
Symbolic Real Time
Model Checking

Kim G Larsen



In
fo

rm
at

io
n
st

ek
n
o
lo

g
i

UCb

Overview

� Timed Automata – Decidability Results

� The UPPAAL Verification Engine
− Datastructures for zones
− Liveness Checking Algorithm

� Abstraction and Compositionality
� Further Optimizations



Timed Automata – lllllllllll
Decidability Results
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Decidability ?

Reachable?

a b

c

OBSTACLE:
Uncountably infinite

state space
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Reachable?
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Stable Quotient

Reachable?

x

y

x

y

Partitioning

Every TA
has a finite

TAB quotient
(region-constr.)

Every TA
has a finite

TAB quotient
(region-constr.)

a b

c
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Regions
Finite Partitioning of State Space

x

y

An equivalence class (i.e. a region)
in fact there is only a finite number of regions!!

1 2 3

1

2
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Fundamental Results

� Reachability ☺ Alur, Dill

� Trace-inclusion Alur, Dill

� Timed  / ; Untimed ☺

� Bisimulation
� Timed  ☺ Cerans ; Untimed ☺

� Model-checking ☺
� TCTL, Tmu, Lnu,...

PSPACE-c

PSPACE-c / EXPTIME-c
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Updatable Timed Automata

Patricia Bouyer, Catherine Dufourd,
Emmanuel Fleury, Antoine Petit

W Diagonals

W Diagonals



The UPPAAL
Verification Engine
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Overview

� Zones and DBMs
� Minimal Constraint Form
� Clock Difference Diagrams

� Distributed UPPAAL           [CAV2000, STTT2004]

� Unification & Sharing [FTRTFT2002, SPIN2003]

� Acceleration                            [FORMATS2002]

� Static Guard Analysis     [TACAS2003,TACAS2004]

� Storage-Strategies                         [CAV2003]
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Zones
From infinite to finite

State
(n, x=3.2, y=2.5 )

x

y

x

y

Symbolic state (set)

Zone:
conjunction of
x-y<=n, x<=>n

(n, 1·x·4, 1·y· 3)
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Symbolic Transitions

n

m

x>3

y:=0

delays to

conjuncts to

projects to

x

y
1<=x<=4
1<=y<=3

x

y
1<=x, 1<=y
-2<=x-y<=3

x

y 3<x, 1<=y
-2<=x-y<=3

3<x, y=0

x

y

Thus  (n,1<=x<=4,1<=y<=3)  =a => (m,3<x, y=0)Thus  (n,1<=x<=4,1<=y<=3)  =a => (m,3<x, y=0)

a
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Zones = Conjuctive Constraints

� A zone Z is a conjunctive formula:

g1 & g2 & ... & gn

where gi is a clock constraint xi ~ bi or xi-xj~bij

� Use a zero-clock x0 (constant 0)

� A zone can be re-written as a set:
{xi-xj ~ bij | ~ is < or ≤, i,j≤n}

� This can be represented as a matrix, DBM 
(Difference Bound Matrices)
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Operations on Zones
� Future delay Z↑:

[Z↑] = {u+d| d ∈ R, u∈[Z]}

� Past delay Z↓:
[Z↓] = {u| u+d∈[Z] for some d∈R}

� Reset: {x}Z or Z(x:=0)
[{x}Z] = {u[0/x] | u ∈[Z]}

� Conjunction
[Z&g]= [Z]∩[g]
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THEOREM

� The set of zones is closed under all  
constraint operations.

� That is, the result of the operations on a 
zone is a zone.

� That is, there will be a zone (a finite 
object i.e a zone/constraints) to represent
the sets: [Z↑],  [Z↓], [{x}Z], [Z&g].
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Symbolic Exploration

Reachable?

x

y
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Symbolic Exploration

Reachable?
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y

Delay
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Symbolic Exploration

Reachable?

x

y

Down
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Forward Rechability

Passed

Waiting
Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else (explore) add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else (explore) add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

Init -> Final ?
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Forward Rechability

Passed

Waiting Final

Init

n,Z

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’
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Forward Rechability

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Init -> Final ?
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Bellman 1958, Dill 1989

x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

D1

D2

Inclusion

0

x

z

y

1 2

29

0

x

z

y

2 3

37

3

? ?   ⊆

Graph

Graph

Canonical Datastructures for Zones
Difference Bounded Matrices
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x<=1
y-x<=2
z-y<=2
z<=9

x<=1
y-x<=2
z-y<=2
z<=9

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

x<=2
y-x<=3
y<=3
z-y<=3
z<=7

D1

D2

Inclusion

0

x

z

y

1 2

29

Shortest
Path

Closure

Shortest
Path

Closure

0

x

z

y

1 2

25

0

x

z

y

2 3

37

0

x

z

y

2 3

36

3

3 3

Graph

Graph

? ?   ⊆

4

6

Canonical Datastructures for Zones
Difference Bounded Matrices
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x<=1
y>=5
y-x<=3

x<=1
y>=5
y-x<=3

D

Emptiness

0
y

x
1

-5

3

Negative Cycle
iff
empty solution set

Graph

Compact

Canonical Datastructures for Zones
Difference Bounded Matrices
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1<= x <=4
1<= y <=3

1<= x <=4
1<= y <=3

D

Future

x

y

x

y

Future D

0

y

x4

-1

3

-1

Shortest
Path 

Closure

Remove
upper

bounds
on clocks

1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

y

x

-1

-1

3

2

0

4

3

Canonical Datastructures for Zones
Difference Bounded Matrices
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x

y

D
1<=x, 1<=y
-2<=x-y<=3

1<=x, 1<=y
-2<=x-y<=3

y

x

-1

-1

3

2

0

Remove all
bounds 

involving y
and set y to 0

x

y

{y}D

y=0, 1<=xy=0, 1<=x

Reset

y

x

-1

0

0
0

Canonical Datastructures for Zones
Difference Bounded Matrices
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x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2

5

23

x1 x2

x3x0

-4

4

2

5

23 3 -2 -2

1

Shortest
Path

Closure
O(n^3)

Canonical Datastructures for Zones
Difference Bounded Matrices
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x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1-x2<=4
x2-x1<=10
x3-x1<=2
x2-x3<=2
x0-x1<=3
x3-x0<=5

x1 x2

x3x0

-4

10

2

5

23

x1 x2

x3x0

-4

4

2

5

23

x1 x2

x3x0

-4

2
2

3

3 -2 -2

1

Shortest
Path

Closure
O(n^3)

Shortest
Path

Reduction
O(n^3) 3

Space worst O(n^2)
practice O(n)

RTSS 1997

Canonical Datastructures for Zones
Minimal Constraint Form
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SPACE PERFORMANCE

0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
0,8
0,9
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Aud
io
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io 
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Box
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ort
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lan
t

Fisc
he

r 2
Fisc

he
r 3

Fisc
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r 4
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r 5

Train C
ros

sin
g

P
er
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nt Minimal Constraint

Global Reduction
Combination
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TIME PERFORMANCE
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Global Reduction
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v and  w are both redundant
Removal of one depends on presence 
of other.

v and  w are both redundant
Removal of one depends on presence 
of other.

Shortest Path Reduction
1st attempt

Idea

Problem

w

<=w
An edge is REDUNDANT if there exists
an alternative path of no greater weight

THUS  Remove all redundant edges!

An edge is REDUNDANT if there exists
an alternative path of no greater weight

THUS  Remove all redundant edges!

w

v

Observation: If no zero- or negative
cycles then SAFE to remove all 
redundancies.

Observation: If no zero- or negative
cycles then SAFE to remove all 
redundancies.
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Shortest Path Reduction
Solution

G: weighted graph
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Shortest Path Reduction
Solution

1. Equivalence classes based
on 0-cycles.

G: weighted graph
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Shortest Path Reduction
Solution

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives. 
Safe to remove redundant edges

G: weighted graph
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Shortest Path Reduction
Solution

1. Equivalence classes based
on 0-cycles.

2. Graph based on
representatives.
Safe to remove redundant edges

3. Shortest Path Reduction
=

One cycle pr. class
+

Removal of redundant edges
between classes

G: weighted graph

Canonical given order of clocks
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Earlier Termination

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Init -> Final ?
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Earlier Termination

Passed

Waiting Final

Init

INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some Z’ Z

(n,Z’) in Passed then STOP
- else /explore/ add

{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

⊇

n,Z’

m,U

n,Z

Init -> Final ?

ZZ'⊇
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INITIAL Passed := Ø;
Waiting := {(n0,Z0)}

REPEAT
- pick  (n,Z) in Waiting
- if for some 
(n,Z’) in Passed then STOP

- else /explore/ add
{ (m,U) : (n,Z) => (m,U) }
to Waiting;
Add  (n,Z)  to Passed

UNTIL Waiting = Ø
or
Final is in Waiting

Earlier Termination

Passed

Waiting Final

Init

⊇

n,Zk

m,U

n,Z

Init -> Final ?

n,Z1

n,Z2 ZZi
i
⊇U

ZZ'⊇
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Clock Difference  Diagrams
= Binary Decision Diagrams + Difference Bounded Matrices

CDD-representationsCDD-representations
� Nodes labeled with 

differences
� Maximal sharing of 

substructures (also across 
different CDDs)

� Maximal intervals
� Linear-time algorithms for 

set-theoretic operations.

� NDD’s Maler et. al

� DDD’s Møller, Lichtenberg

CAV99
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TIME PERFORMANCE
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UPPAAL 1995 - 2001

Dec’96 Sep’98

Every 9 month
10 times better 
performance!

3.x
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Liveness Properties

F ::= E� P    |

A♦ P    |

P Æ Q

Possibly always P

Eventually P
is equivalent to (¬ E� ¬ P)

P leads to Q
is equivalent to 

A� ( P ⇒ A♦ Q)

in UPPAAL

Bouajjani, Tripakis, Yovine’97
On-the-fly symbolic model checking of TCTL
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in UPPAAL

Liveness
E[]φ (A♦¬φ)
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in UPPAALLiveness
E[]φ (A♦¬φ)

(A♦¬φ)

Passed

ST
WS

Unexplored
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in UPPAALLiveness
E�φ (A♦¬φ)

(A♦¬φ)

Passed

ST
WS

Unexplored
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in UPPAALLiveness
E�φ (A♦¬φ)

(A♦¬φ)

Passed

ST
WS

Unexplored
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in UPPAALLiveness
E�φ (A♦¬φ)
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ST
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Unexplored
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in UPPAALLiveness
E�φ (A♦¬φ)

(A♦¬φ)

Passed

ST
WS

Unexplored

?
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in UPPAALLiveness
E�φ (A♦¬φ)

(A♦¬φ)

Passed

ST
WS

Unexplored

???
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in UPPAALLiveness
E�φ (A♦¬φ)

(A♦¬φ)

Passed

ST
WS

Unexplored

[FORMATS05]
Extensions allowing for automatic synthesis of

smallest bound  t such that A♦· tφ holds



Compositionality &
Abstraction
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The State Explosion Problem

a

cb

a

cb

a

cb

a

cb

a

cb

a

cb

a

cb

a

cb

ϕ sat

Model-checking is either 
EXPTIME-complete or PSPACE-complete 
(for TA’s this is true even for  a single TA)

Model-checking is either 
EXPTIME-complete or PSPACE-complete 
(for TA’s this is true even for  a single TA)

Sys
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Abstraction

ϕ
ϕ

   satSys  
AbsSys        satAbs  ≤

a

cb

a

cb

a

cb

a

cb

a

cb

a

cb

a

cb

a

cb

ϕ sat

Sys

1 2

43
ϕ sat

Abs
REDUCE TO Preserving safety

properties
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Compositionality

AbsSys
AbsAbs |Abs
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Abstraction Example

a1 a3 a4a2 a5

a b
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Example Continued

abstracted
by
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Proving abstractions
using reachability

A[] not TestAbstPoP1.BAD

Recognizes
all the BAD
computations
of PoP1

Henrik Ejersbo Jensen PhD Thesis 1999

Applied to

IEEE 1394a Root contention protocol
(Simons, Stoelinga)

B&O Power Down Protocol
(Ejersbo, Larsen, Skou, FTRTFT2k)



Further Optimizations
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Datastructures for Zones

� DBM package

� Minimal Constraint 
Form 

[RTSS97]

� Clock Difference 
Diagrams 

[CAV99]

x1 x2

x3x0

-4

4

2
2

5

3 3 -2 -2

1Elegant RUBY bindings for 
easy implementations
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Zone Abstractions

� Abstraction taking maximum constant
into account necessary for termination

� Utilization of distinction between 
lower and upper bounds

� Utilization of location-dependency

[TACAS03,TACAS04]
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LU Abstraction

THEOREM
For any state in the LU- abstraction there is a state 

in the original set simulating it 
Æ

LU abstraction is exact wrt reachability

[TACAS04]
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Zone abstractions

Classical Loc. dep. Max Loc. dep. LU Convex Hull
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Symmetry Reduction

� Exploitation of full 
symmetry may give 
factorial reduction

� Many timed systems 
are inherently 
symmetric

� Computation of 
canonical state 
representative using 
swaps.

[Formats 2003]
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Symmetry Reduction

SWAP: 1Æ2 ; 3Æ4

� Exploitation of full 
symmetry may give 
factorial reduction

� Many timed systems 
are inherently 
symmetric

� Computation of 
canonical state 
representative using 
swaps.

[Formats 2003]
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Symmetry Reduction

[Formats 2003]
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Symmetry Reduction

[Formats 2003]

UPPAAL 3.6

Iterators for (i: int[0,4]) { }

Quantifiers forall (i: int[0,4]) a[i]==0

Selection select i: int[0,4]; guard...

Template sets process P[4](...) {  }

Scalar set based symmetry reduction
Compact state-space representations
Priorities

Martijn Henriks, Nijmegen U
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D-UPPAAL
Gerd Behrman

� Distributed implementation of 
UPPAAL on PC-cluster [CAV'00, 
PDMC'02, STTT'03].

� Applications
− Synthesis of Dynamic Voltage 

Scaling strategies (CISS).
− Ad-hoc mobile real-time protocol 

(Leslie Lamport) - 25GB in 3 min!
� Running on NorduGrid.

Local cluster: 50 CPUs and 50GB of 
RAM

� To be used as inspiration for 
verification GRID platform within 
ARTIST2 NoE.
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