
 Type Systems

 Vasco T. Vasconcelos

GLOBAN 2006
THE GLOBAL COMPUTING APPROACH TO ANALYSIS OF SYSTEMS

International Summer School at DTU, August 21-25, 2006

1

Process calculi - what for?

• You should now this by now...

• We are interested in process calculi as core languages where to study the
phenomena of concurrency

2

Type systems - what for?

• Early identification of potential runtime errors

• Imposition of a programming discipline

• Partial specification of applications

• Uncovering important information for compilers

the focus of
this lecture

the focus of
this lecture

3

Outline

• A pi-calculus

• Simply typed pi-calculus

• Input-output types

• Linear types

• Session types

4

A pi-calculus

5

Syntax

• Lowercase letters denote channels (or names)

• Uppercase letters represent processes

• Syntax of processes:

read on channel x

write on channel x x is local to P
parallel

composition

inaction

6

Reduction

• Communicating name y on channel x

Rule for interaction

• Communication in the presence of process R

Rule for parallel composition

reduces to;
evolves to

replace y by
z in P

7

Reduction - more rules

• Communication in the presence of restriction

Rule for name restriction

• What about this case?

• We say

y not free in
this process

8

Structural congruence

• The last rule, structural congruence

• The structural congruence relation

9

Example of reduction

• Show that

reduces to

and also to

10

What can go wrong?

• Nothing!

• If only we had primitive types (and operations on them)...

• Instead, we shall use a polyadic pi-calculus

and define our own data

11

Data in the polyadic pi-calculus

• Boolean values are processes that follow a simple protocol

• A conditional process can be written

• Example:

I am the truth
value false!

a “dead”
process

12

We now have errors

• Arity mismatch. Immediate:

and after reduction:

• In general, a process is an error when it reduces to

• Types to the rescue!

13

Simpy typed pi-calculus

14

Filtering out errors

• Predicate “P is an error” is undecidable, in general.

• Aim: define a (decidable) predicate such that

15

Types

• Assigned to names, not to processes

• Describe what kind of names a name carries. Syntax:

• Example:

16

Typings

• Type environments, typings in short, associate types to names

and describe the types for the free names in a process

• Sequent reads “process P is well-typed in typing ”

• We say that “P is typable” when , for some

• Example

17

The rules of the typing system

• Rule for names

• Rules for processes

Similarly for

18

Types, types not

• Show that the following sequent holds

• But that the process below is not typable

19

Main result

• Proven in two parts

• Subject Reduction

• Type Safety

If P is typable then P is not an error

20

Input-output types

21

Phishing my credit card number

• What went wrong?

• Nothing, really! Only that printer channels are supposed to be written, not
read

(υ myPrinter)(
myPrinter?(doc). Print |
myPrinter![1456854012743869] |
someone![myPrinter]

) |
someone?(x). x?(doc). UseMyDocs

22

Distinguish input from output

• But we never said that!

• We say it now: we shall distinguish between input and output types

• New syntax for types

input-output/
read-write

output/
write

input/
read

23

Meeting expectations

• I am expecting a read-only channel; I am given a read-write channel. Shall I
accept it?

• Sure! I shall use what I need (the read capability), and forget the rest (the write
capability)

• A read-write channel is a subtype of a read-only channel

• If S is a subtype of T, then an expression of type S can always replace an
expression of type T

24

Subtyping

• Subtyping is a preorder on types. If S is a subtype of T, then a channel of type
S is also a channel of type T

• Rules

25

New typing rules

• Old and new typing rules for names

• Replacement rules for input and for output

was # was #

26

The phisher is not typable

• The phisher

• The intended types

• Show that

someone?(x). x?(doc). UseMyDocs

 doc: PostScript
 x: ![PostScript]
someone: #[![PostScript]]

printer channels
are to be

written-only

someone: #[![PostScript]]
someone?(x). x?(doc). 0

27

Input-output types good for

• Preventing programming mistakes (illegal accesses to credit card numbers)

• Yield more powerful techniques: more processes can be deemed equivalent if
one considers contexts that follow the i/o discipline

28

Linear types

29

A lock manager

• The manager

• A client

• Problems when CriticalRegion

• does not release the lock - no other process will obtain the lock

• releases the lock twice - not really an error, but ...

LM = aquireLock?(r).
(υdone)(r![done]. done?(). LM)

(υs)(aquireLock![s]. s?(done). CriticalRegion)

done![]

30

Channels that should be used exactly once

• done is a channel that should be used exactly

• Once for reading - in the Lock Manager, and

• Once for writing - in each client

• We need more type constructors. Syntax:

l is for linear

31

Combining types

• Suppose that we want both a and b linear in process

• We know

• We need to combine the two types for a

input output

input/output

32

Combining typing environments

• Combination of types

• Combination of typing environments

33

Typing System

• The rule for parallel composition

• Compare with the “old” rule

• The typing environment is split in two, rather than reused in both branches

34

Typing System - more rules

• Rules for input and for output

• Rules for inaction and for values

35

A good Lock Manager’s client

• Good clients release the lock

• The expected types, as seen from the client’s perspective

• Exercise: write the typing derivation

(υs)(aquireLock![s]. s?(done). done![])

36

Not all clients to the Lock Manager are typable

• A client that does not release the lock

is not typable because

• A client that releases the lock twice

is not typable because

(υs)(aquireLock![s]. s?(done). 0)

(υs)(aquireLock![s]. s?(done). (done![] | done![]))

37

Session types

38

Remember ftp?

• A client that uploads a file on an ftp server f

request f(x).
x![“vv”, 1313].
x>{sorry: 0,

welcome:
x<put.
x![myFile].
x<quit

}

x is the session identifierstart a session

authenticate

branch on the result

select operation;
send argument

select operation

39

The server side

• A simple ftp server

Ftpd(f) =
accept f(y).
y?(userid, passwd).
if ...
then y<sorry. Ftpd[f]
else y<welcome. Actions[y]

Actions(y) = y>{
get: ... Actions[y],
put: y?(aFile). ... Actions[y],
quit: 0}

start a session
(the server’s side)y is the

session identifier

select an operation
on the client

branch

40

Distinguish names from channels

• Names are shared among any number of partners, and used to start sessions

• There is one channel per session; channels are shared by exactly two
partners, and are used for continuous interactions

• Operations on channels include

• data transmission (input and output)

• offer a menu (branch); pick a choice in a menu (select)

41

Changes to the syntax

• Names (and variables) are x,y,z as before; runtime channels are

• Channel expressions

• New process constructors

input/output now
only within sessions

one end

the other end

was y?(x).P

42

New rules in the operational semantics

• Start a session

• Select a branch

There is another rule with + and - reversed

43

The type of the FTP channel as seen by the client

• The type of channel x

request f(x).
x![“vv”, 1313].
x>{sorry: 0,

welcome:

x<put.
x![myFile].
x<quit

}

![String, Int].
&{sorry: End,

 welcome: Loop}
Loop = +{

put: ![File]. Loop,
get: ...,
quit: End}

44

Sorts and Types

• Distinguish value types (called sorts) from channel types (called types)

• Sorts for basic values and names

• Types for channels

A name capable
of starting a

session of type T

was

45

The type of the FTP channel as seen by the server

• The type of channel y
Ftpd(f) =

accept f(y).
y?(userid, passwd).
if ...
then y<sorry. Ftpd[f]
else y<welcome. Actions[y]

Actions(y) = y>{
get: ... Actions[y],
put: y?(aFile). ... Actions[y],
quit: 0}

?[String, Int].
+{sorry: End,

 welcome: Loop’}

Loop’ = &{
put: ?[File]. Loop’,
get: ...,
quit: End}

46

Two views on the type of the FTP channel

• One says !, the other ?; one says +, the other &; one says End, the other End

• The two types are dual; the dual of T is written

![String, Int].
&{sorry: End,

 welcome: Loop}
Loop = +{

put: ![File]. Loop,
get: ...,
quit: End}

?[String, Int].
+{sorry: End,

 welcome: Loop’}
Loop’ = &{

put: ?[File]. Loop’,
get: ...,
quit: End}

47

Typing system

• Sequents

• Creating a session

channel: typename: sort

accept gets
one type

request gets
the dual

the linear
part

the classical
part

48

More rules

• Send and receive

• Branch and select

the channel
is linear

the arguments
are classical

49

Parallel composition and name restriction

• Parallel composition and name restriction

• A channel k can only be restricted if its the types of its two ends, k+ and k-,
are dual

• Subject Reduction and Type Safety hold only for balanced environments:
where the two ends of each channel are of dual types

50

Increasing the throughput of the FTP server

Ftpd(f) = (υt)(Loop[f,t] | Thread[t] | ... | Thread[t])
Loop(f,t) = accept f(y). request t(z). z![y]. Loop[f,t]
Thread(t) = accept t(w). w?(userid, passwd).

if ...
then w<sorry. Thread[t]
else w<welcome. Actions[t,w]

Actions(t,w) = w>{
get: ... Actions[t,w],
put: w?(aFile). ... Actions[t,w],
quit: Thread[t]}

sending
channels on

channels

51

New types

• The client does not notice the difference ⇒ the type T of the FTP channel y

remains unchanged

• The type for channel z is however new

Loop(f,t) = accept f(y).
request t(z).
z![y].
Loop[f,t]

 z: ![T]. End

T = ![String, Int]. &{sorry: End, welcome: Loop}

sending
channels on

channels

52

Channels: send and forget

• If Loop uses channel y after sending

we will end up with three threads trying to communicate on the channel:

• The client is writing

• Loop (y) as well as one of the Threads (w) are reading ⇒ Error!

Loop(f,t) = accept f(y).
request t(z).
z![y].
y?(userid, passwd).
...

Thread(t) = accept t(w).
w?(userid, passwd).
...

53

New types, new rules

• New types for channels

• New rules for send/receive channel Process P cannot
use k’ anymore

54

Further systems

• Recursive types

• Various forms of receptiveness

• Polymorphism

• Type systems for deadlock freedom

55

