

ARTS Overview

Copyright © 2005
Department of Informatics and Mathematical Modelling (IMM)

Denmark Technical University (DTU)

 2

1 Contents

1 Contents.. 2
2 Introduction .. 3

2.1 Overview... 3
2.2 Implementation approach .. 3

2.2.1 Platform... 3
2.2.2 Module communication ... 3

3 System requirements ... 4
4 Directory structure .. 4
5 The base classes .. 6
6 Application model... 6

6.1 Object constructor ... 6
6.2 Public method description ... 6

7 The Process element (PE).. 9
7.1 Application.. 10
7.2 RTOS.. 10
7.3 IO device driver... 10
7.4 IO device... 10
7.5 Object constructor ... 11
7.6 Public method description ... 11

8 SoC communication platform model ... 14
8.1 Transport messages ... 14
8.2 Network interface (NI) block... 14
8.3 Allocator ... 15
8.4 CSL buffer .. 15
8.5 Scheduler .. 15
8.6 Object constructor ... 15
8.7 Public method description ... 16

9 Top-level modules... 18
9.1 Dependency controller... 18

9.1.1 Object constructor.. 18
9.2 Performance monitor... 19

9.2.1 Object constructor.. 19
10 Framework construction steps ... 19
11 Framework flushing and initialization ... 21

11.1 Flushing .. 21
11.2 Initialization .. 21

12 Framework examples .. 21

 3

2 Introduction
This document tends to give an overview of the ARTS Framework as well as an introduction to the
different main modules, used for constructing a framework. Low-level (source code)
implementation details will not be presented. It is recommended to use the included examples as
templates, when creating new frameworks.

2.1 Overview
The ARTS Framework is a simulation tool for user-driven abstract MPSoC design explorations.
The framework allows for modelling of process elements (PE), consisting of an abstract application
model (RTOS and tasks) and a core interface (IO device driver and IO device) for inter-processor
communication. Further a SoC communication platform model is available for modelling different
communication topologies, such as bus and NoC. Currently supported communication protocols are
OCP 2.0 at TL1 and TL0. Figure 1 shows the main block diagram of the ARTS framework.

RTOS

Application

IO dev.driver

IO Device

Software
modeling

Hardware
modeling

Core
interface

Abstract
PE

RTOS

Application

IO dev.driver

IO Device

RTOS

Application

IO dev.drive

IO Device

SoC communication platform model

PE#1 PE#2 PE#N

. . . .

Figure 1 | ARTS framework block diagram.

The framework features flexible and easy configuration with respect to selection of task
partitioning/mapping, RTOS protocols, communication topology etc. This is done using a simple
script language, developed especially for the ARTS Framework. Further, the framework supports
configuration, based on TGFF files (describing resources, application and data communication).

2.2 Implementation approach

2.2.1 Platform
The framework is based on SystemC 2.0.1 and has been implemented in an object oriented manner,
making it easy to implement new modules (e.g. different RTOS policies, task types etc.). All
module type implementations inherit from an associated base class, defining the API to the
particular module.

2.2.2 Module communication
Communication between different modules (e.g. in a PE) is based on messages, where a message is
a struct. Passing a message from one module to another is done using calls to a (API) method,
defined by the base class of the target module. Argument to this method is the message. In

 4

conjunction to this, the different modules are “connected” via object pointers. (i.e. if module A
communicates to module B, a module B object pointer must be passed onto module A, before the
simulation starts).

3 System requirements
In order to use the ARTS framework, the following requirements must be met:

• C++ compiler (GNU g++/gcc, Microsoft VC 6.0)
• SystemC 2.0.1 (available from www.systemc.org)
• OCP Transaction Level Library (can be requested from www.ocpip.org)

NOTE: The OCP Transaction Level Library for SystemC is only required, when using OCP TL1 as
communication protocol. In addition to this, it is highly recommended to install the OCP Monitor
package (only available for members of OCP), in order to monitoring the OCP channel.

4 Directory structure
The ARTS Framework directory structure is shown in Figure 2. The contents of the different folders
are briefly described in Table 1.

ARTS_Framework

appssrc rscbuildsdoc

base_cl

extension

ocp_tl0

ocp_tl1_clk

parsers

pe

rtos

soc_comm

tl0_example

tl1_example

tgff

application

Figure 2 | ARTS Framework directory structure.

Directory Contents description
ARTS_Framework Top-level directory. Contains a README file and the Makefile.defs, used

when building a framework
./src Folders with source code for the different implementation modules.

 5

./src/base_cl Base classes, defining the API to the different implementation modules.

./src/application Implementation of different application models, consisting of periodic task
model and the IO device driver (IO task). Also contains an application
module, used for managing the different tasks (not IO task) assigned to a PE.

./src/rtos Implementation of different RTOS protocols for synchronization, resource
allocation and scheduling.

./src/extension Different top-level extension modules. This includes a macro class
(arts_macro) containing handy methods; for example for framework
configuration. Also contains a dependency controller (global task database
module) and a performance monitor module, for monitoring different
performance parameters.

./src/ocp_tl0 Implementation of an OCP2.0 TL0 (RTL) IO device model, consisting of a
master and slave.

./src/ocp_tl1_clk Implementation of an OCP2.0 TL1 IO device model, consisting of a master
and slave.

./src/parsers ARTS script language parser (Parser) and different TGFF parsers for
application (scanAPP.cpp), resource (scanRSC) and data communication
(scanCMM) files. These are essential for the dynamic framework
configuration.

./src/pe Different Process Element (PE) implementations; one with a OCP2.0 TL0
core interface (PE_TL0) and another with an OCP2.0 TL1 core interface
(PE_TL1).

./src/soc_comm Implementation modules for the SoC communication platform model.

./builds Folders with different framework implementation examples.

./builds/tl0_example A framework instantiating a user defined no. of OCP2.0 TL0 PE’s,
connected to a communication platform, with user defined topology (bus or
NoC). Using an ARTS script, defining the applications, RTOS policies etc.

*** NOT WORKING ***
./builds/tl1_example A framework instantiating a user defined no. of OCP2.0 TL1 PE’s,

connected to a communication platform, with user defined topology (bus or
NoC). Using an ARTS script, defining the applications, RTOS policies etc.

./builds/tgff A more complex framework instantiating a user defined no. of OCP2.0 TL1
PE’s, connected to a communication platform, with user defined topology
(bus or NoC). This framework uses TGFF files for defining applications and
processor types and an ARTS script for defining RTOS policies and initial
task partitioning/mapping. This example uses iteration-based simulations.

./app Different application files, profiled using TGFF.

./rsc Different resource and data communication files in TGFF format.

./doc ARTS framework documentation

Table 1 | ARTS Framework directory description.

 6

5 The base classes
The base classes found in ./src/base_cl defines the API to the different modules (pure virtual
methods), used in the ARTS framework. Usage of a module API ensures a well defined interface
between the different modules and further allows for module exchange at runtime (e.g. changing
RTOS scheduling policy or task mapping).

There exist different base classes for the modules used in the Process Element (PE) model
(described next) and the SoC communication platform model (described later). Implementation of a
new module type requires inheritance of the associated base module. Examples of different module
implementations can be found in ./src/rtos (for RTOS module implementations, used in the PE
model) and ./src/soc_comm (for SoC communication platform modules implementations). Use
these as a reference, when creating new module implementations. See also the separate document,
API_base_classes.doc, describing the different base classes.

6 Application model
The application model is based on static dataflow/task graphs, where the exact functionality of a
task is abstracted away and expressed using a set of timing constrains (execution time, deadline and
offset. There is a periodic task model implementation (PerTask) available, which can be found in
./src/application. This model supports pre-emption.

6.1 Object constructor
The PerTask object constructor requires the following arguments, except otherwise specified:

Type Description
sc_module_name SystemC module name
Uint Thread ID
Uint Task ID
Uint Application ID (The ID of the application, to which the task belongs to).
Uint Execution period/frequency, expressed in no. of clock cycles.
Uint Deadline, expressed in no. of clock cycles
Uint Offset, expressed in no. of clock cycles (an offset time, relative to zero-

time, when the task is released)
ofstream* Ofstream pointer to PE logfile for logging to file, when the task misses

deadline.
Not a mandatory argument. If left out, no file will be created.

performance_monitor* Performance monitor object pointer, if the performance monitor are to
monitoring the PE. Not a mandatory argument.

6.2 Public method description
Below follows a brief description of the different public method in the PerTask module.

Name : command
Arguments : msg (message_type*)
Return value : None
Description : API method called from the RTOS, when sending commands to the task (e.g. start

 7

execution, redemption/resume etc.)

Name : set_pe
Arguments : id (uint)
Return value : None
Description : Sets the PE ID, to which the task must be assigned.

Name : get_pe
Arguments : None
Return value : uint
Description : Returns the PE ID, to which the task is assigned.

Name : get_taskID
Arguments : None
Return value : uint
Description : Returns the ID of the task.

Name : get_appID
Arguments : None
Return value : Uint
Description : Returns the ID of the application, which the task belongs to.

Name : get_pincode
Arguments : None
Return value : uint
Description : Returns the pincode of task, which is an encoded id, containing the task ID and

the application ID. Bit [0:N-1] = application ID and bit[32:N] = task ID. The
value N is equal to the define-statement, _PINCODE_BIT_SPLIT declared in
Parameter.h in ./src/rtos.

Name : get_task_name
Arguments : None
Return value : sc_module_name
Description : Returns the sc_module_name of the task.

Name : Initialize
Arguments : None
Return value : None
Description : Initializes the state machine of the task.

Name : set_execution_time
Arguments : BCET (uint), WCET (uint)
Return value : None
Description : Sets the best-case execution time (BCET) and worse-case execution time

(WCET), expressed in no. of clock cycles.

Name : get_execution_time
Arguments : BCET (&uint), WCET (&uint)

 8

Return value : See arguments
Description : Returns the best-case execution time (BCET) and worse-case execution time

(WCET), expressed in no. of clock cycles.

Name : get_prg_memory
Arguments : Size (uint)
Return value : None
Description : Sets the program memory size characteristic of the task.

Name : update_tx_datamem
Arguments : Size (uint)
Return value : None
Description : Updates the amount of data memory to reserve, when task execution starts. Each

time this method is called the data memory requirement will increase,
corresponding to the value of the argument

Name : get_tx_datamem
Arguments : None
Return value : uint
Description : Returns the amount of data memory to reserve (when task execution starts).

Name : update_rx_datamem
Arguments : Size (uint)
Return value : None
Description : Updates the amount of data memory to release, when task execution completes.

Each time this method is called the data memory requirement will increase,
corresponding to the value of the argument

Name : get_rx_datamem
Arguments : None
Return value : uint
Description : Returns the amount of data memory to release (when task execution completes).

Name : push_soc_comm_nfo
Arguments : Target task ID (uint),

Target application ID (uint),
Base address of target PE (uint),
Upper address range of target PE (uint)
Data transfer size (uint)
Transfer type; e.g. write/read (uint)

Return value : uint
Description : Pushes information about inter-task dependency into a database in the task. This

information relates to preceding dependency to a task assigned to different PE and
will cause the task to initiate a SoC transaction (inter-processor communication)
when execution completes. For multiple inter-dependencies, this method just has
to be called several times.

 9

Name : init_soc_comm_nfo
Arguments : none
Return value : None
Description : Clears the inter-task dependency database.

Name : new_resource_requirement
Arguments : Resource ID (uint),

Resource request time (uint),
Critical section length (uint)

Return value : None
Description : Assigns a PE local resource requirement to a task, where the resource request

time identifies the time, relative to start of execution, when the task should
request for a resource, while critical section length identifies the amount of time
the resource is occupied. The times are expressed in no. of clock cycles. For
multiple resource requirements, this method just has to be called several times.

7 The Process element (PE)
The PE models the behaviour of an IP core; for example a CPU. It is characterized by supporting
change of RTOS policies as well as task mapping during runtime. The model is shown in Figure 3
and with the different module briefly described next. There exists a PE implementation having a
OCP2.0 TL0 and TL1 core interface respectively. They can be found in ./src/pe.

OCP
Master

IO Device

OCP
Slave

Synchronnizer

Resource
Allocator

Scheduler

. . .

SoC Communication Interface

Application
module

IO dev.drv

�1 �n�IO

application

DS_synch

PI_alloc

RM_sched

RM_sched

abs_synch

abs_alloc

abs_sched

abs_sched

io_task abs_iodrv

TL1_IO abs_iodev

TL1_Master

TL1_Slave

1

1

abs_task*

monitor

PE_TL1

1

1

1

1

1

1

1

1

(b) (c)

RTOS

Application

IO dev.driver

IO Device

Software
modeling

Hardware
modeling

Core
interface

Abstract
PE

PE#1

SoC Communication Interface

(a)
Figure 3 | (a) layer model (b) block diagram (c) simplified UML diagram (for PE_TL1).

 10

7.1 Application
The application (module) holds pointers to task object assigned to the PE. It receives messages from
the RTOS (scheduler) and forwards this to the target task. Further, it connects the assigned tasks to
the RTOS, so they can send messages to the RTOS (synchronizer and resource allocator). The
application module and the task module implementations are found in ./src/application.

7.2 RTOS
The Real-Time Operating System (RTOS) modes basic RTOS services, covering task
synchronization, resource allocation and scheduling. It is composed of the synchronizer, resource
allocator and scheduler modules. RTOS modules are found in ./src/rtos. Current supported protocols
are listed in Table 2.

Module Protocol
Synchronizer Direct Synchronization (DS)
Resource Allocator Basic Priority Inheritance (PI)
Scheduler Rate-Monotonic (RM)

Earliest-Deadline-First (EDF)

Table 2 | RTOS protocol implementations.

7.3 IO device driver
The IO device driver models an IO device driver application. It controls the IO device and
encodes/decodes data to/from IO device (SoC communication interface), being synchronization
messages between tasks with inter-dependencies.

For request (write or read transaction), the synchronization is based on the address encoding
scheme, shown in Figure 4. For burst requests, the address encoding will be fixed. Tasks and
application ID bit width can be configured using _TASK_ID_BW and _APP_ID_BW, specified in
Parameter.h, located in ./src/rtos.

destination
PE base address

Application
ID

destination
task ID

source
task ID

lsb

_TASK_ID_BW_TASK_ID_BW_APP_ID_BW

msb

Figure 4 | Request (write|read) address decoding scheme.

For response (to a previous initiated read), the data will simply equals source task ID (issuing the
response data).

The IO device driver module implementation is found in ./src/application.

7.4 IO device
The IO device models the physical hardware port, managing the communication protocol. Currently
two IO device models are available for OCP 2.0 at TL0 and TL1 respectively. Both models have a
fully multithreaded interface and can be configured, relative to the OCP channel. The PE
implementation, PE_TL0 uses the TL0 model while PE_TL1 uses the TL1 model. The TL0 and
TL1 IO device implementations can be found in ./src/ocp_tl0 and ./src/ocp_tl1_clk respectively.

 11

7.5 Object constructor
The PE_TL0 and PE_TL1 object constructor requires the following arguments, except otherwise
specified:

Type Description
sc_module_name SystemC module name
uint PE ID
performance_monitor* Performance monitor object pointer, if the performance monitor are to

monitoring the PE. Not a mandatory argument.
dependency_control* Dependency controller object pointer, required by the synchronizer

module, in order to access the global synchronization database.
bool Screen dump flag, enable RTOS status logging to screen

(true=enable|false=disable)
ofstream* Ofstream pointer to PE logfile for RTOS status logging to file.

Not a mandatory argument. If left out, no file will be created.

7.6 Public method description
The following public method are common to PE_TL0 and PE_TL1, except otherwise specified.

Name : set_synchronizer
Arguments : type (uint)
Return value : None
Description : Selects the synchronizer to use. Not applicable at the moment, since only DS

synchronization is implemented at the moment.

Name : set_allocator
Arguments : type (uint)
Return value : none
Description : Selects the resource allocator to use. Not applicable at the moment, since only

Basic Priority Inheritance (PI) protocol is implemented at the moment.

Name : set_scheduler
Arguments : type (uint)
Return value : none
Description : Selects the scheduling policy to use. Applicable arguments (type) are:

0 = Rate Monotonic (RM) scheduling.
1 = Earliest Deadline First (EDF) scheduling.

Name : connect_OCP_Master
Arguments : *pOCP (OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >)
Return value : None
Description : Connects OCP Master in the PE_TL1 implementation to an OCP channel.

NOTE: For PE_TL0, see which SystemC signals are required/a part of the OCP
channel in the header file (PE_TL0.h).

Name : connect_OCP_Slave

 12

Arguments : *pOCP (OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >)
Return value : None
Description : Connects OCP Slave in the PE_TL1 implementation to an OCP channel.

NOTE: For PE_TL0, see which SystemC signals are required/a part of the OCP
channel in the header file (PE_TL0.h).

Name : set_master_buffer
Arguments : size (uint)
Return value : None
Description : Sets the response data buffer size in the OCP Master.

Name : set_slave_buffer
Arguments : size (uint)
Return value : None
Description : Sets the request data (write data) buffer size in the OCP Slave.

Name : set_processor
Arguments : type (uint)
Return value : None
Description : Sets the processor type ID for the PE. Not used for anything inside the PE.

Name : get_processor
Arguments : None
Return value : type (uint)
Description : Return the processor type ID for the PE. Use set_processor for specifying the

processor type ID.

Name : set_address
Arguments : lo (uint), hi (uint)
Return value : None
Description : Assign an address space to the PE, used by other PE’s when they are to transmit

inter-dependency synchronization messages to this PE.

Name : get_address
Arguments : &lo (uint), &hi (uint)
Return value : Lower and upper address boundary; see Arguments.
Description : Returns the assigned address space to the PE.

Name : set_offset_time
Arguments : offset_time (sc_time)
Return value : None
Description : Set the offset time, when a simulation is restarted. Only applicable when doing

iteration-based simulation (see the example in ./builds/tgff)

Name : map_tasks
Arguments : *obj (deque<abs_task*>)
Return value : None
Description : Used for assigning tasks to a PE. Argument is a pointer to a task pool. The

 13

application module will scan the task module and connect all tasks, assigned to
this PE.

Name : initialize
Arguments : None
Return value : None
Description : Initializes the PE. This consisting of disconnecting any assigned task and

initializing the RTOS and IO device driver and IO device.
NOTE: should only be used for iteration-based simulation (see the example in
./builds/tgff).

Name : flush_mode
Arguments : None
Return value : None
Description : Set the PE in flush mode; that is disconnecting any assigned task and initializing

the RTOS.
NOTE: flush mode MUST be used in iteration-based simulation (see the example
in ./builds/tgff), BEFORE starting a new simulation.

Name : flush_done
Arguments : None
Return value : None
Description : Sets the PE out of flush mode. Must be called after flushing.

NOTE: flush mode MUST be used in iteration-based simulation (see the example
in ./builds/tgff), BEFORE starting a new simulation.

Name : get_task_count
Arguments : None
Return value : uint
Description : Returns the number of tasks assigned to the PE.

 14

8 SoC communication platform model
The SoC communication platform model is used for modelling different communication topologies.
Currently available topologies are a single shared bus and a simplified 1D/2D mesh Network-On-
Chip (NoC) with minimal path routing and store-and-forward transmission approach. The SoC
communication platform model is characterized by having an abstract description of the topology
while being able to support transmission of real data very low abstraction level (e.g. at RTL). Figure
5 shows a block diagram of the model as well as the corresponding simplified UML diagram. There
exists SoC communication platform models implementation, supporting OPC2.0 TL0 and TL1
protocol. They can be found in ./src/soc_comm.

SoC communication interface to IP core models (PE)

Master Slave

IO adapter1

Master Slave

IO adapter2

Master Slave

IO adapterN

Allocator

Scheduler

Intermediate
adapter1

Intermediate
adapter2

Intermediate
adapterN

Network Interface (NI) block module

CSL buffer TL1_IO

TL1_Master

TL1_Slave
1

*

SoC_comm_inter_adapt abs_iodrv

1

tl1_ni_block

*

SoC_comm_sched abs_comm_sched

SoC_comm_res_buff abs_comm_buff

SoC_comm_alloc_mesh abs_comm_alloc

SoC_comm_alloc_bus abs_comm_alloc

SoC_comm_ocp_tl1

1

1

1

1

1

abs_iodev

(b)(a)

abs_comm_ni

Figure 5 | (a) block diagram (b) simplified UML diagram.

8.1 Transport messages
The message communication in the SoC communication platform model is based on transport
messages (noc_message_type) or data packages, containing a payload and a header, used for
routing modelling. A transport message always originates from a network adapter when data is
being received from an IP core model (PE). In the current implementation only one for transport
message will be issued for a request/response transaction.

8.2 Network interface (NI) block
The NI block holds a configurable numbers of network adaptor models. It serves to route messages
from the SoC communication layer (allocator, CSL buffer or Scheduler) to the correct network
adapters.

 15

A network adapter model is composed of an IO device model, handling the SoC communication
protocol. This is the same module type used as IO device in the PE model. Further the network
adapter model consists of an intermediate adapter, controlling the IO device and managing the
encoding/decoding of data between IO device model and the SoC communication layer (allocator,
CSL buffer and Scheduler). This module is somewhat equivalent to the functionality of IO device
driver model in PE model, except that the behaviour is quit different.

There exists a NI block for OCP2.0 TL0 (tl0_ni_block) and TL1 (tl1_ni_block) respectively. They
can be found in ./src/soc_comm.

8.3 Allocator
The allocator implements the actual topology modelling and manages allocation of shared
communication resources. Transport messages received by the allocator always indicate release of a
shared resource and requesting for a new one. Which new resource to assign to the transport
message is determined by the allocator, and reflects the topology. If a resource is occupied, the
transport message gets forwarded to the scheduler. Otherwise it is granted the resource, and the
transport message gets forwarded to the CSL buffer.

There exists an allocator model for a single shared bus (SoC_comm_alloc_bus) and simplified
1D/2D mesh with minimal path routing (SoC_comm_alloc_mesh). They can be found in
./src/soc_comm.

8.4 CSL buffer
The CSL buffer models the mechanism of using a shared communication resource, by buffering a
transport message during CSL. Relative to the data size, the allocator will have assigned a CSL to a
transport message, equal to the amount of time the resource will be occupied. When CSL expires
for transport message, it gets forwarded back to the allocator again. Thus the interaction between
the allocator and CSL buffer actually models a chain of communication tasks (depending upon the
topology modelling). The CSL buffer also manages the forwarding of a transport message, when it
is ready for being released to the destination network adapter.

The implementation of the CSL buffer can be found in ./src/soc_comm.

8.5 Scheduler
The scheduler manages the scheduling of transport messages, in case of communication resource
contention. The current scheduling policy is based on the first-come-first-served principle. When a
resource becomes available, and there is a transport message waiting for this resource to become
free, the scheduler will receive a message from the allocator. This causes the scheduler to release
the transport message to the CSL buffer.

The implementation of the scheduler can be found in ./src/soc_comm.

8.6 Object constructor
The constructor for SoC communication platform models, supporting OCP2.0 TL0 and TL1
(SoC_comm_ocp20_tl0 and SoC_comm_ocp20_tl1) requires the following arguments, except
otherwise specified:

 16

Type Description
sc_module_name SystemC module name
uint No. of PE’s assigned to the framework
uint No. of threads supported
bool Screen dump flag. True=the state of the SoC communication model will

be logged to screen, during simulation. False=no screen dumping.
ofstream* Ofstream pointer to logfile, where to the state of the SoC communication

model, during simulation.
Not a mandatory argument. If left out, no file will be created.

ofstream* Ofstream pointer to logfile, where to log communication contention
count versus time.
Not a mandatory argument. If left out, no file will be created.

8.7 Public method description
The following public method are common to SoC_comm_ocp20_tl0 and SoC_comm_ocp_tl1,
except otherwise specified.

Name : set_addr_map
Arguments : nodeID (uint), addr_lo (uint), addr_hi (uint)
Return value : None
Description : Sets the address range (addr_lo to addr_hi) associated with a certain network

adapter, identified by the node ID (nodeID). This information is forwarded to all
network adapters in the NI block, and stored in a look-up table, used in
conjunction with transport message routing management (that is identifying the
target node ID for a request, for an example).

Name : get_refuse_count
Arguments : None
Return value : Uint
Description : Returns the number of contentions. The method is normally called after a

simulation has completed.

Name : connect_OCP_Master
Arguments : *pOCP (OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >)

nodeID (uint)
Return value : None
Description : Connects OCP Master in network adapter (nodeID) to an OCP channel.

NOTE: Not implemented in SoC_comm_ocp20_tl0. See associated header file for
the required SystemC signals, defining of the OCP channel.

Name : connect_OCP_Slave
Arguments : *pOCP (OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBit32, OCPCHANNELBit32> >)

nodeID (uint)
Return value : None
Description : Connects OCP Slave in network adapter (nodeID) to an OCP channel.

NOTE: Not implemented in SoC_comm_ocp20_tl0. See associated header file for
the required SystemC signals, defining of the OCP channel.

 17

Name : set_master_buffer_size
Arguments : size (uint)
Return value : None
Description : Sets the response data buffer size in the OCP Master. Common for all network

adapters.

Name : set_slave_buffer_size
Arguments : size (uint)
Return value : None
Description : Sets the request data (write data) buffer size in the OCP Slave. Common for all

network adapters.

Name : initialize
Arguments : None
Return value : None
Description : Initializes the SoC communication model.

NOTE: should only be used for iteration-based simulation (see the example in
./builds/tgff).

Name : flush_mode
Arguments : None
Return value : None
Description : Sets the SoC communication in flush mode; that is bypassing transport messages

to/from the NI block to the SoC communication layer.
NOTE: flush mode MUST be used in iteration-based simulation (see the example
in ./builds/tgff), BEFORE starting a new simulation.

Name : flush_done
Arguments : None
Return value : None
Description : Sets the PE out of flush mode; that is removing the bypassing of transport

messages. Must be called after flushing.
NOTE: flush mode MUST be used in iteration-based simulation (see the example
in ./builds/tgff), BEFORE starting a new simulation.

Name : set_offset_time
Arguments : offset_time (sc_time)
Return value : None
Description : Set the offset time, when a simulation is restarted. Only applicable when doing

iteration-based simulation (see the example in ./builds/tgff)

Name : set_allocator
Arguments : type (uint) [span (uint)]
Return value : None
Description : Sets allocator type, defining the topology. Valid arguments are:

0 = bus model (SoC_comm_alloc_bus)

 18

1 = 1D/2D mesh NoC (SoC_comm_alloc_mesh). 2nd argument defines the mesh-
span, yielding a symmetrical mesh (i.e. span = 3 -> 3x3mesh).

Name : set_resource
Arguments : type (uint)
Return value : None
Description : Selects the CSL buffer type to use. Currently not applicable, since only one CSL

buffer type is implemented.

Name : set_scheduler
Arguments : type (uint)
Return value : None
Description : Selects the scheduling policy. Currently not applicable, since only one CSL buffer

type is implemented.

9 Top-level modules
There exists two other top-level modules (beside the parsers), connecting to the framework. These
are the dependency controller and performance monitor. The implementations can be found in
./src/extensions.

9.1 Dependency controller
The dependency controller (dependency_controller) module is a global dependency database,
managing the dependencies among the different (application) tasks assigned to the framework.
Dependency database information (dm_type) is provided to the module constructor during object
creation. A macro method (copy_db), found in the macros class (arts_macro located in
./src/extensions) has been implemented for fetching this information from the configuration file
parser or TGFF application parser.

Public methods in the module are accessed by the synchronizers in the different PE, whenever
information is provided to/from the database (e.g. when a task finished or checking when if
dependencies have been resolved). In addition to this, a pointer to the dependency controller object
must be provided to the PE_TL1/PE_TL0 constructor.

Beside this, the dependency controller holds a database with pointers to the different task objects.
This database is used when blocking/unblocking a task (that is a task gets blocked after execution
has completed, and unblocked again when the entire application has completed. This feature is
implemented for synchronization reasons). Thus whenever a task object is created, a pointer to the
object must be forwarded to the dependency control (done by calling push_task_ptr with object
pointer as argument. See examples in ./builds).

9.1.1 Object constructor
The object constructor requires the following arguments, except otherwise specified:

Type Description
dm_type* Pointer to dependency data base, describing the dependencies among

tasks in the different applications.

 19

uint No. of applications assigned to the framework
bool Screen dump flag. True = a notification will be prompted to the screen,

when an application completes, false = no screen dump.
ofstream* Ofstream pointer to logfile, where to log application completion

information. Not a mandatory argument. If left out, no file will be
created.

9.2 Performance monitor
The performance monitor module is used for monitoring performance parameters of the different
PE’s, assigned to a framework. This includes parameters such as utilization and program/data
memory usage. During simulation, public methods in the module are accessed by the RTOS and
task modules for reporting different states. The performance monitor module is not mandatory and
can be left out.

9.2.1 Object constructor
The object constructor requires the following arguments, except otherwise specified:

Type Description
sc_module_name SystemC module name
uint No. of PE’s assigned to the framework
uint No. of applications assigned to the framework
ofstream* Ofstream pointer to logfile, where to log PE utilization.

Not a mandatory argument. If left out, no file will be created.
ofstream* Ofstream pointer to logfile, where to log dynamic memory usage in the

PE’s (a file displaying the memory usage vs. time).
Not a mandatory argument. If left out, no file will be created.

10 Framework construction steps
Different steps are required when constructing a framework. These steps can be seen in the top-
level modules in the examples (./builds/tl1_example and/or ./builds/tgff). It is recommended to use
the examples found in ./builds as templates when designing a new framework. However the main
steps are briefly summarized in Table 3 to give an overview.

Step Description
Parse files Parse configuration file and TGFF files, if used for

framework construction.
Extract configuration file scalar declarations Get screen dump flags and filename declarations for

configuration file and create ofstream objects for
result logging.

Copy dependency database information Extract the task dependency information from the
configuration file or TGFF application parser and
store this in a dependency database (dm_type). Use
the macro, copy_db to do this.

Create dependency controller Create the dependency controller object. A pointer
to the newly created dependency database must be

 20

provided to the constructor.
Create performance monitor Create performance monitor module, if performance

monitor parameters (PE utilization/memory usage)
are to be logged/monitored.

Create PE’s and connect to OCP channels Based upon the no. of PE assigned to the framework
a corresponding no. of OCP channels must be
created. PE characteristics are fetched from the
configuration file parser by calling the macro
method, get_pe_data.

Create SoC communication platform Create SoC communication platform model, set
topology, set address range for the different network
adapters (equal to the PE address ranges) and
connect to ocp channels.

Create tasks based on declarations
(TGFF or configuration file)

Task information is fetched from the configuration
file/TGFF application parser and used for task
object creation. A pointer to the task object MUST
be forwarded to the dependency controller
(push_task_ptr) and store in a task pool
(deque<abs_task*>), used in conjunction with PE
task mapping.

Configure task (inter-dependency
configuration)

Task having preceding inter-dependencies must be
configured to issue an inter-processor
communication, when execution completes. This is
done by calling the macro method,
task_configuration.

Map tasks to PE After tasks have been created and configured, they
are to be mapped to the different PE’s. Mapping
tasks to a PE is done by calling the PE method,
map_task with a pointer to the task pool. Any tasks
in the task pool, assigned to the PE will be
connected to the PE.

Create and dump memory map Create a task memory map for each PE, showing the
address location, where non-local tasks write
to/reads from, in case of inter-dependency. The
memory map also shows the actual partitioning/task
mapping. Memory map is created by calling the
macro method, create_memory_map

Create VCD files If VCD file dumping has been created, VCD file
objects are created; one for task state vs. time and
another for task execution on a PE vs. time.

Start execution A this step, the simulation can be started since the
framework has been constructed and connected.

Close result files After simulation has completed, the different log
files must be closed.

Delete objects (memory clean-up) Finally, the different objects (i.e. PE’s, tasks, SoC
communication model etc.) must be deleted, to
ensure memory clean-up.

 21

Table 3 | Framework construction step overview.

11 Framework flushing and initialization
Iteration-based simulations required flushing and initializaion, when a series of simulation sessions
are performed in a chain, like batch simulation (i.e. changing task partitioning/mapping and doing
the same simulation again). An example of an iteration-bases simulation framework can be found in
./builds/tgff, where the processor type is changed from iteration to iteration. Flushing and
initialization MUST be done when a simulation finished, but before a new one is started.

11.1 Flushing
Flushing is required to “flush out” any ongoing SoC transaction, occurring at the time when the
simulation stopped. Without flushing, the SoC transaction will resume at the start of the next
simulation. During flushing, the CI in the PE’s and the network adapters in the SoC communication
model will be disconnect and a number of simulation cycles are executed, to flush out any ongoing
SoC transactions. Disconnection ensures that the RTOS in the PE and the network layer in the SoC
communication model cannot issues new SoC transactions.

11.2 Initialization
After flushing the framework must be initialized. This includes resetting tasks, RTOS, the
dependency database etc. to ensure any information/states related to the previous simulation is
removed. It would be possible to avoid flushing, but this would introduce high-complexity in the
initialization of the IO device drivers and IO device models.

The steps associated with flushing and initialization can be seen in the example in ./builds/tgff.

12 Framework examples
There exists different examples of framework implementations in ./builds. Please consult the
README file in /ARTS_Framework for how to execute these examples.

