

UPPAAL 3.5. 1. Jul 2004.

Symbolic Real Time Model Checking

Kim G Larsen

㒸

BRICS

Basic Research in Computer Science

Overview

- Timed Automata - Decidability Results
- The UPPAAL Verification Engine
- Datastructures for zones
- Liveness Checking Algorithm
- Abstraction and Compositionality
- Further Optimizations

Timed Automata Decidability Results

르르를
BRICS
Basic Research in Computer Science

Decidability ?

Derived Relations and Reachability

$$
\begin{array}{lll}
(l, u) \xrightarrow{\delta}\left(l^{\prime}, u^{\prime}\right) & \text { iff } & \exists d>0 .(l, u) \xrightarrow{\epsilon(d)}\left(l^{\prime}, u^{\prime}\right) . \\
(l, u) \xrightarrow{\xrightarrow{c}\left(l^{\prime}, u^{\prime}\right)} \text { iff } \exists a \in \operatorname{Act.}(l, u) \xrightarrow{\rightarrow}\left(l^{\prime}, u^{\prime}\right) \\
(l, u) \leadsto\left(l^{\prime}, u^{\prime}\right) & \text { iff } & (l, u)(\xrightarrow{\delta} \cup \xrightarrow{\alpha})^{*}\left(l^{\prime}, u^{\prime}\right)
\end{array}
$$

Definition

The set of reachable locations, $\operatorname{Reach}(A)$, of a timed automaton A is defined as:

$$
l \in \operatorname{Reach}(A) \equiv^{\triangle} \exists u .\left(l_{0}, u_{0}\right) \leadsto(l, u)
$$

Time Abstracted Bisimulation

Definition

Let $G \subseteq L$ be a set of goal locations. An equivalence relation R on $L \times \mathbb{R}^{C}$ is a TAB wrt G if whenever $(l, u) R(n, v)$ the following holds:

1. $l \in G$ iff $n \in G$,
2. whenever $(l, u) \xrightarrow{\delta}\left(l^{\prime}, u^{\prime}\right)$ then $(n, v) \xrightarrow{\delta}\left(n^{\prime}, v^{\prime}\right)$ with $\left(l^{\prime}, u^{\prime}\right) R\left(n^{\prime}, v^{\prime}\right)$
3. whenever $(l, u) \xrightarrow{a}\left(l^{\prime}, u^{\prime}\right)$ then $(n, v) \xrightarrow{a}\left(n^{\prime}, v^{\prime}\right)$ with $\left(l^{\prime}, u^{\prime}\right) R\left(n^{\prime}, v^{\prime}\right)$

Stable Quotient

Definition

Let R be a TAB wrt G. The induced quotient has classes of R, $\pi \in\left(L \times \mathbb{R}^{C} / R\right)$, as states. For classes π, π^{\prime} the transitions are

- $\pi \xrightarrow{\delta} \pi^{\prime}$ iff $(l, u) \xrightarrow{\delta}\left(l^{\prime}, u^{\prime}\right)$ for some $(l, u) \in \pi,\left(l^{\prime}, u^{\prime}\right) \in \pi^{\prime}$.
- $\pi \xrightarrow{a} \pi^{\prime}$ iff $(l, u) \xrightarrow{a}\left(l^{\prime}, u^{\prime}\right)$ for some $(l, u) \in \pi,\left(l^{\prime}, u^{\prime}\right) \in \pi^{\prime}$.

Theorem

Let R be TAB wrt G. Then, a location from G is reachable iff there exists an equivalence class π of R such that π is reachable in the quotient and π contains a state whose location is in G.

Stable Quotient

Partitioning

Stable Quotient

Partitioning

Stable Quotient

Partitioning

Stable Quotient

Partitioning

Stable Quotient

Partitioning

Regions

Finite Partitioning of State Space

For each clock x let c_{x} be the largest integer with which x is compared
 in any guard or invariant of $A . u$ and u^{\prime} are region equivalent, $u \cong u^{\prime}$ iff the following holds:

1. For all $x \in C$, either $\lfloor u(x)\rfloor=\left\lfloor u^{\prime}(x)\right\rfloor$ or $u(x), u^{\prime}(x)>c_{x}$;
2. For all $x, y \in C$ with $u(x) \leq c_{x}$ and $u(y) \leq c_{y}$, $f r(u(x)) \leq f r(u(y))$ iff $f r\left(u^{\prime}(x)\right) \leq f r\left(u^{\prime}(y)\right)$;
3. For all $x \in C$ with $u(x) \leq c_{x}$,
$f r(u(x))=0$ iff $f r\left(u^{\prime}(x)\right)=0$.

An equivalence class (i.e. a region)
in fact there is only a finite number of regions!!

Fundamental Results

■ Reachability © Alur, Dill

- Trace-inclusion Alur, Dill
- Timed © ; Untimed ©
- Bisimulation
- Timed © Cerans ; Untimed ©

■ Model-checking :

- TCTL, $T_{m u} L_{\text {nu }} \ldots$

Updatable Timed Automata

The UPPAAL Verification Engine

BRICS

Basic Research in Computer Science

Overview

- Zones and DBMs
- Minimal Constraint Form
- Clock Difference Diagrams
- Distributed UPPAAL
- Unification \& Sharing
- Acceleration
- Static Guard Analysis
- Storage-Strategies
[CAV2000, STTT2004]
[FTRTFT2002, SPI N2003]
[FORMATS2002]
[TACAS2003,TACAS2004]
[CAV2003]

Zones
 From infinite to finite

State
($n, x=3.2, y=2.5$)

Symbolic state (set)
($\mathrm{n}, 1 \leq \mathrm{x} \leq 4,1 \leq \mathrm{y} \leq 3$)
Zone:
conjunction of
$\mathrm{x}-\mathrm{y}<=\mathrm{n}, \mathrm{x}<=>\mathrm{n}$

Symbolic Transitions

Thus $(\mathrm{n}, 1<=\mathrm{x}<=4,1<=\mathrm{y}<=3)=\mathrm{a}=>(\mathrm{m}, 3<\mathrm{x}, \mathrm{y}=0)$

Zones $=$ Conjuctive Constraints

- A zone Z is a conjunctive formula:

$$
g_{1} \& g_{2} \& \ldots \& g_{n}
$$

where g_{i} is a clock constraint $x_{i} \sim b_{i}$ or $x_{i}-x_{j} \sim b_{i j}$

- Use a zero-clock x_{0} (constant 0)
- A zone can be re-written as a set:

$$
\left\{x_{i}-x_{j} \sim b_{i j} \mid \sim \text { is }<\text { or } \leq, i, j \leq n\right\}
$$

- This can be represented as a matrix, DBM (Difference Bound Matrices)

Operations on Zones

- Future delay $\mathrm{Z} \uparrow$:

$$
[z \uparrow]=\{u+d \mid d \in R, u \in[Z]\}
$$

- Past delay $\mathrm{Z} \downarrow$:

$$
[Z \downarrow]=\{u \mid u+d \in[Z] \text { for some } d \in R\}
$$

- Reset: $\{x\} Z$ or $Z(x:=0)$

$$
[\{x\} Z]=\{u[0 / x] \mid u \in[Z]\}
$$

- Conjunction

$$
[Z \& g]=[Z] \cap[g]
$$

THEOREM

- The set of zones is closed under all constraint operations.
- That is, the result of the operations on a zone is a zone.
- That is, there will be a zone (a finite object i.e a zone/constraints) to represent the sets: [Z个], [Zฟ], [\{x\}Z], [Z\&g].

Symbolic Exploration

Reachable?

Symbolic Exploration

Delay

Reachable?

Symbolic Exploration

Left

Reachable?

Symbolic Exploration

Left

Reachable?

Symbolic Exploration

$$
y<=2, x>=4
$$

Delay

Reachable?

Symbolic Exploration

Left

Reachable?

Symbolic Exploration

Left

Symbolic Exploration

$$
y<=2, x>=4
$$

Delay

Reachable?

Symbolic Exploration

$$
y<=2, x>=4
$$

Down

Reachable?

Forward Rechability

I nit -> Final ?

INITIAL Passed: $=\varnothing$; Waiting := $\{(\mathrm{no}, \mathrm{ZO})\}$

REPEAT

UNTI L Waiting $=\varnothing$
or
Final is in Waiting

Forward Rechability

I nit -> Final ?

INITIAL Passed : = \varnothing; Waiting :=\{(n0,Z0)\}

REPEAT

- pick (n, Z) in Waiting
- if for some $Z^{\prime} \supseteq \quad Z$ $\left(n, Z^{\prime}\right)$ in Passed then STOP

UNTIL Waiting = \varnothing
or
Final is in Waiting

Forward Rechability

I nit -> Final ?

INITIAL Passed := ; Waiting := $\{(\mathrm{nO}, \mathrm{ZO})\}$

REPEAT

- pick (n, Z) in Waiting
- if for some $Z^{\prime} \supseteq \mathbf{Z}$ (n, Z^{\prime}) in Passed then STOP
- else /explore/ add
$\{(m, U):(n, Z)=>(m, U)\}$ to Waiting;

UNTIL Waiting = \varnothing
or
Final is in Waiting

Forward Rechability

I nit -> Final ?

INITIAL Passed : = \varnothing; Waiting := $\{(\mathrm{nO}, \mathrm{ZO})\}$

REPEAT

- pick (n, Z) in Waiting
- if for some $Z^{\prime} \supseteq \quad Z$ (n, Z^{\prime}) in Passed then STOP
- else /explore/ add
$\{(m, U):(n, Z)=>(m, U)\}$ to Waiting;
Add (n, Z) to Passed
UNTI L Waiting = \varnothing
or
Final is in Waiting

Canonical Datastructures for Zones

Difference Bounded Matrices

Bellman 1958, Dill 1989

I nclusion

D1 $\begin{aligned} & x<=1 \\ & y-x<=2 \\ & z-y<=2 \\ & z<=9\end{aligned}$

$$
\mathbf{?} \subseteq ?
$$

Graph

Canonical Datastructures for Zones

 Difference Bounded Matrices
I nclusion

D1 $\begin{aligned} & x<=1 \\ & y-x<=2 \\ & z-y<=2 \\ & z<=9\end{aligned}$

$$
2 \subseteq ?
$$

D2 $\begin{aligned} & x<=2 \\ & y-x<=3 \\ & y<=3 \\ & z-y<=3 \\ & z<=7\end{aligned}$
Graph

Shortest
Path
Closure

Canonical Datastructures for Zones

Difference Bounded Matrices

Emptiness

Negative Cycle iff
empty solution set

Canonical Datastructures for Zones
 Difference Bounded Matrices

Future

$$
\begin{aligned}
& 1<=x<=4 \\
& 1<=y<=3
\end{aligned}
$$

Future D

$$
\begin{aligned}
& 1<=x, 1<=y \\
& -2<=x-y<=3
\end{aligned}
$$

Canonical Datastructures for Zones

Difference Bounded Matrices

Reset

Canonical Datastructures for Zones
 Difference Bounded Matrices

$$
\begin{aligned}
& x 1-\times 2<=4 \\
& \times 2-\times 1<=10 \\
& \times 3-\times 1<=2 \\
& \times 2-\times 3<=2 \\
& \times 0-\times 1<=3 \\
& \times 3-\times 0<=5
\end{aligned}
$$

Canonical Datastructures for Zones Minimal Constraint Form

RTSS 1997

Space worst $O\left(n^{\wedge} 2\right)$
practice $O(n)$

SPACE PERFORMANCE

TIME PERFORM ANCE

Shortest Path Reduction

 1st attempt

An edge is REDUNDANT if there exists an alternative path of no greater weight THUS Remove all redundant edges!
v and w are both redundant
Removal of one depends on presence of other.

Observation: If no zero- or negative cycles then SAFE to remove all redundancies.

Shortest Path Reduction

Solution

Shortest Path Reduction

Solution

1. Equivalence classes based on 0 -cycles.

Shortest Path Reduction

Solution

1. Equivalence classes based on 0 -cycles.
2. Graph based on representatives.
Safe to remove redundant edges

Shortest Path Reduction

Solution

Canonical given order of clocks

1. Equivalence classes based on 0 -cycles.
2. Graph based on representatives.
Safe to remove redundant edges
3. Shortest Path Reduction

$$
=
$$

One cycle pr. class $+$
Removal of redundant edges between classes

Earlier Termination

I nit -> Final ?

INITIAL Passed := Ø; Waiting := $\{(\mathrm{no}, \mathrm{zo})\}$

REPEAT

- pick (n, Z) in Waiting
- if for some $Z^{\prime} \supseteq \quad Z$ (n, Z^{\prime}) in Passed then STOP
- else /explore/ add
$\{(m, U):(n, Z)=>(m, U)\}$ to Waiting;
Add (n, Z) to Passed
UNTI L Waiting = \varnothing
or
Final is in Waiting

Earlier Termination

I nit -> Final ?

INITIAL Passed := Ø; Waiting := $\{(\mathrm{no}, \mathrm{zo})\}$

REPEAT

- pick (n,Z) in Waiting
- if for som $Z^{\prime} \supseteq Z Z$ $\left(n, Z^{\prime}\right)$ in Passed then STOP
- else /explore/ add
$\{(m, U):(n, Z)=>(m, U)\}$ to Waiting;
Add (n, Z) to Passed
UNTIL Waiting $=\varnothing$
or
Final is in Waiting

Earlier Termination

I nit -> Final ?

Clock Difference Diagrams

= Binary Decision Diagrams + Difference Bounded Matrices

CDD-representations

(b)

(c)

- Nodes labeled with differences
- Maximal sharing of substructures (also across different CDDs)
- Maximal intervals
- Linear-time algorithms for set-theoretic operations.
- NDD's Maler et. al
- DDD’s Møller, Lichtenberg

SPACE PERFORMANCE

TIME PERFORM ANCE

UPPAAL 1995-2001

Dec'96

> Every 9 month 10 times better performance!

Liveness Properties

in UPDALK

$$
\mathrm{F}::=\mathrm{E} \square \mathrm{P} \quad \mid \quad-\quad \text { Possibly always } \mathrm{P}
$$

$$
\mathrm{A} \diamond \mathrm{P} \quad \mid \quad \text { Eventually } \mathrm{P}
$$

is equivalent to ($\neg \mathrm{E} \square \neg \mathrm{P}$)

P leads to Q
is equivalent to
$\mathrm{A} \square(\mathrm{P} \Rightarrow \mathrm{A} \diamond \mathrm{Q})$

Bouajjani, Tripakis, Yovine'97
On-the-fly symbolic model checking of TCTL

```
proc Liveness( }\mp@subsup{s}{0}{},\varphi,\mathrm{ Passed) }
    pre(s}\mp@subsup{s}{0}{}=\operatorname{delay}(\mp@subsup{s}{0}{})
    pre (so \models\varphi)
    pre(\negunboundeds s}\wedge\neg\mathrm{ deadlocked (so))
    pre(\foralls\in Passed. s}\modelsA\diamond\neg\varphi
    WS:= {so };
    ST:=\emptyset;
    while }WS\not=\emptyset\underline{do
        s:= pop(WS);
        while top(ST) f parent(s) do
            Passed := Passed \cup{pop (ST)};
        od
        push(ST,s);
        if }\forall\mp@subsup{s}{}{\prime}\in\mathrm{ Passed. }s\not\subseteq\mp@subsup{s}{}{\prime
            then foreach }t:s\stackrel{q}{=>}t\underline{\mathrm{ do}
                        if}t\models\varphi\underline{\mathrm{ then }t:= delay (t);
                    if unbounded (t) then exit(true) fi
                    if deadlocked}(t)\mathrm{ then exit(true) fi
                    if }\exists\mp@subsup{t}{}{\prime}\inST.t=\mp@subsup{t}{}{\prime}\mathrm{ then exit(true) }\underline{\textrm{fi}
                    push(WS,t);
                        fi
                od
            fi
    od
    exit(false);
end
```

proc Liveness $\left(s_{0}, \varphi\right.$, Passed $) \equiv$
$\operatorname{pre}\left(s_{0}=\operatorname{delay}\left(s_{0}\right)\right)$
$\operatorname{pre}\left(s_{0} \models \varphi\right)$
$\operatorname{pre}\left(\neg\right.$ unboundeds $s_{0} \wedge \neg$ deadlocked $\left.\left(s_{0}\right)\right)$
pre $(\forall s \in$ Passed. $s \models A \diamond \neg \varphi)$
WS :=\{ $\left.s_{0}\right\}$;
ST := $\emptyset ;$
while $W S \neq \emptyset$ do
$s:=\operatorname{pop}(W S): \quad$ ST
while $\operatorname{top}(\mathrm{ST}) \neq \operatorname{parent}(\mathrm{s})$ do Passed $:=$ Passed $\cup\{\operatorname{pop}(S T)\} ;$
od
push(ST, s);
if $\forall s^{\prime} \in$ Passed. $s \nsubseteq s^{\prime}$
then foreach $t: s \stackrel{q}{\Rightarrow} t \underline{\text { do }}$ if $t \models \varphi$ then $t:=\operatorname{delay}(t)$; if unbounded (t) then exit $(t r$ if deadlocked (t) then exit $(t$ if $\exists t^{\prime} \in S T . t=t^{\prime}$ then exj push(WS, t); fi
od
exit (false);
end
od
fi
od
fi

proc Liveness $\left(s_{0}, \varphi\right.$, Passed $) \equiv$
$\operatorname{pre}\left(s_{0}=\operatorname{delay}\left(s_{0}\right)\right)$
$\operatorname{pre}\left(s_{0} \models \varphi\right)$
$\operatorname{pre}\left(\neg\right.$ unboundeds $s_{0} \wedge \neg$ deadlocked $\left.\left(s_{0}\right)\right)$
$\operatorname{pre}(\forall s \in \operatorname{Passed} . s \models A \diamond \neg \varphi)$
WS :=\{ $\left.s_{0}\right\}$;
ST := \emptyset;
while $W S \neq \emptyset$ do
$s:=\operatorname{pop}(W S)$;
while $\operatorname{top}(\mathrm{ST}) \neq \operatorname{parent}(\mathrm{s}) \underline{\text { do }}$ Passed $:=$ Passed $\cup\{\operatorname{pop}(S T)\} ;$
od
push(ST, s);
if $\forall s^{\prime} \in$ Passed. $s \nsubseteq s^{\prime}$
then foreach $t: s \stackrel{q}{\Rightarrow} t \underline{\text { do }}$ if $t \models \varphi$ then $t:=\operatorname{delay}(t)$; if unbounded (t) then exit $(t r y$ if deadlocked (t) then exit $(t$ if $\exists t^{\prime} \in S T . t=t^{\prime}$ then exj push(WS, t); fi
fi
od
exit (false);
end
proc Liveness $\left(s_{0}, \varphi\right.$, Passed $) \equiv$
$\operatorname{pre}\left(s_{0}=\operatorname{delay}\left(s_{0}\right)\right)$
$\operatorname{pre}\left(s_{0} \models \varphi\right)$
$\operatorname{pre}\left(\neg\right.$ unboundeds $s_{0} \wedge \neg$ deadlocked $\left.\left(s_{0}\right)\right)$
pre $(\forall s \in$ Passed. $s \models A \diamond \neg \varphi)$
WS :=\{ $\left.s_{0}\right\}$;
ST : $=\emptyset$;
while $W S \neq \emptyset$ do
$s:=\operatorname{pop}(W S) ;$
while $\operatorname{top}(\mathrm{ST}) \neq \operatorname{parent}(\mathrm{s})$ do
od
push(ST, s);
if $\forall s^{\prime} \in$ Passed. $s \nsubseteq s^{\prime}$
then foreach $t: s \stackrel{q}{\Rightarrow} t$ do if $t \models \varphi$ then $t:=\operatorname{delay}(t)$; if unbounded (t) then exit $(t r y$ if deadlocked (t) then exit (t) if $\exists t^{\prime} \in S T . t=t^{\prime}$ then exj push(WS, t); fi od
fi
od
exit (false);
end

$$
\text { Passed }:=\operatorname{Passed} \cup\{\operatorname{pop}(S T)\}
$$

proc Liveness $\left(s_{0}, \varphi\right.$, Passed $) \equiv$
$\operatorname{pre}\left(s_{0}=\operatorname{delay}\left(s_{0}\right)\right)$
$\operatorname{pre}\left(s_{0} \models \varphi\right)$
$\operatorname{pre}\left(\neg\right.$ unboundeds $s_{0} \wedge \neg$ deadlocked $\left.\left(s_{0}\right)\right)$
$\operatorname{pre}(\forall s \in \operatorname{Passed} . s \models A \diamond \neg \varphi)$
WS :=\{ $\left.s_{0}\right\}$;
ST := \emptyset;
while $W S \neq \emptyset$ do $s:=\operatorname{pop}(W S) ;$
while $\operatorname{top}(S T) \neq \operatorname{parent}(s) \underline{\text { do }}$ Passed $:=$ Passed $\cup\{\operatorname{pop}(S T)\} ;$
od

- $\operatorname{push}(S T, s)$;
if $\forall s^{\prime} \in$ Passed. $s \nsubseteq s^{\prime}$
then foreach $t: s \stackrel{a}{\Rightarrow} t$ do if $t \models \varphi$ then $t:=\operatorname{delay}(t)$; if unbounded (t) then exit $(t r y$ if deadlocked (t) then exit (t) if $\exists t^{\prime} \in S T . t=t^{\prime}$ then exj push(WS, t); fi od
fi
while $W S \neq \emptyset$ do

od
exit (false);
end
proc Liveness $\left(s_{0}, \varphi\right.$, Passed $) \equiv$
$\operatorname{pre}\left(s_{0}=\operatorname{delay}\left(s_{0}\right)\right)$
$\operatorname{pre}\left(s_{0} \models \varphi\right)$
$\operatorname{pre}\left(\neg\right.$ unboundeds $s_{0} \wedge \neg$ deadlocked $\left.\left(s_{0}\right)\right)$
$\operatorname{pre}(\forall s \in \operatorname{Passed} . s \models A \diamond \neg \varphi)$
WS :=\{ $\left.s_{0}\right\}$;
ST := \emptyset;
while $W S \neq \emptyset$ do
$s:=\operatorname{pop}(W S) ;$
while $\operatorname{top}(S T) \neq \operatorname{parent}(s) \underline{\text { do }}$
Passed $:=\operatorname{Passed} \cup\{\operatorname{pop}(S T)\} ;$
od
push(ST, s);
- if $\forall s^{\prime} \in$ Passed. $s \nsubseteq s^{\prime}$
then foreach $t: s \stackrel{a}{\Rightarrow} t \underline{\text { do }}$ if $t \models \varphi$ then $t:=\operatorname{delay}(t)$; if unbounded (t) then exit $(t r$ if deadlocked (t) then exit (t) if $\exists t^{\prime} \in S T . t=t^{\prime}$ then ex push(WS, t); fi od
fi
od
exit (false);
end

proc Liveness $\left(s_{0}, \varphi\right.$, Passed $) \equiv$
$\operatorname{pre}\left(s_{0}=\operatorname{delay}\left(s_{0}\right)\right)$
$\operatorname{pre}\left(s_{0} \models \varphi\right)$
pre $\left(\neg\right.$ unboundeds $s_{0} \wedge \neg$ deadlocked $\left.\left(s_{0}\right)\right)$
$\operatorname{pre}(\forall s \in \operatorname{Passed} . s \models A \diamond \neg \varphi)$
WS :=\{ $\left.s_{0}\right\}$;
ST := \emptyset;
while $W S \neq \emptyset$ do $s:=\operatorname{pop}(W S) ;$
while $\operatorname{top}(S T) \neq \operatorname{parent}(s) \underline{\text { do }}$ Passed $:=\operatorname{Passed} \cup\{\operatorname{pop}(S T)\} ;$
od
push(ST, s);
if $\forall s^{\prime} \in$ Passed. $s \nsubseteq s^{\prime}$
- then foreach $t: s \stackrel{q}{\Rightarrow} t \underline{\text { do }}$ if $t \equiv \varphi$ then $t:=\operatorname{delay}(t)$; if unbounded (t) then exit $(t r$ if deadlocked (t) then exit $(t$ if $\exists t^{\prime} \in S T . t=t^{\prime}$ then exj push(WS, t); fi
od
fi
while $W S \neq \emptyset d$

od
exit (false);
end
proc Liveness $\left(s_{0}, \varphi\right.$, Passed $) \equiv$

```
    \(\operatorname{pre}\left(s_{0}=\operatorname{delay}\left(s_{0}\right)\right)\)
    \(\operatorname{pre}\left(s_{0} \models \varphi\right)\)
    pre \(\left(\neg\right.\) unbounded \(s_{0} \wedge \neg\) deadlocked \(\left.\left(s_{0}\right)\right)\)
    \(\operatorname{pre}(\forall s \in \operatorname{Passed} . s \models A \diamond \neg \varphi)\)
    WS :=\{ \(\left.s_{0}\right\}\);
    ST : \(=\emptyset\);
```

 while \(W S \neq \emptyset \underline{\text { do }}\)
 \(s:=\operatorname{pop}(W S) ;\)
 while \(\operatorname{top}(\mathrm{ST}) \neq \operatorname{parent}(\mathrm{s}) \underline{\text { do }}\)
 Passed := Passed \(\cup\{\operatorname{pop}(S T)\} ;\)
 od
 push(ST, s);
 if \(\forall s^{\prime} \in\) Passed. \(s \nsubseteq s^{\prime}\)
 then foreach \(t: s \stackrel{q}{\Rightarrow} t\) do
 if \(t \models \varphi\) then \(t:=\operatorname{delay}(t)\);
 if unbounded \((t)\) then exit \((\operatorname{try}\)
 if deadlocked \((t)\) then exit \((t\)
 if \(\exists t^{\prime} \in S T . t=t^{\prime}\) then exi
 push(\(W \mathrm{~S}, t\)):
 fi
 od
 fi
 od
 exit (false);
 end

Unexplored

Compositionality \& Abstraction

르를

BRICS

Basic Research in Computer Science

The State Explosion Problem

sat φ

Model-checking is either EXPTIME-complete or PSPACE-complete (for TA's this is true even for a single TA)

Abstraction

sat φ

REDUCE TO

in Computer Science

Compositionality

Sys

Sys $_{1} \leq$ Abs $_{1}$
Sys $_{2} \leq A b s_{2}$
Sys $_{1} \mid$ Sys $_{2} \leq A b s_{1} \mid A b s_{2}$

Sys $_{1} \leq A b s_{1}$
$\mathrm{Sys}_{2} \leq \mathrm{Abs}_{2}$
$A b s_{1} \mid A b s_{2} \leq A b s$
Sys \leq Abs

Abstraction Example

Example Continued

Proving abstractions

using reachability

Further Optimizations

BRICS
Basic Research in Computer Science

Datastructures for Zones

- UPPAAL DBM Library

The library used to manipulate DBMS in UPPAAL
Main Page | Download | Ruby Binding | Help | Contact us

N

Welcome!
DBMs [dill89, rokicki93, Ipw:fct95, bengtsson02] are efficient data structures to represent clock constraints in timed automata [ad90]. They are used in UPPAAL [Ipy97, by04, bdl04] as the core data structure to represent time. The library features all the common operations such as up (delay, or future), down (past), general updates, different extrapolation functions, etc.. on DBMs and federations. The library also supports subtractions. The API is in C and $\mathrm{C}++$. The $\mathrm{C}++$ part uses active clocks and hides (to some extent) memory management.

References

- [dill89] David L. Dill. Timing Assumptions and Verification of Finite-State Concurren Springer Berlin 1989, pp 197-212.
- [rokicki93] Tomas Gerhard Rokicki. Representing an University 1993.
- [lpw:fct95] Kim G. Larsen, Paul Pettersson, and Fundamentals of Computation Theory 1995, LNCS 96
- [bengtsson02] Johan Bengtsson. Clocks, DBM, and University 2002.
- [ad90] Rajeev Alur and David L. Dill. Automata Colloquium on Algorithms, Languages, and Programm
- [Ipy97] Kim G. Larsen, Paul Pettersson, and Wang Software Tools for Technology Transfer, October 199
- [by041 Johan Bengtsson and Wang Yi. Timed Automa and Petri Nets 2004, LNCS 3098.
- 「bdl041 Gerd Behrmann. Alexandre David, and Kim

Elegant RUBY bindings for easy implementations

Latest News

Updated the Ruby binding page 15 Nov 2005

Added a quick Getting Started mini tutorial.

Ruby binding version 0.4

Zone Abstractions

[TACAS03,TACAS04]

- Abstraction taking maximum constant into account necessary for termination
- Utilization of distinction between lower and upper bounds
- Utilization of location-dependency

LU Abstraction

[TACAS04]

THEOREM

For any state in the LU- abstraction there is a state in the original set simulating it

LU abstraction is exact wrt reachability

Zone abstractions

Model	Classical			Loc. dep. Max			Loc. dep. LU			Convex Hull		
	-n1			-n2			-n3			-A		
	Time	States	Mem									
f5	4.02	82,685	5	0.24	16,980	3	0.03	2,870	3	0.03	3,650	3
f6	597.04	1,489,230	49	6.67	158,220	7	0.11	11,484	3	0.10	14,658	
f7				352.67	1,620,542	46	0.47	44,142	3	0.45	56,252	5
f8							2.11	164,528	6	2.08	208,744	12
f9							8.76	598,662	19	9.11	754,974	39
f10							37.26	2,136,980	68	39.13	2,676,150	143
f11							152.44	7,510,382	268			
c5	0.55	27,174	3	0.14	10,569	3	0.02	2,027	3	0.03	1,651	3
c6	19.39	287,109	11	3.63	87,977	5	0.10	6,296	3	0.06	4,986	3
c7				195.35	813,924	29	0.28	18,205	3	0.22	14,101	4
c8							0.98	50,058	5	0.66	38,060	7
c9							2.90	132,623	12	1.89	99,215	17
c10							8.42	341,452	29	5.48	251,758	49
c11							24.13	859,265	76	15.66	625,225	138
c12							68.20	2,122,286	202	43.10	1,525,536	394
bus	102.28		303				62.01	4,317,920	246	45.08	3,826,742	324
philips	0.16	12,823	3	0.09	6,763	3	0.09	6,599	3	0.07	5,992	3
sched	17.01	929,726	76	15.09	700,917	58	12.85	619,351	52	55.41	3,636,576	427

Symmetry Reduction

- Exploitation of full symmetry may give factorial reduction
- Many timed systems are inherently symmetric
- Computation of canonical state representative using swaps.

Symmetry Reduction

- Exploitation of full symmetry may give factorial reduction
- Many timed systems are inherently symmetric
- Computation of canonical state representative using swaps.

Symmetry Reduction

[Formats 2003]

Symmetry Reduction

UPPAAL 3.6

- Iterators
- Quantifiers
- Selection
- Template sets process P[4](...) \{ \}
- Scalar set based symmetry reduction
- Compact state-space representations
- Priorities

File information:

Model: ANASTRONOMICALLY BIG MODEL Browse

Query: A VERY INTERESTING QUESTION
Browse

Model checking options

Search order: © bredth first \bigcirc width first
State space reduction: \bigcirc none © conservative \bigcirc aggressive
State space representation: © DBM \bigcirc compact data structure \bigcirc under approximation \bigcirc over approximation New syntax C no © yes

Distribution options

Number of CPUs: ○ 1 ○ 5 ○ $10 \bigcirc 15$ ○ $20 \bigcirc 25$ ○ $30 \bigcirc 35$ ○ 49
Run options

```
Max walltime (minutes): © 1 O 5 O 15 ○ 30 0 60 ○ 120 © 240
```


Contact information

Email: |kg|@cs.auc.dk|

```
Submit Query
Reset
```

