* vpe Systems

3K Vasco T. Vasconcelos

GLOBAN 2006
THE GLOBAL COMPUTING APPROACH TO ANALYSIS OF SYSTEMS
International Summer School at DTU, August 21-25, 2006

Process calculi - what for?

* You should now this by now...

¢ \We are interested in process calculi as core languages where to study the
phenomena of concurrency

Type systems - what for?

the focus o

this lecture

e Early identification of potential runtime errors

e Imposition of a programming discipline

the focus o
e Partial specification of applications this lecture

e Uncovering important information for compilers

Outline

e A pi-calculus

e Simply typed pi-calculus

¢ |nput-output types

® Linear types

e Session types

A pi-calculus

Syntax

e | owercase letters denote (or)
e Uppercase letters represent
° of processes:

parallel
@ on Chan@ Sx s local @ composition

P == xlly]l.P | x?(y).P | (wx)P | x?*(y).P | P|P | O

@on Chan@

Reduction

e Communicating name y on channel x reduces 1o;
evolves to

x!|y].0 | x?(2).z![v].0 — 0| y![©].0

x!'lyl.P | x?(z).Q — Ply/z]
zinP

e Communication in the presence of process R

x!Myl.0 | x?(z).zl[v].0| R — O] y![v].0 | R

Rule for

Rule for

P—- Q0
PIR—->Q|R

Reduction - more rules

e Communication in the presence of restriction

(vY)E[Y1.0 | 22(2)2[0].0) — (vy)(© | y![0].0)

Rule for

P—Q
(vx)P — (vx)Q

¢ \What about this case?

(vy)(x![y].0) | x?(z).z![v].0 — 2?7?27

y not free Iin
this process
o

FONE10) | 232010 = (y)E![y].0 | ¥2(z).2[0].0)

Structural congruence

e The last rule,
P=P >0 =0
P—- Q0

¢ The structural congruence relation

PI(QIR) = (P]Q)IR

P1Q = QIP
Pl|0 =P
(vx)0 = 0
vx)(P|Q) = P | (vx)O if x ¢ tn(P)
IP = P|'P

—xample of reduction

e Show that

(vx)(x?(y).x?(2).y![z].0 | x?(w).x?(v).0![w].0 | x!a].x![b].0)
reduces to
(vx)(a![b].0 | a!|w].0)

and also to

(vx)(b![a].0 | x?(y).x?(z).y!|z].0)

What can go wrong?
e Nothing!

e |f only we had primitive types (and operations on them)...

all2] | a?(x).if x then P else Q

¢ |nstead, we shall use a polyadic pi-calculus

P o= xllyr...yu.P | x?2(y1...y0).P | ...

and define our own data

(n > 0)

11

Data In the polyadic pi-calculus

e Boolean values are processes that follow a simple protocol

True (b) b?(tf) t[].0
False (b) b?(tf) f111.0

| am the truth
¢ A conditional process can be written value false!

if b then P else Q (vxy)(b'[xy] | x2().P | y2().Q)

a “dead”
e Example: 0rocess

True (b) | if bthen Pelse Q —* P | (vf)(£2().Q)

12

VWe now have errors

o . Immediate:

alluw].0 | a?(z).0

and after reduction:

ullal.w?(x).x!uw].0 | w!lal.0 | u?(y).y?(z).0

* In general, a when it reduces to

Vo) (x!yr ... ya]P | x?2(z1...2,).Q | R) withn #m

¢ Types to the rescue!

13

Simpy typed pi-calculus

Filtering out errors

e Predicate “P is an error” is undecidable, in general.

e Aim: define a (decidable) predicate |- such that

if I' + P, then P is not an error

15

Types

e Assigned to names, not to processes

e Describe what kind of names a name carries. Syntax:

T == f[T]
e Example:

def

= b?(tf).t'[].0
|
|
Bl140]

True (b

v

S TR ==
= =

16

Typings

e Type environments, typings in short, associate types to names
I' = x1:11,...,x,: 1,

and describe the types for the free names in a process
e Sequent T r P reads “process P is well-typed in typing IT'”

e \We say that “P is typable” when T + P, for some T

e Example

b: #IH[IA0] F b2(tf).£[].0

17

The rules of the typing system

e Rule for - -

F,szl—f T
e Rules for

'O
I'x: T+P
'+ (vx)P
Trx:H[T] Tri:T TFP
I+ x![y].P

18

Types, types not

e Show that the following sequent holds

b: #IH[1411] F D2(tf)-t![].0

e But that the process below is not typable

ullal.w?(x).x!uw].0 | w!lal.0 | u?(y).y?(z).0

Main result

P P
TrP A P-"(ww) Xyr...yu]l.P | x?(z1...2).Q|R)) = n=m

e Proven in two parts

TP AP->Q) = T+O

't (vo) (Xyr...yn].Plx?(z1...24).Q|R) = n=m

20

Input-output types

Phishing my credit card number

(L myPrinter)(
myPrinter?(doc). Print |
myPrinter![1456854012743869)] |
someone!|myPrinter]

) |

someone?(x). x?(doc). UseMyDocs

e \What went wrong?

e Nothing, really! Only that printer channels are supposed to be written, not
read

Distinguish input from output

e But we never said that!
¢ \\We say it now: we shall
* New syntax for types

iInput-output/
read-write

T == ?[T] | [T]] 4[T]

input/ output/
read write

23

Meeting expectations

¢ | am expecting a read-only channel; | am given a read-write channel. Shall |
accept it?

e Sure! | shall use what | need (the read capability), and forget the rest (the write
capability)

e A read-write channel is a subtype of a read-only channel

e |[f S is a subtype of T, then an expression of type S can always replace an
expression of type T

24

Subtyping

e Subtyping is a preorder on types. If S is a subtype of T, then a channel of type
S is also a channel of type T

e Rules S<S §<T
T<T ST
S<T
BT < 2[T] 2[S] < 2[T]
S<T
4T < ![T] [T] < ![S]
T<S S<T

25

New typing rules

e Old and new typing rules for

[x: Tra: T

e Replacement rules for and for

Trx:?[T] [,j: T+P
[k x2(i).P

Trx:![T] T+i: T TFP

[+ x![{/].P

26

The phisher is not typable

® The phisher
someone?(x). x?(doc). UseMyDocs

e The intended types printer channels

| are to be
doc: PostScript written-only

X: [[PostScript]
someone: #[!/[PostScript]]

e Show that ,
someone: #[![PostScript]] K

someone?(x). x?(doc). O

27

Input-output types good for

* Preventing programming mistakes (illegal accesses to credit card numbers)

¢ Yield more powerful techniques: more processes can be deemed equivalent if
one considers contexts that follow the i/o discipline

28

Linear types

A lock manager

e The manager

LM = aquireLock?(r).
(udone)(r![done]. done?(). LM)

e A client

(us)(aquireLock![s]. s?(done). CriticalRegion)
* Problems when CriticalRegion

e does not release the lock - no other process will obtain the lock

e releases the lock twice - not reallvy an error, but ...

30

Channels that should be used exactly once

e done is a channel that should be used exactly
e Once for reading - in the Lock Manager, and
e Once for writing - in each client

¢ \\le need more type constructors. Syntax:

T == LIT] | BLIT] | LIT) | 477 | 2[T] | [T]

[1S for Ii@

31

Combining types

e Suppose that we want both a and b linear in process

22().b1[] | all]

a: L[],b: L]] + a?(x).b![x] a: L[]+ a'll

¢ \We need to combine the two types for a

a: lﬁ[|, b: L]+ a?(x).bllx] | alll

mput/output

32

Combining typing environments

e Combination of types

LITIwIT] = L[T]
TOT € T if T is not a linear type
TwS € undefined otherwise

e Combination of typing environments

(I'1 W Ip)(x) £

(T1(x)wTa(x) if both Ty(x) and T»(x) def’d
I (x) if T (x) def’d, To(x) undef’d
] To(x) if T»(x) def’d, To(x) undef’d
undefined otherwise

33

Typing System

e The rule for parallel composition
I'1 + Pq I'y P>
[MWwlsk Py ‘ P>

e Compare with the “old” rule

'+ Pq '+ P,
I'Pqp|Ps

® The typing environment is split in two, rather than reused in both branches

34

Typing System - more rules

e Rules for and for

[y kx:m[T] T i: TP me{2,D)
[W Fx?(3)).P
[y kx:m[T] Tori: T T3+P me{l,l)
MWWz x![y].P

* Rules for and for
[contains no linear type
[+0 ['ro
[contains no linear type T v Tro T

I'x: Trx: T

35

A good Lock Manager’s client

e Good clients release the lock

(us)(aquireLock![s]. s?(done). done![])

e The expected types, as seen from the client’s perspective

done: i]]

s: L[I]]]
acquireLock: [l [Li][]]]

e Exercise: write the typing derivation

36

Not all clients to the Lock Manager are typable

e A client that does not release the lock

(us)(aquireLock![s]. s?(done). 0)
IS not typable because

done: [i[] ¥ 0

e A client that releases the lock twice

(us)(aquireLock![s]. s?(done). (done![] | done![]))

IS not typable because
done: ;|| ¥ done!|] | done![]

37

Session types

Remember ftp*?

f

< 1 X is the

e

request f(x).
x![“vv”, 1313].
x>{sorry: 0

< on the result Welcome.
x<put.

x![myFile].
x<quit

<~ operation

authenticate

elect operation;
send argument

39

The server side

accept f(y).

C e Ftpd(f) = ‘@erver’s@

A

y7(user1d passwd).

then y<sorry. Ftpd|[f]
else y<we1come Actions|y]
Ctlons(y)

Act1ons],Q >

put: y?(aFile). ... Actions|y],
quit: 0}

40

Distinguish names from channels

e Names are shared among any number of partners, and used to start sessions

e There is one channel per session; channels are shared by exactly two
partners, and are used for continuous interactions

e Operations on channels include

e data transmission (input and output)

e offer a menu (branch); pick a choice in a menu (select)

41

Changes to the syntax

o (and variables) are x,y,z as before; are k,x’, k"

. ¢one end>
k o= x| ¥7 | k¥
e New process constructors

P := request a(x).P
accept a(x).P
k<l.P

k > {lli Pl,...,lni Pn}
@y?(@ k2().P

k![x].P input/output now
o only within sessions

New rules in the operational semantics

accept a(x).P | request a(y).Q —
(vie)(P[x" /x] | Qlx~/y])

K" <P x>l Qe lnt Qul = PIQ;

There is another rule with + and - reversed

43

The type of the FTP channel as seen by the client

e The type of channel x

request f(x).
x![“vv”, 1313].
x>{sorry: 0,

welcome:

X<put.

x![myFile].

x<quit

}

[String, Int].
{sorry: End,
welcome: Loop]}

Loop =,+{
put: |[File]. Loop,
get: ...,
quit: End]

44

Sorts and Types

e Distinguish value types (called) from channel types (called)

o for basic values and names

S = Int | Stri T
nt | string | A1 A name capable

of starting a
session of type T

T .= +{l;:Tq,...,L,:T,} | &{l:Tq,...,L,: T,}
| 1[S] | 2[S] | End

Was !@

o for channels

The type of the FT

* The type of channel y
Ftpd(f) =

P channel as seen by the server

accept f(y).

y’(userid, passwd). [String, Int].

if ... {sorry: End,

then y<sorry. Ftpd|f] welcome: Loop’)

else y<welcome.

Actions(y) = y>{

Actions|y]
Loop” = &1

get: ... Actions[y], put: ?[File]. Loop’,
put: y’(aFile). ... Actions|y], get: ...,

quit: 0}

quit: End]

46

Two views on the type of the FTP channel

[String, Int]. [String, Int].
{sorry: End, {sorry: End,
welcome: Loop] welcome: Loop’}
Loop = +{ Loop” = &{
put: ![File]. Loop, put: ?[File]. Loop’,
get: ..., get: ...,
quit: End} quit: End}

e One says !, the other ?; one says +, the other &; one says End, the other End

e The two types are ' the dual of T is written T

47

Typing system

the classica
nart part

TFP: A

Chame: sort Cchannel: type>

accept

gets
one type

I'FP: A x: T

I',a: (T) +accepta(x)inP: A
Ifle:Avxziz

I',a: (T) Frequesta(x)in P: A

request
the d

gets
ual

48

More rules
the arguments\ 4he channel
are classic is linear
Fv%:S TrPoAKT
[+ KkI[Z].P> A k: [S].T

[%:SrP>Ak: T
[+ k?2(X).P> A k: ?[S].T

I'rPi>Ak: Ty ... TFHP,>Ak:T,

I'tk>{l1:Pq,....L: P> ANk: > {ly:Tq,...,1L,: T,}
FI—PDA,kZ T]'

F'rk<licAk: <ilh:Tq,..., 01 Ty

49

Parallel composition and name restriction

e Parallel composition and name restriction

I'FP: A I'FQ: ©
I'FP|QO: A B
TrP:AKkt: Tk : T
I'F(vk)P: A

e A channel k can only be restricted if its the types of its two ends, k+ and k-,
are dual

e Subject Reduction and Type Safety hold only for balanced environments:
where the two ends of each channel are of dual types

50

Increasing the throughput of the FTP server

Ftpd(f) = (ut)(Looplf,t] | Thread[t] | ... | Thread[t])

Loop(f,t) = accept f(y). request t(z). . Looplf,t]

Thread(t) = accept t(w). w?(userid, pay —sending
if ... channels on

then w<sorry. Thread|t] channels
else w<welcome. Actions|t,w]

Actions(t,w) = w>{
get: ... Actions|[t,w],
put: w?(aFile). ... Actions[t,w],
quit: Thread|t]}

51

New types

e The client does not notice the difference = the type T of the FTP channel

remains unchanged
T = I[String, Int]. &{sorry: End, welcome: Loop}

e The type for channel z is however new

Sending
channels on

Loop(f,t) = accept f(y). channels

request t(z).
zI[v]. z:!['T]. End
Looplf,t]

52

Channels: send and forget

* |[f Loop uses channel y after sending

Loop(f,t) = accept f(y). Thread(t) = accept t(w).
request t(z). w?(userid, passwd).
z!ly]. ..
y‘?ﬁlserid, passwd).

we will end up with three threads trying to communicate on the channel:

* The client is writing

e Loop (y) as well as one of the Threads (w) are reading = Error!

53

New types, new rules

e New types for channels

T == of[T] | i[T] | o[S] | i[S] | ...

e New rules for Process P

cannot
use k” anymore

I'cP>Ak: T
I'KNK.P> A k: [T].T, kK : T’
I'-PoAk: T, kK: T’

' kW(K).P> A k: I[T'].T

54

Further systems

e Recursive types

¢ \arious forms of receptiveness

e Polymorphism

¢ Type systems for deadlock freedom

55

