
Process Algebras and Concurrent Systems

Rocco De Nicola

Dipartimento di Sistemi ed Informatica
Università di Firenze

Process Algebras and Concurrent Systems
August 2006

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 1 / 104

Problems with Concurrent Programming

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 2 / 104

Developing a Concurrent Solution to a Simple Problem

Problem:

Write a program that

terminates if the total function f has a (positive or negative) zero

proceeds indefinitely otherwise.

Assume we have a program that looks for positive zeros:

S1 = found := false; x := 0;

while (not found)

do x:= x+1; found := (f(x) = 0) od

Starting from the above, we can build the program looking for negative
zeros.

S2 = found := false; y := 0;

while (not found)

do y:= y-1; found := (f(y) = 0) od

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 3 / 104

Attempt 1

An obvious solution would be running S1 and S2 in parallel:

S1 || S2

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 4 / 104

Attempt 1

An obvious solution would be running S1 and S2 in parallel:

S1 || S2

However ...

If f has a positive zero and not a negative one, and S1 terminates before
S2 starts, the latter sets found to false and looks indefinitely for a
nonexisting zero.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 4 / 104

Attempt 1

An obvious solution would be running S1 and S2 in parallel:

S1 || S2

However ...

If f has a positive zero and not a negative one, and S1 terminates before
S2 starts, the latter sets found to false and looks indefinitely for a
nonexisting zero.

The problem is due to the fact that found is initialized to false twice.

LESSON 1

Care is needed when handling shared variables.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 4 / 104

Attempt 2

Let us consider a solution that initializes found only once.

found := false; (R1 || R2) where

R1 = x := 0; while (not found)

do x:= x+1; found := (f(x) = 0) od

R2 = y := 0 while (not found)

do y:= y-1; found := (f(y) = 0) od

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 5 / 104

Attempt 2

Let us consider a solution that initializes found only once.

found := false; (R1 || R2) where

R1 = x := 0; while (not found)

do x:= x+1; found := (f(x) = 0) od

R2 = y := 0 while (not found)

do y:= y-1; found := (f(y) = 0) od

If f has (again) only a positive zero assume that:

1 R2 proceeds up to the while body and is preempted by R1

2 R1 computes till it finds a zero

3 R2 gets the CPU back

When R2 restarts it executes the while body and sets found to false -
found := (f(y) = 0). The program would not terminate because it would
look for a non existing negative zero.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 5 / 104

Attempt 2 ctd

The problem with the second attempt is due to the fact that found is
(unnecessarily) set to false (via found := f(y) = 0) after it has already got
the value true.

LESSON 2

No assumption can be made on the relative speed of processes.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 6 / 104

Attempt 3

Let us see what happens if we do not perform ”unnecessary” assignments
and only assign true when we find a x or a y such that f(x) = 0 or f(y) = 0.

found := false; (T1 || T2) where

T1 = x := 0; while not found

do x:= x+1; if f(x) = 0 then found := true fi od

T2 = y := 0; while not found

do y:= y-1; if f(y) = 0 then found := true fi od

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 7 / 104

Attempt 3

Let us see what happens if we do not perform ”unnecessary” assignments
and only assign true when we find a x or a y such that f(x) = 0 or f(y) = 0.

found := false; (T1 || T2) where

T1 = x := 0; while not found

do x:= x+1; if f(x) = 0 then found := true fi od

T2 = y := 0; while not found

do y:= y-1; if f(y) = 0 then found := true fi od

However . . .

. . . if f has only a positive zero and that T2 gets the CPU and is scheduled
to keep it until its termination; T1 will never get the chance to find its
zero.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 7 / 104

Attempt 3 - ctd

This problem is due to the considered scheduler of the CPU, to avoid
problems we would need a non fair scheduler; but this is a too strong
assumptions.

LESSON 3

No assumption can be made on the cpu scheduling policy chosen by the
operating system.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 8 / 104

Attempt 4

To avoid assumptions on the scheduler, we could think of adding control
to the programs and let them ”pass the baton” once they have got their
”chance” to execute for a while.

turn:= 1; found := false; (P1 || P2) where

P1 = x := 0; while not found do wait turn:= 1 then

turn:= 2; x:= x+1; if f(x) = 0 then found := true fi od

P2 = y := 0; while not found do wait turn:= 2 then

turn:= 1; y:= y-1; if f(y) = 0 then found := true fi od

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 9 / 104

Attempt 4

To avoid assumptions on the scheduler, we could think of adding control
to the programs and let them ”pass the baton” once they have got their
”chance” to execute for a while.

turn:= 1; found := false; (P1 || P2) where

P1 = x := 0; while not found do wait turn:= 1 then

turn:= 2; x:= x+1; if f(x) = 0 then found := true fi od

P2 = y := 0; while not found do wait turn:= 2 then

turn:= 1; y:= y-1; if f(y) = 0 then found := true fi od

However . . .

. . . if P1 finds a zero and stops when P2 has already set turn:= 1, P2
would be blocked by the wait command because nobody can change the
value of turn.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 9 / 104

Attempt 4 - ctd.

The problem here is that one of the program does not terminate because
it keeps waiting for an impossible event.

LESSON 4

When terminating processes should care of other processes counting on
them.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 10 / 104

A CORRECT Solution!

Idea . . .

. . . pass (again) the baton just before terminating.

turn:= 1; found := false; (P1; turn:= 2 || P2; turn:= 1)

where

P1 = x := 0; while not found do

wait turn:= 1 then

turn:= 2; x:= x+1;

if f(x) = 0 then found := true fi

od

P2 = y := 0; while not found do

wait turn:= 2 then

turn:= 1; y:= y-1;

if f(y) = 0 then found := true fi

od
R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 11 / 104

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 12 / 104

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 12 / 104

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 12 / 104

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 12 / 104

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

2 Nontermination might be good!

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 12 / 104

Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

2 Nontermination might be good!

3 In case of termination, the result might not be unique.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 12 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 13 / 104

Analisys of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 14 / 104

Analisys of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that works?

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 14 / 104

Analisys of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that works?

2 How do we analyze (verify) such a system?

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 14 / 104

Analisys of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that works?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 14 / 104

Analisys of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that works?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

2 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 14 / 104

Analisys of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that works?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

2 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

3 Mars Pathfinder problems

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 14 / 104

Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct behavior in all
possible environment, we need:

1 To study mathematical models for the formal description and analysis
of concurrent programs.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 15 / 104

Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct behavior in all
possible environment, we need:

1 To study mathematical models for the formal description and analysis
of concurrent programs.

2 To devise formal languages for the specification of the possible
behaviour of parallel and reactive systems.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 15 / 104

Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct behavior in all
possible environment, we need:

1 To study mathematical models for the formal description and analysis
of concurrent programs.

2 To devise formal languages for the specification of the possible
behaviour of parallel and reactive systems.

3 To develop verification tools and implementation techniques
underlying them.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 15 / 104

This School

In this school you shall see different theories of special kind of reactive
systems (Global Computers) and their applications.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 16 / 104

This School

In this school you shall see different theories of special kind of reactive
systems (Global Computers) and their applications.

The theories aim at supporting: Design, Specification and Verification
(possibly automatic and compositional) of reactive (global) systems.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 16 / 104

This School

In this school you shall see different theories of special kind of reactive
systems (Global Computers) and their applications.

The theories aim at supporting: Design, Specification and Verification
(possibly automatic and compositional) of reactive (global) systems.

Important Questions:

What is the most abstract view of a reactive system (process)?

Does it capture their relevant properties?

Is it compositional?

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 16 / 104

This two lectures:

The chosen abstraction for reactive systems is the notion of
processes.

Systems evolution is based on process transformation: A process
performs an action and becomes another process.

Everything is (or can be viewed as) a process. Buffers, shared
memory, Linda tuple spaces, senders, receivers, . . . are all processes.

Labelled Transition Systems (LTS) describe process behaviour, and
permit modelling directly systems interaction.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 17 / 104

Presentations of Labelled Transition Systems

Process Algebra as denotations of LTS

LTS are represented by terms of process algebras.

Terms are interpreted via operational semantics as LTS.

Process Algebra Basic Principles

1 Define a few elementary (atomic) processes modelling the simplest
process behaviour;

2 Define appropriate composition operations to build more complex
process behaviour from (existing) simpler ones.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 18 / 104

Outline of the two lectures

1 Labelled Transition Systems as Concurrency Models

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 19 / 104

Outline of the two lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 19 / 104

Outline of the two lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

3 Process Calculi and their semantics

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 19 / 104

Outline of the two lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

3 Process Calculi and their semantics

4 π-calculus and Klaim (if time permits)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 19 / 104

Models for Concurrent Processes

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 20 / 104

Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 21 / 104

Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:

Kripke Structures

State Labelled Graphs: States are labelled with the properties that are
considered relevant (e.g. the value of - the relation between - some
variables)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 21 / 104

Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:

Kripke Structures

State Labelled Graphs: States are labelled with the properties that are
considered relevant (e.g. the value of - the relation between - some
variables)

Labelled Transition Systems

Transition Labelled Graph: Transition between states are labelled the
action that induces the transition from one state to another.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 21 / 104

Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:

Kripke Structures

State Labelled Graphs: States are labelled with the properties that are
considered relevant (e.g. the value of - the relation between - some
variables)

Labelled Transition Systems

Transition Labelled Graph: Transition between states are labelled the
action that induces the transition from one state to another.

In this lectures, we shall mainly rely on Labelled Transition Systems and
actions will play an important role

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 21 / 104

Finite State Automata

Definition

A finite state automaton M is a 5-tuple
M = (Q,A,→, q0,F) where

Q is a finite set of states

A is the alphabet

→ ⊆ Q × (A ∪ {ε}) × Q is the transition relation

q0 ∈ Q is a special state called initial state,

F ⊆ Q is the set of (final states)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 22 / 104

Finite State Automata

Definition

A finite state automaton M is a 5-tuple
M = (Q,A,→, q0,F) where

Q is a finite set of states

A is the alphabet

→ ⊆ Q × (A ∪ {ε}) × Q is the transition relation

q0 ∈ Q is a special state called initial state,

F ⊆ Q is the set of (final states)

spento acceso

rotto

on

off

bang bang

Figure: Finite state automaton

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 22 / 104

Labelled Transition Systems

Definition

A Labelled Transition System S is a 4-tuple S = (Q,A,→, q0) where :

Q is a set of states

A is a finite set of actions

→ ⊆ Q × A × Q is a ternary relation called transition relation it is
often written q

a−→ q′ instead of (q, a, q′) ∈→
q0 ∈ Q is a special state called initial state.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 23 / 104

Labelled Transition Systems

Definition

A Labelled Transition System S is a 4-tuple S = (Q,A,→, q0) where :

Q is a set of states

A is a finite set of actions

→ ⊆ Q × A × Q is a ternary relation called transition relation it is
often written q

a−→ q′ instead of (q, a, q′) ∈→
q0 ∈ Q is a special state called initial state.

q0

q1

q2

q3 q4
play

work

work

play

τ

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 23 / 104

Labelled Transition Systems

Definition

A Labelled Transition System S is a 4-tuple S = (Q,A,→, q0) where :

Q is a set of states

A is a finite set of actions

→ ⊆ Q × A × Q is a ternary relation called transition relation it is
often written q

a−→ q′ instead of (q, a, q′) ∈→
q0 ∈ Q is a special state called initial state.

q0

q1

q2

q3 q4
play

work

work

play

τ

If initial states are not relevant (or known) LTSs are triples (Q,A,→) . . .

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 23 / 104

A Simple Example

Example (Bill-Ben)

S = (Q,A,→) where:

Q = { q0, q1, q2, q3, q4 }
A = { play , work, τ }
→=
{(q0, play , q1), (q0,work, q2), (q1,work, q3), (q2, play , q3), (q3, τ, q4)}

q0

q1

q2

q3 q4
play

work

work

play

τ

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 24 / 104

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 25 / 104

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 25 / 104

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 25 / 104

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 25 / 104

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 25 / 104

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

We have two main types of atomic actions:

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 25 / 104

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

We have two main types of atomic actions:

Visible Actions

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 25 / 104

Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

We have two main types of atomic actions:

Visible Actions

Internal Actions

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 25 / 104

Operators for Concurrency and Process Algebras

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 26 / 104

Operators for Processes Modelling

Processes are composed via a number of basic operators

1 Basic Processes

2 Action Prefixing

3 Sequentialization

4 Choice

5 Parallel Composition

6 Abstraction

7 Infinite Behaviours

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 27 / 104

Regular Expressions as Process Algebras

Syntax of Regular Expressions

E ::= 0 | 1 | a | E + E | E ;E | E ∗ with a ∈ A the set of basic actions

Denotational Semantics of Regular Expressions

Regular Expression have a denotational semantics that associates to each
expression the language (i.e. the set of strings) generated by it.

L[[0]] = { }
L[[1]] = {ε}
L[[a]] = {a} (per a ∈ A)

L[[e + f]] = L[[e]] ∪ L[[f]]

L[[e · f]] = L[[e]] · L[[f]]

L[[e∗]] = (L[[e]])∗

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 28 / 104

Regular Expressions as Process Algebras

Syntax of Regular Expressions

E ::= 0 | 1 | a | E +E | E ;E | E ∗ with a ∈ A and −below − µ ∈ A∪{ε}

Operational Semantics of Regular Expressions

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

(Sum1)
e

µ−→ e′

e + f
µ−→ e′

(Sum2)
f

µ−→ f ′

e + f
µ−→ f ′

(Seq1)
e

µ−→ e′

e; f
µ−→ e′; f

(Seq2)
e

ε−→ 1

e; f
ε−→ f

(Star1)
e∗

ε−→ 1
(Star2)

e
µ−→ e′

e∗
µ−→ e′; e∗

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 29 / 104

Why operators for describing systems

How can we describe very large automata or LTSs?

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 30 / 104

Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 30 / 104

Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 30 / 104

Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

As a more compact listing of triples?

→=
{
(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})

}
.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 30 / 104

Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

As a more compact listing of triples?

→=
{
(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})

}
.

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 30 / 104

Why operators for describing systems - ctd

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 31 / 104

Why operators for describing systems - ctd

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans.

Are prefix and sum operators sufficient?

They are ok to describe small finite systems:

p = a.b.(c + d)

q = a.(b.c + b.d)

r = a.b.c + a.c .d

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 31 / 104

Why operators for describing systems - ctd

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans.

Are prefix and sum operators sufficient?

They are ok to describe small finite systems:

p = a.b.(c + d)

q = a.(b.c + b.d)

r = a.b.c + a.c .d

But additional operators are needed

to design systems in a structured way (e.g. p|q)

to model systems interaction

to abstract from details

to represent infinite systems
R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 31 / 104

Operational Semantics

To each process, built using the above mentioned operators, an LTS is
associated by relying on structural induction to define the meaning of each
operator.

Inference Systems

An inference system is a set of inference rule of the form

p1, · · · , pn

q

Transition Rules

For each operator op, we have a number of rules of the form below, where
{i1, · · · , im} ⊆ {1, · · · , n}.

Ei1

α1−→ E ′
i1

· · · Eim

αm−−→ E ′
im

op(E1, · · · ,En)
α−→ op(E ′

1, · · · ,E ′
n)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 32 / 104

The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used the derive the
corresponding automaton. The set of rules is fixed once and for all.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 33 / 104

The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used the derive the
corresponding automaton. The set of rules is fixed once and for all.

Structural induction

The interaction of complex systems is defined in terms of the behavior of
their components.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 33 / 104

The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used the derive the
corresponding automaton. The set of rules is fixed once and for all.

Structural induction

The interaction of complex systems is defined in terms of the behavior of
their components.

A remark

The LTS is the least one satisfying the inference rules.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 33 / 104

The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used the derive the
corresponding automaton. The set of rules is fixed once and for all.

Structural induction

The interaction of complex systems is defined in terms of the behavior of
their components.

A remark

The LTS is the least one satisfying the inference rules.

Rule induction

A property is true for the whole LTS if whenever it holds for the premises
of each rule, it holds also for the conclusion.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 33 / 104

A few examples for Regular Expressions

(a + b)∗
a−→ 1; (a + b)∗

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 34 / 104

A few examples for Regular Expressions

(a + b)∗
a−→ 1; (a + b)∗

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗

1; (a + b)∗
ε−→ (a + b)∗

(Tic)
1

ε−→ 1
(Seq2)

1; (a + b)∗
ε−→ (a + b)∗

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 34 / 104

Another Example On Regular Expressions

(a∗ + b∗)∗
b−→ 1; b∗; (a∗ + b∗)∗

(Atom)

b
b−→ 1

(Star2)

b∗ b−→ 1; b∗
(Sum2)

a∗ + b∗ b−→ 1; b∗
(Star2)

(a∗ + b∗)∗
b−→ 1; b∗; (a∗ + b∗)∗

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 35 / 104

Another Example On Regular Expressions

(a∗ + b∗)∗
b−→ 1; b∗; (a∗ + b∗)∗

(Atom)

b
b−→ 1

(Star2)

b∗ b−→ 1; b∗
(Sum2)

a∗ + b∗ b−→ 1; b∗
(Star2)

(a∗ + b∗)∗
b−→ 1; b∗; (a∗ + b∗)∗

A remark

(a∗ + b∗)∗
c−→ 1 would not contradict any rule, but it cannot be in the

least LTS, because it cannot be inferred by using the rules we presented
earlier.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 35 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

6 Proof by lost reference: I saw it somewhere

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish Math.
Soc. (1854, in polish)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish Math.
Soc. (1854, in polish)

8 Proof by authority: Don Knuth said it was true

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish Math.
Soc. (1854, in polish)

8 Proof by authority: Don Knuth said it was true

9 Proof by intuition: I have this feeling...

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish Math.
Soc. (1854, in polish)

8 Proof by authority: Don Knuth said it was true

9 Proof by intuition: I have this feeling...

10 Proof by deception: Everybody please turn their backs...

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish Math.
Soc. (1854, in polish)

8 Proof by authority: Don Knuth said it was true

9 Proof by intuition: I have this feeling...

10 Proof by deception: Everybody please turn their backs...

11 Proof by logic: It is on the textbook, hence it must be true

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104

Basic Processes

Inactive Process

Is usually denoted by

nil

0

stop

The semantics of this process is characterized by the fact that there is no
rule to define its transition: it has no transition.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 37 / 104

Basic Processes

Inactive Process

Is usually denoted by

nil

0

stop

The semantics of this process is characterized by the fact that there is no
rule to define its transition: it has no transition.

A broken vending machine

nil

Does not accept coins and does not give any drink.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 37 / 104

Basic Processes ctd

Termination

Termination is sometimes denoted by

exit

skip

that can only perform the special action
√

(”tick”) to indicate termination
and become nil

exit
√
−→ stop

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 38 / 104

Basic Processes ctd

Termination

Termination is sometimes denoted by

exit

skip

that can only perform the special action
√

(”tick”) to indicate termination
and become nil

exit
√
−→ stop

A gentle broken vending machine

exit

Does not accept coins, does not gives drinks but says that everything is ok.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 38 / 104

Action Prefixing

Prefixing

For each action µ there is a unary operator

µ.·
µ → ·

that builds from process E a new process µ.E that performs action µ and
then behaves like E .

µ.E
µ−→ E

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 39 / 104

Action Prefixing

Prefixing

For each action µ there is a unary operator

µ.·
µ → ·

that builds from process E a new process µ.E that performs action µ and
then behaves like E .

µ.E
µ−→ E

A ”one shot” vending machine

coin → choc → stop

Accepts a coin and gives a chocolate, then stops.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 39 / 104

Action Prefixing ctd

Action as processes

Instead of prefixing, some calculi rely on considering actions as basic
processes.

a
a−→ stop

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 40 / 104

Action Prefixing ctd

Action as processes

Instead of prefixing, some calculi rely on considering actions as basic
processes.

a
a−→ stop

A dishonest vending machine

coin

Accepts a coin and stops.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 40 / 104

Sequential Composition

Sequentialization

The binary operator for sequential composition is denoted by

· ; ·
· ≫ ·

If E ed F are processes, process E ;F executes E and then behaves like F

E
µ−→ E ′

E ;F
µ−→ E ′;F

(µ 6= √
)

E
√
−→ E ′

E ;F
τ−→ F

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 41 / 104

Sequential Composition

Sequentialization

The binary operator for sequential composition is denoted by

· ; ·
· ≫ ·

If E ed F are processes, process E ;F executes E and then behaves like F

E
µ−→ E ′

E ;F
µ−→ E ′;F

(µ 6= √
)

E
√
−→ E ′

E ;F
τ−→ F

Another ”one shot” vending machine

coin; choc

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 41 / 104

Sequential Composition ctd

Disabling Operator

The disabling binary operator

[>

permits to interrupt some actions when specific events happen.

E
µ−→ E ′

E [> F
µ−→ E ′ [> F

(µ 6= √
)

E
√
−→ E ′

E [> F
τ−→ E ′

F
µ−→ F ′

E [> F
µ−→ F ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 42 / 104

Sequential Composition ctd

Disabling Operator

The disabling binary operator

[>

permits to interrupt some actions when specific events happen.

E
µ−→ E ′

E [> F
µ−→ E ′ [> F

(µ 6= √
)

E
√
−→ E ′

E [> F
τ−→ E ′

F
µ−→ F ′

E [> F
µ−→ F ′

A cheating customer

(coin → choc → stop) [> (bang → choc → stop)

This describes a vending machine that when ”banged” gives away a
chocolate without getting the coin

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 42 / 104

Choice - 1

Nondeterministic Choice

E
µ−→ E ′

E + F
µ−→ E ′

F
µ−→ F ′

E + F
µ−→ F ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 43 / 104

Choice - 1

Nondeterministic Choice

E
µ−→ E ′

E + F
µ−→ E ′

F
µ−→ F ′

E + F
µ−→ F ′

User’s Choice

coin → (choc → stop + water → stop)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 43 / 104

Choice - 1

Nondeterministic Choice

E
µ−→ E ′

E + F
µ−→ E ′

F
µ−→ F ′

E + F
µ−→ F ′

User’s Choice

coin → (choc → stop + water → stop)

Machine’s Choice

coin → choc → stop + coin → water → stop

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 43 / 104

Choice - 2

Internal Choice

E ⊕ F
τ−→ E E ⊕ F

τ−→ F

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 44 / 104

Choice - 2

Internal Choice

E ⊕ F
τ−→ E E ⊕ F

τ−→ F

Machine’s Choice

coin → (choc → stop ⊕ water → stop)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 44 / 104

Choice - 3

External Choice

E
α−→ E ′

E � F
α−→ E ′

(α 6= τ)
F

α−→ F ′

E � F
α−→ F ′

(α 6= τ)

E
τ−→ E ′

E � F
τ−→ E ′ � F

F
τ−→ F ′

E � F
τ−→ E � F ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 45 / 104

Choice - 3

External Choice

E
α−→ E ′

E � F
α−→ E ′

(α 6= τ)
F

α−→ F ′

E � F
α−→ F ′

(α 6= τ)

E
τ−→ E ′

E � F
τ−→ E ′ � F

F
τ−→ F ′

E � F
τ−→ E � F ′

User’s Choice

coin →
(
(choc → stop ⊕ water → stop) � water → stop

)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 45 / 104

Different Transitions

External Choice

coin →
(
(choc → stop ⊕ water → stop) � water → stop

)

coin−−→
(choc → stop ⊕ water → stop) � water → stop

τ−→
(choc → stop � water → stop)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 46 / 104

Different Transitions

External Choice

coin →
(
(choc → stop ⊕ water → stop) � water → stop

)

coin−−→
(choc → stop ⊕ water → stop) � water → stop

τ−→
(choc → stop � water → stop)

Internal Choice

coin →
(
(choc → stop ⊕ water → stop) ⊕ water → stop

)

coin−−→
(choc → stop ⊕ water → stop) ⊕ water → stop

τ−→
choc → stop ⊕ water → stop

τ−→
choc → stop

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 46 / 104

Parallel Composition - 1

Milner’s Parallel

E
µ−→ E ′

E |F µ−→ E ′|F
F

µ−→ F ′

E |F µ−→ E |F ′
E

α−→ E ′ F
α−→ F ′

E |F τ−→ E ′|F ′
(α 6= τ)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 47 / 104

Parallel Composition - 1

Milner’s Parallel

E
µ−→ E ′

E |F µ−→ E ′|F
F

µ−→ F ′

E |F µ−→ E |F ′
E

α−→ E ′ F
α−→ F ′

E |F τ−→ E ′|F ′
(α 6= τ)

User-Machine interaction

(
coin → (choc → stop ⊕ water → stop)

)
| (coin → choc → stop)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 47 / 104

We can have different interactions

Appropriate Interaction
(
coin → (choc → stop ⊕ water → stop)

)
| (coin → choc → stop)

τ−→
(choc → stop ⊕ water → stop) | (choc → stop)

τ−→
(choc → stop) | (choc → stop)

τ−→
stop | stop

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 48 / 104

We can have different interactions

Appropriate Interaction
(
coin → (choc → stop ⊕ water → stop)

)
| (coin → choc → stop)

τ−→
(choc → stop ⊕ water → stop) | (choc → stop)

τ−→
(choc → stop) | (choc → stop)

τ−→
stop | stop

Inappropriate Interaction - Coin thrown away
(
coin → (choc → stop ⊕ water → stop)

)
| (coin → choc → stop)

τ−→
(choc → stop ⊕ water → stop) | (choc → stop)

τ−→
(water → stop) | (choc → stop)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 48 / 104

Parallel Composition - 2

Merge Operator with Synchronization Function

E
µ−→ E ′

E ‖ F
µ−→ E ′ ‖ F

F
µ−→ F ′

E ‖ F
µ−→ E ‖ F ′

E
a−→ E ′ F

b−→ F ′

E ‖ F
γ(a,b)−−−→ E ′ ‖ F ′

with µ ∈ Λ ∪ {τ}

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 49 / 104

Parallel Composition - 2

Merge Operator with Synchronization Function

E
µ−→ E ′

E ‖ F
µ−→ E ′ ‖ F

F
µ−→ F ′

E ‖ F
µ−→ E ‖ F ′

E
a−→ E ′ F

b−→ F ′

E ‖ F
γ(a,b)−−−→ E ′ ‖ F ′

with µ ∈ Λ ∪ {τ}

Another interaction

getCoin.(giveChoc .nil + giveWater .nil) ‖ putCoin.getChoc .nil

with γ(getCoin, putCoin) = ok e γ(giveChoc , getChoc) = ok.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 49 / 104

Parallel Composition - 3

Communication Merge

E
a−→ E ′ F

b−→ F ′

E |cF
γ(a,b)−−−→ E ′ ‖ F ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 50 / 104

Parallel Composition - 3

Communication Merge

E
a−→ E ′ F

b−→ F ′

E |cF
γ(a,b)−−−→ E ′ ‖ F ′

Left Merge

E
µ−→ E ′

ETF
µ−→ E ′ ‖ F

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 50 / 104

Parallel Composition - 3

Communication Merge

E
a−→ E ′ F

b−→ F ′

E |cF
γ(a,b)−−−→ E ′ ‖ F ′

Left Merge

E
µ−→ E ′

ETF
µ−→ E ′ ‖ F

Interleaving

E
µ−→ E ′

E ||| F
µ−→ E ′ ||| F

F
µ−→ F ′

E ||| F
µ−→ E ||| F ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 50 / 104

Parallel Composition - 4

Hoare’s Parallel

E
µ−→ E ′

E |[L]| F
µ−→ E ′ |[L]| F

(µ 6∈ L)
F

µ−→ F ′

E |[L]| F
µ−→ E |[L]| F ′

(µ 6∈ L)

E
a−→ E ′ F

a−→ F ′

E |[L]| F
a−→ E ′ |[L]| F ′

(a ∈ L)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 51 / 104

Parallel Composition - 4

Hoare’s Parallel

E
µ−→ E ′

E |[L]| F
µ−→ E ′ |[L]| F

(µ 6∈ L)
F

µ−→ F ′

E |[L]| F
µ−→ E |[L]| F ′

(µ 6∈ L)

E
a−→ E ′ F

a−→ F ′

E |[L]| F
a−→ E ′ |[L]| F ′

(a ∈ L)

The operator |[L]| is strongly related with some of the operators seen
before.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 51 / 104

Parallel Composition - 4

Hoare’s Parallel

E
µ−→ E ′

E |[L]| F
µ−→ E ′ |[L]| F

(µ 6∈ L)
F

µ−→ F ′

E |[L]| F
µ−→ E |[L]| F ′

(µ 6∈ L)

E
a−→ E ′ F

a−→ F ′

E |[L]| F
a−→ E ′ |[L]| F ′

(a ∈ L)

The operator |[L]| is strongly related with some of the operators seen
before.

1 |[L]| and ‖ are equivalent if γ(a, a) = a, ∀a ∈ L,

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 51 / 104

Parallel Composition - 4

Hoare’s Parallel

E
µ−→ E ′

E |[L]| F
µ−→ E ′ |[L]| F

(µ 6∈ L)
F

µ−→ F ′

E |[L]| F
µ−→ E |[L]| F ′

(µ 6∈ L)

E
a−→ E ′ F

a−→ F ′

E |[L]| F
a−→ E ′ |[L]| F ′

(a ∈ L)

The operator |[L]| is strongly related with some of the operators seen
before.

1 |[L]| and ‖ are equivalent if γ(a, a) = a, ∀a ∈ L,

2 |[L]| and ||| are equivalent if L = ∅,

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 51 / 104

Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of
suitable synchronization algebras (assume E

∗−→ E for all E).

Definition

A Synchronization Algebra una 4-tuple 〈Λ, ∗, 0, •〉 where

1 Λ is a set of labels containing the special labels ∗ e 0,
2 • is an associative and commutative binary operation over Λ (i.e.

• : Λ × Λ → Λ) that satisfies:
1 a • 0 = 0 for all a ∈ Λ,

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 52 / 104

Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of
suitable synchronization algebras (assume E

∗−→ E for all E).

Definition

A Synchronization Algebra una 4-tuple 〈Λ, ∗, 0, •〉 where

1 Λ is a set of labels containing the special labels ∗ e 0,
2 • is an associative and commutative binary operation over Λ (i.e.

• : Λ × Λ → Λ) that satisfies:
1 a • 0 = 0 for all a ∈ Λ,
2 ∗ • ∗ = ∗,

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 52 / 104

Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of
suitable synchronization algebras (assume E

∗−→ E for all E).

Definition

A Synchronization Algebra una 4-tuple 〈Λ, ∗, 0, •〉 where

1 Λ is a set of labels containing the special labels ∗ e 0,
2 • is an associative and commutative binary operation over Λ (i.e.

• : Λ × Λ → Λ) that satisfies:
1 a • 0 = 0 for all a ∈ Λ,
2 ∗ • ∗ = ∗,
3 a • b = ∗ implies a = b = ∗, for all a, b ∈ Λ.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 52 / 104

Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of
suitable synchronization algebras (assume E

∗−→ E for all E).

Definition

A Synchronization Algebra una 4-tuple 〈Λ, ∗, 0, •〉 where

1 Λ is a set of labels containing the special labels ∗ e 0,
2 • is an associative and commutative binary operation over Λ (i.e.

• : Λ × Λ → Λ) that satisfies:
1 a • 0 = 0 for all a ∈ Λ,
2 ∗ • ∗ = ∗,
3 a • b = ∗ implies a = b = ∗, for all a, b ∈ Λ.

E
α−→ E ′ F

β−→ F ′

E • F
α•β−−→ E ′ • F ′

(α • β 6= 0)

• ∗ α 0

∗ ∗ α 0

α α 0 0

0 0 0 0

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 52 / 104

Interaction with Value Passing

Single Evolutions

(v is a value)

a(x).E
a(v)−−→ E{v/x} a e.E

a val(e)−−−−−→ E

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 53 / 104

Interaction with Value Passing

Single Evolutions

(v is a value)

a(x).E
a(v)−−→ E{v/x} a e.E

a val(e)−−−−−→ E

Interaction

E
a v−−→ E ′ F

a(v)−−→ F ′

E |F τ−→ E ′|F ′
E

a(v)−−→ E ′ F
a v−−→ F ′

E |F τ−→ E ′|F ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 53 / 104

Conditional Execution

val(e) = true E
µ−→ E ′

if e then E else F
µ−→ E ′

val(e) = false F
µ−→ F ′

if e then E else F
µ−→ F ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 54 / 104

Conditional Execution

val(e) = true E
µ−→ E ′

if e then E else F
µ−→ E ′

val(e) = false F
µ−→ F ′

if e then E else F
µ−→ F ′

Let us consider a vending machine that accept 20 cents coins (or higher)
and offers a chocolate:

coin(x). if x ≥ 20 then choc .nil else nil

The user interacts with the machine as follows:

coin(x). if x ≥ 20 then choc .nil else nil | coin 40.choc .nil
τ−→

if 40 ≥ 20 then choc .nil else nil | choc .nil
τ−→

nil | nil

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 54 / 104

Abstraction - 1

Restriction

E
α−→ E ′

E \L α−→ E ′ \L
(α , α 6∈ L)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 55 / 104

Abstraction - 1

Restriction

E
α−→ E ′

E \L α−→ E ′ \L
(α , α 6∈ L)

Forcing Interaction
(

(coin.ok .nil) | ok.(choc .nil + water .nil)
)
\ ok | coin.choc .nil

τ−→(
(ok .nil) | ok.(choc .nil + water .nil)

)
\ ok | choc .nil

τ−→(
nil | (choc .nil + water .nil)

)
\ ok | choc .nil

τ−→(
nil | nil

)
\ ok | nil

A malicious user executing ok.choc .nil would be stopped.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 55 / 104

Abstraction - 2

Hiding

E
α−→ E ′

E/L
α−→ E ′/L

(α 6∈ L)
E

α−→ E ′

E/L
τ−→ E ′/L

(α ∈ L)

Avoiding Interaction
(

(coin.ok.nil) |[ok]| ok.(choc .nil + water .nil)
)
/ ok

The ok signal is internalized thus it cannot be used by a dishonest user.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 56 / 104

Abstraction - 3

Renaming

E
µ−→ E ′

E [f]
f (µ)−−→ E ′[f]

Multilingual Interaction

An Italian user
soldo. acqua. nil

can interact with the machine with English indication by applying:

(soldo. acqua. nil) [coin/soldo, water/acqua]

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 57 / 104

Infinite Behaviour - 1

Recursion

E{rec X .E/X} µ−→ E ′

rec X .E
µ−→ E ′

Long Lasting Vending Machine

rec D. coin. (choc .D + water .D)

rec D. coin. (choc .D + water .D) } coin−−→

choc . rec D. coin. (choc .D + water .D)
+

water . rec D. coin. (choc .D + water .D)

choc−−−→

rec D. coin. (choc .D + water .D) } coin−−→ . . .

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 58 / 104

Infinite Behaviour - 2

Replication

E
µ−→ E ′

!E
µ−→ E ′| !E

or, equivalently
E | !E µ−→ E ′

!E
µ−→ E ′

The replication operator can be defined by the following equation
!E , E |!E that can be expressed in terms of rec as follows: recX .(E |X)

Chocolate ad libitum

! coin. choc . nil
coin−−→

choc . nil | ! coin. choc . nil
coin−−→

choc . nil | choc . nil | ! coin. choc . nil
choc−−−→

nil | choc . nil | ! coin. choc . nil
choc−−−→

nil | nil | ! coin. choc . nil

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 59 / 104

Infinite Behaviour - 3

Iteration

E ∗ ǫ−→ √ and
E

µ−→ E ′

E ∗ µ−→ E ′;E ∗

This iteration operator is the classical one of regular expressions.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 60 / 104

A few Process Description Languages

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 61 / 104

CCS: Calculus of Communicating Processes

Milner - 1980

The set of actions Actτ consists of a set of labels Λ, of the set Λ of
complementary labels and of the distinct action τ , the syntax is

E ::= nil
∣∣ µ.E

∣∣ E\L
∣∣ E [f]

∣∣ E1 + E2

∣∣ E1|E2

∣∣ recX .E

Moreover we have:

µ ∈ Actτ ;

L ⊆ Λ;

f : Actτ → Actτ ;

f (ᾱ) = f (α) and f (τ) = τ .

CCS has been studied with Bisimulation and Testing Semantics

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 62 / 104

SCCS: Synchronous Calculus of Communicating Processes

Milner - 1983

The set of actions Act is an Abelian group containing a set of labels Λ,
and of complementary actions Λ with over-dashed actions, the neutral
element is 1, the syntax is

E ::= nil
∣∣ µ : E

∣∣ E ↾ L
∣∣ E1 + E2

∣∣ E1 × E2

∣∣ recX .E

where

µ ∈ Act ∪ {1},
L ⊆ Λ,

: denotes action prefixing

There is no relabelling operator, it is expressible via the other operators.

SCCS has been studied with Bisimulation Semantics

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 63 / 104

TCSP: Theoretical Communicating Sequential Processes

Brookes-Hoare-Roscoe - 1984

The set of actions is a set Λ, and the syntax is

E ::= stop
∣∣ skip

∣∣ a → E
∣∣ E\L

∣∣ E [f]
∣∣ E1;E2

∣∣ E1 ⊓ E2∣∣ E1 � E2

∣∣ E1 ‖ E2

∣∣ E1 ||| E2

∣∣ E1 |[L]| E2

∣∣ A

where

a ∈ Λ, L ⊆ Λ, f : Λ → Λ,

the operators ⊓ and � denote internal and external choice
respectively;

the operator → denotes action prefixing

A is a process constant

CSP has been studied with Failure Semantics - a variant of Testing Sem.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 64 / 104

ACP: Algebra of Communicating Processes

Bergstra-Klop - 1984

The set of actions Λτ consists of a finite set of labels Λ and of special
action τ , the syntax is

E ::=
√ ∣∣ a

∣∣ E\L
∣∣ E/L

∣∣ E [f]
∣∣ E1

�E2

∣∣ E1 + E2∣∣ E1 ‖ E2

∣∣ E1TE2

∣∣ E1|cE2

∣∣ A

a ∈ Λτ , L ⊆ Λ, f : Λ → Λ;

the operator � denotes sequential composition;

A is a process constant.

The original notation for operators ·\L, ·/L e ·[f] are δL(·), τL(·) and
ρf (·)) respectively.

ACP has been studied with Bisimulation and Branching Bis. Semantics

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 65 / 104

LOTOS: Language of Temporal Order Specification

Standard ISO - 1988

The set of actions Λi contains a set of labels Λ and the distinct label i , the
syntax is

E ::= stop
∣∣ exit

∣∣ µ;E
∣∣ E/L

∣∣ E [f]
∣∣ E1 ≫ E2

∣∣ E1 [> E2∣∣ E1 + E2

∣∣ E1 ‖ E2

∣∣ E1 ||| E2

∣∣ E1 |[L]| E2

∣∣ A

µ ∈ Λi , L ⊆ Λ, f : Λ → Λ;

the operator ; denotes action prefixing;

the operator ≫ denotes parallel composition;

A is a process constant.

LOTOS has been studied with Bisimulation and Testing Semantics

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 66 / 104

A gentle introduction to π-calculus

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 67 / 104

From CCS to π-calculus - 1

Consider a scenario of somebody willing to buy a pizza.

In CCS, we can model this situation by composing in parallel the client C ,
and the “pizzaiolo” P .

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 68 / 104

From CCS to π-calculus - 1

Consider a scenario of somebody willing to buy a pizza.

In CCS, we can model this situation by composing in parallel the client C ,
and the “pizzaiolo” P .

C , askPizza.pay .pizza

The client C asks for a pizza, pays for it and takes it away.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 68 / 104

From CCS to π-calculus - 1

Consider a scenario of somebody willing to buy a pizza.

In CCS, we can model this situation by composing in parallel the client C ,
and the “pizzaiolo” P .

C , askPizza.pay .pizza P , askPizza.pay .pizza

The client C asks for a pizza, pays for it and takes it away.
The “pizzaiolo” P receives the request for the pizza, gets the money and
delivers the pizza.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 68 / 104

From CCS to π-calculus - 2

If we use values, i.e. CCS with value passing, we can add further details to
our system.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 69 / 104

From CCS to π-calculus - 2

If we use values, i.e. CCS with value passing, we can add further details to
our system.

C , askPizza〈margherita〉.pay 〈5 Euro〉.pizza

The client asks for a Margherita, pays the due amount and eats the pizza.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 69 / 104

From CCS to π-calculus - 2

If we use values, i.e. CCS with value passing, we can add further details to
our system.

C , askPizza〈margherita〉.pay 〈5 Euro〉.pizza

P , askPizza(x).pay(y).if y = price(x) then pizza else

if y > price(x) then pizza.output〈y − price(x)〉 else askMoney

The client asks for a Margherita, pays the due amount and eats the pizza.
The “pizzaiolo” receives the request for the pizza, gets the money then
checks the received amount and gives back the requested pizza and
possibly the change.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 69 / 104

From CCS to π-calculus - 3

With π-calculus we can do more: home delivery of pizza!

C , askPizza〈myHome〉.pay .myHome(x).eat〈x〉
P , askPizza(y).pay .(νpizza)y〈pizza〉.P

The client can communicate the address where he wants the pizza be
delivered.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 70 / 104

From CCS to π-calculus - 3

With π-calculus we can do more: home delivery of pizza!

C , askPizza〈myHome〉.pay .myHome(x).eat〈x〉
P , askPizza(y).pay .(νpizza)y〈pizza〉.P

The client can communicate the address where he wants the pizza be
delivered.

askPizza〈myHome〉.pay .myHome(x).eat〈x〉 |
askPizza(y).pay .(νpizza)y〈pizza〉.P

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 70 / 104

From CCS to π-calculus - 3

With π-calculus we can do more: home delivery of pizza!

C , askPizza〈myHome〉.pay .myHome(x).eat〈x〉
P , askPizza(y).pay .(νpizza)y〈pizza〉.P

The client can communicate the address where he wants the pizza be
delivered.

askPizza〈myHome〉.pay .myHome(x).eat〈x〉 |
askPizza(y).pay .(νpizza)y〈pizza〉.P

τ−→ pay .myHome(x).eat〈x〉|pay .(νpizza)myHome〈pizza〉.P

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 70 / 104

From CCS to π-calculus - 3

With π-calculus we can do more: home delivery of pizza!

C , askPizza〈myHome〉.pay .myHome(x).eat〈x〉
P , askPizza(y).pay .(νpizza)y〈pizza〉.P

The client can communicate the address where he wants the pizza be
delivered.

askPizza〈myHome〉.pay .myHome(x).eat〈x〉 |
askPizza(y).pay .(νpizza)y〈pizza〉.P

τ−→ pay .myHome(x).eat〈x〉|pay .(νpizza)myHome〈pizza〉.P

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 70 / 104

From CCS to π-calculus - 3

With π-calculus we can do more: home delivery of pizza!

C , askPizza〈myHome〉.pay .myHome(x).eat〈x〉
P , askPizza(y).pay .(νpizza)y〈pizza〉.P

The client can communicate the address where he wants the pizza be
delivered.

askPizza〈myHome〉.pay .myHome(x).eat〈x〉 |
askPizza(y).pay .(νpizza)y〈pizza〉.P

τ−→ pay .myHome(x).eat〈x〉|pay .(νpizza)myHome〈pizza〉.P
τ−→ myHome(x).eat〈x〉|(νpizza)myHome〈pizza〉.P

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 70 / 104

From CCS to π-calculus - 3

With π-calculus we can do more: home delivery of pizza!

C , askPizza〈myHome〉.pay .myHome(x).eat〈x〉
P , askPizza(y).pay .(νpizza)y〈pizza〉.P

The client can communicate the address where he wants the pizza be
delivered.

askPizza〈myHome〉.pay .myHome(x).eat〈x〉 |
askPizza(y).pay .(νpizza)y〈pizza〉.P

τ−→ pay .myHome(x).eat〈x〉|pay .(νpizza)myHome〈pizza〉.P
τ−→ myHome(x).eat〈x〉|(νpizza)myHome〈pizza〉.P
τ−→ (νpizza)(eat〈pizza〉|P)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 70 / 104

Syntax of π-calculus

We assume a countably infinite set of names N is defined.

(Processes) P ::= S sum
| P1|P2 parallel composition
| (νx)P name restriction
| !P replication

(Sums) S ::= 0 inactive process (nil)
| π.P prefix
| S1 + S2 choice

(Prefixes) π ::= x〈y〉 sends y on x

| x(z) replaces z with the name received on x

| τ internal action
| [x = y]π matching: tests equality of x and y

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 71 / 104

Notation, Comments and Remarks

(νz)P is alike CCS restriction P\z .

!P models replication and denotes the parallel composition of an
arbitrary number of copies of P .

[x = y]π.P is known as name matching: it is equivalent to
if x = y then π.P .

Occurrences of 0 will sometimes be omitted, thus, e.g., x〈y〉.0 will be
written x〈y〉.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 72 / 104

Notation, Comments and Remarks

(νz)P is alike CCS restriction P\z .

!P models replication and denotes the parallel composition of an
arbitrary number of copies of P .

[x = y]π.P is known as name matching: it is equivalent to
if x = y then π.P .

Occurrences of 0 will sometimes be omitted, thus, e.g., x〈y〉.0 will be
written x〈y〉.
x(z) indicates input while x〈y〉 indicates output.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 72 / 104

Notation, Comments and Remarks

(νz)P is alike CCS restriction P\z .

!P models replication and denotes the parallel composition of an
arbitrary number of copies of P .

[x = y]π.P is known as name matching: it is equivalent to
if x = y then π.P .

Occurrences of 0 will sometimes be omitted, thus, e.g., x〈y〉.0 will be
written x〈y〉.
x(z) indicates input while x〈y〉 indicates output.

In x(z).P e (νz)P , the name z is bound in P (i.e., P is the scope of
such name). A name that is not bound is called free.

fn(P) e bn(P) are the sets of all free, resp. bound, names of P .

We take processes up to alpha-conversion, denoted by =α, which
permits renaming of a bound name with a fresh name that is not
already used.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 72 / 104

An LTS for π-calculus

(IN) a(x).P
ab−→ P [b/x] (OUT) a〈b〉.P āb−→ P

(COM)
P

ab−→ P ′ Q
āb−→ Q ′

P | Q
τ−→ P ′ | Q ′

Symmetric Com Rule

(RES)
P

α−→ P ′
b 6∈ n(α)

(νb)P
α−→ (νb)P ′

(OP)
P

āb−→ P ′
a 6= b

(νb)P
ā(b)−→ P ′

(CLO)
P

ab−→ P ′ Q
ā(b)−→ Q ′

b 6∈ fn(P)
P | Q

τ−→ (νb)(P ′ | Q ′)
Symmetric Close Rule

(PAR)
P

α−→ P ′
bn(α) ∩ fn(Q) = ∅

P | Q
α−→ P ′ | Q

Symmetric Par Rule

(EQ)
P

α−→ P ′

[a = a]P
α−→ P ′

(REP)
P |!P α−→ P ′

!P
α−→ P ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 73 / 104

Structural Congruence for π-calculus - I

Why Structural Congruence?

The syntax of π-calculus processes is to some extent too concrete (even
when taken up-to α-conversion):

1 The order processes are composed in parallel should not matter.

2 The order processes ”summed” should not matter.

3 The order names are restricted should not matter.

In fact, we shall make sure that processes differing only for the above
aspects are always equivalent.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 74 / 104

Structural Congruence for π-calculus - I

Why Structural Congruence?

The syntax of π-calculus processes is to some extent too concrete (even
when taken up-to α-conversion):

1 The order processes are composed in parallel should not matter.

2 The order processes ”summed” should not matter.

3 The order names are restricted should not matter.

In fact, we shall make sure that processes differing only for the above
aspects are always equivalent.

By taking processes up to a suitable structural congruence we can:

1 Write processes in a canonical form.

2 Represent all possible interactions with fewer rules.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 74 / 104

Structural Congruence for π-calculus - II

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

S + 0 ≡ S S1 + S2 ≡ S2 + S1 S1 + (S2 + S3) ≡ (S1 + S2) + S3

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 75 / 104

Structural Congruence for π-calculus - II

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

S + 0 ≡ S S1 + S2 ≡ S2 + S1 S1 + (S2 + S3) ≡ (S1 + S2) + S3

!P ≡ P | !P [a = a]π.P ≡ π.P

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P
a /∈ fn(P)

P | (νa)Q ≡ (νa)(P | Q)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 75 / 104

Structural Congruence for π-calculus - II

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

S + 0 ≡ S S1 + S2 ≡ S2 + S1 S1 + (S2 + S3) ≡ (S1 + S2) + S3

!P ≡ P | !P [a = a]π.P ≡ π.P

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P
a /∈ fn(P)

P | (νa)Q ≡ (νa)(P | Q)

P ≡ P
P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R
(equivalence)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 75 / 104

Structural Congruence for π-calculus - II

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

S + 0 ≡ S S1 + S2 ≡ S2 + S1 S1 + (S2 + S3) ≡ (S1 + S2) + S3

!P ≡ P | !P [a = a]π.P ≡ π.P

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P
a /∈ fn(P)

P | (νa)Q ≡ (νa)(P | Q)

P ≡ P
P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R
(equivalence)

P =α P ′

P ≡ P ′

P ≡ P ′

C[P] ≡ C[P ′]
(congruence)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 75 / 104

Canonical Form

For each π-calculus process P there exist:

1 a finite number of names x1, ..., xk ,

2 a finite number of sums S1, ...,Sn, and

3 a finite number of processes P1, ...,Pm such that

P ≡ (νx1)...(νxk)
(
S1|...|Sn|!P1|...|!Pm

)

The structural congruence permits rearranging the terms describing
π-calculus processes so that any two possibly interacting subterms
(composed in parallel) can be put side by side.

All interactions can then be expressed by considering only a very small
number of cases.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 76 / 104

Reduction Semantics: An alternative sem. for π-calculus

The so-called reduction semantics focuses on internal moves P 7−→ Q only
and takes significantly advantage of structural congruence.

(RTAU)
(τ.P + S) 7−→ P

(RCOM)
(a(x).P1 + S1)|(a〈b〉.P2 + S2) 7−→ P1[b/x]|P2

(RPAR)
P 7−→ P ′

P | Q 7−→ P ′ | Q

(RRES)
P 7−→ P ′

(νa)P 7−→ (νa)P ′

(RSTRUCT)
P ≡ Q Q 7−→ Q ′ Q ′ ≡ P ′

P 7−→ P ′
R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 77 / 104

Harmony Lemma

The reduction semantics and the LTS semantics can be tightly reconciled.

Notation

Given two relations R and S on processes, we write P RS Q if there
exists a process R such that P R R and R S Q.

Theorem (Harmony Lemma)

For any π-calculus process P we have:

1 P ≡ α−→ P ′ implies P
α−→ ≡ P ′

2 P 7−→ P ′ if and only if P
τ−→ ≡ P ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 78 / 104

Electoral Propaganda

We shall see how the use of restricted channels can prevent intrusions.

Assume we want to campaign for Romano and have set up the following
scenario :

Naive Campaigning

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 79 / 104

Electoral Propaganda

We shall see how the use of restricted channels can prevent intrusions.

Assume we want to campaign for Romano and have set up the following
scenario :

Naive Campaigning

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker

This system will evolve as follows:

Ad 7−→ wire〈vote for Romano〉 | Loudspeaker

7−→ highvolume〈vote for Romano〉

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 79 / 104

Electoral Propaganda and Intrusions

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 80 / 104

Electoral Propaganda and Intrusions

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker

Let Rival , wire(z).wire〈vote for Silvio〉

Ad | Rival 7−→ wire〈vote for Romano〉 | Loudspeaker | Rival

7−→ wire〈vote for Silvio〉 | Loudspeaker

7−→ highvolume〈vote for Silvio〉

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 80 / 104

Electoral Propaganda and Intrusions

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker

Let Rival , wire(z).wire〈vote for Silvio〉

Ad | Rival 7−→ wire〈vote for Romano〉 | Loudspeaker | Rival

7−→ wire〈vote for Silvio〉 | Loudspeaker

7−→ highvolume〈vote for Silvio〉

Rival could use wire because it is a public channel.
A secure propaganda would be:

SecureAd , (ν air ,wire)(Speaker | Microphone | Loudspeaker)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 80 / 104

Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 81 / 104

Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

cBS is the communication channel between Bob and the server

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 81 / 104

Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

cBS is the communication channel between Bob and the server

cAB is the new (secure) channel that Alice and Bob want to establish
to communicate.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 81 / 104

Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

cBS is the communication channel between Bob and the server

cAB is the new (secure) channel that Alice and Bob want to establish
to communicate.

We can code Alice, Bob and the Server as follows:

A , (νcAB)cAS 〈cAB 〉.cAB〈mess〉
S , !cAS (x).cBS 〈x〉 | !cBS(y).cAS 〈y〉
B , cBS (z).z(w). < use z >

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 81 / 104

Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

cBS is the communication channel between Bob and the server

cAB is the new (secure) channel that Alice and Bob want to establish
to communicate.

We can code Alice, Bob and the Server as follows:

A , (νcAB)cAS 〈cAB 〉.cAB〈mess〉
S , !cAS (x).cBS 〈x〉 | !cBS(y).cAS 〈y〉
B , cBS (z).z(w). < use z >

(νcAS , cBS)(A|S |B) 7−→7−→7−→ (νcAS , cBS , cAB)(S | < use mess >)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 81 / 104

And now . . . Global Computing with Klaim

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 82 / 104

Global Computers

Global Computers can be seen as Distributed Systems with a number of
distinguishing features:

Wide area distribution

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 83 / 104

Global Computers

Global Computers can be seen as Distributed Systems with a number of
distinguishing features:

Wide area distribution

Variability of interconnection structures

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 83 / 104

Global Computers

Global Computers can be seen as Distributed Systems with a number of
distinguishing features:

Wide area distribution

Variability of interconnection structures

Physical (and Logical) Mobility

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 83 / 104

Global Computers

Global Computers can be seen as Distributed Systems with a number of
distinguishing features:

Wide area distribution

Variability of interconnection structures

Physical (and Logical) Mobility

Possibility of Disconnections

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 83 / 104

Global Computers

Global Computers can be seen as Distributed Systems with a number of
distinguishing features:

Wide area distribution

Variability of interconnection structures

Physical (and Logical) Mobility

Possibility of Disconnections

Indistinguishability of Failures from Slow Reactions

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 83 / 104

Global Computers

Global Computers can be seen as Distributed Systems with a number of
distinguishing features:

Wide area distribution

Variability of interconnection structures

Physical (and Logical) Mobility

Possibility of Disconnections

Indistinguishability of Failures from Slow Reactions

Importance of Quality of Service

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 83 / 104

Programming Global Computers

Programming Languages would definitely benefit from
explicit primitives for

Distribution

computing over different (explicit) localities

Mobility

moving agents and computations over localities

Concurrency

considering parallel and non-deterministic computations

Access Rights

maintaining privacy and integrity of data

Languages for Global Computing would of course benefit from formal
semantics and associated logics for reasoning on programs behaviour.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 84 / 104

Our Research Goals

Developing a simple programming language and associated tools for
network aware and migrating applications with a tractable semantic theory
that permits programs (services) verification.

Our Starting Points (1980 — . . .)

Process Algebras

CCS, CSP, . . .

Calculi and languages for Mobility

Pi-calculus, Obliq, Ambients, . . .

Tuple Based Interaction Models

Linda

Modal and Temporal Logics

HML, CTL, ACTL, µ-calculus, . . .

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 85 / 104

Kernel Language for Agent Interaction and Mobility

Process Calculus Flavored

Small set of basic combinator;

Clean operational semantics.

Linda based communication model

Asynchronous communication;

Shared tuple spaces;

Pattern Matching

Explicit use of localities

Multiple distributed tuple spaces;

Code and Process mobility.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 86 / 104

Tuples and Templates

Tuples

(”foo”, 10 + 5, true)

contain only Actual Fields

Templates

(”foo”, 10 + 5, !u)

contain both Actual Fields and Formal Fields

Pattern Matching

Formal fields match any field of the same type

Actual fields match if identical

tuple (”foo”, 10 + 5, true) matches template (!s, 15, !b)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 87 / 104

From Linda and Process Algebras to Klaim

Explicit Localities to model distribution

Physical Locality (sites)

Logical Locality (names for sites)

A distinct name self (or here) indicates the site a process is on.

Allocation environment to associate sites to logical localities

This avoids the programmers to know the exact physical structure.

Process Algebras Operators to compose programs

Sequentialization

Parallel composition

Creation of new names

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 88 / 104

Klaim Nodes and Klaim Nets

Klaim Nodes

consist of:

a site

a tuple space

a set of parallel processes

an allocation environment

Klaim Nets

are:

a set of Klaim nodes linked via the allocation environment

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 89 / 104

Klaim Syntax

P ::= nil (null process)∣∣ a.P (action prefixing)∣∣ P1 | P2 (parallel composition)∣∣ P1+P2 (choice)∣∣ X (process variable)
∣∣ A〈P̃, ℓ̃, ẽ〉 (process invocation)

a ::= out(t)@ℓ
∣∣ in(t)@ℓ

∣∣ read(t)@ℓ
∣∣ eval(P)@ℓ

∣∣ newloc(u)

t ::= e
∣∣ P

∣∣ ℓ
∣∣ ! x

∣∣ !X
∣∣ ! u

∣∣ t1, t2

N ::= s ::ρ P (node)∣∣ N1 ‖ N2 (net composition)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 90 / 104

Dining Philosophers in Klaim

Pi =
think...

in(“chopstick”)@ci .
in(“chopstick”)@c(i+1)mod n.

eat...

out(“chopstick”)@ci .
out(“chopstick”)@c(i+1)mod n.

Pi

c0 :: (“chopstick”) ‖ p0 :: P0 ‖ c1 :: (“chopstick”) ‖ p1 :: P1 ‖
c2 :: (“chopstick”) ‖ p2 :: P2 ‖ c3 :: (“chopstick”) ‖ p3 :: P3 ‖
c4 :: (“chopstick”) ‖ p4 :: P4

ATTENTION

This system may deadlock! One of the well-known solutions can be
devised to avoid problems.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 91 / 104

Structural Congruence

Monoid Laws for ‖
N ‖ 0 ≡ N

N1 ‖ N2 ≡ N2 ‖ N1

(N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

Congruence Laws

(Alpha) N ≡ N ′ if N =α N ′

(RCom) (νl1)(νl2)N ≡ (νl2)(νl1)N

(Ext) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l 6∈ fn(N1)

(Abs) l ::ρ C ≡ l ::ρ (C |nil)

(Clone) l ::ρ C1|C2 ≡ l ::ρ C1 ‖ l ::ρ C2

(Rec) l ::ρ recX .P ≡ l ::ρ P [recX .P/X]

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 92 / 104

Matching Function

match(l , l) = ǫ

match(!x , l) = [l/x]

match(!X ,P) = [P/X]

match(T1, t1) = σ1 match(T2, t2) = σ2

match(T1,T2 , t1, t2) = σ1 ◦ σ2

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 93 / 104

Process Reduction Rules

(Red-Out)
ρ(u) = l ′ E [[t]]ρ = t ′

l ::ρ u〈t〉.P ‖ l ′ ::ρ′ nil 7−→ l ::ρ P ‖ l ′ ::ρ′ 〈t ′〉

(Red-Eval)
ρ(u) = l ′

l ::ρ eval(P2)@u.P1 ‖ l ′ ::ρ′ nil 7−→ l ::ρ P1 ‖ l ′ ::ρ′ P2

(Red-In)
ρ(u) = l ′ match(E [[T]]ρ, t) = σ

l ::ρ in(T)@u.P ‖ l ′ ::ρ′ 〈t〉 7−→ l ::ρ Pσ ‖ l ′ ::ρ′ nil

(Red-Read)
ρ(u) = l ′ match(E [[T]]ρ, t) = σ

l ::ρ read(T)@u.P ‖ l ′ ::ρ′ 〈t〉 7−→ l ::ρ Pσ ‖ l ′ ::ρ′ 〈t〉

(Red-New) l ::ρ newloc(l ′).P 7−→ (νl ′)(l ::ρ P ‖ l ′ ::ρ[l ′/self] nil)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 94 / 104

Nets Reduction Rules

(Red-Par)
N1 7−→ N ′

1

N1 ‖ N2 7−→ N ′
1 ‖ N2

(Red-Res)
N 7−→ N ′

(νl)N 7−→ (νl)N ′

(Red-Struct)
N ≡ M 7−→ M ′ ≡ N ′

N 7−→ N ′

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 95 / 104

µKlaim: A core calculus for Klaim

We take away from Klaim:

distinction between logical and physical localities/addresses: No
allocation environment

higher order communication: No process in tuples

µKlaim Syntax

N ::= l :: R
∣∣ N1 ‖ N2

R ::= P
∣∣ 〈et〉

P ::= nil
∣∣ act.P

∣∣ P1 | P2

∣∣ X
∣∣ recX .P

act ::= l〈t〉
∣∣ in(T)@l

∣∣ read(T)@l
∣∣

eval(P)@l
∣∣ newloc(u)

t ::= f
∣∣ f , t where f ::= e

∣∣ l
∣∣ u

T ::= F
∣∣ F ,T where F ::= f

∣∣ ! x
∣∣ ! u

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 96 / 104

Matching predicate

Matching µKlaim:

(M1) match(V ,V) = [] (M2) match(! x ,V) = [V/x]

(M3) match(l , l) = [] (M4) match(! u, l) = [l/u]

(M5)
match(f , t) = σ1 match(F ,T) = σ2

match((f , t) , (F ,T)) = σ1 ◦ σ2

Matching examples:

match((”Foo”, l), (!x , !u)) =
[
”Foo”/x , l/u

]

match((”Foo”, 5), (”Foo”, !x)) =
[
5/x

]

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 97 / 104

Structural congruence

(Commutativity) N1 ‖ N2 ≡ N2 ‖ N1

(Associativity) (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(Absorbtion) l :: P ≡ l :: (P |nil)

(Unfolding) l :: recX .P ≡ l :: P [recX .P/X]

(Cloning) l :: (P1|P2) ≡ l :: P1 ‖ l :: P2

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 98 / 104

Labelled Operational Semantics

Actions and Transitions

The set of transition labels λ is: λ ::= l : act
∣∣ τ

the operational semantics of µKlaim nets is defined using relation
·−→ .

Some Rules

l1 :: l2〈t〉.P
l1:l2〈E [[t]]〉−−−−−−−→ l1 :: P

N1
l1:l2〈et〉−−−−→ N2

N1 ‖ l2 :: P
τ−→ N2 ‖ l2 :: P ‖ l2 :: 〈et〉

l1 :: in(T)@l2.P
l1:in(T)@l2−−−−−−→ l :: P

N1
l1:in(T)@l2−−−−−−→ N2 σ = match(T , et)

N1 ‖ l2 :: 〈et〉 τ−→ N2σ ‖ l2 :: nil

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 99 / 104

Transition Rules - 1

l :: act.P
l :[[act]]−−−−→ l :: P (Act)

N1
l1:l2〈et〉−−−−→ N2

N1 ‖ l2 :: P
τ−→ N2 ‖ l2 :: P ‖ l2 :: 〈et〉

(Out)

N1
l1:eval(Q)@l2−−−−−−−→ N2

N1 ‖ l2 :: P
τ−→ N2 ‖ l2 :: P ‖ l2 :: Q

(Eval)

N1
l1:in(T)@l2−−−−−−→ N2 σ = match(T , et)

N1 ‖ l2 :: 〈et〉 τ−→ N2σ ‖ l2 :: nil
(In)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 100 / 104

Transition Rules - 2

N1
l1:read(T)@l2−−−−−−−−→ N2 σ = match(T , et)

N1 ‖ l2 :: 〈et〉 τ−→ N2σ ‖ l2 :: 〈et〉
(Read)

N1
l1:newloc(u)−−−−−−−→ N2 l 6∈ N2

N1 ‖ N2[l/u] ‖ l :: nil
(New)

N1
l :act−−→ N2

N1 ‖ N
l :act−−→ N2 ‖ N

(Par)

N1 ≡ N ′
1 N ′

1
λ−→ N ′

2 N ′
2 ≡ N2

N1
λ−→ N2

(Struct)

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 101 / 104

Conclusions?

It is just a start! No conclusions

For work going on in Firenze, please visit our web site
http://music.dsi.unifi.it

Most Importantly see:
http://rap.dsi.unifi.it/tapas

Many Thanks for your attention

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 102 / 104

http://rap.dsi.unifi.it/tapas

Bibliography

Apt K.R., Olderog E.-R., Verification of Sequential and Concurrent

Programs, Springer-Verlag, 1997.
I took from here the first example of these lectures.

Fokkink Wan, Introduction to Process Algebra, Springer, 2000.
A gentle introduction to ACP.

Milner R., Communication and Concurrency, Prentice Hall, 1989.
The classical book on CCS and Bisimulation.

Roscoe A.W., The Theory and Practice of Concurrency, Prentice Hall,
1998.
A good book on TCSP and the failure Model.

Bowman H. and Gomez R., Concurrency Theory: Calculi and

Automata for Modelling Untimed and Timed Concurrent Systems,
Springer, 2006.
A new book on concurrency theory based on LOTOS.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 103 / 104

Bibliography ctd.

Baeten J.C.M. and Weijland W.P., Process Algebra, Cambridge
University Press, 1990.
The first book on ACP and Branching Bisimulation.

Hennessy M., Algebraic theory of processes, Springer-Verlag, 2001.
A simple introduction to Algebraic, Denotational and Operational
Semantics of processes based on Testing Equivalence.

Van Glabbeek R.J., The Linear Time - Branching Time Spectrum I*.

The Semantics of Concrete, Sequential Processes, Handbook on
Process Algebras, North Holland, 2001.
A good overview of behavioral equivalences over LTS.

Sangiorgi D. and Walker D., PI-Calculus: A Theory of Mobile

Processes, Cambridge University Press, 2001.
THE book on π-calculus.

For Klaim see: http://music.dsi.unifi.it
R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 104 / 104

http://music.dsi.unifi.it

