User Guide for ARTS

System-on-Chip Group
Technical University of Denmark

1. INTRODUCTION

This document is targeted for the users of the system-leudtlpnocessor system-on-chip
(MPSoC) simulation framework, called ARTS, developed at Technical University of
Denmark (DTU). The framework allows to:

- model processing elements (PE), memory units and inteeminn

- investigate PE utilization, memory usage, communicagenés, and energy/power con-
sumption, and

- analyze the causality between MPSoC components i.e. r@saaonstrains and interde-
pendencies

This document explains the various aspects relating togaetithe SystemC [SystemC
2002] implementation of the ARTS framework. The latest iar®f the framework can
be found at:

O http://ww.inmmdtu.dk/arts

Before proceeding further, we explain some of the convestigsed in this document.
The symbold marks an important information. Text presented in a box nuggk action
such as entry at the command prompt. Further we assume thegtiogesnvironment to be
linux-like platform.

This document is organized as follows. First, in Sectiorote details about the ARTS
executable is provided. This is followed by the descriptibthe inputs expected by this
executable (Section 3). A successful simulation of thermgp®blem, results in a collection
of files for analysis, which are explained in Section 4. Hinalbrief, Section 5 walks the
reader through using the ARTS model.

2. THE EXECUTABLE AND SUPPORT FILES

Depending on the platform choose, the executable is nametls_<pl at f or n». x.
In a unique folder, download the version best suited to yamddions. Along with the
executable, aupport files.tar. gz shouldalso be acquired and saved in the same
location as the executable. The files within this bundle @edun the running example
within the document and are necessary to complete the alitdre first test is simply to
issue the command to run the executable.

‘ $> ./arts_<platfornme. x

Figure 1 should be the outcome. Itimplies that additiongliaxents are needed to be set,

Document version: 1.0. Drafted on September 2005.

Address: Technical University of Denmark, Informatics andthematical Modelling, Richard Petersens Plads,
Building 321, DK-2800 Lyngby, Denmark. Contact email: SkeanMahadevan (sm@imm.dtu.dk)

© 2005 Technical University of Denmark

2 : Technical Uinversity of Denmark

ARTS SoC Modelling Framework
Copyright (C) 2005 Department of Informatics and MatheoatModelling, DTU

Please check the arguments to the executable:
Jarts_<platform>.x -app <path>/<filename>.tg <pathiéafime>.tg
-rsc <path>/<filename>.rsc <path>/<filename>.rsc
-cmm <path>/<filename>.cmm
-prt <path>/<filename>.prt
<ocpConfig_file>
<num of PE>

exectime
Fig. 1. Arguments required with the ARTS executable.
Argument Flag Arguments Comments
-app 1 or more .tg files this takes one or more file(s) describing the applications
task graphs
-rsc 1 or more .rscfiles | this takes one or more file(s) describing the PE charadterist
-cmm 1 or more .cmm files| this takes the communication description
-prt only 1 .prt file this takes one file that describes the architecture i.e. RfE wi
the interconnect, and the mapping of the tasks on to the PEs
<ocpConfig_file> || only 1 file this is one file describing the OCP signal configuration
<num_of_PE> Otooco the number of PEs in the architecture
execttime Otooco the cycles to be simulated

Table I. Expected arguments for the ARTS executable.

to operate the executable. Note any other outcome impligscampatibility between the
executable and the underlying platform. The source codBeoARTS framework would
need to be compiled on this platform to proceed further. Tgamments of the executable
and their meaning is explained in Table |. The five primarynie the application, PE,
communication, and architecture/mapping and OCP confiiguréile will be discussed in
detail in the next section. The remaining items related &sg@ribing the number of PE in
the architecture and the number of cycles to simulate.

Unpacking the support files bundle will provide the necgsaggument files for demon-
stration of the ARTS framework. Figure 2 is one of the simplegible complete command
to run the simulation. The similarity of argument fields ilstbommand, and in Table | and
Figure 1 are obvious. A successful simulation will have $herul ati on end ti nme
(last few lines in display) equal to given number of cyclesitaulate, followed by simu-
lation time statistics. The output of a successful simalais also a collection of log files.
Before we explain the contents of the output files, as doneati@ 4, let us take a closer
look at the input argument files.

3. UNDERSTANDING THE INPUTS

The primary inputs to the ARTS framework are ASCII files désog the application
model (tg extension), the PE characteristias¢extension), the communication properties
(.cmmextension) and the architecture with the application tasipping (prt extension).
First, we provide a brief overview of the application, PE amnmunication files. For
additional details on these files, we the refer the readeBehihitz et al. 2004]. Then,

User Guide for ARTS . 3

$> ./arts_<platfornp. x
-app ./support_files/apps/sanplel.tg ./support_fil es/apps/sanple2.tg
-rsc ./support_files/rsc/GPPO.rsc ./support_files/rsc/ASICO.rsc
-cnmm . /support_files/cnm COMWM rsc
-prt ./support_files/prt/sanple.prt
./Isupport_files/ocp
2
30000

Fig. 2. Sample Simulation Command

THIS IS SAMPLE TASK GRAPH !

HYPERPERIOD 0.025

TOLERABLE_TIMING_PENALTY 1.0 # 1.2 is 20% variation
in execution time

Task: (00) ttype: 4 epst: 0 dtype: NON Deadline: 0
Task: (01) ttype: 2 epst: 0 dtype: NON Deadline: 0
Task: (02) ttype: 3 epst: 0 dtype: NON Deadline: 0
Task: (03) ttype: 3 epst: 0 dtype: NON Deadline: 0
Task: (04) ttype: 0 epst: 0 dtype: NON Deadline: 0.025

Edge: (00) —> (01) etype:
Edge: (01) —> (02) etype:
Edge: (01) —> (03) etype:
Edge: (02) —> (04) etype:
Edge: (03) —> (04) etype:

or NN

Fig. 3. Sample Task Graph
Fig. 4. File description of a task graph (.tg file), say santgle

we describe our architecture description and applicatisk tapping file. Table 21 in
Appendix A spells out the meanings of the labels used in tliese

3.1 Application (.tg) Characterizations

We consider the applications to be modelled as a task g¥aph(7, £), where7 = {r; :

1< i < n}isthe set of schedulable tasks, ahe- {¢; : 1 < j < k} is the set of directed
edges representing the data dependencies (precedentaitassbetween the tasks i,

i.e., ifr; < ; then(r;, 7;) € €. Figure 3 shows a sample task graph with five tasks and five
edges. The weight of an edge indicates the size of the messagetransferred between
two tasks. Each task € 7 is characterized by a four tuplé;, t;, c¢;, e;), i.e. the exact
functionality of the task is abstracted away. The relatwadlined;, and the period;;, are
given by external requirements of the application and, Beace independent of runtime
input values, intermediate results or configurations of BEe€. However, the execution
time, ¢;, and the consumed energy, are both determined by the actual mapping of the
task onto a particular PE.

The deadline of a real-time applicatiaby, is represented by the deadline of the task(s)
in 7 with no successors, i.e. no outgoing edges. The concurxentigon ofseveralreal-
time applications, each with their own deadline and peiiddandle as a set of task graphs
which have to be mapped onto the platform architecture.

Figure 4 is the file description, &g file, of the sample task graph shown in Figure 3.
Lines starting with# are comments, which continue until the end of the line. Thoge

4 : Technical Uinversity of Denmark

THIS IS THE TECHNOLOGY FILE

@GPP 0 {
Price StPwr Freq CommBuffer CommTime CommPower CommMem
100 800 25000 1 0.271247 2000 13
#ttype \Version ExeCyc DynPwr StMem DynMem Preem Exable
0 0 2882 25000 400 400 1 1
1 0 200 25000 400 400 1 1
2 0 100 25000 400 400 1 1
3 0 981 25000 400 400 1 1
4 0 395 25000 400 400 1 1

Fig. 5. File description of PE (.rsc file).

and the deadline, the PE-independent tuples, can be easibgmized via the values of
HYPERPERI OD and by looking at the end task, respectively. The values aengn
seconds, which for this sample task graph is identical andleq 0.025 s. With regards to
variations in the execution time;, in order to calculate the worst-case execution time we
use the value of keywor@iOLERABLE Tl M NG_PENALTY. In this case, Figure 3, the
worst-case execution characteristics is expected to be.s@fithin the file, the task graph

is described via task description and edge descriptiorratgg, in that order.

In Figure 4, each line starting withask: uniquely identifies a task within the task
graph. In addition to task identifier, the bracketed itenchelask has a task typet(ype).
The task type is used to apply the PE-specific tuples suchexutign time and energy
consumption, when bounding this task to a particular PEs &ffiords flexibility during
instantiation as changing the underlying PE does not ne@idpuiation of the application
files, but simply applying the new values of this task typerfritie PE database. This will
be described in additional detail in the next section. Init&widto the four tuples, two
additional variablegpst : (earliest possible start time) add ype: (deadline type, i.e.
NON, SOFT, and HARD) are also available for future use. THaulevalue, accepted by
the current version of the ARTS framework is displayed infthere.

Each line starting witledge: uniquely identifies an edge between two task, and the di-
rection of their interdependency, within the task graphe @rsk may have many outgoing
and incoming edges, but each edge needs to be identifiechselyaSimilar to task type,
edge typeét ype) is used to apply the message transfer characteristicsdameon the
particular communication means.

3.2 PE (.rsc) files

ARTS supports many PE types. The built-in PEs are generalgserprocessors (GPP),
FPGAs and ASICs. A sample PE description of GPP is shown iarEif.

The IP type of the PE is given by line starting with @. Each filewdd have unique
IP type. Multiple PE of the same type can be tagged with aaithii numeric value, for
example@:PP 0, as shown in the figure. The PE properties are encapsulatgzbimnng
and closing bracketq (and}). Within the file, first the task-independent properties are
described, followed by the task properties.

User Guide for ARTS . 5

@COMM_AMOUNT 0 {
#etype comamount

0 16
1 330
2 320
3 36
4 16

}

Fig. 6. A Sample Communication description in .cmm file.

The PE’s task-independent properties are listed as iteamt&ngf with price, static power
(St Pwr), operating frequencyf ¢ eq), etc. The PE’s task properties include number of
clock cycles required for executioleXeCyc), dynamic power dissipatiorDy nPwr),
memory requirements, etc. In addition to these propenitgr ASIC and FGPA related
items such as area and CLBs, respectively, required to mmgat¢the task is also available
(See Table 21 in Appendix A. AlsaSI CO. r sc file insupport _fil e/ rsc).

The PE’s task properties are listed next. When a task frontatble graphs is mapped
to a particular PE, the task properties can be extracted dkirlg up the index of the
t t ype in the .tg file and matching it with the task type in .rsc file. r@tating the data
given in Figure 4 and Figure 5, it is seen, for example, thelt (@ 1) in the task graph
requires 100 cycles for execution in GPPO, and so on. The ARingework, automatically
correlates these values, using the architecture and theintpdescribed in the .prt file,
which is discussed later.

3.3 Interconnect (.cmm) files

Within ARTS, the message size is described in the .cmm filenil&i to .rsc files the
communication properties is described within closing kedag { and}). By correlation
between theet ype described in the task graph, with the appropriated indexptessage
size to be transferred for a given edge can be calculate. efatirg the data given in
Figure 4 and Figure 6, it is seen, for example, that the edtyedss the task0 1) and
(0 3) requires the 16 words of data units.

Using these three files, the MPSoC designer can influencertipegies of the applica-
tion, PE and communication for any architecture instaediatithin the ARTS framework.
The designer is not limited to the built-in templates. Anylkgation, PE or communi-
cation data conforming to the file semantics can be used agsig instantiate a custom
platform.

3.4 Architecture (.prt) files

The architecture file describes the MPSoC modules such @&Bkand the interconnect,
and the mapping of the task from the task graph on to thesel®&ddition to this primary
purpose, the file also contains the frameworks simulatiornirots such as display of debug
messages and monitoring system parameters. Figure 7 sheavape architecture file.
The file can be distinguished into five parts.

The first two parts, which are optional, relate to enablingudations items such as
dumping the PE, application or communication events on thees, or capturing these
values in a file. Additional parameters PE utilization, conmication and/or memory pro-

Technical Uinversity of Denmark

— On-screen Simulator debug message (0=off, 1=on)
pe_screen_dump =0 # dump PE events
soc_screen_dump =0 # dump communication events

— Enable output logging via files (provide unique filenanm@spaces)

app_logdfile ="app.log" # stores application events
pe_logfile ="pe.log" # stores PE utilization
result_file ="result.log" # stores architecture overview
memory_file ="mem.log" # stores memory profile
contention_file ="comm.log" # stores communication profile
ved_file ="sim" # default extension .vcd

Communication description

module { # — Communication topology (0=bus, 1=mesh)

soc_comm_topology # communication keyword

soc_allocator =0 # bus

}

PE description

module { # — configuration for PE#0
pelD =0 # unique processor identifier
address = 0x0000000:0x0fffffc
processor =0 # processor type, s& argument
synchronizer =0 # synchronizer type
resource_allocator = # allocator type
scheduler =0 # scheduler type
monitor =0 # specific PE debug msg dump

}

module { # — configuration for PE#1
pelD =1
address = 0x1000000:0x1fffffc
processor =1 # match index wittsc argument
synchronizer =0 # O=direct synchronization
resource_allocator =0 # O=basic priority inheritance
scheduler =0 # 0=RM, 1=EDF
monitor =0 # 0=off, 1=on

}

Mapping of task from .tg files to PE

application { # <tasklD>,<pelD> mapping
name: "sample.tg" # identify using .tg filename
task: # task (0 0) mapped to PE#0
task: # task (0 1) mapped to PE#1
task: #..soon.
task:
task:

}

application {
name: "sample2.tg"
task:
task:
task:
task:
task:
task:

OFr Or o

aORWN P

another sample application

B RRPRORO

oD WN PR

PE#0

PE#1

Fig. 8. Sample Architecture

Fig. 7. A Sample Architecture description in .prt file.

User Guide for ARTS . 7

file can also be captured in spreadsheet-friendly formapwiwiding a filename to the
appropriated keywords (no space within the filenames). fiesss are explained in next
section. To disable logging of any specific event, simply ownt out the appropriate
keyword. This may led to smaller simulation time as well.

The next two part describe the architecture, where each coemi is described at
nodul e. The module descriptions starts with the interconnectctvhs identified by
keywordsoc_conm t opol ogy as the communication module. The topology is identi-
fied by another keywordoc_al | ocat or, which takes a numeric value identifying bus
or multi-hop network interconnect. The remaining modulereleterize the PE that use this
interconnect.

In the case of Figure 7, we have two PEs, each identified by agueniD
(pel D) and memory spacea@ldr ess). Following these declaration, are five para-
meters:pr ocessor, synchroni zer, resource_al | ocat or, schedul er, and
noni t or; that are used to assign execution and OS characteristitlsigdPE. The
processor can have values equal to the index of ttec argument (see Table 1). Com-
paring the architecture file in Figure 7 and the sample sittimlacommand in Figure 2,
for this example: PE#O is of type GPPO and PE#1 is of type ASITHIs allows easy
replacement of the PE execution characteristics: eitheethe architecture file or at the
command line. The final keywordroni t or, can be used to display the PE’s events
on the screen when the primary simulatipa_scr een_dunp is off, thereby allowing
monitoring/debugging of individual PE activities.

The synchroni zer, resource_al | ocat or, andschedul er keywords take
numeric index of corresponding built-in ARTS synchronjzesource allocator and sched-
uler, respectively. Within the ARTS, the user can apply BirBynchronization (index
0) for the task synchronization, basic priority inheritarficelex Q) for the resource allo-
cation, and Rate Monotonic (RM) (ind€} and Earlier Deadline First (EDF) (indeiy
for the task scheduling. Additional built-in OS componerds be coded easily using the
available features in the source code, however are cuyrantivailable with the ARTS
binary.

Together, all module descriptions, enable visualizingaitohitecture. figure 8 represent
the architecture described in Figure 7. Any number of magloén be instantiated to real-
ize a custom architecture. The final part of the architedileés the application mapping
i.e. prescribing which tasks are mapped to which modulegpitey has to be described
for each application separately and it is done withindp@l i cat i on group (enclosed
within { and}).

The application can be identified using tharre, which should have a corresponding
filename associated with ttapp argument (see Table 1) of the executable. Further, the
number of tasks defined in tla@pl i cat i on block should match the number of tasks in
the prescribed application task graph file (.tg file). To bagapping, each line has to start
with keywordt ask: followed by the pairing of the task index and the PE index the
pel D.

O Note the task index have to be offset by one. This is legacg eeduirements and
will be fixed in future versions of the ARTS release.

In our running example, comparing the Figures 4, Figure 7Figdre 8, for the sample
application (filename: sample.tg) the tasks are altempatelpped to PE#0 and PE#1. As
seen for sample2.tg application, any mapping can be apgiwedll, there are 11 tasks, 5

8 : Technical Uinversity of Denmark

Profile Task Count PEO PE1 ET@app0 Deadline ET@appl Deadliietal ET Contention
0 11 GPPO ASICO 14931us MET 20694 us MET 20694us O

Fig. 9. Architecture Overview file.

tasks are mapped to PE#0 (GPPO0) and 6 tasks are mapped toAHEDY.

In addition to above three types of files, an OCP signal cordigan files [OCPIP 2004]
is required with the input arguments. It contains the OCRalgyand their values used at
the PE interface with the interconnect and follows the statiformat available with OCP
channel package described in related manual available @G website.

Any error, for example: incorrect spelling, syntax errarg;orrect string and index
values, reuse of unique keywords or values, mismatch bete@®mand string input and
values, etc; are flagged during parsing of the input files &edsimulation terminates
immediately with appropriate message. Upon correct pgrsirall the related inputs, the
simulation can be successfully initiated by the ARTS framdwAs previously discussed
in Section 1, thesupport fil es.tar. gz contains a sample of these input files for
real application and PEs, and the command presented inéd=Bjoan be used to execute
the ARTS model. The output resulting from this and similag@xtion is discussed next.

4. UNDERSTANDING THE OUTPUTS

Based on which events are enabled for recording (Figure Rjpteuspread-friendly files
are generated that provide an overview of the architeatnder-test, and the profile of the
application, the PE utilization, the memory or the commatian. Consider the outputs
for the simulation executed by command in Figure 2. The dstfile are illustrated in
Figures 9 to Figure 14.

For the architecture overview and the PE utilization fileachecolumn has a single
data item.Pr of i | e is the architecture identifier used internally in ARTS to thiferent
architectures. Here since, we only have one architecturexfdoration the value i8.

The architecture overview file, Figure 9, can be used to aortfie inputs, such as task
count and PE types. Additional data pertains to the conguidime (end time (ET)) and
the deadline status (MET or MISS) of individual applicagda also provided here. The
final two columnsTot al ET andCont ent i on, provide the final completion time of
the program (which should be equal to the application thatHed last) and the intercon-
nect contention count i.e. the count conflicting concurtierkt access over the program
execution. If the values in this file are satisfactory, fertanalysis of the rest of the output
files may be undertaken.

0 The ET of the application, is the completion time of the lastbication of the appli-
cation. In the case, where the provided number of cyclesnofilsition gxectti ne
argument) is significantly larger than anticipated progcampletion time or the period
of the applications, the applications will be invoked nuikitimes and the completion
time of the final invocation is recorded in the overview file.

O Inthe case that the provided number of cycles to simukte¢t t i me argument) is
insufficient to finish program executio@, s is displayed for ET.

User Guide for ARTS . 9

PE Utilization: Application Profile: Platform Architecture 0
Profile PEUO PEU1 14931 ns Task graph samplel.tg (ApplID 0) completed.
0 75.6467 23.8467 20694 ns Task graph sample2.tg (AppID 1) completed.
Fig. 10. PE Utilization file Fig. 11. Application Profile file.

Memory Profile: Platform Architecture 0
Communication Profile: Time PE#0PM PE#0DM PE#0TM PE#1PM PE#1DM PE#1TM

Time Contention 1 2000 320 2320 2400 0 2400
1 0 1664 2000 576 2576 2400 0 2400
1749 4
. 20694 2000 0 2000 2400 0 2400
12834 1 25001 2000 0 2000 2400 0 2400
16049 O .
Fig. 12. Dummy Communica- 28631 2000 666 2666 2400 0 2400
tion Profile

Fig. 13. Memory Profile file.

In the PE utilization file, Figure 10, afté®r of i | e each subsequent column corre-
sponds to PE utilization for individual PEs. This value istfee complete simulation time
and may include PE execution cycles for multiple invocatibthe applications.

The application profile file, Figure 11, presents the stafuspplication execution i.e.
when they finish execution and if it met or missed its deadlimethe event of deadline
miss, the task(s) missing the deadline is also reported.

For memory and the communication profile, Figure 13 and Eig2r(J dummy values
unrelated to simulation of Figure 2), the data is formatedaumn-row grid, which allows
to plot the time vs memory (or contention). The first columtirige in system cycles. For
memory, subsequent columns plot the program memory (P Jata memory (DM) and
the total memory (TM) for each PE. For communication contenprofile, the subsequent
columns plot the total contention count (PE’s waiting fog thus or link to be free) in that
cycle.

O Note that the memory and the contention values are plottethéocomplete sim-
ulation Eexect t i me argument). To evaluate the memory and/or contention @tioels
within any particular applications, the designer may wisplot only upto the completion
time (ET@pp#<N>) of desired application.

The VCD output file, Figure 14, profiles the task executiotustand the PE execution
of the tasks. First, it lists the tasks execution status,the time period when the task is
ready Q1), the time period the task is runningZ), the time period if and when the task
is suspendedd@), and finally when the task is idle/finishe@Q). To associate the task
marker (starting witll _1 after the system clock) in the VCD file to the correspondirgy th
application task, decode the value as task identifier anticagipn identifier separated by
the underscore (") i.e. profile of 1_1 belongs task IOl of application ID1. The appli-
cation identifier corresponds to the order in which the aggpilon mapping is described in
architecture (.prt) files. Thus, in our running example freigure 7, sample.tg has appli-
cation ID 1 as it is first in order for mapping. Thus VCD wavefoof task marked from
1 1to5_1, are for sample.tg. The next set of task are marked for sérglevhich run
froml 2to7_2.

10 . Technical Uinversity of Denmark

|0n|sI L |50|0n? L 1.(I)usI L |1.5|>usI L |2.(|)usI L 2'5.US. L |3.(|JusI L |3.5lus
clock
11 02 X
2.1 01 X 02 X
31 01 X 02
41 01 X 02
51
12 01 X 03 X 02 X
2.2
3.2

4.2

52
6_2
PEOQ_taskID

R

PEO_appID

PE1_taskiD

S>< | >< [>< [><

=

N
>< > | 2] (>
S EH RN
o (O | < | ><
o0 o< o< | <
S E S

ollloll|F]|l+-

PE1_appID 12

Fig. 14. Sample VCD plot

Following the task execution, the PE’s execution statusatted in the VCD file. For
each PE, two items are recorded: the task PB{N>_t askl D) and the application ID
(PE<N>_appl D) of the current task executing on the PE resources. The dlotesf a
task execution should match with one and only one task wigtation status of inde@2
i.e. running. In Figure 14, we can see task executions of katgpstarting from task_ 1
on PE#0 until 1.65 us.

The negative task IDs are communication tasks and do noégmond to any applica-
tion ID (O dummy values, legacy ARTS behaviour). The communicatisk fairing
(PE<N>_t askl D,PE<N>_appl D) = (—1,12) corresponds to outgoing communica-
tion from that PE and the pairind®PE<N>_t askl D,PE<N>_appl D) = (—1,5) corre-
sponds to incoming communication. In Figure 14, we can alesgsmmunication between
task1l_1 on PE#O to task®_1 starting at until 1.65 us and completing at 2.0 us. Note the
task2_1, which is scheduled for execution is in suspended statdingdor its incoming
data, which the PE#1 is busy receiving.

Based on these output files, the ARTS allows the MPSoC dasigoainderstand the
impact of processor, communication and memory events dn&her.

5. TUTORIAL

In this section, via a tutorial, we explore some featureshef ARTS framework. For

the tutorial, we use theut 1. prt file in support _fil e/ prt. Figure 15 provides

the command to execute the tutorial. Here, three PEs (twoOGHE one ASICO) are

connected via bus, and two applications (MP3 decoder and @&ldder) are mapped on
to this architecture.

User Guide for ARTS . 11

$> ./arts_<platfornp. x
-app ./support_files/apps/ np3_dec.tg ./support_fil es/apps/gsmdec.tg
-rsc ./support_files/rsc/GPPO.rsc ./support_files/rsc/ASICO.rsc
-cnmm . /support_files/cnm COMWM rsc
-prt ./support_files/prt/tutl.prt
./Isupport_files/ocp
3
100000

Fig. 15. Sample Simulation Command

Pl atform Architecture (PE#0 to PE#2): GPPO(PE#0) ASI CO(PE#1) GPPO(PE#2)

(') Task(19,1) is not executable on PE#1 which is of type ASICO
Skipping iteration. Please try a different partition.

Fig. 16. Terminated Simulation Output

The output is an incomplete simulation and the output teigute 16, provides the
reason, which relates to the gsm_dec.tg task. In the {ilel. prt, at line 103, the task
mapping ist ask: 19, 1, i.e. task 19 mapped to PE#1 - an ASICO -, which is not
possible. The task 19, described in line 25 of gsm_decdg,task ID(0 18) of
task typet t ype: 6 cannot be executed on ASICO. This is confirmed by checking the
ASI Q0. r sc file in support _fil e/ rsc, where in line 16, thé&xabl e is false for
ttype: 6 i.e.thetask cannot be realized as hardware block on this PE.

A possible way to move forward with this tutorial, is to carréhe mapping, for exam-
ple: map the erring task to GPPO. Fix line 103tiat 1. prt, to map task 19 to 2, i.e.
task: 19, 2, since this pelD corresponds to PE#2, which pescessor type 0,
the index of GPPO im sc arguments (Figure 15) where the task is executable.

Profile Task Count PE#0 PE#1 PE#2 ET@app#0 Deadline ET@appBeadline TotalET Contention
0 50 GPPO ASICO GPPO 25343 us MISS 10168 us MET 25343 us 83

Fig. 17. Architecture Overview file.

Execute the ARTS framework with the updated architectuee fihis will successfully
conclude the simulation. The outputoésul t . | og confirms this. Figure 17 shows the
content of this file. Note, it confirms the number of task and REBhe experiment. How-
ever, the mp3_dec.tg application seem to have missed itdideaTo evaluate which task
in this application has missed its deadline, we can enaklegtording of the application
behaviour by un-commenting line 61rut 1. prt.

Re-simulation of the platform, gives the same result, baiddition we can evaluate the
application behaviour. Figure 18 shows the contents of gpdi@ation profile. Its shows
that task(16, 0) of mp3_dec.tg has missed its deadline. By evaluation of pipdication
mapping and task graph, we can see that {ab#, 0) communicates t¢ 16, 0) , and
they are mapped to different PEs (Line 76 and 78un 1. prt). As a first order solution,

12 . Technical Uinversity of Denmark

Application Profile: Platform Architecture 0

9460 ns Task graph ./support_files/apps/gsm_dec.tg (Apptidmpleted.
25001 ns (!) Task(16,0) has missed its deadline

25304 ns Task graph ./support_files/apps/mp3_dec.tg (Apptompleted.
29504 ns Task graph ./support_files/apps/gsm_dec.tg BApptompleted.

Fig. 18. Application Profile file.

map these tasks on to same PE say of pelD 0 i.e. GPPO. This caccbmplished by
fixing line 76, intut 1. prt,ast ask: 14, 1.

Profile Task Count PE#0 PE#1 PE#2 ET@app#0 Deadline ET@appBeadline TotalET Contention
0 50 GPPO ASICO GPPO 18409 us MET 9777 us MET 18409 us 87

Fig. 19. Architecture Overview file.

The result of the subsequent simulation, figure 19, showsaththe applications meet
their deadlines.

Intut 2. prt file in support _fil e/ prt, another example, with three additional
PEs and applications, in total 6 PEs and 5 applications, haee explored in the ARTS
framework. Note the ease of adding addition architecturepmments and applications.
Figure 20 shows the command to evaluate this platform. Etain of this platform is left
as an exercise to the reader.

$> ./arts_<platforne. x

-app ./support_files/apps/ mp3_dec.tg ./support_files/apps/jpeg_dec.tg
.Isupport_files/apps/jpeg_enc.tg ./support_files/apps/gsmenc.tg
./support _fil es/apps/gsmdec.tg

-rsc ./support_files/rsc/GPPO.rsc ./support_files/rsc/ASICO.rsc
./ support _files/rsc/FPGAO. rsc

-cmm ./ support_files/cmm COM rsc

-prt ./support_files/prt/tut2.prt

./ support_files/ocp

6

100000

Fig. 20. Sample Simulation Command

User Guide for ARTS

APPENDIX

*.tg files
TASKS
ttype: Task type used to look up the execution properties in thebdatfile.
epst: Earliest possible start time of a task.
dtype: Deadline type of a task (can be NON, SOFT, and HARD).
deadline: Is the deadline of a task by which the execution has to be fidish
EDGES
etype: Used to lookup the bytes to be transferred between the te.t&ee

comm_amount in the .cmm file.

*.rsc file
GPP’s (General Purpose Processors), ASIC's, FPGA's
price: The component cost (e.g. GPP0 = 100)
StPwr: Static power consumption dissipated whenever the deviaetige
freq: Maximal operational frequency of the device
pins: Available pins to connect to communication links
CommBuffer: || Can the device continue operation during data transfergd8%no)
CommTime: Communication time overhead, if comms are routed overrimeliate component:
CommPower: || Power dissipation during communication
CommMem: Required memory for communication
Area: Available area on an ASIC
CommArea: Area required to implement intermediate communicatiore cor
CLBs: available CLBs on a FPGA
task values:
type: Task type corresponding to ttype in tg-file
version: Task can be algorithmically implemented differently
ExeCyc: Number of clock cycles required for execution
DynPwr: Dynamic power dissipation of the task
StMem: Required Static memory
DynMem: Required Dynamic memory
Preem: Task pre-emptable (1=yes, 0=no).
Exable: can the task type executed on the component (1=yes,0=no)
Area: Area required to implement the task type
CLBs: Necessary CLB's to implement the task type

Fig. 21. Meaning of semantics used in the task graph and PE file

13

14 Technical Uinversity of Denmark

REFERENCES

OCPIP. 2004. The SystemC OCP channel package. Downloafitabiéhttp://www.ocpip.org.

SCHMITZ, M. T., AL-HASHIMI, B. M., AND ELES, P. 2004. System-Level Design Techniques for Energy-
Efficient Embedded Systems. Kluwer Academic Publishers.

SYSTEMC. 2002. The SystemC Version 2.0.1. Web Forum (www.systeig)k.

