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Flow Logic

Covered today:
e Part 1: An Introduction based on Mobile Ambients
e Part 2: Executive Summary (see Part 6 for details)
e Part 3: An Application to Firewalls in Mobile Ambients
Covered in detail in the papers:
e Part 4: Discretionary Access Control in Mobile Ambients
e Part 5: Mandatory Access Control in Mobile Ambients

e Part 6: A Multi-Paradigmatic Approach to Static Analysis
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Suggested reading:

e Part 1, 3, 4, 5: H. Riis Nielson, F. Nielson, and M. Buchholtz: Security for
Mobility. In Foundations of Security Analysis and Design I, SLNCS 2946,
pages 207 — 266, Springer, 2004.

e Part 6: H. Riis Nielson and F. Nielson. Flow Logic: a multi-paradigmatic
approach to static analysis. In The Essence of Computation: Complexity,
Analysis, Transformation, SLNCS 2566, pages 223 - 244, Springer, 2002.

You can find these papers on the GLOBAN CD.
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FLOW LOGIC

Part 1:

An Introduction based on
Mobile Ambients

Flemming Nielson & Hanne Riis Nielson
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Mobile Ambients

e Overview: the ambient view of computation
. Syntax: processes and capabilities

o Semantics: structural congruence and transition relation
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An ambient is a bounded place where computations take place

he ambient view of computation

e the boundary determines what is inside and what is outside
— as such it is a high-level security abstraction

e the ambient moves as a whole

e example ambients: applets, agents, laptops, - - -

Site A Site B

packet
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Ambients can be nested inside other ambients forming a tree structure
e mobility is represented as navigation within this hierarchy of ambients

e example: to move a packet from one site to another we must first remove
it from the enclosing ambient and then insert it in the new enclosing

ambient

Site A Site B

packet
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Each ambient contains a number of multi-threaded running processes

e the top-level processes of an ambient have direct control over it and can
instruct it to move and thereby change the future behaviour of its
processes and subambients

e the processes of subambients have no control over the parent

e processes continue running while being moved

Site A Site B

packet
[]
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Each ambient has a name

e only the name can be used to control the access to the ambient: entry,

exit, communication, etc.

e ambient names are unforgeable

Site A Site B

packet

~
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Mobility primitives

Move into an ambient:

Move out of an ambient:

Dissolve an ambient:

-

m
inm.P Q R
m
n
outm.P | Q R
openn.P Q

m
mn
— PlQ
n
—_ P|Q
— P Q

10




4 )

Example: a packet on a network

A
p
out A.inB. - .. | open p.
the packet p moves out of site A
A
P
— |-+ || |inB.--- || | open p.
. and then into site B
A
P
_> PR | PR | open p
. where it is dissolved
A

11
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(v k)(
— (v k) (

— (v k) (

Example: kidnapping an ambient

| go (in n). ink)‘

| link | P])

the ambient in k moves into n

the ambient n moves into k

the name k is private so
nobody can interact with n

12




/Syntax of Mobile Ambients A

e Processes — based on the m-calculus

P == (vn:pu)P introduces a process with private name n in group p
0 the inactive process
PPy two concurrent processes
| P any number of occurrences of P n
n |P] an ambient named n P
M.P a capability M followed by P

e Capabilities — of the core calculus

M = inn move the enclosing ambient into a sibling named n

| outn  move the enclosing ambient out of a parent named n

\ | openn dissolve a sibling ambient named n /

13
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Semantics of Mobile Ambients

e Structural congruence relation: P = (@
Examples: 'P=!P|P

P=Q = n|Pl=nl|Q)]

e Transition relation: P — @)
Examples: n[inm.P | Q]| m[R] — m[n[P]|Q]|R]

P=P N P —-Q N Q@=Q = P-—AQ

-

/

14



Structural congruence relation

P=P
P=QNQ=R=P=R
P=Q=Q=P

P=Q=wn:p)P=wn:pn)Q

P=Q=P|R=Q|R
P=Q=1P=1Q

P=Q = n[P]=n|Q]
P=Q=mP=m.Q

PlR=Q|P
(PlQ)IR=P|(Q]|R)
P|o=P

P=P|IP
I0=0
(vn: u)0=0

~

(vn:p)(vnpYP=wn':p)(vn:p)P ifn#n’

(nip)(PlQ) =P (vn:p)Q

(vn': w) (n[P) = nl(vn': u)P]

(vn:p)P=(wn':p) (P{n+ n'})

if n ¢ fn(P)
ifn #n’

if n' ¢ f(P)

/
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Transition relation

P—>Q=wn:p)P—(vn:pnQ

P— Q= n[P] > nl[Q]

P—-Q=P|R—-Q|R

P=P AP -Q'"NQ'=Q=P—=Q

nlinm. P | Q]| m[R] — mn[P|Q]|R]
m [nfoutm. P | Q]| Rl — n[P|Q]|mI[R]

openn.P |n[Q] — P|Q

16




Static Analysis for Mobile Ambients

e The aims of the analysis
o [he nature of approximation

-
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The aims of the analysis

Example:
1. Which ambients may turn A
D
up inside other ambients out A.inB.---| |- | | open p.

during the execution?

Th t for 1):
2. Which capabilities might e exact answer (for 1)

I - il t inside A
be possessed by an ambi- p will turn up inside
— p will turn up inside B

ent during the execution? but

— A and B never turns up inside p

18
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The analysis in terms of groups

A

Groups:
p
: p: acket
tA inB. .- .
ou in | open p A B Cite
The exact answer: The analysis result with groups:

— p may turn up inside A i
— " may turn up Inside
— p may turn up inside B Y P
but but
u

.. — U never turns up inside
— A and B never turns up inside p

Assumptions
e groups cannot be renamed — they carry the analysis information

e groups are only allowed at the top-level — they are global

- /
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p

out A.inB. ---

An acceptable and

— " may turn up inside

but

-

precise analysis result

— © never turns up inside

| open p.

An acceptable but
imprecise analysis result

may turn up inside

may turn up inside

The nature of approximation

A

An unacceptable
analysis result

— 5 may turn up inside
but

— " never turns up inside
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The nature of approximation

The exact world

universe

exact set of
configurations

or behaviours

Over-approximation

over-
approximation

~

Under-approximation

under-
approximation

21
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Flow Logic for Mobile Ambients

o Analysis estimates

o Analysis judgements

e The Flow Logic approach
o Syntax-directed definition

— of the analysis of processes

— of the analysis of capabilities: in, out, and open

-
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Analysis estimates

The analysis estimate
7 : Group — P(Group U Cap)

tells us for each ambient group i € Group:

e which ambient groups may be inside an ambient in group u

e which group capabilities may be possessed by an ambient in group u
A group capability M € Cap is given by

M ::=inp | outpu | openp

-
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Analysis judgements

ITELP

means that
7 : Group — P(Group U Cap)

IS an acceptable analysis estimate for the process P when it occurs inside an
ambient from the group 1 and when the ambients are in the groups specified
by the group environment

[' : Name — Group

Hence Z =4 P is either true or false.

- /
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Example

holds for

Name — Group

T W > |

The analysis result shows that

e . will never turn up inside

-

T AlploutA.inB ]| | Blopenp]

Z | Group — P(Group U Cap)
{0}
{", 5, in , out , open "}
{in ©, out "}

e ' may turn up inside ©' — and so may

— and neither will

25
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Specification

clauses specifying
acceptability of

analysis estimates

The Flow Logic approach

Implementation

l

extract

» constraints from

the program

Y

compute the

least solution

to the chstraints

'
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Acceptable analysis results

e Each acceptable analysis estimate for a
composite program must also be an ac-
ceptable analysis estimate for its sub-
programs; perhaps more imprecise than
need be.

e FEach acceptable analysis estimate must
mimick the semantics: if the semantics
maps one configuration into another then
it must be reflected in the analysis esti-
mate.

syntax directed

analysis of processes

analysis of
capabilities

27




-~

Ir (vn:p)P o iff

IFro iff
IEr PP iff
TP iff
I Et nlP] iff

Analysis of processes

true
IEr P NIED P
Tt P

peZ(x) NITERP
where = T'(n)

~

update group environment; check process

nothing to check
check both branches
check process; ignore multiplicity

w is inside x; check process

28
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Example: subambient

Checking

T AlploutA.inB ]| | Blopenp]

involves checking

Name — Group

T W > |

and Z =7 p[outA. inB |

Group — P(Group U Cap)

{0}
{", 5, in , out , open "}
{in ©, out "}

29
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Analysis of in-capability
eI(*) A TlELP A

€ Z(p") A
pt € Z(puf) A
€ L(pP)

= u* €I(p)

where = I'(n)

7 =5 inn. P iff
Vot

Mimicking the semantics:

1 has the capability in
p? is parent of p*

1 has a sibling in group p

\_
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Checking

involves checking

Example: in-capability

ZEr AlploutA.inB]] | Blopenp]

7= inB
I' | Name — Group Z | Group — P(Group U Cap)
A {1}
B {", 5, in , out , open "}
p {in ©, out "}

which holds because

\_

and

int € Z(p") Ap" €Z(WP) AT €Z(WP) = p" € Z(V)

holds for all (u®, u?) € {(*, ), (", ), (7, %), (,9)}

31
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Analysis of out-capability
7 =f outn. P iff cZ(x) NITEFP A
V u?, w9 c I(,ua)/\ 1 has the capability out w
ut e I(ILL) /N\ 1 is parent of pu®
JIAS I(,ug) w9 is grandparent of u
S ez
where p = I'(n)
Mimicking the semantics:
<o :
n:u
0 u n: U
out n.P — P

\_
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xample: out-capability
Checking
T AlploutA.inB] | | Blopenp]

involves checking
Z =, outA. inB

I' | Name — Group Z | Group — P(Group U Cap)
A {& 1}
B {", 5, in , out °, open "}
p {in ©, out "}
which holds because Z =, in B and and

out: € Z(u)Apu* €eZ(C)YANS € Z(p?) = p® € Z(u9)

\holdsforall (,ua’,;ug)E{( ’ )a( ’ )7( ’ )7( ’ )}

33
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Analysis of open-capability

7 =t openn. P iff
V P e Z(u?) N
p € L(pP)
= Z(p) C Z(p")
where p =T'(n)

Mimicking the semantics:

':,LLp

cT(x) N IELP A

u? has the capability open u

w is sibling

n:u
LI

openn.P

10

\_
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Example: open-capability

Checking
ZE; AlploutA.inB]] | Blopenp]

involves checking

7 =, openp
I' | Name — Group Z | Group — P(Group U Cap)
A {& 1}
B {", 5, in , out °, open "}
P {in ©, out "}
which holds because € Z(") and

open” € Z(u’) AT € Z(V) = Z(") C I(K")

holds for u? =

\_

35



Properties of the analysis

e« Semantic correctness
— We err on the safe side!

e Moore family property

— We have best analysis results!

-
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Semantic correctness

The analysis estimate is preserved during the execution:

P — Py — e = P; —
| = | = |
T T T

Subject reduction result:

If T sz‘ P and P —* Q then 7 sz‘ Q Familiar from type systems

- /
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Proof of subject reduction result

Lemma: The analysis is invariant under the structural congruence:
If P=Q then ZEf PifandonlyifZ =5 @

The proof is by induction on the inference of P = Q)

Theorem: The analysis is preserved under the transition relation:
f P—Q and I P then TkErQ

The proof is by induction on the inference of P — ()

-
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Moore family property

All processes can be analysed and has a least (best) analysis result:

The set {Z | Z =f P} is a Moore family

The proof is by structural induction on P.

Corollaries:

e All processes can be analysed:

e All processes has a least (best) analysis result:

-
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FLOW LOGIC

Part 2:

Executive Summary

Flemming Nielson & Hanne Riis Nielson
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The motivation for Flow Logic

e There are many approaches to static analysis, e.g.
— data flow analysis
— abstract interpretation
— constraint based analysis

— type systems

e But unfortunately
— the approaches are developed in different communities, and

— insights obtained in one are seldom used by others.

e Flow Logic is an attempt to bridge the gap.

-
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The setting for Flow Logic

e Programs P in some programming language or process algebra

e Semantics P — P’ often in the form of a Structural Operational
Semantics or Reaction Semantics

e Analysis estimates 7 ususally elements of some complete lattice (L,C)
e A validity judgement 7 = P defined by clauses

e A subject reduction result Z = P AN P — P’ = T |= P’ indicating that the
validity is preserved under reduction

e A Moore Family result showing that Z, ={Z | Z = P, } defines a unique

least solution

- /
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Kl'he validity judgement

e Usually there is one clause for each syntactic construct ¢ of the

programming language to which P belongs

e Each clause takes the form

ZE¢(---P;---) iff (some formula ¥ with 7 = P’)
for various subprograms P’

e The first challenge is to ensure that this constitutes a well-defined

definition.

— Sometimes an inductive definition suffices; this is the case if each P’ is

some P; (see above).

— Otherwise a coinducitive definition is called for; this works if the

\ formula W gives rise to a monotonic functional F'. /

43
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The structure of fixed points ( Tarski)

Coinduction -

Induction -~

~

44
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nduction versus Coinduction

e Sometimes induction and coinduction agrees. Then a clause
IEo(P,P)ift (WAL E=PANT E P
may be written in a more familiar form as an inference rule

v
TP
T P,

1E (P, P)

e When induction and coinduction differs we always take the coinductive
definition of the validity judgement.

\ — This is not so often the case for process algebras. /

45
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Subject reduction result

Lemma: The analysis is invariant under the structural congruence:

The proof is by induction on the inference of P = Q:

e Using the iff form of the definition of = to freely fold and unfold
e Using a notion of canonical names (invariant under a-conversion) if names

e Sometimes the unfolding of recursion allowed by A(y) = Ply/z] (if we

If P=Q then ZE=PifandonlyifZ =@

formulae (regardles of which fixpoint used).

are collected in the analysis (7).

A .
have A(x) = P) creates severe complications!

/
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Theorem: The analysis is preserved under the transition relation:
f P—@ and ZEFEP then ZTEQ

The proof is by induction on the inference of P — @:

e Using the iff form of the definition of = to freely fold and unfold
formulae (regardles of which fixpoint used).

e Being careful with substitution to get placeholder labels to work correctly
(if present): z![y™/z] = o/'.

- /
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Moore family property

Theorem: The set {Z | Z =f P} is a Moore family

This means that MY =f P whenever Y C {Z | Z =f P} where
(MY)(w) £ {Z() | T € V)

The proof is by strutural induction on P.

It follows that Z, =T{Z | Z = P, } defines a unique least solution:
e we have Z, = P,
o if T|=P, thenZ, C T

-
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Calculating the least solution

Generate Z, =T{Z | Z = P, } as a formula in a suitable format:

e Conditional constraints — with links to bitvector frameworks.

e Horn Clauses

— Datalog
— Alternating Least Fixed Point Logic (“The Succinct Solver”)
The asymptotic time to check a solution equals the asymptotic time to

calculate a solution.

— H3, H1, --- solvers

See the talk by Helmut Seidl for detailed information.

- /
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Ingredients for more advanced analyses
e Adding context information (from 0-CFA to k-CFA):
T Piff -+ Tleew P oo A---{cd} CI(c)---

Here c indicates the dynamic context in which the process P is
encountered; this is useful for achieving more precise analyses of
programming languages and process algebras.

e Making analyses data dependent.

This is mainly used for imperative and object-oriented languages.

- /
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Abstract versus Compositional

One of the methodological choices of Flow Logic is when to use abstract and
when to use compositional specifications.
e Abstract:

— Abstract specifications place no demands on which processes may be
used on the right-hand-sides of iff .

— Usually processes communicated (in a higher-order process algebra)
and recursive processes are analysed at each invocation.

— This leads to treating open systems for free.

— The coinductive interpretation (desired) may differ from the inductive
one.

— Often more pleasant to read and easier to understand.

/
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e Compositional:

— Compositional specifications demand that only subprocesses of the
process on the left-hand-side of an iff may be used on the
right-hand-side.

— Therefore processes communicated (in a higher-order process algebra)
and recursive processes must be analysed once and for all at their point

of definition.
— Unless special care is taken this leads to analysing closed systems only.
— The coinductive interpretation (desired) agrees with the inductive one.

— Ususally necessary in order to implement the analysis.

- /
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Verbose versus Succinct

Another methodological choice of Flow Logic is when to use verbose and when
to use succinct specifications.
e Verbose:
— All the information of interest in collected in a global manner:
Z,7;,Zo = P
— Makes some forms of implementation easier to deal with.

— Often requires placeholder labels in the syntax of processes.

- /
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e Succinct:

— Only some of the information of interest is collected in a global
manner; other pieces of information may be

x synthesized to describe the effect of local components:
IEP:>0
which is useful for functional languages and process algebras.

x record input- and output-dependencies
IeEP:I > O
which is mainly useful for procedural languages.
— Generally leads to simpler analysis domains.

— Often more pleasant to read and easier to understand.

- /
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A word on notation

Some of the notation used has striking resemblance to (can be considered
equivalent to) other well-known notations:

e Succinct Compositional Flow Logic
IEP:I > O

e Hoare Logic
I+ {I} P {0}

e Extended Attribute Grammar
I-P: (I 10)

- /
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FLOW LOGIC

Part 3:

An Application to Firewalls
in Mobile Ambients

Flemming Nielson & Hanne Riis Nielson

/
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An Application to Firewalls

e A model of a firewall
« Analysing software in an unknown environment
e The hardest attacker

-
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W

keeping others out.

A model of a firewall

k

(v w: w)

outw.ink’.inw

| open k’.openk”’.P

~

To be useful the firewall should allow selected agents to enter the firewall while

Secret name of the firewall: w
Passwords: k, k', k”

e Agents knowing the passwords should be allowed to enter the firewall:

— easy: check that agents of a specific form can enter

e Agents not knowing the passwords should not be allowed enter:

— hard: we cannot inspect all agents

58
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Agents knowing the passwords (I)

The firewall

k

(vw: w)|| outw.ink’.inw | | openk’.openk”.P

can be entered by agents of the form

open k.

and gives rise to

W

(vw:w) | P | Q

-
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Agents knowing the passwords (lII)

\—> open k'. open k".

w
k
out w. in k’. in w| | open k'. open k". P| | lopenk.| Q
w k
— | open k’. open k”. P| | |ink’. inw| | openk. |Q
w k
— | open k'. open k". P| | ||inw]| | open k.| Q
W
— | open k. open k. P| | |inw | @Q
W
W
P | Q — open k". P |

The probe is sent
out of the firewall
to fetch the agent

60
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Agents not knowing the passwords

e an agent that does not initially know the passwords might learn them
subsequently

e the firewall might contain a trap door through which agents might enter

How can we ensure that agents not knowing the passwords cannot enter?

-

/
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An agent learning the passwords

€
The agent |[int R

can enter the firewall (vw: w)

when placed in a context with

W

k

outw.ink’.inw

| openk’.openk’’ . P

giving rise to (vw:w) | P | | R

-
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A firewall with a trap door

e

The agent |int. R

can enter the firewall

W

k t

(vw : w)||outw.ink’.inw | | openk’.openk”’.P | opent | |outw. inw. opene

giving rise to
W

k

(vw : w)||outw.ink’.inw || P | R

-
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Analysing software in an unknown

nvironment

e Observation: it is easy to analyse a closed system

e Problem: we want to analyse an open system where the attacker is

unknown

e Question: can we identify an attacker that is as hard to protect the system

against as any other attacker?
— and thereby turn the open system into a closed system

e Answer: yes — the hardest attacker

— if we can guarantee that the hardest attacker cannot enter the firewall

then no attacker can ever enter the firewall

~

/
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The overall idea

Proposed firewall F

F might still be a firewall
but we cannot guarantee that
agents not knowing the pass-
words cannot enter — just as
we cannot solve the halting

problem.

-

Y

reject F

program analysis of
F|H
where H is a
hardest attacker

Y

simple check on

analysis result

i

The firewall passes the test; the “firewall” with the trap door does not.

accept F

~

Cubic time
analysis
in the size of F

An easy check
shows whether an
agent knows some

of the passwords.

/
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/Terminology (1) \

A proposed firewall is given by
(I, (vw:w)w[F], &)

where I assigns groups to the finitely many names occurring in (v w: w)w [F]
and x is the group associated with the set of passwords

An unaware attacker (relative to the proposed firewall) is a process [/ such that
e it neither mentions the name of the firewall nor any of its passwords:

{T'(n) | nefmn()}n{w,k} =0

OBS: a more refined notion of a proposed firewall may specify the format of a
successful agent as (I', (vw: w)w/[F], A) and then use A to obtain a more

restricted definition of an unaware attacker — as an example, [/ may know the
\passwords but not how to use them to enter the firewall /
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Terminology (II)

e Dynamic property: A proposed firewall is protective if the semantics

prevents any unaware attacker from entering

e Static property: A proposed firewall is strongly protective if the analysis
can validate that no unware attackers can enter the firewall

e Corollary of the subject reduction result:

strongly protective =  protective

e Consequence: it is sufficient to check whether the proposed firewall is

strongly protective

Obs: the analysis is approximative so there are protective firewalls that are not

/

strongly protective — they will be rejected by the test!

67



~

Key observations

Let (I, (vw:w)w |[F], k) be a proposed firewall

e an unaware attacker [/ may mention any of the (finitely many) groups

mentioned in [' except for w and x

e we can safely rename all groups in [/ that are not in [' to be the
distinguished group T not used elsewhere (a kind of supergroup)

e the analysis estimate Z for (vw: w)w [F] is an element of
Group — P(Group U Cap)

where Group ={groups mentioned in ['}U{w, x, T} is finite!

-
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The hardest attacker

Key observations:
e the set Group — P(Group U Cap) is finite

e the set Group — P(Group U Cap) contains the analysis estimates for
(vw:w)w|F] for all the infinitely many unaware attackers

The hardest attacker H is an unaware attacker that can create all possible
ambients and that possesses all possible capabilities as far as the analysis can
observe within the finite domain Group — P(Group U Cap)

-

/
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/Details of the test \

For the hardest attacker H:
e calculate the most precise (i.e. least) analysis result:
Tu Fr (vw:w)wl[F]) | H
This can be done in cubic time in the size of F

e check whether any of the ambients in the group T (i.e. originating in H)
may turn up inside the proposed firewall:

does T € Iyt (w)?

e if yes then reject the proposed firewall (i.e. it is not strongly protective)

\o if no then accept the proposed firewall as it is guaranteed to be protective/
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What does H look like?

H=1vn: T)("[n["])

where

= inn | outn | openn

OBS: if the analysis is changed we also need to change the hardest attacker!

- /
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Why does it work?

=r (vw:w)w[F]) |
Then C Zy by “definition” of the hardest attacker H.

So T € ZyT(w)yields T & 7, T (w).

(More precisely, the set of constraints needed for calculating
the set of constraints needed for calculating Zy;.)

-

Suppose [/ is an unaware attacker and that is the least analysis result:

Is contained in

/
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FLOW LOGIC

Part 4:

Discretionary Access Control
in Mobile Ambients

Flemming Nielson & Hanne Riis Nielson

/
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Discretionary Access Control

e Access Control
o Static Validation of Access Control
e Introducing Access Control Primitives

— safe ambients

— discretionary ambients

« Adapting the Static Analysis
— taking co-capabilties into account

— taking context into account

\. Properties of the Analysis /
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Access Control

An active subject accesses a passive object with some specific access
operations.

The access control matrix is the traditional way of defining what operations
may be performed:

the operations a

subject may perform
(<] on an object

n+OO0D— o O

subjects

Beware: some presentations use a transposed matrix.

-
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Access Control for Mobility

e the subjects are the ambients possessing the capabilities: the ambient may
move into another ambient, may move out of another ambient or may

dissolve another ambient
e the objects are the ambients that are entered, left or dissolved

e the access operations are the capabilities

- /
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Static Validation of Access Control

Validation of properties of the access operations with respect to an “access
control policy”:

e The program analysis already approximates the set of access operations
that an ambient may perform:
— crossing analysis: may an ambient move into another ambient?

— opening analysis: may an ambient dissolve another ambient?

-
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/Crossing analysis

Property: The ambient n can cross the ambient n’ during the
execution of P, i.e.

— n executes the inn’ or the outn’ capability

In terms of groups: Ambients of group p can cross ambients in group
1/ during the execution of P i.e.

— some n of group /1 can cross some ambient n’

of group 1/

In the analysis: Ambients of group p can cross ambients of group
1/ during the execution of P, i.e.

—inyu € Z(pn) Vouty € Z(w)
for the least Z such that Z =f P

-
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4 )

Example: a packet on a network

The analysis can be used to validate:

e Ambients of group = may Cross ambients Analysis estimate:

In group
— check: int € Z(") V outt € Z(")

Name — Group

e Ambients in group © will never cross am-

T W > |H

bients in group
— check: in" €Z(5) A out!” € Z(1)

Z | Group — P(Group U Cap)

A more precise analysis is needed to validate: {7
_ _ {", 5, in , out °, open "}
e Ambients of group © will never cross am- .
{in ©, out °}

bients in group
we do not have: in S ¢Z(5)Aout = €Z(1)

- /
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Opening analysis

Property:
In terms of groups:

In the analysis:

-

The ambient n can open the ambient n’ during the

execution of P, i.e.

— n executes the openn’ capability

Ambients of group 1 can open ambients in group
1/ during the execution of P i.e.

— some n of group 1 can open some n’ of group

Ambients of group 1 may open ambients in group
/

[, l.e.
—openp’ € Z(p)

for the least Z such that Z =f P

~
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Example: a packet on a network

-

The analysis can be used to validate:

e Ambients of group ©° may open ambients

In group
— check: open” € Z()

e Ambients in group " will never open any

ambients
— check: Yy :openp & Z(1")

Analysis estimate:

Name — Group

T W > |HH

Group — P(Group U Cap)

{7}
{", 5, in
{in ©, out

, out °, open "}

}

/
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-

Access Control Primitives

Safe Ambients

Movement of ambients can only happen if both parties agree:

e if p wants to move out of A then A should be willing to let ambients leave

— A must have the capability out A

e if p wants to move into B then B should be willing to let ambients enter

— B must have the capability in B

e if B wants to dissolve p then p should be willing to be dissolved

— p must have the capability open p

/
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Syntax and semantics

M == inn|outn | openn capabilities ~ access operations

| inm|outn|openn co-capabilities ~ access rights

Extensions to the transition relation:

nlinm.P|Q]|m[inm.R|S] — m[n[P|Q]|R|S]
mnfoutm. P|Q]|out m.R|S] — n[P|Q]|m[R|S]

openn.P|n[openn.Q | R] — P|Q|R

This amounts to integrating the reference monitor into the operational semantics.

-
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In pictures:

Move into an ambient:

Move out of an ambient:

Dissolve an ambient:

-

n m
inm.P‘Q inm.R| S
m
n
outm.P | Q | | cut m.R| S
n
opeén n.P open ?’LQ | R

m
mn
— PlQ| R|S
n m
— P|Q R|S
— P Q| R
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Example: a package on a network

ploutA.inB.openp] | out A] | B[in B. openp ]

p[inB.openp]| | B[in B. openp |

> > x> P

[plopenp] | openp ]

]
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Safe ambients and access control

A safe ambient process presents a system with a distributed access control
matrix that dynamically evolves and that is concerned with multiplicities.

A system with a classical access control matrix uses co-capabilities as in
Alp[outA.inB|!openp]| | lout A] | B[!in B | openp]
rather than as in

A[p[outA.inB.openp] | out A] | B[in B. openp]

-
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/Weakness of the model of access control \

Safe ambients model a very rudimentary kind of access control:

e if n has the co-capability in 7 then any ambient may enter n

Discretionary ambients models a more genereral form of access control:

e if n has the co-capability mﬂ n then any ambient in group 1 may enter n

A B p A B p
A| out A | out A | out A A — — outp A
B| inB in B in B B — — inp B
open p | open p | open p p | open. p | openg p —
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Access Control Primitives in
Discretionary Ambients

M = inn|outn|openn access operations

| in, n|out, n|open, n access rights
Extensions to the transition relation:
CFnflinm.P|Q]|m[ing,m.R|S] = mn[P|Q]|R|S] if ['(n) =
I'Fmnloutm.P|Q]|out, m.R|S|] — n[P|Q]|m[R|S] ifl(n)=u

['nlopenm. P |m[open, m.Q|R]] — n[P|Q|R] if '(n) =p

-
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In pictures:

Move into an ambient:

Move out of an ambient:

Dissolve an ambient:

-

m
n : m
T
inm.P Q in, m.R|S| — PlQ|| R|S
m
mn . n m
outm.P|Q | out, m.R|S|— |PI@ k|3
m
openm.P open, m.Q | R| —» P Q| R
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4 )

Example: a package on a network

~ A[p[outA.inB.open p] | out- A] | B[in- B. openp ]

— A[ ] |p[inB.open p] | B[in B.openp] because |'(p) =
— Al ] [ p[open: p] | openp | because | (p) =
— A ] | ] because | (B) =
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For each ambient group u € Group the analysis estimates

dapting the program analysis A

7 : Group — P(Group U Cap U Cap)
will tell us
e which ambient groups may be inside an ambient in group u
e which access operations may an ambient in group p possess (as subject)

e which access rights may an ambient in group u provide (as object)

Access operations and access rights are given by

access operations M € Cap M := inpu | outu | open p

access rights MeCap M := ingp | outy pu | open ,,

- /
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G(ample: a packet on a network

will hold for

r Name — Group

A
B
p

ambients in group

Tk A[p[outA.inB.open p] | out- A] | B[in- B. openp ]

Group — P(Group U Cap U Cap)

1C

{", open ,in: 5, out: O, in O, out *, open }

{in ©, out *, open. "}

The analysis can be used to validate that ambients in group

never Cross

e this property could not be validated for ambients without using the more
powerful analysis based on sets of configurations

\o we cannot validate it for safe ambients either (with the simple analysis) /

~
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4 )

Analysis of in-capability

Tlkxinn. Piff inpeZ(*x) ANIELP A
Vot pPoin g € I(p®) A p* € Z(pP) A pe Z(pP) A

In JINS I(/J) p provides the access right to p*

= u* €I(p)
where = T'(n)

Mimicking the semantics:

S
LR

=
o RIS

- /

93




4 )

Analysis of out-capability
T Efoutn. Piff outpueZ(x) NIZELP A
Vot pd s oout p € I(p®) Ap® € I(p) A p € Z(p9)A
out,« p € Z(p)  p provides the access right to u®
= u* € I(pI)
where p =T'(n)

Mimicking the semantics:

.:Mg o:/Jl/
n: L
. cu? n:u
outn.KF | odt, o n.Q ? P Q

- /
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Analysis of open-capability

T =t openn. Piff openpeZ(l) NI ELP A
V uP: open u € Z(uP) N peZ(uP) A
open, . i € Z(f)  u provides the access right to u?
= I(p) S Z(pP)
where p =T'(n)
Mimicking the semantics:

.:Mp

o [
openn.P ﬁﬁi :

S
S
O
|
gy
O

-
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Analysis of co-capabilities

Thsin

T |=% out

T =t open

n. P iff

n. P iff

n. P iff

out

open

peZ(*) NITERP
where = T'(n)

WeEI(*) AN IELP
where = T'(n)

weEI(x) A TELP
where = T'(n)
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Properties of the analysis

As for the simple analysis we can prove

e Semantic correctness (subject reduction result)
the analysis estimate is preserved during the execution:

if Z=r Pand P —* Q then Z =1 @

e Moore family property
all processes can be analysed and has a least (best) analysis result:
the set {Z | Z =F P} is a Moore family

e Efficient implementation
the cubic time implementation techniques developed for the simple
analysis can be carried over to the analysis of discretionary ambients

-
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FLOW LOGIC

Part b:

Mandatory Access Control
in Mobile Ambients

Flemming Nielson & Hanne Riis Nielson

/
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Mandatory Access Control

« Confidentiality

— the Bell-LaPadula model
o Integrity

— the Biba model

-
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4 )

Confidentiality

The Bell-LaPadula security model is expressed using
e an access control matrix
e an assignment of security levels to objects and subjects

The security levels are arranged in a lattice (L, <):
¢1 < £5 means that ¢; has a lower security level than /.

The overall aim is to prevent information from flowing downwards from a high
security level to a low security level — information may only flow upwards.

- /
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Example security lattices

{staff}

public 0

secret {staff,guest }

{guest }

(secret, {staff,guest })
(secret, {staff})

(secret,{ guest })
(secret;0)
(public,{staff,guest })

(public,{staff})

(publie,{ guest})
(public;@)
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Bell-LaPadula for mobile ambients

Assignment of security levels to ambient groups:
L : Group — {public,secret}

Recall: The overall aim is to prevent information from flowing downwards from

a high security level to a low security level

Interpretation for mobile ambients:
e a secret ambient can enter any ambient
e an ambient can only leave a secret ambient when it is in a secret context

e a secret ambient can only be dissolved when it is in a secret context

- /
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The reference monitor (from — to —»)

n:u m n
_ o n a secret ambient can enter any
inm.P Q@ in, m.R|S| —* P|Q| R | S ambient:
L(p) = secret = true
/7
u
m: '
n: U n m a secret ambient can leave an
outm.P | Q L »||P|Q R|S ambient in a secret context:
out, m.R |5 L(pn) = secret =
L(p'") = secret
A X ; " a secret ambient can be dis-

solved in a secret context:
openm.P open, m.Q | R|| — P Q| R L(p') = secret =
L(p) = secret

- /
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Bell-LaPadula checks on analysis results

5 0 a secret ambient can enter any ambient:
in ' iny p Ref. monitor: L£(p) = secret = true
Analysis check:
/J///
u’ a secret ambient can leave an ambient in a secret context:
> Ref. monitor: £(u) = secret = L(u'") = secret
out 1’ out,, w Analysis check: A A
A = L(p) < L")
L a secret ambient can be dissolved in a secret context:
w Ref. monitor: £(p') = secret = L(p) = secret
open . P open,, p’ Analysis check: A A
= L(p') < L(p)

- /
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4 )

Correctness result

Theorem: Assume that Z =7 P and that Z satisfies the Bell-LaPadula checks.
Then
I'FP—*@ implies T'HFP-—"Q

Thus the Bell-LaPadula reference monitor can be dispensed with when the

analysis result satisfies the Bell-LaPadula checks.

- /
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G(ample: a packet on a network \

Tk Alp|loutA.inB.open p] | out- A] | B[in: B. openp |

Assume that the sites are secret, the packets are public and the overall system
is public.

r z L

A {5, "} public
B {", open ", in- ©, out: °, in , out *, open } secret
p {in &, out , open- "} public

The Bell-LaPadula refence monitor can be dispensed with because:
e out 5 € Z("), P e Z(Y), outr © € Z(I") and © € Z(*) have L(I") < L(*)
e open " € Z(Y), open- " € Z(") and " € Z(V) have L(I") < L(Y)

- /
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Integrity
The Biba model is expressed using
e an access control matrix

e an assignment of integrity levels to objects and subjects

The integrity levels are arranged in a lattice (L, <):
¢1 < £5 means that ¢; has a lower integrity level than /5.

The overall aim is to prevent the corruption of ‘trusted’ high level entities by
‘dubious’ low level entities — information may only flow downwards.

Example lattice: ({dubious,trusted},<) where dubious < trusted

- /
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Assignment of integrity levels to ambient groups:
L : Group — {dubious, trusted}

Recall: The overall aim is to prevent the corruption of ‘trusted’ high level
entities by ‘dubious’ low level entities

Interpretation for mobile ambients:
e only trusted ambients can enter a trusted ambient
e any ambient can leave a trusted ambient

e only ambients with trusted subambients can be dissolved inside a trusted
ambient

Gba for mobile ambients \

/
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e reference monitor (from — to —»)

. / m .
n.:p m : [ " only trusted ambients can enter

: — a trusted ambient:

inm.P Q in, m.R|S ? PlQl| R|S L0u') — trusted

Q') = trusted =
L(p) = trusted
/

m:u

n:H n m

any ambient can leave a trusted

outm.P | Q m’u m.R | S > | P | Q R | S ambient:

L(p") = trusted = true

only ambients with trusted sub-

n:u ambients can be dissolved inside
n
m:u a trusted ambient:
openm.P open, m.Q | R|| —* P Q| R L(p) = trusted =
Vp[-] € toplevel(Q | R) :

L(I'(p)) = trusted
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Biba checks on analysis results

) only trusted ambients can enter a trusted ambient:
K L

Ref. monitor: £(p') = trusted = L(p) = trusted

in n, p Analysis check: A =
L(p") < L(w)

any ambient can leave a trusted ambient:

/ — -
out p out,, u’ Ref. monitor: £(p') = trusted = true

Analysis check:

only ambients with trusted subambients can be dissolved
2% inside a trusted ambient:

12 Ref. monitor: £(u) = trusted =

open p'. P open, ' Vp[-] € toplevel(Q | R) : L(I'(p)) = trusted

Analysis check: A A
= L(p) < L(17)

- /
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Correctness result

Theorem: Assume that Z =} P and that Z satisfies the Biba checks. Then

I'FP—*¢ implies T'HFP-—"Q

Thus the Biba reference monitor can be dispensed with when the analysis
result satisfies the Biba checks.

-

111



G(ample: a packet on a network
Tk Alp|outA.inB.open p]| | out- A] | B[in- B. openp |

Assume that the sites are dubious, the packets are trusted and the overall
system is dubious.

~

r z

A {", "} dubious
B {”, open ", ins &, out- , in °, out , open dubious
p {in &, out -, open- "} trusted

The Biba reference monitor can be dispensed with because:
c Z("), in: © € Z(5) have £(5) < L(I)

€ Z("), open. " € Z(") and " € Z(") have
Vi e I(P) : L(P) < L(p)

® In

e open

\_
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G(ample: a packet on a network \

TEr AlploutA.inB.open p]| | out- A] | B[in: B. openp ]

Assume that the sites are trusted, the packets are dubious and the overall
system is dubious.

r z L

A {", "} dubious
B {", open ", in- ©, out: °, in , out *, open } trusted
p {in ©, out *, open "} dubious

The Biba reference monitor cannot be dispensed with because:
e int €Z(P),in: © €Z(%) do not have £(5) < L(I)

The trusted sites may be corrupted by the dubious packet.

- /
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FLOW LOGIC

Part 6:

A Multi-Paradigmatic Approach
to Static Analysis

Flemming Nielson & Hanne Riis Nielson

/
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A Tutorial based on the M\-calculus

The A-calculus: ex=c|x| Arg.eo | e1 e

Environment-based call-by-value big-step operational semantics:

pec—c pte1 — (Axo.e0,p0) phk ez — vo

p0[$0 —> ’UQ] Feo — vo

pr_)p(x) pleiex — v

pF Axg.eo = (Axo.€0, p)

115



~

Example:

pz-x—Cy pzH3—3
py FAzy — C,

pzFx3 — C,
[1F (Az.x3)(A\y.Az.y) — C,

[JFAz.x3 — C, []F Ay Azy — C,

Abbreviations:

Co: (Oaz3,[]) pe: [z Cyl
Cy: (MyAzy[l)  pyv: [y~ 3
C.: (Az.y, py)

-
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Example analysis

e Aim: to predict which values an expression may evaluate to

e Abstract representations of the semantic values:

— a constant c is represented by ¢

(so the analysis will record the presence of a constant but not its value)

— a closure (A\zxg.eq, po) is represented by an abstract closure {Azg.eq}

(so the analysis forgets about the environment)

— an environment p is represented by a single global abstract environment
p € Env = Var — Val (where Val is the set of abstract values)

(so the analysis does not distinguish between different environments)

- /
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Abstract succinct specification

p Eas € : v The set ¥ og abstract values is an acceptable analysis estimate for
the expression e in the context specified by the abstract environment p.

plEsc:v iff o€
pEsxz:v  iff plx) Co
P Fas Axo.e0 : v iff  {Axo.eo) €V
pPEaserex: v iff plEaser:vi A plases:va A

V{)\ﬂ?@.eo} € V1 : Vs 75 0=
[@\2 (_i ,/O\(HZ()) VAN ﬁ ‘:as €o . @\0 A\ ij\o g 6]

- /
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4 )

Example:
P FEas (Ax.x3)(A\y.Az.y) : {{\z.y}}

is an acceptable analysis estimate in the context given by:

)
|

~
o
—
= | O

{{Ay.Az.y}}
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/I\Iotes \

e The specification is abstract; this follows the tradition of data flow analysis
and abstract interpretation and is in contrast to the more type theoretic

approaches.

e In the terminology of constraint-based analysis the analysis is polyvariant.

AN

e The specification is succinct because the occurrence of v in p =y € 1
expresses the overall analysis estimate for e; if we want details about the
analysis information for subexpressions of e then we have to inspect the
reasoning leading to the judgement.

e The specification applies to open systems as well as closed systems since
A-abstractions are analysed when they are applied; hence they are not
required to be part of the program of interest but may for example be part

\ of library routines. /
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Towards a compositional specification

e a compositional specification will analyse the body of A-abstractions at
their definition point rather than at their application point

e we need a way of linking information available at these points

e we introduce a global cache C for recording analysis estimates for the
bodies of the A-abstractions.

Extend the syntax with labels /; € Lab

ex=c|x|Axo.el |e1es

and take 6 - (ﬂc?e:Lab%\/fgl

-
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Compositional succinct specification

(C,p) FEes €: v The set v is an acceptable analysis estimate for e in the

context specified by C and p.

(C,p) Esc:D iff o€
(C,p) Esz:0 iff pla)Co
(C,7) Ee Azo.e? : 7 iff  {Awo.el®} €D A
o) # 0 = [(C,p) e e : o ATy € C(o)]
(C,p) Ecserea:t iff (C,p)Ewser:t1 A (C,7) Ecez: b2 A

V{Azo.€22} € T1 : Ta C plao) A C (o) C o

- /
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Example:

(C,P) Fes (z.(23)") (Ay-(A2.y”)?) : {2}

is an acceptable analysis estimate in the context where:

O— 1 2 3
{291} | {Pey’) 0

5= x Y 2z
{Py.(A29”)1} | {o} 0
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4 )

Notes

e The specification is compositional; it still has succinct components since
the 7 of (C,p) s € : ¥ gives the analysis information for the overall
expression e; to get hold of the analysis information of subexpressions we
have to inspect the reasoning leading to the judgement (é, P) Fes €: .

e In contrast to the abstract specification, we only have to find one
acceptable analysis estimate for each subexpression; in the terminology of
constraint-based analysis the analysis is said to be monovariant

e The specification is restricted to closed systems since the bodies of
A-abstractions only are analysed at their definition points.

- /
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Towards a verbose specification

e a more implementation oriented specification will record the analysis
estimates of all program points — there will be no need to inspect the
reasoning leading to the analysis judgements

e the cache can be extended to contain this information for all program
points

Extend the syntax with labels for all subexpressions:

¢ . LoN\2 €1 Lon\£
e n=c |z | (Azo.ey’) | (e1' €5?)

- /
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-

(67 ﬁ) |:CV Ce

(C,p) Fev z*

(C,5) Fo (Azo.e5”)

(C,D) o (e )"

iff
iff

iff

iff

Compositional verbose specification

(C,7) Eo €¢ with the idea that C(¢) is the analysis estimate for e

plzo) # 0 = (C.7) Fov €’
(C.7) Fever” A (C)D) e €3’ A

~
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Example:
(C,5) Fo (Az.(z*3%)")° Ay (A2.y”))T)®
where
1 2 3 4
a_| eyl {29’} 0 {Dy.(Az.y®)?)}
5 6 7 8
{} (D@3} | {Pw-0zg®?) | (P
ﬁ: x Yy z
{Dy.Ozy®)?)} | {o} 0
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Abstract verbose specification

(C, ) Eav €° extends the compositional verbose specification to open systems

(C,7) Ea ¢ iff o€ C¥)
(C,p) Ea 2’ iff  plz) C O()
(C,P) Eav (Amo.eg’)"  iff  {Amo.eq’} € C(4)

(C,0) Fav (" €5?)* it (C.p) Faver' A (C5) brav €52 A
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Example:

-

(C,7) Fav (a.(*3°)1)° Ay (A2y®)*) )

where C' and p are as in the previous example.
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4

(C,P) Ees e: C(0)

AN

p F=as € C(0)

Relationship between the specifications

Q)

7//0\) |:CV 6£
Y
~ (67 P) Fav et

=
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a N
Flow Logic Specifiations

e Describe the universe of discourse for the analysis estimates

— usually given by complete lattices and hence follows the approaches of
data flow analysis, constraint-based analysis and abstract interpretation.

e Describe the format of the judgements and their defining clauses

— focuses on what the analysis does and not how it does it
% 1t is not necessary to think about the design and the implementation
of the analysis at the same time
% one can concentrate on specifying the analysis, i.e. on how to collect
analysis information and link it together
x the problem of trading efficiency for precision can be studied at the

specification level and hence independently of implementation details

- /
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Desirable properties of a flow logic
specification

o the judgements are well-defined;

e the judgements are semantically correct;

e the judgements have a Moore family (or model intersection) property

e the judgements have efficient implementations.

-
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Well-definedness of the analysis

Compositional specifications: It is straightforward to see that they are
well-defined; a simple induction on the syntax of the programs will do.

Abstract specifications: It is not so obvious; for the abstract succinct analysis
it is the following clause that is problematic:

plaserex: v iff plaser : U1 A plmas ez V2 A
V{)\xo.eo} € V1 : Vo 75 )=
[ﬁggﬁ(xo)/\ﬁlzas eoiaoAi)\og@]
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Solution

e turn the defining clauses into an appropriate functional over some
complete lattice — in doing so we shall impose some demands on the form
of the clauses such that monotonicity of the functional is enforced

e Tarski's fixed point theorem ensures that the functional has fixed points

e since we are giving meaning to a specification, the analysis has to be
defined as the greatest fixed point, i.e. co-inductively.

- /
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G(ample: The abstract succinct specification
Complete lattice (E/n\v « Exp x Val — {tt, ff}

The clauses for p =45 € : U define the functional

by

Qas(Q) (P, ¢, V)
Qas(Q) (P, ,0)
Qas(Q) (P, Amo-€0,7)
Qas(Q)(p, €1 €2, )

\V/{)\xo.eo} cEm

\ [Eﬁ)\o : vy C

,O):

Ql ; QQ ﬂ-v(b\a 676) : (Ql(ﬁ, 676) — tt) =

(Q2(p, e, v) = tt)

Q. : (Env x Exp x Val — {tt,ff}) — (Env x Exp x Val — {tt, ff})

= Ju1,v2: Q(p,e1,v1) A Q(p, e2,v2)A
L Vg F£ 0=

p(zo) A Q(p, €0,v0) Ao C 1] /
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Semantic correctness

Classical distinction between

e semantic based: the analysis information can be proved correct with

respect to a semantics

e semantic directed: the analysis specification is calculated from a semantic

specification

Flow logic is a semantics based approach to static analysis

The correctness can be established with respect to many different kinds of
semantics (e.g. big-step or small-step operational semantics or denotational
semantics) — the actual choice of semantics may significantly influence the

style of the proof.

/
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Correctness relation

Specifies the relationship between the entities of the semantics and the analysis
estimates.
Example:

RVaI (i)\, I/O\> ﬂ O € //U\

Rval (v,p) iff  {Azo.eo) €U A po Renv P

Ren p iff  Vz € dom(p) : Rval (p(z), p)
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Subject reduction result

For a big-step operational semantics: pFe — v

Theorem: If pe — v, p Renw p and p =as € : U then v Rya (v, p).

For a small-step operational semantics: p e — €’

Theorem: If pt-e — €', p Renv p and p Eas € : U then p =y € 2 0.

-
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Small-step operational semantics

An environment-based small-step operational semantics for the A-calculus uses
values v € Val together with intermediate expressions containing closures
(Azg.€0, po) and special constructs of the form bind pg in eg; the role of the
latter is to stack the environments arising in applications. The transitions are
written as p = e — €’ and are defined by:

ptx— p(x) pler — e}
pl-eies — el e

p b= Axo.eo0 = (Axo.€0, p)

p e — eh
p = ({Axo.€o, po)) v — bind po[xo—v]ineg plteies — eél
pol-e—¢€ po e — v
p = bind pg ine — bind pg in e’ pt=bindppine — v

- /
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Note: the analysis is extended to operate on the intermediate terms:

p Fas (Azo.e0,po) : 0 iff Rva (v, p)

AN

p Eas bindpoiney : v iff plaseo:v A Renw P
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Moore family result

Having specified an analysis it is natural to ask
e whether every expression admits an acceptable analysis estimate and
e whether every expression has a best or most informative analysis estimate.

It is sufficient to prove that the set of acceptable analysis estimates enjoys a
Moore family (or model intersection) property: A Moore family is a subset V
of a complete lattice satisfying that whenever Y C V then [ 1Y € V.

For the abstract succinct specification: The complete lattice of interest is
Val x Env equipped with the pointwise subset ordering. Then:

Theorem: The set {(p,v) | p =as € : U} is @ Moore family for all e.

- /
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constraint solvers.
Co[c]lst
Cor[2*] st

Co[(Azo.€0) ] st

Cor[(e5* €52) ] st

An alternative is to

-

Efficient implementation via constraints

Turn the compositional verbose specification into an algorithm for computing a
set of conditional constraints that subsequently can be solved using standard

= {ist => {0} CC[{]}
= {Ist=>R[z] C C[]}

Co[eit]lst U Coeb?]ist
U { Ist” ((Mxo.el) € Cle1]) => C[es]
U { lStA( AZo. 60 } - C[é ]) => C[fo]

C
C

use logical formulae to be solved appropriate solvers.

{ Ist => {{Azo.eg’ |} C ClY } U Caleg’[(Ist™ (Rzo] # 0))

R[zo] | Azo.el is in e}
C

(€] | Azo.el is in ey}

~

/
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Syntactic soundness and completeness

Any solution to the constraint system is also an acceptable analysis estimate
according to the specification and vice versa
Lemma: (C,p) Eo e, if and only if (5, C) satisfies the constraints of
Covlex]e.
Hence it follows that a solution (p, 6’) to the constraints also will be an

acceptable analysis result for the other three specifications.

- /
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Pragmatics
Language paradigms
e functional (A-calculus)
ex=c|x| A xg.eo | e1 e

e Imperative

Su=x:=e|S1;5 | -

e object oriented (imperative object calculus)

e concurrent (m-calculus)
P:=ut.P|u(z).P|(vn)P|P|P|---

-

O = [mzzc(xz)O@]f":l ‘ O.m | O.m::g(xo).OO ‘ c e
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mperative constructs A

We can model a classical forward analysis using a complete lattice (St,C) of
abstract states and with transfer functions ¢,.—. : St — St specifying how the
assignments x :=e modify the abstract states.

The judgements of the (succinct) analysis have the form
=S:0-—»0

and expresses that if ¢ describes the initial state then o’ will describe the
possible final states.

= zi=e:5 35 iff  Gue(@) C 5
|:S1;5226'\—»3” if |251:8—»8’/\ '25213/—»8//

Example: if St = Var — Val then we may take ¢,.—.(5) = o[z E[e]5]
Qhere £ defines the analysis of expressions. /
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@ alternative:

about all the states that may occur during execution.

The judgements of this (verbose) analysis have the form

Q)ncurrency.

A coarser analysis that does not distinguish between the program points.

Let a single abstract state ¢ € St = Var — Val capture the information

oE'S
and it is given by:
G z:=e iff E[e]o C5(x)
8‘):/51;52 iff 8'2,31 /\8|:’SQ
This may not seem very useful — but corresponds to what we have to do for

~
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Object-oriented constructs

The aim is to determine the set of objects that can reach various points in the

program.

An object [m; =¢(z;).0;]"_, is represented by a tuple 7 = (mq, - -, m,)
listing the names of its methods; a method will be represented by an abstract
closure {¢(xzg).Og} € Mt.

The judgements of the analysis have the form

(,0) FO:v

where 7 € Val = P(Nam™) describes the set of abstract objects that O may
evaluate to; p: Var — Val describes the abstract values associated with the
variables and o € St = Nam™ x Nam — P(Mt) represents all the states

\that may arise during the computation by a single abstract state. /
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Object definition:

(0,0) = [mi=¢(x:).0ii=1 v it (ma, - ,my) €V A
Vie {1, - n}:
(¢(x:).0:) € (M1, -+, mp), m;)

Note the similarity with the clause for function definition.

Method call:
(5,0) =EO0m:7 iff (p,6)EO:7 A
Vv € ¥, V|s(z0).00) € 5(,m) :
m € plxo) A (5,0) = Oo :To ANTo C T

Note the similarity with the clause for function application.

-
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Method update:

(5,0) = O.m:=¢(20).00: 0 iff (5,0) =0 :70'A
Vit €9 6(mh,m) # 0 =
mev A {s(x0).00) € 5(7, m)

Note the similarity with the clause for assignment in the courser analysis.

-
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Concurrency

The aim is to determine which channels may be communicated over which
other channels.

The judgements of the analysis have the form
(0,K) =P

and expresses that P has an acceptable analysis estimate in the context
described by p and k. Here p: Var — P(Ch) maps the variables to the sets
of channels they may be bound to and k : Ch — P(Ch) maps the channels to
the sets of channels that may be communicated over them.

When formulating the analysis we shall extend p to operate on channel names

as well by taking p(n) = {n}.

- /
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-

The specification:

(5,R) E at.P
(P, k) E u(z).P
(p:K) E (vn)P

(0, R) = P1| Py

iff
iff
iff

iff

= P A Vn € p(u) : p(t) C K(n)
= P A Vn € p(u) : kK(n) C p(x)

— P

= P1 A (ﬁak\)IZP2

For simplicity the above specification does not take into account that the
semantics of the m-calculus allows a-renaming of names and variables — we

can do so using a notion of canonical names and disciplined a-renaming.

/
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/Combining paradigms: CML h

e = c|x|fn zo=>eo |fun fro=>eg |e1ea|if eo then e; else ez | - --
| el :=e2 | e1;ez | let x =ref, in e | derefe|:--

| send ej on ez | receive e | let x =chan,, in e | spawne | ---
Judgements: (p,0,K) Fe:v
e p: Var — Val records the abstract values bound to variables

: Ref — Val records the abstract values bound to reference cells

°
Q)

e % : Ch — Val records the abstract values communicated over channels.

Abstract values are constants ¢, abstract closures {fn g =>eq}, recursive

abstract closures {(fun f xg=>eg}, reference cells » and channels n.

N /
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/Functional constructs: \

(p,o0,R)Ec:v iff o€w
(G.o.R) e i pa)Ch
(p,0,K) Efn zo=>ep:v iff {fn xo=>eo}) €D
(p,0,K) =fun fao=>eo:v iff {fun fzo=>eo} €V
(p,0,R) Eerex:v iff (p,0,K)Eei:v1 A (p,0,K) Eez:va A

V{fn xo=>eo} € V1 : V2 # ) =

[v2 C p(xo) A (p,0,K) = €0 : o Ao C U]A
V{fun fxo=>eo) € V1 : V2 # 0 =

[£un f 2o => eo) € () A T C lao)A

AN AN AN

(5,5,7) = eo : To Ao C 1]

- /
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Functional constructs (cont.):

AN AN AN AN

(p,0,K) = 1if eo then e; else ez : v iff (p,0,K) = eo : VoA
OE@oi[(ﬁ, 7%)'261:61/\@\126/\

Y
(5,5,7) |= ez : T AT C 1]
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Imperative constructs:

(p,0,K) = e1:=ez:

(5,5

(ﬁ) 37/@) |: €1;€2 :

0,K) = deref e:

,R) = let x =ref, in e:

<)

<)

<)

<)

iff

(p,0,K) Fe1:v1 A
(5,5,R) = e2 : T2 A

SEV A VTE@\lliJ\QEE(T)

(p,0,%) Fe: '
Vredv :o(r)Co
€ plx) N (p,o,k) Ee:v
(p,0,k) Eel:0 A

p.

(0,0,K) Fex:v

A
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Concurrency constructs:

AN AN

(p,0,K) = send e; on ey :

(p,0,K) = receive e:

(p,0,K) E let x =chan, in e:

v

<)

iff

iff

iff
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Concurrency constructs (cont.):

(p,0,k) Espawne:v iff ocv A (p,0,R) =Ee:v A
V{fn xo=>ep} €V :
o C p(xo) A (p,0,K) E eo : Vo
V{fun fxo=>eo) €7V :
{fun fxo=>eo} € p(f) Ao C p(zo)A

AN AN AN

(p,0,K) = eo : Vo
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Further Ressources

Flow Logic has been used for a number of languages:

e analyses of classical languages:

— functional, object-oriented, concurrent, imperative.

e analyses of process algebras:

— pi, spi, ambients (several variants), LySa, pKlaim, ...
Techniques have been developed for:
e ensuring well-definedness of specifications,
e proving semantic correctness,

e obtaining efficient implemenations (including techniques for reducing the

\ complexity).

/
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Flow Logic has been used for analyses in a variety of areas:

e showing that data flow analysis, control flow analysis, abstract

interpretation all fit the framework,

e showing how to ensure security properties like confidentiality, integrity,
authenticity, discretionary access control, mandatory access control.

Flow Logic is being used in the EU-project Sensoria for analysing service

orientation of overlay computers.

For further information please consult:
http://www2.imm.dtu.dk/~nielson/FlowLogic.html

-
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Optional Assignment

If you want to earn full credits for the summerschool by doing the assignment
on Flow Logic:
e Find and read a suitable reference on the process algebra CSP;
— make sure to select a version where values are passed as part of
communication.
e Define the syntax and operational semantics of CSP;
— explain the choices made;

— informally argue why it captures the intention behind CSP.

(Continued on the next page.)

-
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determining which values reach what places;

explain the choices made;

illustrate the analysis on a well-chosen example;

argue in detail for the well-formedness of the specification;

formally prove the subject reduction result;

establish the Moore family result.

(Continued on the

e Develop a simple control flow analysis in the Flow Logic format for

next page.)

/
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Try to answer one of the following questions:
e Estimate the complexity of the Flow Logic specification.

e Develop an interesting analysis (perhaps dealing with security) on top of
your simple control flow analysis.

Write the report in the form of a conference style paper.

It is quite acceptable to seek inspiration in these slides and in published papers.

- /
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