
Work Assignments for “Modal Logics” lectures

L. Caires

Abstract

I suggest two alternative topics. One is related to an application of modal logic to object-
oriented program analysis, while the other investigates the decidability of validity in a logic
for a fragment of CCS. The answer to the assignments are expected to be in the form a short
research paper (no more than 15 pages). Please feel free to contact me to discuss the proposals
or candidate solutions (whatever preliminary they might be).

1 Assignment A

This project explores the use of a modal logic ML to verify usage policies for objects in programs
written in a toy object oriented language OL. For example, one may want to ensure that a certain
method is called exactly once on a given object, and before any other method call on the same
object: this might be useful if the method is an initialization operation. One may also want to
impose that a file object may only be read after being open. The abstract syntax of OL, which is
an expression language, is defined as follows

E ::= class {m1(x1) = E1, . . . ,mk(xk) = Ek}
| let x = E in E
| x.m(y)
| new y

Values of expressions are either class references (obtained by evaluating class expressions) or
object references (obtained by evaluating new expressions). The class and object references may
be modeled by pure names at the level of the language semantics. Notice that classes are first-class
entities in OL, we can think of classes as (parameter-less) object generating functions. Evaluation
of expressions is performed in the expected way, e.g., in a let expression let x = E1 in E2 the
expression E1 is evaluated before E2 (call by value). We do not formalize here the semantics of
language, such a task is part of your work, although we expect computations of OL programs to
be represented by sequences of program states with a certain structure. Here is an example of a
program in OL:

P , let c = class {l(x) = x,k(x) = x} in
let y = new c in

let z = y.l(y) in
let u = z.k(y) in u

The value of this program is a reference to the (unique) object it creates while running. We also
consider the modal logic ML, with the following syntax:

A,B ::= > | A ∧B | ¬A | (x.m)A | OB x.A | �A

The logic ML is to be interpreted on sequences of program states, as follows. The propositional
operators are understood in the standard way. The formula 〈x.m〉A says that the next method

1

to be invoked on object x is m and after that formula A holds. The quantifier OB x.A existen-
tially quantifies over the object references refering to the objects that are currently allocated. The
formula �A asserts that the property A will eventually hold.

We can verify that the program P above satisfies the formula �OBx.(x.l)(x.k)>, and also
the formula �OBx.(x.k)>. We can also verify that the program P does not satisfy the formula
�OBx.(x.k)(x.l)>. In this project, you are asked to work out in detail the operational semantics
of the object language OL and the semantics of the modal logic ML, in two different ways.

1. Define a notion of model appropriate to represent computation sequences (our programs
are deterministic) in our object-oriented language OL, namely, a suitable class of labeled
transition systems. Define the operational semantics of the object-oriented language by
showing how to assign to each program a suitable LTS. An appropriate way to do that will
be by means of a set of SOS rules (see Rocco De Nicola’s lectures).

2. Precisely define the semantics of our modal logic ML, by interpreting its formulas on the
LTSs you have just defined in 1, by means of a satisfaction relation |= defined between states
and formulas.

3. Define an alternative (but equivalent) semantics for our object oriented language by means
of an encoding in the π-calculus. Hint: you may define a mapping CJ−Kx translating every
expression E of the object-oriented language into a π-calculus process CJEKx that outputs
the result of evaluating E on a given channel name x (a name fresh in E).

4. Define an embedding LJ−K that translates any formula A of our modal logic into a for-
mula LJAK of the pi-calculus spatial logic discussed in the lectures, such that the following
property holds:

E |= A if and only if CJEKx |= LJAK

5. Prove your results and illustrate your encodings in a couple of examples using the Spatial
Logic Model Checker.

2 Assignment B

Consider the modal process logic

A ::= ¬A | A ∧B | 0 | A | B | A . B | 〈a〉A

where the action a mentioned in 〈a〉A is not the internal action τ . The logic is to be interpreted as
expected in the simple CCS model adopted in Caires and Lozes “Elimination of Quantifiers and
Undecidability in Spatial Logics for Concurrency” (Concur 2004).

The main goal of this project is to determine decidability of model checking for this spatial
logic, even if it contains the guarantee operator A . B. You may start to prove that this particular
combination of logical operators and semantics satisfy a “small model” property (Hint: find a
notion of bisimilarity ∼ such that P ∼k Q and P |= A implies Q |= A for any formula A of
“size” less than k. Show that for any process P , we may find a process Q of “size” less that k
such that P ∼k Q. A brute force algorithm can then model-check A | B by model enumeration,
although you may want to think about something better).

2

