ARTS Overview

Copyright © 2005
Department of Informatics and Mathematical Modelling (IMM)
Denmark Technical University (DTU)

1 Contents

) O 0] (= 0| PP PP TUPPPTUPPPIN 2
P22 111 £ Yo [8 o 1o o L PP PP 3
P2 N @ V= V= PP PPPPTPTRR 3
2.2 Implementation aPProaChu e e 3
221 [F= V40 1 TP PPPR R SPPPPPPPN 3
222 Module COMMUNICALIONceuieii s e e e s 3
3 SYSIEM FEOUITEIMENLS ...euuiitiiiieiie it eeeeeem e e e e e eeeea e e e e e et e tbbbt e s e e e e e aaane e e e s e e e e e eeaneannneeeeeas 4
A DIFECLOIY SEIUCIUIE ...uueeiieeeiiiiiit s eeeeees s e e e ettt e e e et e e e bbbt e e e e eaeaa e e s e e e e e eaee e e eeeaeeees 4
5 THE DASE CIASSESuuuiiiiiiiiiiit e i ettt ettt ettt e e e e e e e e aaan s e e s e e e e ababe e e e e eeeeeas 6
6 APPICALION MOUEL.... .o e e e e e e e e e e b e s 6
(% R @] o] 1= Tox i o101 153 { (1 [(| PP PPPPPPPPTR 6
6.2 Public method deSCrPLIONovvuiiiiie e 6
7 The Process €leMENt (PE)..........cooi i o seetaseaseeeeeeeeeii s e s e s aaeesasesassasaeesssesaaaaseeeseeeesns 9
4% T Y o] o] o= 11T] o FO PP UPPPPPTTPTR 10
7.2 RIS i e e et e et e e 10
7.3 [O AEVICE AFIVET ...ttt ettt e ee e e e e e ee e e e e es 10
7.4 (O 20 L= o PSSO 10
ST @ o] 1= Tox i X0 o 1S3 { (1 [(o] p PP PPPPPPPPTRRN 11
7.6 Public method deSCHPLIONcoviiiiiiiiie e 11
8 SoC communication platform model...........cceeiiiiiii i 14
8.1 TrANSPOIT MESSAGES ... eevuieieu et o e e et era e e et s eeee s ee e et eenaeenneaeenaeeennnes 14
8.2 Network interface (NI) DIOCK..........ouiicee e 14
SR S Y | [Yo (o] O OO 15
8.4 CSL DUITEI e e e e 15
8.5 SCNEAUIET ... e e 15
I I @ o] [=Tox i oX0] 153 { (1 [(] p PP PPPPPPPPRRRN 15
8.7 Public method deSCHPLIONooviiiiiiiiie e 16
O TOP-IEVElI MOAUIES. ...t et e e et e e e e e ee e 18
9.1 DePeNndenCY CONLIOIBTttt et e rre e e e e eeeenane 18
9.11 (@] [T A o011 511 {0 [o1 (o] ST 18
9.2 PerformanCe MONITOTiiiiiiii it e rre e e e e s eeeenanes 19
9.21 (@] [T A o011 511 {001 (o] ST 19
10 Framework CONSIIUCLION STEPSoiiiiiii et 19
11 Framework flushing and initializationooiiiiiiiiiiiiiii e 21
5 0 R (1 o1 o o PP PPPTP PP 21
O [0111 F= 114 11 (o IO PPPUPPPT 21
12 Framework eXamPIESouuuuiiiiii e ettt sttt e 21

2 Introduction

This document tends to give an overview of the AFFF&mework as well as an introduction to the
different main modules, used for constructing aneavork. Low-level (source code)
implementation details will not be presented. iteisommended to use the included examples as
templates, when creating new frameworks.

2.1 Overview

The ARTS Framework is a simulation tool for useikin abstract MPSoC design explorations.
The framework allows for modelling of process elatsgPE), consisting of an abstract application
model (RTOS and tasks) and a core interface (IQcdalriver and 10 device) for inter-processor
communication. Further a SoC communication platfaradel is available for modelling different
communication topologies, such as bus and NoC.ebtlyrsupported communication protocols are
OCP 2.0 at TL1 and TLO. Figure 1 shows the maiwclbbtiagram of the ARTS framework.

PE#1 PE#2 PE#N
- -
Application Application Application
Abstract
Software PE
modeling
RTOS RTOS e RTOS
10 dev.driver 10 dev.driver 10 dev.drive
- Core
Hardwgare 10 Device interface 10 Device 10 Device
modeling
V2R V2
SoC communication platform model

Figure 1 | ARTS framework block diagram.

The framework features flexible and easy configaratvith respect to selection of task
partitioning/mapping, RTOS protocols, communicatiopology etc. This is done using a simple
script language, developed especially for the ARF&nework. Further, the framework supports
configuration, based on TGFF files (describing teses, application and data communication).

2.2 Implementation approach

2.2.1 Platform

The framework is based on SystemC 2.0.1 and hasibgdemented in an object oriented manner,
making it easy to implement new modules (e.g. thifit RTOS policies, task types etc.). All
module type implementations inherit from an asdedi®dase class, defining the API to the
particular module.

2.2.2 Module communication

Communication between different modules (e.g. RE is based omessages, where a message is
astruct. Passing a message from one module to anothene uking calls to a (API) method,
defined by the base class of the target moduleurent to this method is the message. In

conjunction to this, the different modules are ‘“wected” via object pointers. (i.e. if module A
communicates to module B, a module B object poimtest be passed onto module A, before the
simulation starts).

3 System requirements
In order to use the ARTS framework, the followimgjuirements must be met:

e C++ compiler (GNU g++/gcc, Microsoft VC 6.0)
» SystemC 2.0.1 (available fromww.systemc.ory
» OCP Transaction Level Library (can be requesteunh fravw.ocpip.org

NOTE: The OCP Transaction Level Library for Systemm©nly required, when using OCP TL1 as
communication protocol. In addition to this, ithighly recommended to install the OCP Monitor
package (only available for members of OCP), ireotd monitoring the OCP channel.

4 Directory structure

The ARTS Framework directory structure is showFRigure 2. The contents of the different folders
are briefly described in Table 1.

‘ ARTS_Framework ‘

v v ‘ v v
‘ src ‘ ‘ doc ‘ ‘ builds ‘ ‘ apps ‘ ‘ rsc ‘
4> tl0_example

application tl1_example

i

rtos toff

extension

ocp_tlo

ocp_tl1_clk

parsers

i

soc_comm

Figure 2 | ARTS Framework directory structure.

Directory Contents description

ARTS_Framework | Top-level directory. Contains a RBADfile and the Makefile.defs, used
when building a framework

Jsrc Folders wittsource code for the different implementation modules.

Isrc/base_cl

Base classes, defining the API tdliffierent implementation modules.

Isrclapplication

Implementation of different applion models, consisting of periodic task
model and the 1O device driver (10 task). Also ems an application
module, used for managing the different tasks (@daask) assigned to a PE.

.Isrc/rtos

Implementation of different RTOS protisdor synchronization, resource
allocation and scheduling.

.Isrc/extension

Different top-level extension m@sulT his includes a macro class
(arts_macro) containing handy methods; for exarfgsléramework
configuration. Also contains a dependency contrqligobal task database
module) and a performance monitor module, for nowimg different
performance parameters.

Isrclocp_tl0

Implementation of an OCP2.0 TLO (RTQ)device model, consisting of g
master and slave.

Jsrclocp_tl1_clk

Implementation of an OCP2.0 TOLdevice model, consisting of a maste
and slave.

-

Isrc/parsers ARTS script language parser (Paaserifferent TGFF parsers for
application (scanAPP.cpp), resource (scanRSC) atedabmmunication
(scanCMM) files. These are essential for the dyegmamework
configuration.

Jsrclpe Different Process Element (PE) implemeéntat one with a OCP2.0 TLO

core interface (PE_TLO) and another with an OCHZ2.D core interface
(PE_TL1).

.Jsrc/soc_comm

Implementation modules for the Sm@rounication platform model.

./builds

Folders with differerftamework implementation examples.

./builds/tl0_example

A framework instantiating @udefined no. of OCP2.0 TLO PE’s,
connected to a communication platform, with usdingd topology (bus or
NoC). Using an ARTS script, defining the applicapRTOS policies etc.

*** NOT WORKING ***

Jbuilds/tll_example

A framework instantiating @udefined no. of OCP2.0 TL1 PE’s,
connected to a communication platform, with usdingd topology (bus or
NoC). Using an ARTS script, defining the applicaBpRTOS policies etc.

builds/igff

A more complex framework instantiagia user defined no. of OCP2.0 TL1
PE’s, connected to a communication platform, wibndefined topology
(bus or NoC). This framework uses TGFF files foiirdag applications ang
processor types and an ARTS script for defining BTlicies and initial
task partitioning/mapping. This example uses iterabased simulations.

Japp Different application files, profiled usingsFF.
Jdrsc Different resource and data communicaticesfih TGFF format.
Jdoc ARTS framework documentation

Table 1 | ARTS Framework directory description.

5 The base classes

The base classes found in ./src/base_cl define&Rhéo the different modules (pure virtual
methods), used in the ARTS framework. Usage of dut@API ensures a well defined interface
between the different modules and further allowsriodule exchange at runtime (e.g. changing
RTOS scheduling policy or task mapping).

There exist different base classes for the modigesd in the Process Element (PE) model
(described next) and the SoC communication platimadel (described later). Implementation of a
new module type requires inheritance of the astatibase module. Examples of different module
implementations can be found in ./src/rtos (for ESTi@odule implementations, used in the PE
model) and ./src/soc_comm (for SoC communicatiatf@dm modules implementations). Use
these as a reference, when creating new moduleimgpitations. See also the separate document,
API_base_classes.doc, describing the different tlasses.

6 Application model

The application model is based on static dataflsk/graphs, where the exact functionality of a
task is abstracted away and expressed using & th@tirng constrains (execution time, deadline and
offset. There is a periodic task model implemeata{PerTask) available, which can be found in
.Isrc/application. This model supports pre-emption.

6.1 Object constructor
The PerTask object constructor requires the follmwarguments, except otherwise specified:

Type Description

sc_module name SystemC module name

Uint Thread ID

Uint Task ID

Uint Application ID (The ID of the application, t@hich the task belongs to)

Uint Execution period/frequency, expressed in dalack cycles.

Uint Deadline, expressed in no. of clock cycles

Uint Offset, expressed in no. of clock cycles (&sead time, relative to zero-
time, when the task is released)

ofstream* Ofstream pointer to PE lodfile for loggito file, when the task misses
deadline.
Not a mandatory argument. If left out, no file Wik created.

performance_monitor¥ Performance monitor objechpai if the performance monitor are to
monitoring the PE. Not a mandatory argument.

6.2 Public method description
Below follows a brief description of the differgmiblic method in the PerTask module.

Name : command

Arguments :msg (message_type*)

Return value :None

Description : APl method called from the RTOS, when sending comisdo the task (e.g. start

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments

execution, redemption/resume etc.)

: set_pe
2id (uint)
:None
: Sets the PE ID, to which the task must be assigned.

: get_pe
:None
:uint
: Returns the PE ID, to which the task is assigned.

. get_taskID
:None
‘uint
: Returns the ID of the task.

: get_appID
:None
:Uint
: Returns the ID of the application, which the taslobgs to.

: get_pincode
:None
-uint
: Returns the pincode of task, which is an encodedointaining the task ID and

the application ID. Bit [0:N-1] = application ID drbit[32:N] = task ID. The
value N is equal to the define-statement, PINCOBIE_SPLIT declared in
Parameter.h in ./src/rtos.

: get_task _name
:None
:sc_module_name
: Returns the sc_module_name of the task.

: Initialize
:None
:None
: Initializes the state machine of the task.

. set_execution_time
:BCET (uint), WCET (uint)
:None
: Sets the best-case execution time (BCET) and waase-execution time

(WCET), expressed in no. of clock cycles.

: get_execution_time
:BCET (&uint), WCET (&uint)

Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments

Return value
Description

:See arguments
: Returns the best-case execution time (BCET) andevoase execution time

(WCET), expressed in no. of clock cycles.

: get_prg_memory
: Size (uint)
:None
: Sets the program memory size characteristic ofasie

: update_tx_datamem
: Size (uint)
:None
: Updates the amount of data memoryeserve, when task execution starts. Each

time this method is called the data memory requarrwill increase,
corresponding to the value of the argument

. get_tx_datamem
:None
:uint
: Returns the amount of data memoryéserve (when task execution starts).

: update_rx_datamem
: Size (uint)
:None
: Updates the amount of data memoryedi@ase, when task execution completes.

Each time this method is called the data memoryirement will increase,
corresponding to the value of the argument

: get_rx_datamem
:None
:uint
: Returns the amount of data memorydease (when task execution completes).

: push_soc_comm_nfo
: Target task ID (uint),

Target application ID (uint),

Base address of target PE (uint),

Upper address range of target PE (uint)
Data transfer size (uint)

Transfer type; e.g. write/read (uint)

:uint
: Pushes information about inter-task dependencydrttatabase in the task. This

information relates to preceding dependency tskaasigned to different PE and
will cause the task to initiate a SoC transactiate-processor communication)
when execution completes. For multiple inter-deewies, this method just has
to be called several times.

Name
Arguments
Return value
Description

Name

Arguments

Return value
Description

> init_soc_comm_nfo
:none
:None
: Clears the inter-task dependency database.

: new_resource_requirement
: Resource ID (uint),

Resource request time (uint),
Critical section length (uint)

:None
: Assigns &PE local resource requirement to a task, where the resoaqeest

time identifies the time, relative to start of extéon, when the task should
request for a resource, while critical section taridentifies the amount of time
the resource is occupied. The times are expresseal. iof clock cycles. For
multiple resource requirements, this method justthae called several times.

7 The Process element (PE)

The PE models the behaviour of an IP core; for gtarma CPU. It is characterized by supporting
change of RTOS policies as well as task mappingqhduuntime. The model is shown in Figure 3
and with the different module briefly described néhere exists a PE implementation having a
OCP2.0 TLO and TL1 core interface respectively.ylten be found in ./src/pe.

PE#1
N N
»| Application PE TL1
module =
Application 1
i ©-®
1 N N *
4% application }»————»){ abs_task ‘
Ab;téa‘:t Synchronnizer .
4% DS_synch }—D{ abs_synch ‘
Software
3 Resource 1
modeling RTOS Allocator] 4% PI_alloc }—4% abs_alloc ‘
1
Scheduler 4>{ RM_sched }—D{ abs_sched ‘
1
- 4>{ RM_sched }—D{ abs_sched ‘
10 dev.drv
" > 1
10 dev.driver - 4% io_task }—D{ abs_iodrv ‘
Core 1 -
—f= interface ‘ ? 4% TL1_IO }—4% abs_iodev ‘
Hardware 10 Device
; 10 Device 5
modeling ocp ocp TL1_Master
Master Slave
I VA VA 1
j E j E TL1_Slave
SoC Communication Interface SoC Communication Interface
(a) (b) (©)

Figure 3| (a) layer model (b) block diagram (c$implified UML diagram (for PE_TL1).

7.1 Application

The application (module) holds pointers to taskeobg@ssigned to the PE. It receives messages from
the RTOS (scheduler) and forwards this to the tategk. Further, it connects the assigned tasks to
the RTOS, so they can send messages to the RT@&(syizer and resource allocator). The
application module and the task module implemeurtatare found in ./src/application.

7.2 RTOS

The Real-Time Operating System (RTOS) modes basiaeSRservices, covering task
synchronization, resource allocation and schedulirig composed of the synchronizer, resource
allocator and scheduler modules. RTOS modulesoanedfin ./src/rtos. Current supported protocols
are listed in Table 2.

Module Protocol

Synchronizer Direct Synchronization (DS)

Resource Allocator Basic Priority Inheritance (P1)

Scheduler Rate-Monotonic (RM)
Earliest-Deadline-First (EDF)

Table 2 | RTOS protocol implementations.

7.3 IO device driver

The 10 device driver models an 10 device driverlggpion. It controls the 10 device and
encodes/decodes data to/from IO device (SoC conwation interface), being synchronization
messages between tasks with inter-dependencies.

For request (write or read transaction), the symuization is based on the address encoding
scheme, shown in Figure 4. For burst requestsadbeess encoding will be fixed. Tasks and
application ID bit width can be configured usingASK_ID_BW and _APP_ID_BW, specified in
Parameter.h, located in ./src/rtos.

msb Isb

destination Application | destination source
PE base address ID task ID task ID

k N2 N2 N|

K x K 7
_APP_ID_BW _TASK_ID_BW _TASK_ID_BW

Figure 4 | Request (write|read) address decodinglseme.

For response (to a previous initiated read), tha ddl simply equals source task ID (issuing the
response data).

The 10 device driver module implementation is foumd'src/application.

7.4 IO device

The 10 device models the physical hardware porgagang the communication protocol. Currently
two 10 device models are available for OCP 2.0l41 @&nd TL1 respectively. Both models have a
fully multithreaded interface and can be configymedative to the OCP channel. The PE
implementation, PE_TLO uses the TLO model while PEL uses the TL1 model. The TLO and
TL1 IO device implementations can be found in /fstp_tl0 and ./src/ocp_tl1_clk respectively.

10

7.5 Object constructor
The PE_TLO and PE_TL1 object constructor requinesollowing arguments, except otherwise

specified:

Type Description

sc_module name SystemC module name
uint PE ID

performance_monitor?

Performance monitor objechpari if the performance monitor are to
monitoring the PE. Not a mandatory argument.

dependency_control*

Dependency controller objeattpo, required by the synchronizer
module, in order to access the global synchrortipaiatabase.

bool Screen dump flag, enable RTOS status loggirsgteen
(true=enable|false=disable)
ofstream* Ofstream pointer to PE logdfile for RTQ&tss logging to file.

Not a mandatory argument. If left out, no file Wikt created.

7.6 Public method description
The following public method are common to PE_TL@ &&_TL1, except otherwise specified.

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name

: set_synchronizer
: type (uint)
:None
: Selects the synchronizer to use. Not applicableeatmoment, since only DS

synchronization is implemented at the moment.

: set_allocator
: type (uint)
:none
: Selects the resource allocator to use. Not appécaithe moment, since only

Basic Priority Inheritance (PI) protocol is implembed at the moment.

: set_scheduler
: type (uint)
:none
: Selects the scheduling policy to use. Applicabtpiarents (type) are:

0 = Rate Monotonic (RM) scheduling.
1 = Earliest Deadline First (EDF) scheduling.

: connect_OCP_Master

:*pOCP (OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBIt32,RE ANNELBIt32> >)
:None

: Connects OCP Master in the PE_TL1 implementaticant®CP channel.

NOTE: For PE_TLO, see which SystemC signals areired/a part of the OCP
channel in the header file (PE_TLO.h).

: connect_OCP_Slave

11

Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

:*pOCP (OCP_TL1_Channel< OCP_TL1_DataCI<OCPCHANNELBIt32,RBE ANNELBIt32> >)
:None
: Connects OCP Slave in the PE_TL1 implementaticant®CP channel.

NOTE: For PE_TLO, see which SystemC signals areired/a part of the OCP
channel in the header file (PE_TLO.h).

: set_master_buffer
: size (uint)
:None
: Sets the response data buffer size in the OCP Maste

: set_slave_buffer
: size (uint)
:None
. Sets the request data (write data) buffer sizeerQCP Slave.

: set_processor
: type (uint)
:None
: Sets the processor type ID for the PE. Not usedrigthing inside the PE.

: get_processor
:None
‘type (uint)
: Return the processor type ID for the PE. Use setgasor for specifying the

processor type ID.

: set_address
:lo (uint), hi (uint)
:None
: Assign an address space to the PE, used by othemPREN they are to transmit

inter-dependency synchronization messages to Eis P

: get_address

: &lo (uint), &hi (uint)

:Lower and upper address boundary; see Arguments.
: Returns the assigned address space to the PE.

: set_offset_time
: offset_time (sc_time)
:None
: Set the offset time, when a simulation is restar@uy applicable when doing

iteration-based simulation (see the example inldbiigff)

- map_tasks
:*obj (deque<abs_task*>)
:None
: Used for assigning tasks to a PE. Argument is atpoio a task pool. The

12

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

application module will scan the task module andnext all tasks, assigned to
this PE.

- initialize
:None
:None
. Initializes the PE. This consisting of disconnegtany assigned task and

initializing the RTOS and 10 device driver and Iévite.
NOTE: should only be used for iteration-based satioih (see the example in
Jbuilds/tgff).

: flush_mode
:None
:None
: Set the PE in flush mode; that is disconnectingassygned task and initializing

the RTOS.
NOTE: flush mode MUST be used in iteration-basedusation (see the example
in ./builds/tgff), BEFORE starting a new simulation

: flush_done
:None
:None
: Sets the PE out of flush mode. Must be called éfishing.

NOTE: flush mode MUST be used in iteration-basedusation (see the example
in ./builds/tgff), BEFORE starting a new simulation

. get_task_count
:None
:uint
: Returns the number of tasks assigned to the PE.

13

8 SoC communication platform model

The SoC communication platform model is used fodetiing different communication topologies.
Currently available topologies are a single shamesiand a simplified 1D/2D mesh Network-On-
Chip (NoC) with minimal path routing and store-aodward transmission approach. The SoC
communication platform model is characterized byitngan abstract description of the topology
while being able to support transmission of reghdary low abstraction level (e.g. at RTL). Figure
5 shows a block diagram of the model as well astiieesponding simplified UML diagram. There
exists SoC communication platform models implem@nta supporting OPC2.0 TLO and TL1
protocol. They can be found in ./src/soc_comm.

SoC_comm_ocp_ti1
SoC communication interface to IP core models (PE)

Network Interface (NI) block module

'

Allocator

CSL buffer

Scheduler

3 i i i j i 4%{ SoC_comm_alloc_bus H abs_comm_alloc
1
S0C_comm_alloc_mesh abs_comm_alloc
1
10 adapter; | | 10 adapter, 10 adaptery 4,(SoC._comm. res, but H abs,_comm_buft
Intermediate Intermediate Intermediate 1
adapter; adapter, adaptery 4% SoC_comm_sched H abs_comm_sched
: ‘

t11_ni_block abs_comm_ni

SoC_comm_inter_adapt }—D‘ abs_iodrv ‘

| |

TLL_IO abs_iodev ‘

_ 1y TL1_ Master
1
TL1_Slave

() (b)

Figure 5 | (a) block diagram (b) simplified UML diagram.

8.1 Transport messages

The message communication in the SoC communicptadform model is based on transport
messages (noc_message_type) or data packagesnitmngapayload and a header, used for
routing modelling. A transport message always adtgs from a network adapter when data is
being received from an IP core model (PE). In theant implementatioonly one for transport
message will be issued for a request/responseatraos.

8.2 Network interface (NI) block

The NI block holds a configurable numbers of netnadtaptor models. It serves to route messages
from the SoC communication layer (allocator, CSlféruor Scheduler) to the correct network
adapters.

14

A network adapter model is composed of an |0 dewiodel, handling the SoC communication
protocol. This is the same module type used aseNicd in the PE model. Further the network
adapter model consists of an intermediate adagetrolling the 10 device and managing the
encoding/decoding of data between 10 device maaithe SoC communication layer (allocator,
CSL buffer and Scheduler). This module is somewihatvalent to the functionality of IO device
driver model in PE model, except that the behavieguit different.

There exists a NI block for OCP2.0 TLO (tl0_ni_kpand TL1 (tI1_ni_block) respectively. They
can be found in ./src/soc_comm.

8.3 Allocator

The allocator implements the actual topology manigland manages allocation of shared
communication resources. Transport messages relcewthe allocator always indicate release of a
shared resource and requesting for a new one. Wieietresource to assign to the transport
message is determined by the allocator, and reftbettopology. If a resource is occupied, the
transport message gets forwarded to the scheddileerwise it is granted the resource, and the
transport message gets forwarded to the CSL buffer.

There exists an allocator model for a single sharesi(SoC_comm_alloc_bus) and simplified
1D/2D mesh with minimal path routing (SoC_comm_a@llmesh). They can be found in
.src/soc_comm.

8.4 CSL buffer

The CSL buffer models the mechanism of using aesshaommunication resource, by buffering a
transport message during CSL. Relative to the slaéa the allocator will have assigned a CSL to a
transport message, equal to the amount of timeedmurce will be occupied. When CSL expires
for transport message, it gets forwarded backeaatlocator again. Thus the interaction between
the allocator and CSL buffer actually models a clidicommunication tasks (depending upon the
topology modelling). The CSL buffer also managesftrwarding of a transport message, when it
is ready for being released to the destination odtwadapter.

The implementation of the CSL buffer can be foundsrc/soc_comm.

8.5 Scheduler

The scheduler manages the scheduling of transpams$ages, in case of communication resource
contention. The current scheduling policy is basedhe first-come-first-served principle. When a
resource becomes available, and there is a transgasage waiting for this resource to become
free, the scheduler will receive a message fromatlogator. This causes the scheduler to release
the transport message to the CSL buffer.

The implementation of the scheduler can be founésie/soc_comm.

8.6 Object constructor

The constructor for SOC communication platform medsupporting OCP2.0 TLO and TL1
(SoC_comm_ocp20 _tl0 and SoC_comm_ocp20_tI1) regjthefollowing arguments, except
otherwise specified:

15

Type Description

sc_module_name SystemC module name

uint No. of PE’s assigned to the framework

uint No. of threads supported

bool Screen dump flag. True=the state of the Satihwonication model will
be logged to screen, during simulation. False=neescdumping.

ofstream* Ofstream pointer to logdfile, where to #tate of the SoC communication

model, during simulation.
Not a mandatory argument. If left out, no file wakt created.

ofstream* Ofstream pointer to logdfile, where to lm@gmmunication contention
count versus time.
Not a mandatory argument. If left out, no file wakt created.

8.7 Public method description

The following public method are common to SoC_cormop20 _tl0 and SoC_comm_ocp_tl1,
except otherwise specified.

Name : set_addr_map

Arguments :nodelD (uint), addr_lo (uint), addr_hi (uint)

Return value :None

Description : Sets the address range (addr_lo to addr_hi) assdaidth a certain network
adapter, identified by the node ID (nodelD). Timformation is forwarded to all
network adapters in the NI block, and stored inakiup table, used in
conjunction with transport message routing managegleat is identifying the
target node ID for a request, for an example).

Name : get_refuse_count

Arguments :None

Return value :Uint

Description : Returns the number of contentions. The methodrisialty called after a

simulation has completed.

Name : connect_ OCP_Master

Arguments :*pOCP (OCP_TL1_Channel< OCP_TL1_DataCl<OCPCHANNELBIt32,FEE ANNELBIt32> >)
nodelD (uint)

Return value :None

Description : Connects OCP Master in network adapter (nodel@nt®CP channel.
NOTE: Not implemented in SoC_comm_ocp20_tl0. Ssedated header file for
the required SystemC signals, defining of the OG&hoel.

Name : connect_OCP_Slave

Arguments :*pOCP (OCP_TL1_Channel< OCP_TL1_DataCI<OCPCHANNELBIt32,RE ANNELBIt32> >)
nodelD (uint)

Return value :None

Description : Connects OCP Slave in network adapter (nodelDhpt@@P channel.
NOTE: Not implemented in SoC_comm_ocp20_tl0. Ssedated header file for
the required SystemC signals, defining of the OG&hoel.

16

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

Name
Arguments
Return value
Description

: set_master_buffer_size
: size (uint)
:None
: Sets the response data buffer size in the OCP Ma&xtenmon for all network

adapters.

: set_slave_buffer_size
: size (uint)
:None
: Sets the request data (write data) buffer sizeemQCP Slave. Common for all

network adapters.

:initialize

:None

:None

: Initializes the SoC communication model.

NOTE: should only be used for iteration-based satioih (see the example in
Jbuilds/tgff).

: flush_mode
:None
:None
: Sets the SoC communication in flush mode; thayjsabsing transport messages

to/from the NI block to the SoC communication layer
NOTE: flush mode MUST be used in iteration-basedusation (see the example
in ./builds/tgff), BEFORE starting a new simulation

: flush_done
:None
:None
: Sets the PE out of flush mode; that is removingoypassing of transport

messages. Must be called after flushing.
NOTE: flush mode MUST be used in iteration-basedu$ation (see the example
in ./builds/tgff), BEFORE starting a new simulation

: set_offset_time
: offset_time (sc_time)
:None
: Set the offset time, when a simulation is restar@uy applicable when doing

iteration-based simulation (see the example inldbiigff)

: set_allocator
: type (uint) [span (uint)]
:None
: Sets allocator type, defining the topology. Valiguanents are:

0 = bus model (SoC_comm_alloc_bus)

17

1 = 1D/2D mesh NoC (SoC_comm_alloc_mesfj.a2gument defines the mesh-
span, yielding a symmetrical mesh (i.e. span = 3x3mesh).

Name : set_resource

Arguments : type (uint)

Return value :None

Description : Selects the CSL buffer type to use. Currently pgtiaable, since only one CSL
buffer type is implemented.

Name : set_scheduler

Arguments : type (uint)

Return value :None

Description : Selects the scheduling policy. Currently not aggtlle, since only one CSL buffer
type is implemented.

9 Top-level modules

There exists two other top-level modules (besigeptirsers), connecting to the framework. These
are the dependency controller and performance mofihe implementations can be found in
.Isrc/extensions.

9.1 Dependency controller

The dependency controller (dependency_controlledute is a global dependency database,
managing the dependencies among the differenti¢apiph) tasks assigned to the framework.
Dependency database information (dm_type) is peavid the module constructor during object
creation. A macro method (copy_db), found in themsa class (arts_macro located in
.Isrc/extensions) has been implemented for fetcthirsginformation from the configuration file
parser or TGFF application parser.

Public methods in the module are accessed by tighsynizers in the different PE, whenever
information is provided to/from the database (edgen a task finished or checking when if
dependencies have been resolved). In additiondpatpointer to the dependency controller object
must be provided to the PE_TL1/PE_TLO constructor.

Beside this, the dependency controller holds ab@datawith pointers to the different task objects.
This database is used when blocking/unblockingla (tat is a task gets blocked after execution
has completed, and unblocked again when the eagpication has completed. This feature is
implemented for synchronization reasons). Thus whena task object is created, a pointer to the
object must be forwarded to the dependency cofdiaie by calling push_task_ptr with object
pointer as argument. See examples in ./builds).

9.1.1 Object constructor
The object constructor requires the following arguis, except otherwise specified:

Type Description

dm_type* Pointer to dependency data base, desgrihendependencies among
tasks in the different applications.

18

uint No. of applications assigned to the framework

bool Screen dump flag. True = a notification widl prompted to the screen,
when an application completes, false = no screempdu

ofstream* Ofstream pointer to logdfile, where to ygplication completion
information. Not a mandatory argument. If left au, file will be
created.

9.2 Performance monitor

The performance monitor module is used for momgpperformance parameters of the different
PE’s, assigned to a framework. This includes pararseuch as utilization and program/data
memory usage. During simulation, public methodhéxmodule are accessed by the RTOS and
task modules for reporting different states. Théggmance monitor module is not mandatory and
can be left out.

9.21 Object constructor
The object constructor requires the following arguis, except otherwise specified:

Type Description

sc_module name SystemC module name

uint No. of PE’s assigned to the framework

uint No. of applications assigned to the framework

ofstream* Ofstream pointer to logdfile, where to BF utilization.
Not a mandatory argument. If left out, no file Wik created.

ofstream* Ofstream pointer to logdfile, where to bgnamic memory usage in the
PE’s (a file displaying the memory usage vs. time).
Not a mandatory argument. If left out, no file Wik created.

10 Framework construction steps

Different steps are required when constructingaenfwork. These steps can be seen in the top-
level modules in the examples (./builds/tll_exangwid/or ./builds/tgff). It is recommended to use
the examples found in ./builds as templates wheigdiang a new framework. However thmin
steps are briefly summarized in Table 3 to give@agrview.

Step Description

Parse files Parse configuration file and TGFF fileased for
framework construction.

Extract configuration file scalar declarations Gateen dump flags and filename declarationg for
configuration file and create ofstream objects for
result logging.

Copy dependency database information Extract gledapendency information from the
configuration file or TGFF application parser and
store this in a dependency database (dm_type). Use
the macro, copy_db to do this.

Create dependency controller Create the depenademtsoller object. A pointer
to the newly created dependency database must be

19

provided to the constructor.

Create performance monitor

Create performance momibdule, if performanc

monitor parameters (PE utilization/memory usage)

are to be logged/monitored.

4%

Create PE’s and connect to OCP channels

Basedtheam. of PE assigned to the framew:
a corresponding no. of OCP channels must be
created. PE characteristics are fetched from the
configuration file parser by calling the macro
method, get pe data.

ork

Create SoC communication platform

Create SoC conuation platform model, set

topology, set address range for the different ngtwo

adapters (equal to the PE address ranges) and
connect to ocp channels.

Create tasks based on declarations
(TGFF or configuration file)

Task information is fetched from the configuratio
file/TGFF application parser and used for task
object creation. A pointer to the task object MUS
be forwarded to the dependency controller
(push_task_ptr) and store irtask pool

(deque<abs_task*>), used in conjunction with PE

task mapping.

>

Configure task (inter-dependency
configuration)

Task having preceding inter-dependencies must
configured to issue an inter-processor
communication, when execution completes. Thi
done by calling the macro method,
task_configuration.

Map tasks to PE

After tasks have been created @mithared, they
are to be mapped to the different PE’s. Mapping
tasks to a PE is done by calling the PE method,

map_task with a pointer to the task pool. Any tagks

in the task pool, assigned to the PE will be
connected to the PE.

Create and dump memory map

Create a task memoryanapch PE, showing the

address location, where non-local tasks write
to/reads from, in case of inter-dependency. The

memory map also shows the actual partitioning/task

mapping. Memory map is created by calling the
macro method, create_memory map

Create VCD files

If VCD file dumping has been cezgtVCD file
objects are created; one for task state vs. tirde a
another for task execution on a PE vs. time.

=)

Start execution

A this step, the simulation carstaeted since the
framework has been constructed and connected

Close result files

After simulation has completin, different log
files must be closed.

Delete objects (memory clean-up)

Finally, the défe objects (i.e. PE’s, tasks, SoC
communication model etc.) must be deleted, to
ensure memory clean-up.

20

Table 3 | Framework construction step overview.

11 Framework flushing and initialization

Iteration-based simulations required flushing amtailizaion, when a series of simulation sessions
are performed in a chain, like batch simulatioa. (€hanging task partitioning/mapping and doing
the same simulation again). An example of an it@enabases simulation framework can be found in
Jbuilds/tgff, where the processor type is chanfgenh iteration to iteration. Flushing and
initialization MUST be done when a simulation fimél, but before a new one is started.

11.1 Flushing

Flushing is required to “flush out” any ongoing Stv@nsaction, occurring at the time when the
simulation stopped. Without flushing, the SoC teanti®n will resume at the start of the next
simulation. During flushing, the Cl in the PE’s ahé network adapters in the SoC communication
model will be disconnect and a number of simulatigcies are executed, to flush out any ongoing
SoC transactions. Disconnection ensures that tl@SRif the PE and the network layer in the SoC
communication model cannot issues new SoC traosecti

11.2 Initialization

After flushing the framework must be initializedhi¥ includes resetting tasks, RTOS, the
dependency database etc. to ensure any informstates related to the previous simulation is
removed. It would be possible to avoid flushingt tis would introduce high-complexity in the
initialization of the 10 device drivers and 10 degimodels.

The steps associated with flushing and initial@atan be seen in the example in ./builds/tgff.

12 Framework examples

There exists different examples of framework impdetations in ./builds. Please consult the
README file in /ARTS_Framework for how to executeese examples.

21

