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Global Computing

What distinguishes global computing from local computing?
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Global Computing: Some differences

I Physical distance — need to represent time
I Network latency

I Partial failures — randomness and probability
I Server may be down
I Routers may be down

I Scale — need to quantify population sizes
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Modelling Global Computing: The challenges

Time What representation of time will we use?

Randomness What kind of random number distributions will we
use?

Probability How can we have probabilities in the model without
uncertainty in the results?

Scale How can we escape the state-space explosion
problem?

Percentages What can it mean to have a fraction of a process?
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Quantitative Modelling: Motivation

Quality of Service issues

I Can the server maintain
reasonable response
times?
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Quantitative Modelling: Motivation

Scalability issues

I How many times do we
have to replicate this
service to support all of
the subscribers?
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Scalability issues

I Will the server withstand
a distributed denial of
service attack?

Stephen Gilmore. LFCS, University of Edinburgh.
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Quantitative Modelling: Motivation

Service-level agreements

I What percentage of
downloads do complete
within the time we
advertised?
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Performance Modelling using CTMC

SYSTEM MARKOV Q = 
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Performance Modelling using CTMC

DIAGRAM
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A negative exponentially distributed duration is associated with each transition.
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these parameters form the entries of the infinitesimal generator matrix Q
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Performance Modelling using CTMC
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In steady state the probability flux out of a state is balanced by the flux in.

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3
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q(i,j) q(j,k)

q(j,l)
q(m,j)

q(m,i) = EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part I: Foundations



Introduction Interplay: Process Algebra and Markov Process

Performance Modelling using CTMC

SYSTEM MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS

..... .....

DIAGRAM
TRANSITION

STATE

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part I: Foundations



Introduction Interplay: Process Algebra and Markov Process

Performance Modelling using CTMC

SYSTEM MARKOV Q = 
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DIAGRAM
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e.g. throughput, response time, utilisation

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

PERFORMANCE MEASURES
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Performance Modelling using CTMC

SYSTEM MARKOV Q = 

.....
.....

.....
.....

.....

..........
.....

PROCESS

..... .....

DIAGRAM
TRANSITION

STATE

e.g. throughput, response time, utilisation

e.g. queueing networks and
stochastic Petri nets

= EQUILIBRIUM PROBABILITY
DISTRIBUTIONp , p , p ,  , p

N21 3

PERFORMANCE MEASURES

HIGH−LEVEL
MODELLING FORMALISM
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Stochastic process algebras

Process algebras where models are decorated with quantitative
information used to generate a stochastic process are stochastic
process algebras (SPA).

Stephen Gilmore. LFCS, University of Edinburgh.
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The memoryless property of the negative exponential distribution
means that residual times do not need to be recorded.
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The exponential distribution and the expansion law

We retain the expansion law of classical process algebra:

(α, r).Stop ‖ (β, s).Stop =

(α, r).(β, s).(Stop ‖ Stop) + (β, s).(α, r).(Stop ‖ Stop)

only if the negative exponential distribution is used.
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Performance Evaluation Process Algebra

I Models are constructed from components which engage in
activities.

(α, r).P
���* 6 HHHY

action type
or name

activity rate
(parameter of an

exponential distribution)

component/
derivative

I The language is used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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component/
derivative

I The language is used to generate a CTMC for performance
modelling.

PEPA
MODEL

LABELLED
TRANSITION

SYSTEM
CTMC Q- -

SOS rules state transition

diagram
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PEPA

S ::= (α, r).S | S + S | A
P ::= S | P BC

L
P | P/L

PREFIX: (α, r).S designated first action

CHOICE: S + S competing components

CONSTANT: A
def
= S assigning names

COOPERATION: P BC
L

P α /∈ L individual actions

α ∈ L shared actions

HIDING: P/L abstraction α ∈ L ⇒ α → τ

Stephen Gilmore. LFCS, University of Edinburgh.
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Interplay between process algebra and Markov process

I The theoretical development underpinning PEPA has focused
on the interplay between the process algebra and the
underlying mathematical structure, the Markov process.

I From the process algebra side the Markov chain had a
profound influence on the design of the language and in
particular on the interactions between components.

I From the Markov chain perspective the process algebra
structure has been exploited to find aspects of independence
even between interacting components.
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Example: Browsers, server and download

Server
def
= (get,>).(download , µ).(rel ,>).Server

Browser
def
= (display , pλ).(get, g).(download ,>).(rel , r).Browser

+ (display , (1− p)λ).(cache,m).Browser

WEB
def
=

(
Browser ‖ Browser

)
BC

L
Server

where L = {get, download , rel}

Stephen Gilmore. LFCS, University of Edinburgh.
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Integrated analysis

Qualitative verification can now be complemented by quantitative
verification.

Stephen Gilmore. LFCS, University of Edinburgh.
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Integrated analysis: Reachability analysis

Reachability analysis

How long will it take
for the system to arrive
in a particular state?
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Integrated analysis: Specification matching

Specification matching

With what probability
does system behaviour
match its specification?

e
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Integrated analysis: Specification matching

Specification matching

Does the “frequency
profile” of the

system match that
of the specification?

e
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Integrated analysis: Model checking

Model checking

Does a given property φ
hold within the system

with a given probability?
φ ��������
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Integrated analysis: Model checking

Model checking

For a given starting state
how long is it until

a given property φ holds?
φ ��������
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Parallel Composition

I Parellel composition is the basis of the compositionality in a
process algebra

— it defines which components interact and
how.

I In classical process algebra is it often associated with
communication.

I When the activities of the process algebra have a duration the
definition of parallel composition becomes more complex.

Stephen Gilmore. LFCS, University of Edinburgh.
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Who Synchronises...?

Even within classical process algebras there is variation in the
interpretation of parallel composition:

CCS-style

I Actions are partitioned into
input and output pairs.

I Communication or
synchronisation takes places
between conjugate pairs.

I The resulting action has
silent type τ .

CSP-style

I No distinction between input
and output actions.

I Communication or
synchronisation takes place
on the basis of shared names.

I The resulting action has the
same name.

Most stochastic process algebras adopt CSP-style synchronisation.

Stephen Gilmore. LFCS, University of Edinburgh.
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Timed Synchronisation

I The issue of what it means for two timed activities to
synchronise is a vexed one....

Stephen Gilmore. LFCS, University of Edinburgh.
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

s?

r?
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s  , s  )1 2

Barrier Synchronisation

Stephen Gilmore. LFCS, University of Edinburgh.
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Timed Synchronisation
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

s = max(s  , s  )1 2

s is no longer exponentially distributed
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

s?

r?

algebraic considerations limit choices
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

r = r  x r1 2

TIPP: new rate is product of individual rates
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Timed Synchronisation
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Timed Synchronisation

P1
r  =?1

P2
r2
s 2

r2
s 2

r = r 2

r  =?1

EMPA: one participant is passive

Stephen Gilmore. LFCS, University of Edinburgh.
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Timed Synchronisation

UNF 738 S

UNLEADED
  PETROL
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Timed Synchronisation

P1
r1
s 1

P2
r2
s 2

r1
s 1

r2
s 2

1 2r = min(r  , r  )

bounded capacity: new rate is the minimum of the rates

Stephen Gilmore. LFCS, University of Edinburgh.
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Timed Synchronisation
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Cooperation in PEPA

I In PEPA each component has a bounded capacity to carry out
activities of any particular type, determined by the apparent
rate for that type.

I Synchronisation, or cooperation cannot make a component
exceed its bounded capacity.

I Thus the apparent rate of a cooperation is the minimum of
the apparent rates of the co-operands.

Stephen Gilmore. LFCS, University of Edinburgh.
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Equivalence Relations

In process algebra equivalence relations are defined based on the
notion of observability.

Stephen Gilmore. LFCS, University of Edinburgh.
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Equivalence Relations

Q
(a,r)

(a,r)
(b,s)

(c,t) (d,u)

P

(d,u)
(c,t)

(b,s)
(a,r)
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Equivalence Relations

In PEPA observation is assumed to include the ability to record
timing information over a number of runs.

Stephen Gilmore. LFCS, University of Edinburgh.
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Equivalence Relations

The resulting equivalence relation is a bisimulation in the style of
Larsen and Skou, and coincides with the Markov process notion of
lumpability.

Stephen Gilmore. LFCS, University of Edinburgh.
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Aggregation and lumpability

Model aggregation: use a state-state equivalence to establish a
partition of the state space of a model, and replace
each set of states by one macro-state, i.e. take a
different stochastic representation of the same model.

A lumpable partition is the only partition of a Markov process
which preserves the Markov property.

Stephen Gilmore. LFCS, University of Edinburgh.
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Aggregation and lumpability
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Outline

A modelling language

A semantics for the modelling language

Tools for the modelling language
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A modelling language

A semantics for the modelling language

Tools for the modelling language
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Performance Evaluation Process Algebra

I PEPA (Performance Evaluation Process Algebra) is a
high-level modelling language for distributed systems. It can
be used to develop models of existing systems (abstraction) or
designs for proposed ones (specification).

I PEPA can capture performance information in a process
algebra setting. It is a stochastic process algebra.

I The definitive reference for PEPA is A Compositional
Approach to Performance Modelling, Jane Hillston,
Cambridge University Press, 1996.

Stephen Gilmore. LFCS, University of Edinburgh.
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Strengths of stochastic process algebras

SPAs have strengths in the areas of semantic definition, inherent
compositionality and the existence of important equivalence
relations (including bisimulation). This relation provides the basis
for aggregation of PEPA models.

Stephen Gilmore. LFCS, University of Edinburgh.
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Terminology

The components in a PEPA model engage, cooperatively or
individually, in activities. Each activity has an action type which
corresponds to the actions of the system being modelled.

To represent unimportant or unknown actions there is a
distinguished action type, τ .

Stephen Gilmore. LFCS, University of Edinburgh.
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A modelling language A semantics for the modelling language Tools for the modelling language

Quantitative aspects

Every activity in PEPA has an associated activity rate which may
be any positive real number, or the distinguished symbol “>”,
meaning unspecified, read as ‘top’.

Components and activities are primitives. PEPA also provides a
small set of combinators.

Stephen Gilmore. LFCS, University of Edinburgh.
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PEPA syntax

S ::= (α, r).S (prefix)

| S1 + S2 (choice)

| X (variable)

C ::= C1
BC
L

C2 (cooperation)

| C / L (hiding)

| S (sequential)

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part II: Markovian methods



A modelling language A semantics for the modelling language Tools for the modelling language

PEPA: informal semantics (sequential sublanguage)

(α, r).S
The activity (α, r) takes time ∆t (drawn from the
exponential distribution with parameter r).

S1 + S2

In this choice either S1 or S2 will complete an
activity first. The other is discarded.

Stephen Gilmore. LFCS, University of Edinburgh.
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PEPA: informal semantics (combinators)

C1
BC
L

C2

All activities of C1 and C2 with types in L are
shared: others remain individual.
NOTATION: write C1 ‖ C2 if L is empty.

C / L
Activities of C with types in L are hidden (τ type
activities) to be thought of as internal delays.
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Example: M/M/1/N/N queue

Arrival0
def
= (accept, λ).Arrival1

Arrival i
def
= (accept, λ).Arrival i + 1 + (serve,>).Arrival i − 1

(0 < i < N)
ArrivalN

def
= (serve,>).ArrivalN − 1

Server
def
= (serve, µ).Server

Stephen Gilmore. LFCS, University of Edinburgh.
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Example: M/M/1/N/N queue

Queue0 Queue1

� �
� �N

(accept, λ)

H

(serve, µ)

�
�

I
(accept, λ)

N

(serve, µ)

. . .

�(accept, λ)

�
(serve, µ)

J

H
QueueN − 1

� �
� �

H

(accept, λ)

N

(serve, µ)

QueueN

Queue i ≡ Arrival i BC
{serve}Server
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Expansion Law

P BC
L

Q =

∑
{(α, r).(P ′ BC

L
Q) : P

(α,r)−→ P ′; α /∈ L} +

∑
{(α, r).(P BC

L
Q ′) : Q

(α,r)−→ Q ′; α /∈ L} +∑
{(α, r).(P ′ BC

L
Q ′) :

P
(α,r1)−→ P ′; Q

(α,r2)−→ Q ′; α ∈ L}
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Synchronisation

What should be the impact of synchronisation on rate? There are
many possibilities.

I Restrict synchronisations to have one active partner and one
passive partner.

I Choose a function which satisfies a small number of algebraic
properties.

I Have the rate limited by the slowest participant in terms of
apparent rate. This is the approach adopted by PEPA.
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Bounded capacity

Within the cooperation framework, PEPA assumes bounded
capacity: that is, a component cannot be made to perform an
activity faster by cooperation, so the rate of a shared activity is the
minimum of the apparent rates of the activity in the cooperating
components.
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Apparent rate

The total capacity of a component P to carry out activities of type
α is termed the apparent rate of α in P, denoted rα(P).

It is used heavily when calculating the pairwise cooperation rate:
when cooperating with another component, the bounded capacity
principle ensures that the overall rate of cooperation does not
exceed either of the consistuent apparent rates.
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Apparent rate: definition

To summarise the original ruleset from [Hillston 96], the apparent
rate function can be defined as:

rα(P) =
∑

P
(α,λi )

−−−→

λi (1)

where λi ∈ R+ ∪ {n> | n ∈ Q, n > 0}, n> is shorthand for n ×>
and > represents the passive action rate that inherits the rate of
the coaction from the cooperating component.

Stephen Gilmore. LFCS, University of Edinburgh.
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Properties of > (the “unspecified” symbol)

> requires the following arithmetic rules:

m> < n> : for m < n and m, n ∈ Q
r < n> : for all r ∈ R, n ∈ Q

m>+ n> = (m + n)> : m, n ∈ Q
m>
n>

=
m

n
: m, n ∈ Q

Note that (r + n>) is undefined for all r ∈ R in PEPA therefore
disallowing components which enable both active and passive
actions in the same action type at the same time, e.g.
(α, λ).P + (α,>).P ′.
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Outline

A modelling language

A semantics for the modelling language

Tools for the modelling language
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Random experiments and events

I To apply probability theory to the process under study, we
view it as a random experiment.

I The sample space of a random experiment is the set of all
individual outcomes of the experiment.

I These individual outcomes are also called sample points or
elementary events.

I An event is a subset of a sample space.
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Random variables

We are interested in the dynamics of a system as events happen
over time. A function which associates a (real-valued) number
with the outcome of an experiment is known as a random variable.
Formally, a random variable X is a real-valued function defined on
a sample space Ω.

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part II: Markovian methods



A modelling language A semantics for the modelling language Tools for the modelling language

Measurable functions

If X is a random variable, and x is a real number, we write X ≤ x
for the event

{ω : ω ∈ Ω and X (ω) ≤ x }

and we write X = x for the event

{ω : ω ∈ Ω and X (ω) = x }

Another property required of a random variable is that the set
X ≤ x is an event for each real x . This is necessary so that
probability calculations can be made. A function having this
property is said to be a measurable function or measurable in the
Borel sense.

Stephen Gilmore. LFCS, University of Edinburgh.
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Distribution function

For each random variable X we define its distribution function F
for each real x by

F (x) = Pr[X ≤ x ]

We associate another function p(·), called the probability mass
function of X (pmf), for each real x :

p(x) = Pr[X = x ]

Stephen Gilmore. LFCS, University of Edinburgh.
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Continuous random variables

A random variable X is continuous if p(x) = 0 for all real x .

(If X is a continuous random variable, then X can assume
infinitely many values, and so it is reasonable that the probability
of its assuming any specific value we choose beforehand is zero.)

The distribution function for a continuous random variable is a
continuous function in the usual sense.

Stephen Gilmore. LFCS, University of Edinburgh.
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Exponential random variables, distribution function

The random variable X is said to be an exponential random
variable with parameter λ (λ > 0) or to have an exponential
distribution with parameter λ if it has the distribution function

F (x) =

{
1− e−λx for x > 0
0 for x ≤ 0

Some authors call this distribution the negative exponential
distribution.

Stephen Gilmore. LFCS, University of Edinburgh.
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Exponential random variables, density function

The density function f = dF/dx is given by

f (x) =

{
λe−λx if x > 0
0 if x ≤ 0

Stephen Gilmore. LFCS, University of Edinburgh.
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Mean, or expected value

If X is a continuous random variable with density function f (·), we
define the mean or expected value of X , µ = E [X ] by

µ = E [X ] =

∫ ∞

−∞
xf (x)dx

Stephen Gilmore. LFCS, University of Edinburgh.
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Mean, or expected value, of the exponential distribution

Suppose X has an exponential distribution with parameter λ > 0.
Then

µ = E [X ] =

∫ ∞

−∞
xλe−λxdx

=
1

λ

Stephen Gilmore. LFCS, University of Edinburgh.
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Exponential inter-event time distribution

The time interval between successive events can also be deduced.
Let F (t) be the distribution function of T , the time between
events. Consider Pr(T > t) = 1− F (t):

Pr(T > t) = Pr(No events in an interval of length t)

= 1− F (t)

= 1− (1− e−λt)

= e−λt

Stephen Gilmore. LFCS, University of Edinburgh.
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Memoryless property of the exponential distribution

The memoryless property of the exponential distribution is so
called because the time to the next event is independent of when
the last event occurred.

Stephen Gilmore. LFCS, University of Edinburgh.
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Memoryless property of the exponential distribution

Suppose that the last event was at time 0. What is the probability
that the next event will be after t + s, given that time t has
elapsed since the last event, and no events have occurred?

Pr(T > t + s | T > t) =
Pr(T > t + s and T > t)

Pr(T > t)

=
e−λ(t+s)

e−λt

= e−λs

This value is independent of t (and so the time already spent has
not been remembered).
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PEPA activities and rates

When enabled an activity, a = (α, λ), will delay for a period
determined by its associated distribution function, i.e. the
probability that the activity a happens within a period of time of
length t is Fa(t) = 1− e−λt .

Stephen Gilmore. LFCS, University of Edinburgh.
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PEPA activities and rates

We can think of this as the activity setting a timer whenever it
becomes enabled. The time allocated to the timer is determined by
the rate of the activity. If several activities are enabled at the same
time each will have its own associated timer. When the first timer
finishes that activity takes place—the activity is said to complete
or succeed. This means that the activity is considered to
“happen”: an external observer will witness the event of an
activity of type α. An activity may be preempted, or aborted, if
another one completes first.

Stephen Gilmore. LFCS, University of Edinburgh.
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PEPA and Markov processes

In a PEPA model if we define the stochastic process X (t), such
that X (t) = C i indicates that the system behaves as component
C i at time t, then X (t) is a Markov process which can be
characterised by a matrix, QQQ.

A stationary or equilibrium probability distribution, π(·), exists for
every time-homogeneous irreducible Markov process whose states
are all positive-recurrent.

This distribution is found by solving the global balance equation

πQQQ = 0

subject to the normalisation condition∑
π(C i ) = 1.
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PEPA and time

All PEPA models are time-homogeneous since all activities are
time-homogeneous: the rate and type of activities enabled by a
component are independent of time.

Stephen Gilmore. LFCS, University of Edinburgh.
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PEPA and irreducibility and positive-recurrence

The other conditions, irreducibility and positive-recurrent states,
are easily expressed in terms of the derivation graph of the PEPA
model. We only consider PEPA models with a finite number of
states so if the model is irreducible then all states must be
positive-recurrent i.e. the derivation graph is strongly connected.

Stephen Gilmore. LFCS, University of Edinburgh.
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Consequences

In terms of the PEPA model this means that all behaviours of the
system must be recurrent; in particular, for every choice, whichever
path is chosen it must eventually return to the point where the
choice can be made again, possibly with a different outcome.

Stephen Gilmore. LFCS, University of Edinburgh.
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Continuous-Time Markov Chains (CTMCs)

A Markov process with discrete state space and discrete index set
is called a Markov chain. The future behaviour of a Markov chain
depends only on its current state, and not on how that state was
reached. This is the Markov, or memoryless, property.

Pr(X (tn+1) = xn+1 | X (tn) = xn, . . . ,X (t0) = x0)
= Pr(X (tn+1) = xn+1 | X (tn) = xn)

Stephen Gilmore. LFCS, University of Edinburgh.
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Structured Operational Semantics

PEPA is defined using a Plotkin-style structured operational
semantics (a “small step” semantics).

Prefix

(α, r).E
(α,r)
−−−→ E

Choice

E
(α,r)
−−−→ E ′

E + F
(α,r)
−−−→ E ′

F
(α,r)
−−−→ F ′

E + F
(α,r)
−−−→ F ′
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Structured Operational Semantics: Cooperation (α /∈ L)

Cooperation

E
(α,r)
−−−→ E ′

E BC
L

F
(α,r)
−−−→ E ′ BC

L
F

(α /∈ L)

F
(α,r)
−−−→ F ′

E BC
L

F
(α,r)
−−−→ E BC

L
F ′

(α /∈ L)

Stephen Gilmore. LFCS, University of Edinburgh.
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Structured Operational Semantics: Cooperation (α ∈ L)

Cooperation
E

(α,r1)
−−−→ E ′ F

(α,r2)
−−−→ F ′

E BC
L

F
(α,R)
−−−→ E ′ BC

L
F ′

(α ∈ L)

where R =
r1

rα(E )

r2
rα(F )

min(rα(E ), rα(F ))

Stephen Gilmore. LFCS, University of Edinburgh.
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Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)
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Stochastic Modelling. Part II: Markovian methods



A modelling language A semantics for the modelling language Tools for the modelling language

Structured Operational Semantics: Hiding

Hiding

E
(α,r)
−−−→ E ′

E/L
(α,r)
−−−→ E ′/L

(α /∈ L)

E
(α,r)
−−−→ E ′

E/L
(τ,r)
−−−→ E ′/L

(α ∈ L)

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part II: Markovian methods



A modelling language A semantics for the modelling language Tools for the modelling language

Structured Operational Semantics: Constants

Constant

E
(α,r)−→ E ′

A
(α,r)−→ E ′

(A
def
= E )

Stephen Gilmore. LFCS, University of Edinburgh.
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Properties of the definition (1)

PEPA has no “nil” (a deadlocked process). This is because the
PEPA language is intended for modelling non-stop processes (such
as Web servers, operating systems, or manufacturing processes)
rather than for modelling terminating processes (a compilation, a
sorting routine, and so forth).

Stephen Gilmore. LFCS, University of Edinburgh.
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Roll your own!

When we are interested in transient behaviour we use the
deadlocked process Stop to signal a component which performs no
further actions.

Stop
def
=

((
(a, r).Stop

)
BC
{a,b}

(
(b, r).Stop

))
/{ a, b }

Stephen Gilmore. LFCS, University of Edinburgh.
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Properties of the definition (2)

Cooperation in PEPA is multi-way. Two, three, four or more
partners may cooperate, and they all need to synchronise for the
activity to happen.

This comes from the fact that synchronisation has the form
a, a → a (as in CSP) instead of a, ā → τ (as in CCS and the
π-calculus).

This is used to have “witnesses” to events (known as stochastic
probes).

Stephen Gilmore. LFCS, University of Edinburgh.
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Properties of the definition (3)

Because of its mapping onto a CTMC, PEPA has an interleaving
semantics.

Other modelling formalisms based on CTMCs are also based on an
interleaving semantics (e.g. Generalised Stochastic Petri nets).

Stephen Gilmore. LFCS, University of Edinburgh.
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Model solution and analysis

A continuous time Markov chain (CTMC) is generated from a
PEPA model via its structured operational semantics.

Linear algebra is used to solve the model in terms of equilibrium
behaviour.

The resulting probability distribution is seldom the ultimate goal of
performance analysis; a modeller derives performance measures
from this distribution via a reward structure.

Stephen Gilmore. LFCS, University of Edinburgh.
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A logical foundation for the specification language

The expression, and testing for satisfaction of equilibrium
properties, can be seen to be closely related to the specification,
and model checking of a formula expressed in Larsen and Skou’s
probabilistic modal logic (PML). We give a modified interpretation
of such formulae suitable for reasoning about PEPA’s continuous
time models.

We exploit the operators of modal logic to be more discriminating
about which states contribute to the reward measure. In particular,
we can select a state based on model behaviour which is not
immediately local to the state.

Stephen Gilmore. LFCS, University of Edinburgh.
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Larsen and Skou’s PML

F ::= tt (truth)

| ∇α (inability)

| ¬F (negation)

| F1 ∧ F2 (conjunction)

| 〈α〉µF (“at least”)

Stephen Gilmore. LFCS, University of Edinburgh.
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Relation to PEPA

Defn. P
(α,ν)
−−−→ S if for all P ′ ∈ S , P

α
−−→ P ′ and∑

{r | P
(α,r )
−−−→ P ′,P ′ ∈ S} = ν.

Let P be a model of a PEPA process.

P |= tt

P |= ¬F if P 6|= F

P |= F1 ∧ F2 if P |= F1 and P |= F2

P |= ∇α if P 6α−→

P |= 〈α〉µF if P
(α,ν)
−−−→ S for some ν ≥ µ,

and for all P ′ ∈ S ,P ′ |= F

Stephen Gilmore. LFCS, University of Edinburgh.
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Modal characterisation of strong equivalence

Let P be a model of a PEPA process. Then

P ∼= Q iff for all F ,P |= F iff Q |= F

That is to say that two PEPA processes are strongly equivalent (in
particular, their underlying Markov chains are lumpably equivalent)
if and only if they both satisfy, in the setting where rates are
quantified, the same set of PML formulae.

Stephen Gilmore. LFCS, University of Edinburgh.
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Case study: active badges

We have used the PEPA modelling language and its accompanying
specification language to analyse the configuration of a location
tracking system based on active badges. Active badges transmit
unique infra-red signals which are detected by networked sensors.
These report locations back to a central database.

Stephen Gilmore. LFCS, University of Edinburgh.
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Case study: active badges

The badges are battery-powered and the tradeoff in the system is
between the conservation of battery power and the accuracy of the
information harvested from the sensors. When transmissions from
badges collide, the badges sleep for a randomly determined time
before retrying.

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part II: Markovian methods



A modelling language A semantics for the modelling language Tools for the modelling language

Active badges: the PEPA model

The PEPA model of this system tracks the progress of one
badge-wearer around three connected corridors (numbered 14, 15
and 16). The activities which are performed in the system include
the badge registering with a sensor (at rate r), the person moving
to another corridor (at rate m) and a sensor reporting back to the
central database (at rate s).

Stephen Gilmore. LFCS, University of Edinburgh.
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Active badges: the PEPA model

Person

P14
def
= (reg14, r).P14 + (move15,m).P15

P15
def
= (reg15, r).P15 + (move14,m).P14 + (move16,m).P16

P16
def
= (reg16, r).P16 + (move15,m).P15

Sensor

S14
def
= (reg14,>).(rep14, s).S14

S15
def
= (reg15,>).(rep15, s).S15

S16
def
= (reg16,>).(rep16, s).S16

Stephen Gilmore. LFCS, University of Edinburgh.
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Active badges: the PEPA model

Database

DB14
def
= (rep14,>).DB14 + (rep15,>).DB15 + (rep16,>).DB16

DB15
def
= (rep14,>).DB14 + (rep15,>).DB15 + (rep16,>).DB16

DB16
def
= (rep14,>).DB14 + (rep15,>).DB15 + (rep16,>).DB16

System

P14 BC
L

(S14 ‖ S15 ‖ S16) BC
M

DB14

where L = { reg14, reg15, reg16 }
M = { rep14, rep15, rep16 }

Stephen Gilmore. LFCS, University of Edinburgh.
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Probability that the database holds inaccurate information
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A high-level language for performance modelling

PEPA is a high-level language for performance modelling. PEPA
models describe stochastic (in fact, Markovian) processes.

Without a high-level modelling language, the modeller would be
forced to work with unstructured matrix representations of
stochastic processes.

Process algebras are useful because they allow the definition of
equivalence relations between model components and these
relations may be used in model simplification.
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The PEPA Workbench

Calculating by hand the transitions of a PEPA model and
subsequently expressing these in a form which was suitable for
solution was a tedious task prone to errors. The PEPA workbench
relieves the modeller of this work.

Stephen Gilmore. LFCS, University of Edinburgh.
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The PEPA Workbench: functionality

The workbench will report errors in the model function:

I deadlock,

I absorbing states,

I static synchronisation mismatch (cooperations which do not
involve active participants).

The workbench also generates the transition graph of the model,
computes the number of states, formulates the Markov process
matrix QQQ and communicates the matrix to a solver.

The workbench provides a simple pattern language for selecting
states from the stationary distribution.

Stephen Gilmore. LFCS, University of Edinburgh.
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PEPA Workbench input
P1

def
= (start, r1).P2 P2

def
= (run, r2).P3 P3

def
= (stop, r3).P1

P1 ‖ P1

PEPA Workbench output

−2r1 r1 r1 0 0 0 0 0 0
0 −r1 − r2 0 r2 r1 0 0 0 0
0 0 −r1 − r2 0 r1 r2 0 0 0
r3 0 0 −r1 − r3 0 0 0 r1 0
0 0 0 0 −2r2 0 r2 r2 0
r3 0 0 0 0 −r1 − r3 r1 0 0
0 r3 0 0 0 0 −r2 − r3 0 r2
0 0 r3 0 0 0 0 −r2 − r3 r2
0 0 0 r3 0 r3 0 0 −2r3



Stephen Gilmore. LFCS, University of Edinburgh.
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Performance Evaluation Process Algebra

PEPA components perform activities either independently or in
co-operation with other components.

The rate at which an activity is performed is quantified by some
component in each co-operation. The symbol > indicates that the
rate value is quantified elsewhere (not in this component).

(α, r).P Prefix
P1 + P2 Choice
P1 BC

L
P2 Co-operation

P/L Hiding
X Variable

Stephen Gilmore. LFCS, University of Edinburgh.
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The rate at which an activity is performed is quantified by some
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PEPA: informal semantics (sequential sublanguage)

(α, r).S
The activity (α, r) takes time ∆t (drawn from the
exponential distribution with parameter r).

S1 + S2

In this choice either S1 or S2 will complete an
activity first. The other is discarded.

Stephen Gilmore. LFCS, University of Edinburgh.
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PEPA: informal semantics (combinators)

C1
BC
L

C2

All activities of C1 and C2 with types in L are
shared: others remain individual.
NOTATION: write C1 ‖ C2 if L is empty.

C / L
Activities of C with types in L are hidden (τ type
activities) to be thought of as internal delays.

Stephen Gilmore. LFCS, University of Edinburgh.
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Derived forms and additional syntax

P1 ‖ P2 is a derived form for P1 BC
∅

P2.

Because we are interested in transient behaviour we use the
deadlocked process Stop.

When working with large numbers of jobs and servers, we write
P[n] to denote an array of n copies of P executing in parallel.

P[5] ≡ (P ‖ P ‖ P ‖ P ‖ P)

Stephen Gilmore. LFCS, University of Edinburgh.
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∅

P2.

Because we are interested in transient behaviour we use the
deadlocked process Stop.
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Background: Deterministic processes

A process is a deterministic process if knowledge of its values up to
and including time t allows us to unambiguously predict its value
at any infinitesimally later time t + dt.

Stephen Gilmore. LFCS, University of Edinburgh.
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Background: ODEs are memoryless deterministic processes

A set of ordinary differential equations defines a memoryless
deterministic process.

X(t + dt) = X(t) + f (X(t), t)dt

dX

dt
= f (X, t)

Stephen Gilmore. LFCS, University of Edinburgh.
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Background: Stochastic processes

A process is a stochastic process if knowledge of its values up to
and including time t allows us to probabilistically predict its value
at any infinitesimally later time t + dt.

Stochastic processes subsume deterministic processes.
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Modelling with quantified process algebras

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

This example defines a system with nine reachable states:

1. P1 ‖ P1

2. P1 ‖ P2

3. P1 ‖ P3

4. P2 ‖ P1

5. P2 ‖ P2

6. P2 ‖ P3

7. P3 ‖ P1

8. P3 ‖ P2

9. P3 ‖ P3

The transitions between states have quantified duration r which
can be evaluated against a CTMC or ODE interpretation.

Stephen Gilmore. LFCS, University of Edinburgh.
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Modelling with quantified process algebras

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

This example defines a system with nine reachable states:

1. P1 ‖ P1

2. P1 ‖ P2

3. P1 ‖ P3

4. P2 ‖ P1

5. P2 ‖ P2

6. P2 ‖ P3

7. P3 ‖ P1

8. P3 ‖ P2

9. P3 ‖ P3

The transitions between states have quantified duration r which
can be evaluated against a CTMC or ODE interpretation.
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Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 0:

1. 1.0000

2. 0.0000

3. 0.0000

4. 0.0000

5. 0.0000

6. 0.0000

7. 0.0000

8. 0.0000

9. 0.0000

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 1:

1. 0.1642

2. 0.1567

3. 0.0842

4. 0.1567

5. 0.1496

6. 0.0804

7. 0.0842

8. 0.0804

9. 0.0432
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Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 2:

1. 0.1056

2. 0.1159

3. 0.1034

4. 0.1159

5. 0.1272

6. 0.1135

7. 0.1034

8. 0.1135

9. 0.1012
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Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 3:

1. 0.1082

2. 0.1106

3. 0.1100

4. 0.1106

5. 0.1132

6. 0.1125

7. 0.1100

8. 0.1125

9. 0.1119
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Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 4:

1. 0.1106

2. 0.1108

3. 0.1111

4. 0.1108

5. 0.1110

6. 0.1113

7. 0.1111

8. 0.1113

9. 0.1116

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 5:

1. 0.1111

2. 0.1110

3. 0.1111

4. 0.1110

5. 0.1110

6. 0.1111

7. 0.1111

8. 0.1111

9. 0.1111
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Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 6:

1. 0.1111

2. 0.1111

3. 0.1111

4. 0.1111

5. 0.1110

6. 0.1111

7. 0.1111

8. 0.1111

9. 0.1111
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Analysis based on Continuous-time Markov Chains

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using transient analysis we can evaluate the probability of each
state with respect to time. For t = 7:

1. 0.1111

2. 0.1111

3. 0.1111

4. 0.1111

5. 0.1111

6. 0.1111

7. 0.1111

8. 0.1111

9. 0.1111

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part III: Scalability



Numerical evaluation via CTMCs and ODEs Case study in Web Services Commentary and comparison

Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 0: P1 2.0000
P2 0.0000
P3 0.0000

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 1: P1 0.8121
P2 0.7734
P3 0.4144

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 2: P1 0.6490
P2 0.7051
P3 0.6457

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 3: P1 0.6587
P2 0.6719
P3 0.6692

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 4: P1 0.6648
P2 0.6665
P3 0.6685

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 5: P1 0.6666
P2 0.6663
P3 0.6669

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 6: P1 0.6666
P2 0.6666
P3 0.6666
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Analysis based on Ordinary Differential Equations

Tiny example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1)

Using the ordinary differential equation semantics we can com-
pute the expected number of each type of component.

For t = 7: P1 0.6666
P2 0.6666
P3 0.6666
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Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 0: P1 3.0000
P2 0.0000
P3 0.0000

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 1: P1 1.1782
P2 1.1628
P3 0.6590

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part III: Scalability



Numerical evaluation via CTMCs and ODEs Case study in Web Services Commentary and comparison

Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 2: P1 0.9766
P2 1.0754
P3 0.9479

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 3: P1 0.9838
P2 1.0142
P3 1.0020

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 4: P1 0.9981
P2 0.9995
P3 1.0023

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 5: P1 1.0001
P2 0.9996
P3 1.0003

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 6: P1 1.0001
P2 0.9999
P3 1.0000

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 7: P1 1.0000
P2 0.9999
P3 0.9999

Stephen Gilmore. LFCS, University of Edinburgh.
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Analysis based on Ordinary Differential Equations

Slightly larger example
P1

def
= (start, r).P2 P2

def
= (run, r).P3 P3

def
= (stop, r).P1

System
def
= (P1 ‖ P1 ‖ P1)

A slightly larger example with a third copy of the process also
initiated in state P1.

For t = 8: P1 1.0000
P2 1.0000
P3 1.0000

Stephen Gilmore. LFCS, University of Edinburgh.
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What just happened?

An ODE specifies how the value of some continuous variable varies
over continuous time. For example, the temperature in a container
may be modelled by an ODE describing how the temperature will
change dependent on the current temperature and pressure. The
pressure can be similarly modelled and the equations together form
a system of ODEs describing the state of the container.

Stephen Gilmore. LFCS, University of Edinburgh.
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What just happened?

In a PEPA model the state at any current time is the local
derivative or state of each component of the model. When we
have large numbers of repeated components it can make sense to
represent each component type as a continuous variable, and the
state of the model as a whole as the set of such variables. The
evolution of each such variable can then be described by an ODE.

Stephen Gilmore. LFCS, University of Edinburgh.
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Isn’t this just the Chapman-Kolmogorov equations?

It is possible to perform transient analysis of a continuous-time
Markov chain by solving the Chapman-Kolmogorov differential
equations:

dπ(t)

dt
= π(t)Q

[Stewart, 1994]

That’s not what we’re doing. We go directly to ODEs.

Stephen Gilmore. LFCS, University of Edinburgh.
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It is possible to perform transient analysis of a continuous-time
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What’s the value proposition?

I The bottleneck for Markovian modelling of systems is the size
of the solution vector, which is bounded by the product of the
state-space sizes of the processes which are composed in
parallel (“state-space explosion”).

I The size of the solution vector for the system of ODEs may be
exponentially smaller.

Stephen Gilmore. LFCS, University of Edinburgh.
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I The bottleneck for Markovian modelling of systems is the size
of the solution vector, which is bounded by the product of the
state-space sizes of the processes which are composed in
parallel (“state-space explosion”).

I The size of the solution vector for the system of ODEs may be
exponentially smaller.
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Outline

Numerical evaluation via CTMCs and ODEs

Case study in Web Services

Commentary and comparison
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Example: Secure Web Service use

Second party Broker Web service First party

I The example which we consider is a Web service which has
two types of clients:

I first party application clients which access the web service
across a secure intranet, and

I second party browser clients which access the Web service
across the Internet.

I Second party clients route their service requests via trusted
brokers.

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part III: Scalability



Numerical evaluation via CTMCs and ODEs Case study in Web Services Commentary and comparison

Example: Secure Web Service use

Second party Broker Web service First party

I The example which we consider is a Web service which has
two types of clients:

I first party application clients which access the web service
across a secure intranet, and

I second party browser clients which access the Web service
across the Internet.

I Second party clients route their service requests via trusted
brokers.

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part III: Scalability



Numerical evaluation via CTMCs and ODEs Case study in Web Services Commentary and comparison

Example: Secure Web Service use

Second party Broker Web service First party

I The example which we consider is a Web service which has
two types of clients:

I first party application clients which access the web service
across a secure intranet, and

I second party browser clients which access the Web service
across the Internet.

I Second party clients route their service requests via trusted
brokers.

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part III: Scalability



Numerical evaluation via CTMCs and ODEs Case study in Web Services Commentary and comparison

Example: Secure Web Service use

Second party Broker Web service First party

I The example which we consider is a Web service which has
two types of clients:

I first party application clients which access the web service
across a secure intranet, and

I second party browser clients which access the Web service
across the Internet.

I Second party clients route their service requests via trusted
brokers.

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part III: Scalability



Numerical evaluation via CTMCs and ODEs Case study in Web Services Commentary and comparison

Scalability and replication

Second party Broker Web service First party

I To ensure scalability the Web service is replicated across
multiple hosts.

I Multiple brokers are available.

I There are numerous first party clients behind the firewall using
the service via remote method invocations across the secure
intranet.

I There are numerous second party clients outside the firewall.
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Security and use of encryption

Second party Broker Web service First party

I Second party clients need to use encryption to ensure
authenticity and confidentiality. First party clients do not.

I Brokers add decryption and encryption steps to build
end-to-end security from point-to-point security.

I When processing a request from a second party client brokers
decrypt the request before re-encrypting it for the Web service.

I When the response to a request is returned to the broker it
decrypts the response before re-encrypting it for the client.
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PEPA model: Second party clients

Second party Broker Web service First party

I A second party client composes service requests, encrypts
these and sends them to its broker.

I It then waits for a response from the broker.

I The rate at which the first three activities happen is under the
control of the client.

I The rate at which responses are produced is determined by
the interaction of the broker and the service endpoint.
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PEPA model: Second party clients

Second party Broker Web service First party

SPCidle
def
= (composesp, rsp cmp).SPCenc

SPCenc
def
= (encryptb, rsp encb).SPCsending

SPCsending
def
= (requestb, rsp req).SPCwaiting

SPCwaiting
def
= (responseb,>).SPCdec

SPCdec
def
= (decryptb, rsp decb).SPCidle
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PEPA model: Brokers

Second party Broker Web service First party

I The broker is inactive until it receives a request.

I It then decrypts the request before re-encrypting it for the
Web service to ensure end-to-end security.

I It forwards the request to the Web service and then waits for
a response.

I The corresponding decryption and re-encrytion are performed
before returning the response to the client.
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PEPA model: Brokers

Second party Broker Web service First party

Brokeridle
def
= (requestb,>).Brokerdec input

Brokerdec input
def
= (decryptsp, rb dec sp).Brokerenc input

Brokerenc input
def
= (encryptws , rb enc ws).Brokersending

Brokersending
def
= (requestws , rb req).Brokerwaiting

Brokerwaiting
def
= (responsews ,>).Brokerdec resp

Brokerdec resp
def
= (decryptws , rb dec ws).Brokerenc resp

Brokerenc resp
def
= (encryptsp, rb enc sp).Brokerreplying

Brokerreplying
def
= (responseb, rb resp).Brokeridle
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PEPA model: First party clients

Second party Broker Web service First party

I The lifetime of a first party client mirrors that of a second
party client except that encryption need not be used when all
of the communication is conducted across a secure intranet.

I Also the service may be invoked by a remote method
invocation to the host machine instead of via HTTP.

I Thus the first party client experiences the Web service as a
blocking remote method invocation.
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PEPA model: First party clients

Second party Broker Web service First party

FPCidle
def
= (composefp, rfp cmp).FPCcalling

FPCcalling
def
= (invokews , rfp inv ).FPCblocked

FPCblocked
def
= (resultws ,>).FPCidle

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part III: Scalability



Numerical evaluation via CTMCs and ODEs Case study in Web Services Commentary and comparison

PEPA model: Web service

Second party Broker Web service First party

I There are two ways in which the service is executed, leading
to a choice in the process algebra model taking the service
process into one or other of its two modes of execution.

I In either case, the duration of the execution of the service
itself is unchanged.

I The difference is only in whether encryption is needed and
whether the result is delivered via HTTP or not.
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PEPA model: Web service

Second party Broker Web service First party

WSidle
def
= (requestws ,>).WSdecoding
+ (invokews ,>).WSmethod

WSdecoding
def
= (decryptReqws , rws dec b).WSexecution

WSexecution
def
= (executews , rws exec).WSsecuring

WSsecuring
def
= (encryptRespws , rws enc b).WSresponding

WSresponding
def
= (responsews , rws resp b).WSidle

WSmethod
def
= (executews , rws exec).WSreturning

WSreturning
def
= (resultws , rws res).WSidle
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PEPA model: System composition

In the initial state of the system model we represent each of the
four component types being initially in their idle state.

System
def
= (SPCidle BC

K
Brokeridle) BC

L
(WSidle BC

M
FPCidle)

where K = { requestb, responseb }
L = { requestws , responsews }
M = { invokews , resultws }

This model represents the smallest possible instance of the system,
where there is one instance of each component type. We evaluate
the system as the number of clients, brokers, and copies of the
service increase.
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Cost of analysis

I Performance models admit many different types of analysis.
Some have lower evaluation cost, but are less informative,
such as steady-state analysis. Others have higher evaluation
cost, but are more informative, such as transient analysis.

I We compare ODE-based evaluation against other techniques
which could be used to analyse the model.

I We compare against steady-state and transient analysis as
implemented by the PRISM probabilistic model-checker,
which provides PEPA as one of its input languages. We also
compare against Monte Carlo Markov Chain simulation.
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Comparison of analysis types

I We report only a single run of the transient analysis and
simulation. In practice, due to the stochastic nature of the
analyses, these would need to be re-run multiple times to
produce results comparable to the ODE-based analysis.

I Moreover, note that the number of ODEs is constant
regardless of the number of components in the system, whilst
the state space grows dramatically.
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Time series analysis via ODEs

I We now consider the results from our solution of the PEPA
Web Service model as a system of ODEs with the number of
clients of both kinds, brokers, and web service instances
all 1000.

I The results as presented from our ODE integrator are
time-series plots of the number of each type of component
behaviour as a function of time.

I The graphs show fluctuations in the numbers of components
with respect to time from t = 0 to t = 100 for estimated
values of rates for the activities of the system. We can
observe an initial flurry of activity until the system stabilises
into its steady-state equilibrium at time (around) t = 50.
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Commentary and comparison

I Previous performance modelling with PEPA used
continuous-time Markov chains (CTMCs). These admit
steady-state and transient analysis (by solving the CTMC).

I Steady-state is cheaper but less informative. Transient is more
informative but more expensive.

I Major drawback: state-space explosion. Generating the
state-space is slow. Solving the CTMC is slow.

I In practice effective only to systems of size 106 states, even
when using clever storage representations.
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Commentary and comparison

I Mapping PEPA to ODEs admits course-of-values analysis by
solving the ODE (akin to transient analysis).

I Major benefit: avoids state-space generation entirely.

I Major benefit: ODE solving is effective in practice, leaning
towards suitability for interactive experimentation. Good for
modellers, gaining more insights into the system behaviour.

I Effective for systems of size 10106
states and beyond.
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Discussion: process algebras and ODEs

I Models in the PEPA stochastic process algebra are concise,
and in direct style they generate a system of ODEs the
number of which is linear in the number of distinct
component types in the PEPA model.

I Thus there is no hidden cost in the use of the high-level
language but there are many advantages.

I PEPA models can be checked for freedom from deadlock,
satisfaction of logical properties, or compared using relations
such as bisimulation.

I As a compositional modelling language PEPA components can
be re-used in other models, promoting best practice.
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False and true concurrency

In the process algebra world, algebras with an interleaving
semantics are termed false concurrency. PEPA [Hillston 1994] was
the first timed process algebra to have an interleaving semantics
allowing it to generate a CTMC. The interleaving semantics gives
rise to the state-space explosion problem.

Process algebras without an interleaving semantics are termed true
concurrency process algebras. The search for a true concurrency
timed process algebra has been a ten-year open problem.

PEPA [Hillston 2005] is the first timed process algebra to have a
true concurrency semantics via the mapping to ODEs. The true
concurrency semantics avoids the state-space explosion problem.
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Stochastic Modelling
Part IV: Variance

Stephen Gilmore
LFCS, University of Edinburgh

GLOBAN Summerschool
Lygby, Denmark

25th August 2006
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Review: Problems of scale

I Global computing systems are typically ubiquitous, may exhibit
mobility, and are distributed. There are many places where
computations can happen, and many replications of services.

I In many types of stochastic modelling one runs into problems
of scale.

I Continuous-Time Markov Chain

I 6 copies of a process with 10 states ⇒ 106 states
I The state-space explosion problem
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Review: Markovian methods and differential equations

I Markovian methods allow us to apply a thorough stochastic
treatment in system modelling, giving an exact representation
of a stochastic process.

I Differential equation methods allow us to scale this analysis to
large problem sizes but rest on the assumption of continuity
for component populations.
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Modelling challenges: multi-scale systems

I What about systems in which some components are present in
large numbers and others are not?

I The system will exhibit a high degree of variance.

I Simulation allows us to investigate this.
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Outline

Comparing stochastic simulation and ODEs

Stochastic simulation algorithms

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part IV: Variance



Comparing stochastic simulation and ODEs Stochastic simulation algorithms

Outline

Comparing stochastic simulation and ODEs

Stochastic simulation algorithms

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part IV: Variance



Comparing stochastic simulation and ODEs Stochastic simulation algorithms

A simple example: processors and resources

Proc0
def
= (task1,>).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

Proc0[P] BC
{task1}

Res0[R]
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A simple example: processors and resources

Proc0
def
= (task1,>).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

Proc0[P] BC
{task1}

Res0[R]

CTMC interpretation
Processors (P) Resources (R) States (2P+R )
1 1 4
2 1 8
2 2 16
3 2 32
3 3 64
4 3 128
4 4 256
5 4 512
5 5 1024
6 5 2048
6 6 4096
7 6 8192
7 7 16384
8 7 32768
8 8 65536
9 8 131072
9 9 262144
10 9 524288
10 10 1048576
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A simple example: processors and resources

Proc0
def
= (task1,>).Proc1

Proc1
def
= (task2, r2).Proc0

Res0
def
= (task1, r1).Res1

Res1
def
= (reset, s).Res0

Proc0[P] BC
{task1}

Res0[R]

ODE interpretation
dProc0

dt = −r1 min(Proc0,Res0)

+r2 Proc1
dProc1

dt = r1 min(Proc0,Res0)

−r2 Proc1
dRes0

dt = −r1 min(Proc0,Res0)

+s Res1
dRes1

dt = r1 min(Proc0,Res0)

−s Res1
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Processors and resources (SSA run A)
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Processors and resources (SSA run B)
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Processors and resources (SSA run C)
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Processors and resources (SSA run D)

Stephen Gilmore. LFCS, University of Edinburgh.

Stochastic Modelling. Part IV: Variance



Comparing stochastic simulation and ODEs Stochastic simulation algorithms

Processors and resources (average of 10 runs)
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Processors and resources (average of 100 runs)
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Processors and resources (average of 1000 runs)
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Processors and resources (average of 10000 runs)
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Processors and resources (ODE solution)
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From realisations to ensembles

As we repeatedly sample from the underlying random number
distributions the average of the samples tends to the mean.
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Processors and resources: scaling out

What effect does increasing the number of copies have?
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Processors and resources (single SSA run, 100/80)
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Processors and resources (single SSA run, 1,000/800)
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Processors and resources (single SSA run, 10,000/8,000)
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Processors and resources (single SSA run, 100,000/80,000)
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Systems of many components

Each specific run is individually in closer and closer agreement with
the differential equation approach as the number of components in
the system increases.
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Stochastic simulation algorithms
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Stochastic simulation: Propensity functions

As explicitly derived by Gillespie, the stochastic model uses a form
often termed the propensity function that gives the probability aµ

of activity µ occurring in time interval (t, t + dt).

aµdt = hµcµdt

where the M possible activities are given an arbitrary index µ
(1 ≤ µ ≤ M), hµ denotes the number of possible combinations of
components involved in µ, and cµ is a stochastic rate constant.
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Stochastic: Grand probability function

The stochastic formulation proceeds by considering the grand
probability function Pr(X; t) ≡ probability that there will be at
time t, Xi copies of component Si , where X ≡ (X1,X2, . . . XN) is a
vector of populations.

Evidently, knowledge of this function provides a complete
understanding of the probability distribution of all possible states
at all times.
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Stochastic: Infinitesimal time interval

By considering a discrete infinitesimal time interval (t, t + dt) in
which either no activities occur or exactly one does we see that
there exist only M + 1 distinct configurations at time t that can
lead to the state X at time t + dt.

Pr(X; t + dt)

= Pr(X; t) Pr(no state change over dt)

+
∑M

µ=1 Pr(X− vµ; t) Pr(state change to X over dt)

where vµ is a vector defining the result of reaction µ on state
vector X, i.e. X→ X + vµ after an occurrence of reaction µ.

Stephen Gilmore. LFCS, University of Edinburgh.
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Stochastic: State change probabilities

Pr(no state change over dt)

1−
M∑

µ=1

aµ(X)dt

Pr(state change to X over dt)
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Learning from other disciplines

Computing is not the only discipline where problems of scale and
multi-scale occur. A recent trend has been to borrow simulation
methods from computational biology and computational chemistry.

Stephen Gilmore. LFCS, University of Edinburgh.
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Stochastic simulation algorithms

Gillespie’s Stochastic Simulation Algorithm (SSA) is essentially an
exact procedure for numerically simulating the time evolution of a
well-stirred chemically reacting system by taking proper account of
the randomness inherent in such a system.

It is rigorously based on the same microphysical premise that
underlies the chemical master equation and gives a more realistic
representation of a system’s evolution than the deterministic
reaction rate equation (RRE) represented mathematically by ODEs.

Stephen Gilmore. LFCS, University of Edinburgh.
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Gillespie’s exact SSA (1977)

I The algorithm takes time steps of variable length, based on
the rate constants and population size of each chemical
species.

I The probability of one reaction occurring relative to another is
dictated by their relative propensity functions.

I One random variable is then used to choose which reaction
will occur, and another random variable determines how long
the step will last.

I The chemical populations are altered according to the
definition of the reaction and the process is repeated.

Stephen Gilmore. LFCS, University of Edinburgh.
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Gillespie’s SSA is a Monte Carlo Markov Chain simulation

The SSA is a Monte Carlo type method. With the SSA one may
approximate any variable of interest by generating many
trajectories and observing the statistics of the values of the
variable. Since many trajectories are needed to obtain a reasonable
approximation, the efficiency of the SSA is of critical importance.

Stephen Gilmore. LFCS, University of Edinburgh.
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Computational cost of Gillespie’s exact algorithm

The cost of this detailed stochastic simulation algorithm is the
likely large amounts of computing time. The key issue is that the
time step for the next reaction can be very small indeed if we are
to guarantee that only one reaction can take place in a given time
interval.

Increasing the molecular population or number of reaction
mechanisms necessarily requires a corresponding decrease in the
time interval. The SSA can be very computationally inefficient
especially when there are large numbers of molecules or the
propensity functions are large.

Stephen Gilmore. LFCS, University of Edinburgh.
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Enhanced stochastic simulation techniques

If the system under study possesses a macroscopically infinitesimal
timescale so that during any dt all of the reaction channels can fire
many times, yet none of the propensity functions change
appreciably, then the discrete Markov process as described by the
SSA can be approximated by a continuous Markov process.

Stephen Gilmore. LFCS, University of Edinburgh.
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Gillespie’s tau-leap method (2001)

Gillespie proposed two new methods, namely the τ -leap method
and the midpoint τ -leap method in order to improve the efficiency
of the SSA while maintaining acceptable losses in accuracy.

Daniel T. Gillespie.

Approximate accelerated stochastic simulation of chemically reacting
systems.

J. Comp. Phys., 115(4):1716–1733, 2001.

The key idea here is to take a larger time step and allow for more
reactions to take place in that step, but under the proviso that the
propensity functions do not change too much in that interval. By
means of a Poisson approximation, the tau-leaping method can
“leap over” many reactions.

Stephen Gilmore. LFCS, University of Edinburgh.
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Gillespie’s tau-leap method (drawback)

The use of approximation in Poisson methods leads to the
possibility of negative molecular numbers being predicted —
something with no physical explanation.

Stephen Gilmore. LFCS, University of Edinburgh.
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Gillespie’s Modified Poisson tau-leap methods (2005)

Gillespie’s modified Poisson tau-leaping method introduces a
second control parameter whose value dials the procedure from the
original Poisson tau-leaping method at one extreme to the exact
SSA at the other.

Any reaction channel with a positive propensity function which is
within nc firings of exhausting its reactants is termed a critical
reaction.

Y. Cao, D. Gillespie, and L. Petzold.

Avoiding negative populations in explicit tau leaping.

J. Chem. Phys, 123(054104), 2005.
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Gillespie’s Modified Poisson tau-leap methods (2006)

The modified algorithm chooses τ in such a way that no more than
one firing of all the critical reactions can occur during the leap.
The probability of producing a negative population is reduced to
nearly zero.

If a negative population does occur the leap can simply be rejected
and repeated with τ reduced by half, or the entire simulation can
be abandoned and repeated for larger nc .

Y. Cao, D. Gillespie, and L. Petzold.

Efficient stepsize selection for the tau-leaping simulation method.

J. Chem. Phys, 2006, 124(4):044109.
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Family of stochastic simulation algorithms

FASTEST, BEST

Discrete, exact Continuous, approximate

Modified Poisson τ leap (2005)

τ leap (2001)

Logarithmic Direct Method (2006)

Sorting Direct Method (2005)

Optimised Direct Method (2004)

Next Reaction Method (2000)

Direct Method (1977)

First Reaction Method (1977)

SLOWEST, WORST

Stephen Gilmore. LFCS, University of Edinburgh.
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Conclusions

I Stochastic methods can be used to investigate the temporal
and behavioural nature of global computing systems.

I Numerical solution of Markov chains gives a thorough
stochastic treatment of models of modest size.

I Differential equation methods scale well to increasing
population sizes allowing global computing systems to be
addressed.

I Stochastic simulation algorithms make a bridge between the
two approaches: there has been a recent explosion of interest
in the subject with many new variants of Gillespie’s algorithm.

Stephen Gilmore. LFCS, University of Edinburgh.
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