment

This work has been supported by the Netherlands national project OMECA
(Optimization of Modular Embedded Computer-vision Architectures).

References

1. Lukasiewycz, M., Glaß, M., Reimann, F., Teich, J.: Opt4J: a modular framework
for meta-heuristic optimization. In Krasnogor, N., Lanzi, P.L., eds.: GECCO, ACM
(2011) 1723–1730

2. Field, T.: JINQS: An Extensible Library for Simulating. Multiclass Queueing Net-
works, http://www.doc.ic.ac.uk/ ajf/Research/manual.pdf

3. Forster, M., Trapp, M.: Fault Tree Analysis of Software-Controlled Component
Systems Based on Second-Order Probabilities. In: ISSRE, IEEE Computer Society
(2009) 146–154

327

MQ-2: A Tool for Prolog-based Model Querying

Vlad Acretoaie and Harald Störrle

Department of Informatics and Mathematical Modeling,
Technical University of Denmark

Richard Petersens Plads, 2800 Lyngby, Denmark
s100988@student.dtu.dk,hsto@imm.dtu.dk

Abstract. MQ-2 integrates a Prolog console into the MagicDraw1 mod-
eling environment and equips this console with features targeted specif-
ically to the task of querying models. The vision of MQ-2 is to make
Prolog-based model querying accessible to both student and expert mod-
elers by offering powerful query features and a tight integration with the
host modeling environment.

1 Motivation

MQ-2 is designed to support the model querying approach described in [1, 2] and
its successor, the Visual Model Query Language (VMQL) [3]. The main impetus
behind the development of MQ-2 has been the feedback gathered in follow-up
interviews with participants to a paper-based usability study of VMQL [3]. A
consensus has emerged among interviewees concerning the high impact of tool
support on the usability of any model querying approach. MQ-2 leverages this
observation and brings VMQL one step closer to its goal of becoming a fully
usable model querying solution targeted at student and expert modelers.

The remainder of this paper is organized as follows. Section 2 introduces
the querying approach supported by MQ-2, Section 3 provides an overview of
MQ-2’s architecture and Section 4 proposes a demonstration plan.

2 Querying

Consider the use case diagram in Fig. 1, inspired by the Library Management
System (LMS) test scenario (see Sec. 4). In order to perform queries on this
diagram, it must first be transformed from its XMI representation into the Prolog
fact database also shown in Fig. 1, with model element IDs highlighted in blue in
both the diagram and its Prolog representation. This database consists of facts of
the form me(type-id, [tag-value], ...]), where type is a model element’s
metaclass, id is an arbitrary unique identifier, tag is an atom representing one of
the model element’s properties, and value is the value for this property. There
is a one-to-one mapping between model elements and Prolog facts.

Once a model’s Prolog representation is created, it can be queried from any
Prolog console. For instance, the query

1 https://www.magicdraw.com/

328

Librarian

<<include>>

1
2

7
3

4

56

UD

:-module('Source Model',[me/2]).

 me(model-0,[annotation-id(1),ownedMember-ids([1,3,4,7]),name 'LMS',

 visibility-public]).

 me(useCase-1,[ownedMember-ids([2]),name-'Lend medium',

 visibility-public]).

 me(include-2,[visibility-public,addition-id(7)]).

 me(actor-3,[name-'Librarian',visibility-public).

 me(association-4,[ownedMember-ids([5,6]),visibility-public,

 navigableOwnedEnd-ids([6,5]),memberEnd-ids([6,5])]).

 me(property-5,[visibility-private,type-id(1),association-id(4)]).

 me(property-6,[visibility-private,type-id(3),association-id(4)]).

 me(useCase-7,[name-'Scan medium',visibility-public]).

Lend medium Scan medium

Source Model

Fig. 1. A use case diagram (top) and its encoding as a Prolog fact database (bottom)

me(useCase-Id,Attrs), member(name-’Lend medium’,Attrs).

returns all model elements of metaclass useCase having the value ’Lend medium’
for their name meta-attribute. It also binds the returned model elements’ iden-
tifiers to the Id variable and their list of meta-attributes to the Attrs variable.
In short, the query finds the Lend medium use case. Its execution is facilitated
by the integration of a Prolog console into MagicDraw provided by MQ-2.

The MQ-2 console offers several model querying specific features not available
in a generic Prolog console, as specified in Table 1.

Table 1. MQ-2 console features

Transforming models to Prolog fact databases.

Pre-consulted library predicates.

Showing query results sequentially or all at once.

Showing query results in the MagicDraw Search Results Tree.

Highlighting query results in diagrams where they appear.

Highlighting selected console text in relevant diagrams.

However, queries formulated using the me predicate directly are cumbersome
to formulate. To compensate for this, MQ-2 implements several library predicates
introduced in [1, 2] (see Fig. 2). Using library predicates, retrieving the Lend
medium use case can be accomplished more intuitively via the get me predicate:

get me(model, name-’Lend medium’, useCase-Id,).

329

get_me(MODEL, TAG-VAL, METACLASS-ID, VAL)

Matches all elements of MODEL containing the TAG-VAL meta-attribute pair.

match(SOURCE_MODEL, QUERY_MODEL, BINDINGS)

Returns bindings between QUERY_MODEL and SOURCE_MODEL.

match(SOURCE_MODEL, QUERY_MODEL, CONSTRAINTS, BINDINGS)

Returns bindings between QUERY_MODEL and SOURCE_MODEL considering a list of VMQL constraints.

Fig. 2. Sample MQ-2 library predicates

The match predicate allows formulating queries using the host modeling lan-
guage. It returns a list of bindings between elements of the query and source
models, and optionally accepts a list of VMQL constraints. For instance, the
distinct constraint specifies that no two query model elements may be bound
to the same source model element. A complete list of VMQL constraints is avail-
able in [3]. A future goal for MQ-2 is to support the specification of constraints
directly on the query model as comments endowed with the <vmql> stereotype.

3 Architecture

The proposed framework for Prolog-based model querying consists of a host mod-
eling tool (currently MagicDraw) including the MQ-2 plug-in, an SWI-Prolog2

installation, and the Java Prolog Bridge (JPL)3 library (see Fig. 3). The host
modeling tool acts as a model repository and a front-end for interacting with
MQ-2, while SWI-Prolog acts as a query execution engine. MQ-2 itself is a
plug-in extending the UI of the host modeling tool and providing built-in Prolog
modules that implement functionality such as model matching. This architecture
enables MQ-2 to remain easily portable to other host modeling tools.

MagicDraw
MQ-2

Plug-in

J

P

L
SWI-Prolog

Fig. 3. MQ-2 deployment with MagicDraw as host modeling tool

A screenshot of MQ-2 is presented in Fig. 4. It features the MQ-2 Prolog
console and toolbar on the bottom of the screen. The diagram pane shows the
diagram introduced in Sec. 2, and the console query retrieves the Lend medium
use case. As a result, this use case is highlighted in green on the diagram pane.

2 http://www.swi-prolog.org/
3 http://www.swi-prolog.org/packages/jpl/

330

Fig. 4. Screenshot of MagicDraw featuring the MQ-2 plug-in

4 Demonstration Plan

MQ-2 will be showcased on a UML design model created by a group of students
in the context of the Requirements Engineering course taught at a Master’s level
at the Technical University of Denmark. The model specifies the requirements for
an LMS used by a local library for the purpose of managing its book inventory,
loans, librarians, and readers. This usage scenario has been selected in view of
the fact that MQ-2 is envisioned to be used by students taking the same course
in the next academic year, providing arguably the best feedback as to whether
MQ-2 meets its design goal of acting as a usable model querying tool.

The tool demonstration will include transforming the source model into a
Prolog fact database, querying individual model elements, and querying model
fragments containing VMQL constraints. The various query result display meth-
ods provided by MQ-2 will also be highlighted.

References

1. Störrle, H.: A logical model query interface. In: Intl. Ws. Visual Languages and
Logic (VLL’09), pp.18–36. CEUR (2009).

2. Störrle, H.: A PROLOG-based Approach to Representing and Querying UML Mod-
els. In: Intl. Ws. Visual Languages and Logic (VLL’07), pp.71–84. CEUR (2007).

3. Störrle, H.: VMQL: A Visual Language for Ad-Hoc Model Querying. J. Visual Lan-
guages and Computing 22(1), 3–29 (2011).

331

Rapid Performance Modeling and Reasoning
with UCM2PCM

Christian Vogel1, Heiko Koziolek2, Thomas Goldschmidt2, and Erik Burger1

1 Karlsruhe Institute of Technology (KIT), Germany
2 ABB Corporate Research Germany, Industrial Software Systems Program

1 Introduction

Industrial software systems, such as distributed control systems, follow com-
plex information flows. In addition, these systems have challenging performance
requirements for high throughput and short response times. Thus, early perfor-
mance modeling is desired to identify performance bottlenecks and design effi-
cient information flows. Performance modeling notations require expertise from
the performance domain, and their graphical representations are often difficult
to discuss with stakeholders. This complicates reasoning on different alternatives
for scalable architectures and leads to a general reluctance to apply performance
modeling in this domain.

The notation of use case maps (UCM) has been created by analyzing how
software systems are typically sketched in early stages on white boards. UCMs
capture high level software components as well as the control flow for specific
usage scenarios in an intuitive notation. The UCM2PCM tool transforms UCMs
into instances of the Palladio Component Model (PCM) [1], which enables per-
formance predictions for component-based software systems. The transformation
bridges semantic gaps between the requirements-oriented UCM notation and the
component-oriented PCM notation. Users can create UCMs using existing graph-
ical editors and transparently run performance solvers using the Palladio tool
chain. Our tool supports a two-staged software performance engineering process,
where domain stakeholders can perform rapid initial modeling based on UCMs,
and performance experts and architects can refine the resulting PCM models.

2 Foundations

As a part of the User Requirements Notation (URN) specification [4], Use Case
Maps (UCM) are used to visualize how a system works and what the require-
ments and causal responsibilities are. UCMs are behavioral diagrams and use
scenarios. This is a similarity to UML sequence diagrams, but UCMs remain
on a higher abstraction level. In difference to sequence diagrams, UCMs do not
show all messages or signals that are exchanged between components or actors,
but only control flows that are important for the behavior of a system. Skipping
the details enhances the overview and allows the usage of UCM early in the
design process, where not much detail is specified yet [3].

332

Fig. 1. Use case map of the MediaStore components and inner control flow including
examples for performance annotations.

A UCM diagram consists of paths that show a possible control flow through a
system. Fig. 1 shows an example of an UCM diagram for a MediaStore software.
Every path has at least one start and one end point. Paths can fork and join. A
cross on a path represents so-called Responsibilities, which describe the actions
that take place on a high abstraction level.

To model the control flow, forks can be added to a path. An AndFork splits
a path into two branches that are executed in parallel. An OrFork offers alter-
native branches. To decide which branch is taken, conditions or probabilities can
be specified. The OrJoin joins branches. Additionally, an AndJoin contains a
barrier that continues the control flow only when all incoming branches finished
executing. UCMs also support the modeling of components. With components,
the entities involved in a scenario can be specified, and an architectural struc-
ture of a system can be defined. Components in UCMs can also be nested. In a
diagram, components are represented by a box. All elements inside the box are
bound to that component.

The Palladio Component Model (PCM) [1] is a domain-specific tool for com-
ponent based software engineering (CBSE) that is based on the Eclipse Modeling
Framework (EMF). Its focus is performance prediction for software models. It
offers the comparison and selection of several design alternatives of a software
system in early stages of development, where only a model exists. The PCM
Workbench provides multiple methods to transform architecture models into
performance models. Analytical and simulation models are supported. Fig. 2
shows an excerpt of the MediaStore example modelled in Palladio.

(a) System of the MediaStore (b) Performance abstraction of the
Download service

Fig. 2. MediaStore PCM Example

333

3 Implementation/Validation

UCM2PCM is implemented as an Eclipse plug-in. The transformation uses the
Eclipse Model to Model (M2M) Transformation framework and is implemented
in QVT-Operational. For the creation of UCMs, we use the jUCMNav editor[5],
which is based on the Graphical Modeling Framework (GMF). UCM2PCM can
be invoked from inside Eclipse, accepting a UCM model as input. The resulting
PCM model can be further refined by editing it with the PCM Workbench, or
analyzed using the existing PCM solvers and simulators.

The transformation maps UCM components to PCM components, then seg-
ments each UCM path per component to create Service Effect Specifications
(SEFF), which are used as an abstraction of component behaviour in Palladio.
Since UCMs do not support the modeling of performance properties natively,
textual performance annotations for UCMs are defined in UCM2PCM, which
are then transformed into PCM performance abstractions. Fig. 1 includes exam-
ple annotations specifying the number of CPU units required to process a given
action. If the user does not specify performance properties, default values are
set. These annotations are then transformed into the corresponding performance
annotations in the Internal Actions of the SEFF as shown in Fig. 2(b).

To validate the UCM2PCM tool, we need to show that its mapping of model
elements is valid and the tool is useful. Thus, we have evaluated (a) the accu-
racy of the transformation (i.e., the correct mapping) and (b) the usability of
UCMs for performance modelling. To address (a), we transformed performance-
annotated use case maps of three heterogeneous, mid-sized systems [1, 2, 7] into
the respective PCM models. We then ran a series of experiments and compared
the simulation results of these models with simulation results from former PCM
models of these system. The difference between the original model and the UCM-
based models was below 10 percent in most cases. Further details can be found in
[6]. Despite some differences in the simulation results, we deem the accuracy of
UCM2PCM sufficient to support early design-time performance decisions. The
low differences for different kinds of models demonstrate that UCM2PCM was
successful in bridging most semantic differences in these models.

To address (b), we let six users model a UCM and apply the UCM2PCM
transformation. We then asked them for feedback in a user survey to evaluate
the usability of UCM2PCM. While all of the participants were able to quickly
produce a UCM, a majority was afraid that UCM would not be suitable for
complex models. In future work, we will thus further simplify UCM2PCM and
support the creation of large models with the tool. The comprehensibility of the
models was deemed good or very good by all participants, especially for non-
experts. The results of this user survey are however not statistically significant
due to the small sample size. A future empirical study should investigate a larger
sample size, analyze different design alternatives, and compare UCM modeling
with other methods.

334

4 Conclusion/Presentation Plan

The tool presented in this paper lowers the entrance barrier for performance en-
gineering by combining an intuitively understandable modeling language (UCM)
with a sophisticated performance engineering approach (PCM). Software engi-
neers can create UCMs and use the defaults in the presented approach to trans-
form them into PCM instances. The simulation and analysis tools of the PCM
workbench deliver performance values which can be used for the evaluation of
design alternatives.

If more detailed performance properties are required, the generated PCM
instances can be further adapted. Thus, the approach enables software engineers
to model performance properties on different levels of abstraction. Data-flow
oriented systems can be described more easily and clearly than with PCM alone,
without losing the benefits of the PCM simulation and analysis techniques.

In the tool presentation, we plan to demonstrate the creation of a UCM for
the MediaStore example system. After modeling the system components and
the control flow, textual performance annotations will then be added to the
UCM components. The UCM2PCM transformation will then be invoked, result-
ing in a PCM instance which is analysed with the simulation engines in the
Palladio toolchain. A comparison of the resulting PCM instance and the UCM
will demonstrate the easier legibility of the control flow in the UCM notation,
while the performance properties can be modelled in more detail with the PCM
notation.

References

1. Becker, S., Koziolek, H., Reussner, R.: The Palladio component model for model-
driven performance prediction. JSS 82, 3–22 (2009), http://dx.doi.org/10.1016/
j.jss.2008.03.066

2. Brosig, F., Huber, N., Kounev, S.: Automated Extraction of Architecture-Level Per-
formance Models of Distributed Component-Based Systems. In: 26th IEEE/ACM
Intl. Conference On Automated Software Engineering (ASE) (November 2011)

3. Buhr, R.: Use case maps: A new model to bridge the gap between requirements and
design. In: OOPSLA workshop – Requirements Engineering: Use Cases and More,
Sunday October 15 (1995)

4. International Telecommunication Union (ITU): User requirements notation (URN)
- Language definition, z.151 edn. (11 2008), http://www.itu.int/rec/T-REC-Z.
151/recommendation.asp?lang=en&parent=T-REC-Z.151-200811-I

5. Mussbacher, G., Amyot, D.: Goal and scenario modeling, analysis, and transfor-
mation with jucmnav. In: Software Engineering-Companion Volume, 2009. ICSE-
Companion 2009. 31st International Conference on. pp. 431–432. IEEE (2009)

6. Vogel, C.: A Use Case Map Editor for Rapid Performance Modeling and Reasoning.
Master’s thesis, Karlsruhe Institute of Technology (KIT) (2012)

7. Wu, X., Woodside, M.: Performance Modeling from Software Components. In: Proc.
4th International Workshop on Software and Performance (WOSP’04). vol. 29, pp.
290–301. ACM Press, New York, NY, USA (2004)

335

MDE in Practice: Process-centric Performance

Prediction via Simulation in Real-time

David Redlich1, Stephanie Platz2, Thomas Molka1, Wasif Gilani1, and Ulrich
Winkler1

1 SAP Research Center Belfast, United Kingdom,
[david.redlich|thomas.molka|wasif.gilani|ulrich.winkler]@sap.com

2 Hasso-Plattner-Institut Potsdam, Germany,
stephanie.platz@student.hpi.uni-potsdam.de

Abstract. Today’s markets are growing faster, more volatile and com-
petitive. As a consequence businesses are exposed to greater pressure to
react fast against changes, preferably even before these changes result
in negative effects for the organisation, e.g. violations of service level
agreements (SLAs) or legal compliance failures. This paper introduces
a model-driven tool that enables pro-active decision making based on
performance predictions in real-time to avoid violations.

Key words: models at run-time, event-driven business process manage-
ment, business process simulation, business activity monitoring

1 Background

The introduced tool offers process-centric decision support in real-time which
is an application of Event-Driven Business Process Management (EDBPM).
EDBPM emerged from the combination of the two disciplines Business Pro-
cess Management (BPM) and Complex Event Processing (CEP) [1]. Practically,
this is realised by two individual platforms interacting with each other through
interfaces or events, one a BPM system, which is to model, manage, and op-
timise a business, and the other one a CEP engine [4]. In general, CEP deals
with the event-driven behaviour of large, distributed enterprise systems [2], i.e.
events produced by the system are captured, selected, aggregated, and eventu-
ally abstracted to generate complex events representing high-level information
about the situational status of the system. In the case of a business process
execution environment these events consist of raw data like process instance
id, timestamp, and type of the state change, e.g. 2011-05-26 T 10:45 CET:

Activity ‘‘Check availability’’ completed, pi-id: 253. A CEP engine
can then compute complex events containing high-level information about the
performance of a business process, e.g. process instance occurrence, and activity
net working time. The extraction of performance parameters from live-events
is a common application of real-time monitoring of business processes, which is
in general called Business Activity Monitoring (BAM). Usually raw live-events
from a business process execution are not of interest in the context of BAM,

336

instead the aggregation of these into performance related parameters is carried
out [3].

Furthermore, the tool makes use of a range of model-driven concepts, such as
model to model and model to text transformations, model annotations, model
management, model weaving, etc. to deal with the complexity of supporting a
wide range of business process modelling languages. These model-driven concepts
are generally designed to be applied at design time whereas the demoed tool
is operating at run-time. Due to special concerns that need to be addressed
in the case of a run-time application of model-driven concepts the notion of
models@run.time has evolved. In [5] a model at run-time (M@RT) is defined “... a
causal connected self-representation of the associated system that emphasises the
structure, behaviour, or goals of the system from a problem space perspective”.

2 Tool Description

The proposed solution enhances the BAM capabilities of existing EDBPM tools
like Slipstream [7], which produce real-time performance parameters related to
business processes, with the ability to further predict the future trends of these
parameters. Conceptual architecture (see Figure 1) and principle of operation
of the model-driven tool have been presented in [6]. Key characteristics of the
demo tool, of which some are shown in the architecture figure, are:

– The simulation results in form of future-events are fed back into the CEP
engine without extra implementation effort, i.e. prediction results are com-
puted in the same way by the CEP as the real-time events. The benefit of this

Fig. 1. Data flow of the event-based framework for real-time performance prediction

337

technique is an easy integration into existing BAM solutions without extra
adaptations.

– Contrary to traditional data-centric business intelligence the tool provides
improved predictions on the basis of simulation by additionally taking the
behavioural information into account, which is captured in the business process
model.

– The tool uses a model-driven approach to support the wide range of business
process languages applied in practise. Through the utilisation of a decomposed
model transformation with an independent simulation model at its core new
business process model languages can be easily integrated into our BAM tool.

3 Demonstration Plan

We demonstrate how the manager of a large business can monitor and govern his
business performance with the help of the tool. The demonstration is structured
as follows:

1. Use-case introduction: In the first step we motivate the tool by introduc-
ing the use-case: A pizza franchise operating in multiple locations. Charles
McGuiness is the manager and is interested in how his business performs.
This is captured by Key Performance Indicators(KPIs), such as overall time
from pizza order to delivery - if this time exceeds the threshold of 60 minutes,
it will have a negative impact on customer satisfaction. The process under
study is a modified sales order process which was extended by the following
additional behaviour due to a promotional offer: a bottle of wine is added if
the order is above 30 Euro. Charles McGuiness wants to make sure that all
KPIs are never violated even with this additional behaviour.

2. Solution introduction: The solution is proposed, i.e. the benefits and key
characteristics of the tool are outlined and explained. A special focus will
be the explanation of the model-driven concepts that have been applied in
order to make the tool generic.

3. Showcase the live-demo: First, the BPM suite is introduced which gener-
ates live-events for the pizza franchise while execution (see Figure 2). Then
in a second step, the processing of the raw events which is carried out in
real-time is explained. In a third and final step the tool’s GUI for mon-
itoring KPI’s and process performance parameters is shown. Whenever a
KPI violation is predicted to happen, the manager Charles McGuiness re-
ceives a notification on his mobile device. He is further provided with the
functionality to drill-down and identify the root cause of the predicted KPI
violation. Since this information is provided before the KPI violation has
actually occurred he has time to react in order to prevent this from happen-
ing. A recorded demo of the tool can be accessed using the following link:
http://youtu.be/K8NpmK48xB4.

338

Fig. 2. BPM Suite: Screenshot

Fig. 3. Process-centric Decision Support in real-time: Web-Application Screenshot

References

1. von Ammon, R., et al.: Integrating Complex Events for Collaborating and Dynam-
ically Changing Business Processes. In: Dan, A., et al.: ICSOC/ServiceWave 2009
Workshops. LNCS, vol. 6275, pp. 370-384. Springer, Heidelberg (2010)

2. Luckham, D.: The Power of Events: An Introduction to Complex Event Processing
in Distributed Enterprise Systems. Addison-Wesley Professional, Reading (2002)

3. Eckert, M.: Complex Event Processing with XChange EQ: Language Design, Formal
Semantics, and Incremental Evaluation for Querying Events. LMU Mnchen (2008)

4. von Ammon, R: Event-Driven Business Process Management. In Proceedings of
Encyclopedia of Database Systems, pp. 1068–1071. Springer US (2009)

5. Blair, G., Bencomo, N., France, R. B.: Models@run.time. In Computer, 42(10), 2009.
6. Redlich, D., Gilani, W.: Event-Driven Process-Centric Performance Prediction via

Simulation, In: Daniel, et al.: BPM Workshops, LNBIP, vol. 99, pp. 473-478 (2011)
7. Janiesch, et al.: Slipstream: Architecture Options for Real-time Process Analytics.

In: Chu, W., et al.: Proceedings ACM Symposium on Applied Computing (2011)

339

S2T2-Configurator: Interactive Support for
Configuration of Large Feature Models

Goetz Botterweck and Andreas Pleuss

Lero-The Irish Software Engineering Research Centre, Univ. of Limerick, Ireland?

{goetz.botterweck, andreas.pleuss}@lero.ie

Abstract. S2T2-Configurator is a visual tool for configuration of fea-
ture models. In this tool paper, we focus on interactive techniques that
support the configuration of large and complex models.

1 Motivation

Even though the fundamental practices in Product Line Engineering (PLE) are
well known and applied in practice [3], it is still a challenge to create and handle
product lines of realistic size and complexity. Besides organizational challenges
(e.g., how to transition to a PLE approach) a major inhibitor to product line
adoption is the complexity of the underlying artifacts [7].

A common way to represent product lines (PL) are feature models [5, 4],
which describe configuration options like optional features or alternatives to
choose from. By configuring a feature model, a user can specify one particular
product to be derived from the product line. However, due to the number of
features and dependencies between them it is difficult to understand the model
as a whole and the consequences of particular configuration decisions during the
configuration process.

A potential solution to mitigate this situation are visualization techniques [12,
11], which have been shown to reduce cognitive complexity [2].

In earlier work [1, 9] we introduced S2T2 Configurator1 a tool that demon-
strates the use of visualization techniques for common PLE tasks. In this paper
we present interactive techniques for the handling of large and complex models,
e.g., contextual filters, views for different stakeholders, search-and-highlight, and
automated collapse/expand.

2 Interactive support for product configuration

Main structure and layout modes. S2T2 provides various layout styles to show
the main hierarchy of the feature model and additional dependencies between

? Supported, in part, by Science Foundation Ireland grant 10/CE/I1855. We are grate-
ful to Mikoláš Janota, Denny Schneeweiss, and Elisabeth Engel who contributed
significantly to the concepts and implementation of the S2T2 Configurator.

1 S2T2 = SPL of SPL Tools and Techniques

340

features (cross-tree constraints). In Figure 1 we show the “vertical explorer”
layout. Other display modes are, e.g., optimized to show the mapping between
features and implementation components or to show the effect of configuration
decisions on product attributes (see “feature flow maps” in [9]).

Feature

Feature Group
(inclusive-OR)

Progress indication
with color coding

Requires

Excludes

User decision
(Eliminate)

User decision
(Select)

Consequence
(Select)

Feature Group
(Alternative)

Fig. 1. S2T2 Configurator

Configuration state. Whenever the user de-
cides that a feature should be selected or
eliminated (= selected, = eliminated),
the tool calculates the consequences of that
decision, i.e., it tests all potential next op-
erations for satisfiability of the model. Con-
sequences are automatically applied to the
model (i.e., automatically setting features as
selected or deselected if the model would be-
come unsatisfiable otherwise) indicated by
gray colored icons. To simplify the under-
standing of the automatically calculated val-
ues, the tool provides an explain function,
which on request marks all user decisions
and constraints that caused the particular
value. This graphical representation is based
on a proof generated by the reasoning en-
gine.

Progress indicators. In product configuration all available variability must be
resolved until no decision is left open. Hence, in large models it is useful to
mark areas that still need decisions. We use color shadings to indicate the con-
figuration progress of subtrees and features. Since these colors can be processed
pre-attentively (i.e., without consciously thinking about it), this allows to im-
mediately spot unconfigured areas even in very large models.

Filtering of large models. To support the handling of large models, S2T2 allows
to focus on a subset of the model. In order to define what is relevant, users select
those features that they are interested in and then activate filtering heuristics (or
combinations thereof) that show (i) all directly related nodes, (ii) entire subtrees
below, or (iii) all ancestors to indicate relative location in the model.

Furthermore, we provide means to pre-define a list of such views and then
step through them in the configuration process. This can be used in several
application scenarios: For instance, different “views” can be defined for vary-
ing stakeholders and aspects. As an example consider the feature model shown
in Figure 2 which shows different aspects of a car, like CustomerFeatures ,
SoftwareComponents , Casing , and Electronics . We can then treat the
configuration as a guided process, handling one aspect after another and thus
reducing complexity. For instance, by selecting CustomerFeatures and then us-
ing the function “Focus on subtrees” the user gets the filtered view marked with

. After defining similar views for the features marked with to the users can

341

Focus on
subtrees

Focus on
related nodes

1 2

3

4

5

A

B

Fig. 2. Focusing on parts of the model

concentrate on one aspects of the model at a time and switch back and forth
between these views - similar to a “wizard” interaction pattern.

A similar function allows to focus on a set of features and all related nodes.
For instance, by selecting GasUsageEstimation and using “Focus on related
features, users get the filtered view marked with . This supports the users in
complex configuration decisions, where they have to focus on one feature and
consider all consequences in other parts of the model.

The parameters of these views can be adapted during configuration, e.g., the
users can add additional features to the set of focused nodes or they can toggle
the display of related nodes, which are linked via feature dependencies.

3 Current work

To explore its practical use S2T2 Configurator has been applied to feature models
from various domains (online shops, embedded systems [8], component based
software architectures [10], software evolution [6]). The largest model used so
far for performance tests was a generated test model with 1114 features and
278 cross-tree constraints. The largest models used for configuration by users
contained 227 features and 41 cross-tree constraints. In current work, we are
evaluating the effects of the suggested interaction patterns on task execution
time, error rates, and subjective user preference in a systematic user study.

342

References

1. Goetz Botterweck, Mikolas Janota, and Denny Schneeweiss. A design of a config-
urable feature model configurator. In VAMOS 2009, 2009.

2. Stuart K. Card, Jock D. MacKinlay, and Ben Shneiderman. Readings in Informa-
tion Visualization - Using Vision to Think. Morgan Kaufmann, 1999.

3. Paul Clements and Linda M. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

4. Krysztof Czarnecki and Ulrich W. Eisenecker. Generative Programming. Addison
Wesley, Reading, MA, USA, 2000.

5. K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson. Feature oriented domain
analysis (FODA) feasibility study. Technical Report CMU/SEI-90-TR-21, 1990.

6. Andreas Pleuss, Goetz Botterweck, Deepak Dhungana, Andreas Polzer, and Stefan
Kowalewski. Model-driven support for product line evolution on feature level (avail-
able online, in press). Journal of Systems and Software (JSS) - Special Issue on
Automated Software Evolution, 2011. http://dx.doi.org/10.1016/j.jss.2011.08.008.

7. Andreas Pleuss, Rick Rabiser, and Goetz Botterweck. Visualization techniques for
application in interactive product configuration. In MAPLE/SCALE 2011, 2011.

8. Andreas Polzer, Daniel Merschen, Goetz Botterweck, Andreas Pleuss, Jacques
Thomas, Bernd Hedenetz, and Stefan Kowalewski. Managing complexity and vari-
ability of a model-based embedded software product line. Innovations in Systems
and Software Engineering (ISSE), 8(1):35–49, 2011.

9. Denny Schneeweiss and Goetz Botterweck. Using flow maps to visualize prod-
uct attributes during feature configuration. In VISPLE 2010, Jeju Island, Korea,
September 2010.

10. Lionel Seinturier, Philippe Merle, Damien Fournier, Valerio Schiavoni, Christophe
Demarey, Nicolas Dolet, and Nicolas Petitprez. OW2 FraSCAti user guide. Tech-
nical report, OW2 Consortium, 2011.

11. Robert Spence. Information Visualization. Addison Wesley, December 2000.
12. Colin Ware. Information Visualization: Perception for Design. Morgan Kaufmann,

2nd edition, 2004.

Appendix: Demonstration Plan

– Software architecture, frameworks (Eclipse EMF, Prefuse visualization)
– Changes in the model as the configuration progresses, reasoning engine, con-

sequences, explain, automatic completion
– Configuration with large models
– Progress indicators with color schemes
– Focus: filter view, focus on related features, focus on subtrees, show ances-

tors, usages of model views
– Feature models with product attributes, visualization with feature flow maps
– Integration with other tools, conversion of DSLs with model transformations.

343

Poster Abstracts

344

MADES Language, Methodology and Tools for

Avionics and Surveillance Embedded Systems

Alessandra Bagnato1, Imran Quadri2 and Andrey Sadovykh2
TXT e-solutions S.p.A, 16100 Genoa, Italy

alessandra.bagnato@txtgroup.com,
2Softeam, 21 avenue Victor Hugo, 75016 Paris, France

imran.quadri@softeam.fr

andrey.sadovykh@softeam.fr

Abstract. The poster describes the MADES methodology and tools and the
reasoning behind their creation within the EU-FP7 project MADES. The two
case studies that led to the requirements of the project are also presented.

Keywords: Real-Time Embedded Systems Design, Model Driven Engineer-

ing, MARTE, SysML, UML

1 Introduction

The poster presents the MADES FP7 project [1], its novel model driven language,
along with the underlying methodology and tools for the design, validation, simula-
tion, and code generation of complex avionics and surveillance based real-time and
embedded systems. The poster outlines the defined methodology based on an effec-
tive subset of existing standardized UML profiles for embedded systems modeling:
SysML and MARTE. The design phases related to the MADES methodology are also
illustrated. Additionally, MADES case studies and the developed tools are described
in the poster, namely Softeam's open source Modelio environment[2], that is capable
of fully supporting SysML and MARTE profiles along with the dedicated MADES
diagrams associated with the different modeling design phases; as well as MADES
Component Repository and MADES Code Generation and Verification environments
[0]. MADES project adds as unique features a specific set of diagrams to help in
increasing design productivity, decrease production cycles and promote synergy be-
tween the different designers/teams working at different domain aspects of the global
system in consideration.

2 References

1. MADES: EU FP7 Project. (2012) , http://www.mades-project.org/.
2. Modelio: The Open Source UML Modeling Environment. (2012) http://www.modelio.org/.

A. Bagnato, A. Sadovykh, R. F. Paige, D. S. Kolovos, L. Baresi, A. Morzenti, and M. Rossi. MADES:
Embedded systems engineering approach in the avionics domain. In Proceedings of the Workshop on
Hands-on Platforms and tools for model-based engineering of Embedded Systems (HoPES), 2010.

345

http://www.mades-project.org/
http://www.modelio.org/

EU FP7 ENOSYS PROJECT: Integrated modeling and

synthesis tool flow for embedded systems design

Etienne Brosse and Andrey Sadovykh
Softeam, 21 avenue Victor Hugo, 75016 Paris, France

etienne.brosse@softeam.fr

andrey.sadovykh@softeam.fr

Abstract. The poster describes the methodology and tools developed in the
EU FP7 ENOSYS project, providing a complete flow for designing and gener-
ating of real-time and embedded systems. Additionally, two case studies illus-
trating and validating the design methodology are also expressed related to the
project.

Keywords: Real-Time Embedded Systems Design, Systems-on-Chips

(SoCs), Behavioral Synthesis, Design Space Exploration, Model Driven Engi-
neering, UML, MARTE

1 Introduction

The poster presents the ENOSYS FP7 project [1], which proposes a high abstraction
level design methodology for the design and implementation of next-generation
Systems-on-Chips (SoCs). The poster outlines the ENOSYS methodology that takes
as entry points UML-based models and the MARTE profile, to semi automatically
generate a SoC implementation. The poster will illustrate the relevant features of the
project, such as SoC Co-Design using UML/MARTE, automated synthesis and code
generation of hardware/software from high level UML models, software source code
optimization and design space exploration aspects. Finally, the poster will showcase
design and implementation of two end-user case studies, namely a JPEG 2000 image
compression system and a transmit section of a 802.16m (WiMax) mobile standard.

2 References

1. ENOSYS: EU FP7 Project. (2012), http://www.enosys-project.eu/.

346

http://www.enosys-project.eu/

DevBoost Tools for
Model-Driven Software Modernisation

Jendrik Johannes, Mirko Seifert, Christian Wende, and Florian Heidenreich

DevBoost GmbH
D-10179, Berlin, Germany

Technische Universität Dresden
Chair of Software Technology
D-01062, Dresden, Germany

{firstname.lastname}@devboost.de

This poster shows a set of Eclipse/EMF-based modelling tools and how we use
them for software modernisation. These tools include known tools from our
toolset, applied in the new context of modernisation, as well as newly devel-
oped tools. The poster shows which challenges of software modernisation are
addresses by each tool. It also illustrates how the tools interact to perform and
automate complete modernisation scenarios. The tools are parts of the Drops-
Box [1] toolset developed by DevBoost and TU Dresden. They are:

– EMFText was originally designed as a tool for DSL development [2]. In
the context of software modernisation, it is used to extract information from
heterogeneous artefacts into one connected homogeneous EMF model.

– JaMoPP transforms Java source code into EMF models and vice versa [3].
It is therefore used for a variety of modernisation tasks (e.g., enforcing ar-
chitecture changes) in the context of Java application modernisation.

– CommentTemplate is a light-weight code generation tool that is used, in
the context of software modernisation, to generate parts of a modernised
system based on (parts of) the models extracted from the existing system.

– BuildBoost is a (meta-)build framework that is highly extensible and fo-
cused on minimal-to-zero build configuration. It is used to automate and
provide continuous integration for software modernisation processes.

References

1. DevBoost GmbH and Software Technology Group Dresden: The Dresden Open
Software Toolbox (DropsBox). www.dropsbox.de (April 2012)

2. Heidenreich, F., Johannes, J., Karol, S., Seifert, M., Wende, C.: Derivation and
Refinement of Textual Syntax for Models. In: Proc. of ECMDA-FA’09. Volume
5562 of LNCS., Springer (June 2009) 114–129

3. Heidenreich, F., Johannes, J., Seifert, M., Wende, C.: Closing the Gap between
Modelling and Java. In: Proc. of SLE’09. LNCS, Springer (March 2010)

347

eMoflon: A Metamodelling and Model
Transformation Tool

Anthony Anjorin?, Marius Lauder?, and Andy Schürr

Technische Universität Darmstadt,
Real-Time Systems Lab,

D-64283 Merckstraße 25, Darmstadt, Germany
{anthony.anjorin,marius.lauder,andy.schuerr}@es.tu-darmstadt.de

Model Driven Engineering (MDE) is an established means of dealing with the
increasing complexity of modern software systems by providing suitable abstrac-
tions and tools specifically tailored for a certain domain. The MDE process
involves establishing a metamodel to specify the relevant concepts and relation-
ships in a domain, and model transformations, to provide the semantics of mod-
els, i.e., instances of the metamodel. Based on a suitable metamodel and model
transformations, a domain specific language can be defined to reduce the gap be-
tween problem and solution domains, thereby increasing productivity, improving
communication with domain experts, increasing software quality, and support-
ing interoperability. eMoflon1 supports the MDE process with a metamodelling
and model transformation environment offering a unique set of features as it:

– extends the Eclipse Modelling Framework (EMF) in a natural, object-oriented
manner by providing the possibility of modelling behaviour via model trans-
formations, from which a Java implementation for operations in the meta-
model is generated.

– supports bidirectional model transformations, generating a pair of unidirec-
tional model transformations automatically from a single specification.

– uses an extension of a professional UML tool Enterprise Architect2 as its
frontend.

– provides a backend that is seamlessly integrated into Eclipse/EMF.
– has a solid formal foundation based on algebraic graph transformations,

using programmed graph transformations for unidirectional model transfor-
mation, and triple graph grammars for bidirectional model transformation.

– is 100% generative, i.e., all specifications are mapped to standard Java code,
which can be extended and mixed with hand-written code and used without
any runtime dependencies3 on eMoflon.

– uses predominantly visual modelling languages.
– is 100% Ecore/EMF compatible.
– is developed via a bootstrap, i.e, a substantial part of eMoflon is built using

eMoflon.

? Supported by the ‘Excellence Initiative’ of the German Federal and State Govern-
ments and the Graduate School of Computational Engineering at TU Darmstadt.

1 www.moflon.org
2 http://www.sparxsystems.de/uml/
3 Required libraries are added automatically to the buildpath as a set of jars.

348

www.moflon.org
http://www.sparxsystems.de/uml/

 349

1st Workshop on European Industrial & Academic
Collaborations on Real Time & Embedded
Systems Modelling and Analysis
Michel Bourdellès, Laurent Rioux, Sébastien Gérard

A lot of European initiatives funded by the European Commission
and/or directly by countries lead to experiment on the modelling of RTES
from different industrial domains (Communications, Automotive, Space,
Railway …), dealing with system modelling declined as formal,
Component, Application/Platform allocation modelling, model transforma-
tion and analysis, process integration, test, functional & non functional pro-
perties verification, methodology adaptation, requirements traceability, real
platform results confrontation.

The objective of this workshop is to present ongoing industrial /aca-
demic current work on the modelling and analysis of real time and em-
bedded systems. A particular attention will be given on successful stories
in the integration and assessment on the exploitation of R&D improve-
ments on industrial designs.

RT-SIMEX : Performance Retro-modelling

Laurent RIOUX Ph.D (THALES Research and Technology)

This presentation presents the final results from the French ANR project
RT-Simex. RT-Simex proposes a set of tools to analyze timing of parallel
embedded code and trace the simulation results back to the initial models
from which the code was generated. The whole tool-set relies on standard
formats (UML/MARTE, Open Trace Format) to ensure a perennial use.
 This presentation will also presents the global RT-SIMEX process from
retro-modeling to PSM/PIM model debugging.

Principles and Tool for Time- and Space-Partitioned
Systems

José Rufino (FCUL - Faculty of Sciences of University of Lisbon – Lisboa,
Portugal)

This presentation highlights the main challenges in the integration of
Time- and Space-Partitioned (TSP) principles in mission critical systems,
such as autonomous vehicles. The design of a TSP-based safety kernel to
guarantee the functional safety of vehicle operation is addressed, together
with the evolution of the Cheddar real-time scheduling analysis tool towards
TSP-specific scheduling analysis and generation of the corresponding
onboard computer configuration parameters.

MADES: An effective UML/SysML/MARTE methodology
for Real-Time Embedded Systems design and
implementation

Imran Quadri PhD (Softeam)

This presentation presents an overview of the EU FP7 MADES project,
 that aims to develop novel model-driven techniques for the design,
validation, simulation, and code generation of complex real-time and
embedded systems for avionics and surveillance embedded systems
industries. In this presentation, we will illustrate the MADES language built
on an effective SysML/MARTE subset for embedded systems

specification, along with verification & validation (V&V) and code
generation aspects, related to the MADES case studies dealing with on-
board and ground based radar systems.

PRESTO: Results from execution trace analysis

Shuai Li (THALES Communications & Security)

This presentation presents results the global synoptic and results of the
ARTEMIS PRESTO project.. This project focuses on RTES design process
enriched of : (a) test traces exploitation (generated by test execution in the
software integration phase induced by the industrial development process,
to validate the requirements of the system) along with (b) platform models
and (c) design space exploration techniques.

ENOSYS: Integrated modeling and synthesis tool flow for
embedded system design

Etienne Brosse (Softeam)

The presentation will describe the ENOSYS FP7 project, which proposes
a high abstraction level design methodology for the design and
implementation of next-generation Systems-on-Chips (SoCs) in order to
shorten time to market. The presentation outlines the ENOSYS
methodology and illustrates some features of the project: such as SoC Co-
Design using UML/MARTE, automated synthesis and code generation of
hardware/software from high level UML models, software source code
optimization and design space exploration

VERDE: Industrial results on component based modelling
analysis

Olivier Hachet (THALES Communications & Security)

MAENAD: Model-based Analysis & Engineering of Novel
Architectures for Dependable Electric Vehicles

Ernest Wozniak, CEA LIST

Fully Electric Vehicles (FEV) promise clear benefits to society. At the
same time, the engineering of FEV introduces significant new challenges.
MAENAD is refining the EAST-ADL architecture description language for
meeting these challenges.

	ECMFA-Ws-Procs
	Proceedings
	ECMFA-Ws-Procs
	Proceedings
	ECMFA-Ws-Procs
	Binder4
	ECMFA-Ws-Procs
	Binder3
	Binder2
	0-Foreword
	Blank
	1-CloudMDE
	Blank
	2-ACME
	Blank
	Blank
	4-BM-FA
	consistency-checking-scenario-based-specifications-of-dynamic-systems.pdf
	Consistency Checking Scenario-Based Specifications of Dynamic Systems by Combining Simulation and Synthesis

	Blank
	5-GMLD
	Blank
	6-PMDE
	Preface
	PMDE2012
	1_Specifying the Interaction Control Behavior of a Process Model using Hierarchical Petri Net
	2_Formal and Fault Tolerant Design
	3_SEMAT_PMDE2012_CR
	4_Model-based Product and Process Integration for Enhanced Collaboration during Mechatronic Design Processes
	5_Design Decisions for UML and MOF based Domain-specific Language ModelsSome Lessons Learned

	Blank
	Blank
	7-ToolsAndPosters
	a01_ecmfa2012_preface
	b01_ecmfa2012_submission_107
	b02_ecmfa2012_submission_111
	b03_ecmfa2012_submission_113
	b04_ecmfa2012_submission_114
	b05_ecmfa2012_submission_118
	b06_ecmfa2012_submission_119
	c00_ecmfa2012_preface
	c01_ecmfa2012_submission_110
	c02_ecmfa2012_submission_117
	c03_ecmfa2012_submission_109
	c04_ecmfa2012_submission_112
	eMoflon: A Metamodelling and Model Transformation Tool

	Blank
	3-EIAC-RTESMA
	RT-SIMEX : Performance Retro-modelling
	Principles and Tool for Time- and Space-Partitioned Systems
	MADES: An effective UML/SysML/MARTE methodology for Real-Time Embedded Systems design and implementation
	PRESTO: Results from execution trace analysis
	ENOSYS: Integrated modeling and synthesis tool flow for embedded system design
	VERDE: Industrial results on component based modelling analysis
	MAENAD: Model-based Analysis & Engineering of Novel Architectures for Dependable Electric Vehicles

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /ARA <FEFF06270633062A062E062F0645002006470630064700200627064406250639062F0627062F0627062A002006440625064606340627062100200648062B062706260642002000410064006F00620065002000500044004600200645062A064806270641064206290020064406440637062806270639062900200641064A00200627064406450637062706280639002006300627062A0020062F0631062C0627062A002006270644062C0648062F0629002006270644063906270644064A0629061B0020064A06450643064600200641062A062D00200648062B0627062606420020005000440046002006270644064506460634062306290020062806270633062A062E062F062706450020004100630072006F0062006100740020064800410064006F006200650020005200650061006400650072002006250635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E0635062F0627063100200035002E0030002006480627064406250635062F062706310627062A0020062706440623062D062F062B002E>
 /BGR <FEFF04180437043f043e043b043704320430043904420435002004420435043704380020043d0430044104420440043e0439043a0438002c00200437043000200434043000200441044a0437043404300432043004420435002000410064006f00620065002000500044004600200434043e043a0443043c0435043d04420438002c0020043c0430043a04410438043c0430043b043d043e0020043f044004380433043e04340435043d04380020043704300020043204380441043e043a043e043a0430044704350441044204320435043d0020043f04350447043004420020043704300020043f044004350434043f0435044704300442043d04300020043f043e04340433043e0442043e0432043a0430002e002000200421044a04370434043004340435043d043804420435002000500044004600200434043e043a0443043c0435043d044204380020043c043e0433043004420020043404300020044104350020043e0442043204300440044f0442002004410020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200441043b0435043404320430044904380020043204350440044104380438002e>
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /CZE <FEFF005400610074006f0020006e006100730074006100760065006e00ed00200070006f0075017e0069006a007400650020006b0020007600790074007600e101590065006e00ed00200064006f006b0075006d0065006e0074016f002000410064006f006200650020005000440046002c0020006b00740065007200e90020007300650020006e0065006a006c00e90070006500200068006f006400ed002000700072006f0020006b00760061006c00690074006e00ed0020007400690073006b00200061002000700072006500700072006500730073002e002000200056007900740076006f01590065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f007400650076015900ed007400200076002000700072006f006700720061006d0065006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076011b006a016100ed00630068002e>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /ETI <FEFF004b00610073007500740061006700650020006e0065006900640020007300e4007400740065006900640020006b00760061006c006900740065006500740073006500200074007200fc006b006900650065006c007300650020007000720069006e00740069006d0069007300650020006a0061006f006b007300200073006f00620069006c0069006b0065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740069006400650020006c006f006f006d006900730065006b0073002e00200020004c006f006f0064007500640020005000440046002d0064006f006b0075006d0065006e00740065002000730061006100740065002000610076006100640061002000700072006f006700720061006d006d006900640065006700610020004100630072006f0062006100740020006e0069006e0067002000410064006f00620065002000520065006100640065007200200035002e00300020006a00610020007500750065006d006100740065002000760065007200730069006f006f006e00690064006500670061002e000d000a>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /GRE <FEFF03a703c103b703c303b903bc03bf03c003bf03b903ae03c303c403b5002003b103c503c403ad03c2002003c403b903c2002003c103c503b803bc03af03c303b503b903c2002003b303b903b1002003bd03b1002003b403b703bc03b903bf03c503c103b303ae03c303b503c403b5002003ad03b303b303c103b103c603b1002000410064006f006200650020005000440046002003c003bf03c5002003b503af03bd03b103b9002003ba03b103c42019002003b503be03bf03c703ae03bd002003ba03b103c403ac03bb03bb03b703bb03b1002003b303b903b1002003c003c103bf002d03b503ba03c403c503c003c903c403b903ba03ad03c2002003b503c103b303b103c303af03b503c2002003c503c803b703bb03ae03c2002003c003bf03b903cc03c403b703c403b103c2002e0020002003a403b10020005000440046002003ad03b303b303c103b103c603b1002003c003bf03c5002003ad03c703b503c403b5002003b403b703bc03b903bf03c503c103b303ae03c303b503b9002003bc03c003bf03c103bf03cd03bd002003bd03b1002003b103bd03bf03b903c703c403bf03cd03bd002003bc03b5002003c403bf0020004100630072006f006200610074002c002003c403bf002000410064006f00620065002000520065006100640065007200200035002e0030002003ba03b103b9002003bc03b503c403b103b303b503bd03ad03c303c403b503c103b503c2002003b503ba03b403cc03c303b503b903c2002e>
 /HEB <FEFF05D405E905EA05DE05E905D5002005D105D405D205D305E805D505EA002005D005DC05D4002005DB05D305D9002005DC05D905E605D505E8002005DE05E105DE05DB05D9002000410064006F006200650020005000440046002005D405DE05D505EA05D005DE05D905DD002005DC05D405D305E405E105EA002005E705D305DD002D05D305E405D505E1002005D005D905DB05D505EA05D905EA002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E05D005DE05D905DD002005DC002D005000440046002F0058002D0033002C002005E205D905D905E005D5002005D105DE05D305E805D905DA002005DC05DE05E905EA05DE05E9002005E905DC0020004100630072006F006200610074002E002005DE05E105DE05DB05D90020005000440046002005E905E005D505E605E805D5002005E005D905EA05E005D905DD002005DC05E405EA05D905D705D4002005D105D005DE05E605E205D505EA0020004100630072006F006200610074002005D5002D00410064006F00620065002000520065006100640065007200200035002E0030002005D505D205E805E105D005D505EA002005DE05EA05E705D305DE05D505EA002005D905D505EA05E8002E>
 /HRV (Za stvaranje Adobe PDF dokumenata najpogodnijih za visokokvalitetni ispis prije tiskanja koristite ove postavke. Stvoreni PDF dokumenti mogu se otvoriti Acrobat i Adobe Reader 5.0 i kasnijim verzijama.)
 /HUN <FEFF004b0069007600e1006c00f30020006d0069006e0151007300e9006701710020006e0079006f006d00640061006900200065006c0151006b00e90073007a00ed007401510020006e0079006f006d00740061007400e100730068006f007a0020006c006500670069006e006b00e1006200620020006d0065006700660065006c0065006c0151002000410064006f00620065002000500044004600200064006f006b0075006d0065006e00740075006d006f006b0061007400200065007a0065006b006b0065006c0020006100200062006500e1006c006c00ed007400e10073006f006b006b0061006c0020006b00e90073007a00ed0074006800650074002e0020002000410020006c00e90074007200650068006f007a006f00740074002000500044004600200064006f006b0075006d0065006e00740075006d006f006b00200061007a0020004100630072006f006200610074002000e9007300200061007a002000410064006f00620065002000520065006100640065007200200035002e0030002c0020007600610067007900200061007a002000610074007400f3006c0020006b00e9007301510062006200690020007600650072007a006900f3006b006b0061006c0020006e00790069007400680061007400f3006b0020006d00650067002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /LTH <FEFF004e006100750064006f006b0069007400650020016100690075006f007300200070006100720061006d006500740072007500730020006e006f0072011700640061006d00690020006b0075007200740069002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b00750072006900650020006c0061006200690061007500730069006100690020007000720069007400610069006b007900740069002000610075006b01610074006f00730020006b006f006b007900620117007300200070006100720065006e006700740069006e00690061006d00200073007000610075007300640069006e0069006d00750069002e0020002000530075006b0075007200740069002000500044004600200064006f006b0075006d0065006e007400610069002000670061006c006900200062016b007400690020006100740069006400610072006f006d00690020004100630072006f006200610074002000690072002000410064006f00620065002000520065006100640065007200200035002e0030002000610072002000760117006c00650073006e0117006d00690073002000760065007200730069006a006f006d00690073002e>
 /LVI <FEFF0049007a006d0061006e0074006f006a00690065007400200161006f00730020006900650073007400610074012b006a0075006d00750073002c0020006c0061006900200076006500690064006f00740075002000410064006f00620065002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006100730020006900720020012b00700061016100690020007000690065006d01130072006f00740069002000610075006700730074006100730020006b00760061006c0069007401010074006500730020007000690072006d007300690065007300700069006501610061006e006100730020006400720075006b00610069002e00200049007a0076006500690064006f006a006900650074002000500044004600200064006f006b0075006d0065006e007400750073002c0020006b006f002000760061007200200061007400760113007200740020006100720020004100630072006f00620061007400200075006e002000410064006f00620065002000520065006100640065007200200035002e0030002c0020006b0101002000610072012b00200074006f0020006a00610075006e0101006b0101006d002000760065007200730069006a0101006d002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /POL <FEFF0055007300740061007700690065006e0069006100200064006f002000740077006f0072007a0065006e0069006100200064006f006b0075006d0065006e007400f300770020005000440046002000700072007a0065007a006e00610063007a006f006e00790063006800200064006f002000770079006400720075006b00f30077002000770020007700790073006f006b00690065006a0020006a0061006b006f015b00630069002e002000200044006f006b0075006d0065006e0074007900200050004400460020006d006f017c006e00610020006f007400770069006500720061010700200077002000700072006f006700720061006d006900650020004100630072006f00620061007400200069002000410064006f00620065002000520065006100640065007200200035002e0030002000690020006e006f00770073007a0079006d002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /RUM <FEFF005500740069006c0069007a00610163006900200061006300650073007400650020007300650074010300720069002000700065006e007400720075002000610020006300720065006100200064006f00630075006d0065006e00740065002000410064006f006200650020005000440046002000610064006500630076006100740065002000700065006e0074007200750020007400690070010300720069007200650061002000700072006500700072006500730073002000640065002000630061006c006900740061007400650020007300750070006500720069006f006100720103002e002000200044006f00630075006d0065006e00740065006c00650020005000440046002000630072006500610074006500200070006f00740020006600690020006400650073006300680069007300650020006300750020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e00300020015f00690020007600650072007300690075006e0069006c006500200075006c0074006500720069006f006100720065002e>
 /RUS <FEFF04180441043f043e043b044c04370443043904420435002004340430043d043d044b04350020043d0430044104420440043e0439043a043800200434043b044f00200441043e043704340430043d0438044f00200434043e043a0443043c0435043d0442043e0432002000410064006f006200650020005000440046002c0020043c0430043a04410438043c0430043b044c043d043e0020043f043e04340445043e0434044f04490438044500200434043b044f00200432044b0441043e043a043e043a0430044704350441044204320435043d043d043e0433043e00200434043e043f0435044704300442043d043e0433043e00200432044b0432043e04340430002e002000200421043e043704340430043d043d044b04350020005000440046002d0434043e043a0443043c0435043d0442044b0020043c043e0436043d043e0020043e0442043a0440044b043204300442044c002004410020043f043e043c043e0449044c044e0020004100630072006f00620061007400200438002000410064006f00620065002000520065006100640065007200200035002e00300020043800200431043e043b043504350020043f043e04370434043d043804450020043204350440044104380439002e>
 /SKY <FEFF0054006900650074006f0020006e006100730074006100760065006e0069006100200070006f0075017e0069007400650020006e00610020007600790074007600e100720061006e0069006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b0074006f007200e90020007300610020006e0061006a006c0065007001610069006500200068006f0064006900610020006e00610020006b00760061006c00690074006e00fa00200074006c0061010d00200061002000700072006500700072006500730073002e00200056007900740076006f00720065006e00e900200064006f006b0075006d0065006e007400790020005000440046002000620075006400650020006d006f017e006e00e90020006f00740076006f00720069016500200076002000700072006f006700720061006d006f006300680020004100630072006f00620061007400200061002000410064006f00620065002000520065006100640065007200200035002e0030002000610020006e006f0076016100ed00630068002e>
 /SLV <FEFF005400650020006e006100730074006100760069007400760065002000750070006f0072006100620069007400650020007a00610020007500730074007600610072006a0061006e006a006500200064006f006b0075006d0065006e0074006f0076002000410064006f006200650020005000440046002c0020006b006900200073006f0020006e0061006a007000720069006d00650072006e0065006a016100690020007a00610020006b0061006b006f0076006f00730074006e006f0020007400690073006b0061006e006a00650020007300200070007200690070007200610076006f0020006e00610020007400690073006b002e00200020005500730074007600610072006a0065006e006500200064006f006b0075006d0065006e0074006500200050004400460020006a00650020006d006f0067006f010d00650020006f0064007000720065007400690020007a0020004100630072006f00620061007400200069006e002000410064006f00620065002000520065006100640065007200200035002e003000200069006e0020006e006f00760065006a01610069006d002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /TUR <FEFF005900fc006b00730065006b0020006b0061006c006900740065006c0069002000f6006e002000790061007a006401310072006d00610020006200610073006b013100730131006e006100200065006e0020006900790069002000750079006100620069006c006500630065006b002000410064006f006200650020005000440046002000620065006c00670065006c0065007200690020006f006c0075015f007400750072006d0061006b0020006900e70069006e00200062007500200061007900610072006c0061007201310020006b0075006c006c0061006e0131006e002e00200020004f006c0075015f0074007500720075006c0061006e0020005000440046002000620065006c00670065006c0065007200690020004100630072006f006200610074002000760065002000410064006f00620065002000520065006100640065007200200035002e003000200076006500200073006f006e0072006100730131006e00640061006b00690020007300fc007200fc006d006c00650072006c00650020006100e70131006c006100620069006c00690072002e>
 /UKR <FEFF04120438043a043e0440043804410442043e043204430439044204350020044604560020043f043004400430043c043504420440043800200434043b044f0020044104420432043e04400435043d043d044f00200434043e043a0443043c0435043d044204560432002000410064006f006200650020005000440046002c0020044f043a04560020043d04300439043a04400430044904350020043f045604340445043e0434044f0442044c00200434043b044f0020043204380441043e043a043e044f043a04560441043d043e0433043e0020043f0435044004350434043404400443043a043e0432043e0433043e0020043404400443043a0443002e00200020042104420432043e04400435043d045600200434043e043a0443043c0435043d0442043800200050004400460020043c043e0436043d04300020043204560434043a0440043804420438002004430020004100630072006f006200610074002004420430002000410064006f00620065002000520065006100640065007200200035002e0030002004300431043e0020043f04560437043d04560448043e04570020043204350440044104560457002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

