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Problems with Concurrent Programming
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Developing a Concurrent Solution to a Simple Problem

Problem:

Write a program that

terminates if the total function f has a (positive or negative) zero

proceeds indefinitely otherwise.

Assume we have a program that looks for positive zeros:

S1 = found := false; x := 0;

while (not found)

do x:= x+1; found := (f(x) = 0) od

Starting from the above, we can build the program looking for negative
zeros.

S2 = found := false; y := 0;

while (not found)

do y:= y-1; found := (f(y) = 0) od
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Attempt 1

An obvious solution would be running S1 and S2 in parallel:

S1 || S2
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S2 starts, the latter sets found to false and looks indefinitely for a
nonexisting zero.
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Attempt 1

An obvious solution would be running S1 and S2 in parallel:

S1 || S2

However ...

If f has a positive zero and not a negative one, and S1 terminates before
S2 starts, the latter sets found to false and looks indefinitely for a
nonexisting zero.

The problem is due to the fact that found is initialized to false twice.

LESSON 1

Care is needed when handling shared variables.
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Attempt 2

Let us consider a solution that initializes found only once.

found := false; (R1 || R2) where

R1 = x := 0; while (not found)

do x:= x+1; found := (f(x) = 0) od

R2 = y := 0 while (not found)

do y:= y-1; found := (f(y) = 0) od
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Attempt 2

Let us consider a solution that initializes found only once.

found := false; (R1 || R2) where

R1 = x := 0; while (not found)

do x:= x+1; found := (f(x) = 0) od

R2 = y := 0 while (not found)

do y:= y-1; found := (f(y) = 0) od

If f has (again) only a positive zero assume that:

1 R2 proceeds up to the while body and is preempted by R1

2 R1 computes till it finds a zero

3 R2 gets the CPU back

When R2 restarts it executes the while body and sets found to false -
found := (f(y) = 0). The program would not terminate because it would
look for a non existing negative zero.
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Attempt 2 ctd

The problem with the second attempt is due to the fact that found is
(unnecessarily) set to false (via found := f(y) = 0) after it has already got
the value true.

LESSON 2

No assumption can be made on the relative speed of processes.
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Attempt 3

Let us see what happens if we do not perform ”unnecessary” assignments
and only assign true when we find a x or a y such that f(x) = 0 or f(y) = 0.

found := false; (T1 || T2) where

T1 = x := 0; while not found

do x:= x+1; if f(x) = 0 then found := true fi od

T2 = y := 0; while not found

do y:= y-1; if f(y) = 0 then found := true fi od
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Attempt 3

Let us see what happens if we do not perform ”unnecessary” assignments
and only assign true when we find a x or a y such that f(x) = 0 or f(y) = 0.

found := false; (T1 || T2) where

T1 = x := 0; while not found

do x:= x+1; if f(x) = 0 then found := true fi od

T2 = y := 0; while not found

do y:= y-1; if f(y) = 0 then found := true fi od

However . . .

. . . if f has only a positive zero and that T2 gets the CPU and is scheduled
to keep it until its termination; T1 will never get the chance to find its
zero.
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Attempt 3 - ctd

This problem is due to the considered scheduler of the CPU, to avoid
problems we would need a non fair scheduler; but this is a too strong
assumptions.

LESSON 3

No assumption can be made on the cpu scheduling policy chosen by the
operating system.
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Attempt 4

To avoid assumptions on the scheduler, we could think of adding control
to the programs and let them ”pass the baton” once they have got their
”chance” to execute for a while.

turn:= 1; found := false; (P1 || P2) where

P1 = x := 0; while not found do wait turn:= 1 then

turn:= 2; x:= x+1; if f(x) = 0 then found := true fi od

P2 = y := 0; while not found do wait turn:= 2 then

turn:= 1; y:= y-1; if f(y) = 0 then found := true fi od
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Attempt 4

To avoid assumptions on the scheduler, we could think of adding control
to the programs and let them ”pass the baton” once they have got their
”chance” to execute for a while.

turn:= 1; found := false; (P1 || P2) where

P1 = x := 0; while not found do wait turn:= 1 then

turn:= 2; x:= x+1; if f(x) = 0 then found := true fi od

P2 = y := 0; while not found do wait turn:= 2 then

turn:= 1; y:= y-1; if f(y) = 0 then found := true fi od

However . . .

. . . if P1 finds a zero and stops when P2 has already set turn:= 1, P2
would be blocked by the wait command because nobody can change the
value of turn.
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Attempt 4 - ctd.

The problem here is that one of the program does not terminate because
it keeps waiting for an impossible event.

LESSON 4

When terminating processes should care of other processes counting on
them.
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A CORRECT Solution!

Idea . . .

. . . pass (again) the baton just before terminating.

turn:= 1; found := false; (P1; turn:= 2 || P2; turn:= 1)

where

P1 = x := 0; while not found do

wait turn:= 1 then

turn:= 2; x:= x+1;

if f(x) = 0 then found := true fi

od

P2 = y := 0; while not found do

wait turn:= 2 then

turn:= 1; y:= y-1;

if f(y) = 0 then found := true fi

od
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Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states
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Sequential Programming vs Concurrent Programming

Classical Sequential Programming

1 Denotational semantics: the meaning of a program is a partial
function from states to states

2 Nontermination is bad!

3 In case of termination, the result is unique.

Concurrent - Interactive - Reactive Programming

1 Denotational semantics is very complicate due to nondeterminism

2 Nontermination might be good!

3 In case of termination, the result might not be unique.
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Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems
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Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:
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and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)
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Programming Reactive System

The classical denotational approach is not sufficient for modelling systems
such as:

Operating systems

Communication protocols

Mobile phones

Vending machines

The above systems compute by reacting to stimuli from their environment
and are known as Reactive Systems. Their distinguishing features are:

Interaction (many parallel communicating processes)

Nondeterminism (results are not necessarily unique)

There may be no visible result (exchange of messages is used to
coordinate progress)

Nontermination is good (systems are expected to run continuously)
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Analisys of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:
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Analisys of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that works?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit
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Analisys of Reactive Systems

Even short parallel programs may be hard to analyze, thus we need to face
few questions:

1 How can we develop (design) a system that works?

2 How do we analyze (verify) such a system?

We need appropriate theories and formal methods and tools, otherwise we
will experience again:

1 Intels Pentium-II bug in floating-point division unit

2 Ariane-5 crash due to a conversion of 64-bit real to 16-bit integer

3 Mars Pathfinder problems
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Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct behavior in all
possible environment, we need:

1 To study mathematical models for the formal description and analysis
of concurrent programs.
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Formal Methods for Reactive Systems

To deal with reactive systems and guarantee their correct behavior in all
possible environment, we need:

1 To study mathematical models for the formal description and analysis
of concurrent programs.

2 To devise formal languages for the specification of the possible
behaviour of parallel and reactive systems.

3 To develop verification tools and implementation techniques
underlying them.
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This School

In this school you shall see different theories of special kind of reactive
systems (Global Computers) and their applications.
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This School

In this school you shall see different theories of special kind of reactive
systems (Global Computers) and their applications.

The theories aim at supporting: Design, Specification and Verification
(possibly automatic and compositional) of reactive (global) systems.

Important Questions:

What is the most abstract view of a reactive system (process)?

Does it capture their relevant properties?

Is it compositional?
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This two lectures:

The chosen abstraction for reactive systems is the notion of
processes.

Systems evolution is based on process transformation: A process
performs an action and becomes another process.

Everything is (or can be viewed as) a process. Buffers, shared
memory, Linda tuple spaces, senders, receivers, . . . are all processes.

Labelled Transition Systems (LTS) describe process behaviour, and
permit modelling directly systems interaction.
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Presentations of Labelled Transition Systems

Process Algebra as denotations of LTS

LTS are represented by terms of process algebras.

Terms are interpreted via operational semantics as LTS.

Process Algebra Basic Principles

1 Define a few elementary (atomic) processes modelling the simplest
process behaviour;

2 Define appropriate composition operations to build more complex
process behaviour from (existing) simpler ones.
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Outline of the two lectures

1 Labelled Transition Systems as Concurrency Models
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Outline of the two lectures

1 Labelled Transition Systems as Concurrency Models

2 Operators for Interaction, Nondeterminism and Concurrency

3 Process Calculi and their semantics

4 π-calculus and Klaim (if time permits)
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Models for Concurrent Processes
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Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:
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Operational Semantics for Concurrent Processes

Systems behaviour is described by associating to each program a
behaviour represented as a transition graph.

Two main models (or variants thereof) have been used:

Kripke Structures

State Labelled Graphs: States are labelled with the properties that are
considered relevant (e.g. the value of - the relation between - some
variables)

Labelled Transition Systems

Transition Labelled Graph: Transition between states are labelled the
action that induces the transition from one state to another.

In this lectures, we shall mainly rely on Labelled Transition Systems and
actions will play an important role
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Finite State Automata

Definition

A finite state automaton M is a 5-tuple
M = (Q,A,→, q0,F ) where

Q is a finite set of states

A is the alphabet

→ ⊆ Q × (A ∪ {ε}) × Q is the transition relation

q0 ∈ Q is a special state called initial state,

F ⊆ Q is the set of (final states)
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A finite state automaton M is a 5-tuple
M = (Q,A,→, q0,F ) where

Q is a finite set of states

A is the alphabet

→ ⊆ Q × (A ∪ {ε}) × Q is the transition relation

q0 ∈ Q is a special state called initial state,

F ⊆ Q is the set of (final states)

spento acceso

rotto

on

off

bang bang

Figure: Finite state automaton
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Labelled Transition Systems

Definition

A Labelled Transition System S is a 4-tuple S = (Q,A,→, q0) where :

Q is a set of states

A is a finite set of actions

→ ⊆ Q × A × Q is a ternary relation called transition relation it is
often written q

a−→ q′ instead of (q, a, q′) ∈→
q0 ∈ Q is a special state called initial state.
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A is a finite set of actions

→ ⊆ Q × A × Q is a ternary relation called transition relation it is
often written q
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q0

q1

q2

q3 q4
play

work

work

play

τ
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Labelled Transition Systems

Definition

A Labelled Transition System S is a 4-tuple S = (Q,A,→, q0) where :

Q is a set of states

A is a finite set of actions

→ ⊆ Q × A × Q is a ternary relation called transition relation it is
often written q

a−→ q′ instead of (q, a, q′) ∈→
q0 ∈ Q is a special state called initial state.

q0

q1

q2

q3 q4
play

work

work

play

τ

If initial states are not relevant (or known) LTSs are triples (Q,A,→) . . .
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A Simple Example

Example (Bill-Ben)

S = (Q,A,→) where:

Q = { q0, q1, q2, q3, q4 }
A = { play , work, τ }
→=
{(q0, play , q1), (q0,work, q2), (q1,work, q3), (q2, play , q3), (q3, τ, q4)}

q0

q1

q2

q3 q4
play

work

work

play

τ
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Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message
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Internal and External Actions

An elementary action of a system represents the atomic (non-interruptible)
abstract step of a computation that is performed by a system to move
from one state to the other.

Actions represent various activities of concurrent systems:

1 Sending a message

2 Receiving a message

3 Updating values

4 Synchronizing with other processes

5 . . .

We have two main types of atomic actions:

Visible Actions

Internal Actions
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Operators for Concurrency and Process Algebras
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Operators for Processes Modelling

Processes are composed via a number of basic operators

1 Basic Processes

2 Action Prefixing

3 Sequentialization

4 Choice

5 Parallel Composition

6 Abstraction

7 Infinite Behaviours
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Regular Expressions as Process Algebras

Syntax of Regular Expressions

E ::= 0 | 1 | a | E + E | E ;E | E ∗ with a ∈ A the set of basic actions

Denotational Semantics of Regular Expressions

Regular Expression have a denotational semantics that associates to each
expression the language (i.e. the set of strings) generated by it.

L[[0]] = { }
L[[1]] = {ε}
L[[a]] = {a} (per a ∈ A)

L[[e + f ]] = L[[e]] ∪ L[[f ]]

L[[e · f ]] = L[[e]] · L[[f ]]

L[[e∗]] = (L[[e]])∗
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Regular Expressions as Process Algebras

Syntax of Regular Expressions

E ::= 0 | 1 | a | E +E | E ;E | E ∗ with a ∈ A and −below − µ ∈ A∪{ε}

Operational Semantics of Regular Expressions

(Tic)
1

ε−→ 1
(Atom)

a
a−→ 1

(Sum1)
e

µ−→ e′

e + f
µ−→ e′

(Sum2)
f

µ−→ f ′

e + f
µ−→ f ′

(Seq1)
e

µ−→ e′

e; f
µ−→ e′; f

(Seq2)
e

ε−→ 1

e; f
ε−→ f

(Star1)
e∗

ε−→ 1
(Star2)

e
µ−→ e′

e∗
µ−→ e′; e∗
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Why operators for describing systems

How can we describe very large automata or LTSs?
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Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.
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Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.
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→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

As a more compact listing of triples?

→=
{
(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})
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Why operators for describing systems

How can we describe very large automata or LTSs?

As a table?

Rows and columns are labelled by states, entries are either empty or
marked with a set of actions.

As a listing of triples?

→= {(q0, a, q1), (q0, a, q2), (q1, b, q3), (q1, c , q4), (q2, τ, q3), (q2, τ, q4)}.

As a more compact listing of triples?

→=
{
(q0, a, {q1, q2}), (q1, b, q3), (q1, c , q4), (q2, τ, {q3, q4})

}
.

As XML?

<lts><ar><st>q0</st><lab>a</lab><st>q1</st></ar>...</lts>.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 30 / 104



Why operators for describing systems - ctd

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans.
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Why operators for describing systems - ctd

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans.

Are prefix and sum operators sufficient?

They are ok to describe small finite systems:

p = a.b.(c + d)

q = a.(b.c + b.d)

r = a.b.c + a.c .d
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Why operators for describing systems - ctd

Linguistic aspects are important!

The previous solutions are ok for machines . . . not for humans.

Are prefix and sum operators sufficient?

They are ok to describe small finite systems:

p = a.b.(c + d)

q = a.(b.c + b.d)

r = a.b.c + a.c .d

But additional operators are needed

to design systems in a structured way (e.g. p|q)

to model systems interaction

to abstract from details

to represent infinite systems
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Operational Semantics

To each process, built using the above mentioned operators, an LTS is
associated by relying on structural induction to define the meaning of each
operator.

Inference Systems

An inference system is a set of inference rule of the form

p1, · · · , pn

q

Transition Rules

For each operator op, we have a number of rules of the form below, where
{i1, · · · , im} ⊆ {1, · · · , n}.

Ei1

α1−→ E ′
i1

· · · Eim

αm−−→ E ′
im

op(E1, · · · ,En)
α−→ op(E ′

1, · · · ,E ′
n)
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The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used the derive the
corresponding automaton. The set of rules is fixed once and for all.
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The Elegance of Operational Semantics

Automata as terms

Few SOS rules define all the automata that can ever be specified with the
chosen operators. Given any term, the rules are used the derive the
corresponding automaton. The set of rules is fixed once and for all.

Structural induction

The interaction of complex systems is defined in terms of the behavior of
their components.

A remark

The LTS is the least one satisfying the inference rules.

Rule induction

A property is true for the whole LTS if whenever it holds for the premises
of each rule, it holds also for the conclusion.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 33 / 104



A few examples for Regular Expressions

(a + b)∗
a−→ 1; (a + b)∗

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗
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A few examples for Regular Expressions

(a + b)∗
a−→ 1; (a + b)∗

(Atom)
a

a−→ 1
(Sum1)

a + b
a−→ 1

(Star2)
(a + b)∗

a−→ 1; (a + b)∗

1; (a + b)∗
ε−→ (a + b)∗

(Tic)
1

ε−→ 1
(Seq2)

1; (a + b)∗
ε−→ (a + b)∗
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Another Example On Regular Expressions

(a∗ + b∗)∗
b−→ 1; b∗; (a∗ + b∗)∗

(Atom)

b
b−→ 1

(Star2)

b∗ b−→ 1; b∗
(Sum2)

a∗ + b∗ b−→ 1; b∗
(Star2)

(a∗ + b∗)∗
b−→ 1; b∗; (a∗ + b∗)∗

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 35 / 104



Another Example On Regular Expressions

(a∗ + b∗)∗
b−→ 1; b∗; (a∗ + b∗)∗

(Atom)

b
b−→ 1

(Star2)

b∗ b−→ 1; b∗
(Sum2)

a∗ + b∗ b−→ 1; b∗
(Star2)

(a∗ + b∗)∗
b−→ 1; b∗; (a∗ + b∗)∗

A remark

(a∗ + b∗)∗
c−→ 1 would not contradict any rule, but it cannot be in the

least LTS, because it cannot be inferred by using the rules we presented
earlier.
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Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned
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Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish Math.
Soc. (1854, in polish)

8 Proof by authority: Don Knuth said it was true

9 Proof by intuition: I have this feeling...
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Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish Math.
Soc. (1854, in polish)

8 Proof by authority: Don Knuth said it was true

9 Proof by intuition: I have this feeling...

10 Proof by deception: Everybody please turn their backs...
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Playful digression

Some advanced proof methods

1 Proof by obviousness: So evident it need not to be mentioned

2 Proof by general agreement: All in favor?

3 Proof by majority: When general agreement fails

4 Proof by plausibility: It sounds good

5 Proof by intimidation: Trivial!

6 Proof by lost reference: I saw it somewhere

7 Proof by obscure reference: It appeared in the Annals of Polish Math.
Soc. (1854, in polish)

8 Proof by authority: Don Knuth said it was true

9 Proof by intuition: I have this feeling...

10 Proof by deception: Everybody please turn their backs...

11 Proof by logic: It is on the textbook, hence it must be true

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 36 / 104



Basic Processes

Inactive Process

Is usually denoted by

nil

0

stop

The semantics of this process is characterized by the fact that there is no
rule to define its transition: it has no transition.
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Basic Processes

Inactive Process

Is usually denoted by

nil

0

stop

The semantics of this process is characterized by the fact that there is no
rule to define its transition: it has no transition.

A broken vending machine

nil

Does not accept coins and does not give any drink.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 37 / 104



Basic Processes ctd

Termination

Termination is sometimes denoted by

exit

skip

that can only perform the special action
√

(”tick”) to indicate termination
and become nil

exit
√
−→ stop
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Basic Processes ctd

Termination

Termination is sometimes denoted by

exit

skip

that can only perform the special action
√

(”tick”) to indicate termination
and become nil

exit
√
−→ stop

A gentle broken vending machine

exit

Does not accept coins, does not gives drinks but says that everything is ok.
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Action Prefixing

Prefixing

For each action µ there is a unary operator

µ.·
µ → ·

that builds from process E a new process µ.E that performs action µ and
then behaves like E .

µ.E
µ−→ E
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Action Prefixing

Prefixing

For each action µ there is a unary operator

µ.·
µ → ·

that builds from process E a new process µ.E that performs action µ and
then behaves like E .

µ.E
µ−→ E

A ”one shot” vending machine

coin → choc → stop

Accepts a coin and gives a chocolate, then stops.
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Action Prefixing ctd

Action as processes

Instead of prefixing, some calculi rely on considering actions as basic
processes.

a
a−→ stop
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Action Prefixing ctd

Action as processes

Instead of prefixing, some calculi rely on considering actions as basic
processes.

a
a−→ stop

A dishonest vending machine

coin

Accepts a coin and stops.
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Sequential Composition

Sequentialization

The binary operator for sequential composition is denoted by

· ; ·
· ≫ ·

If E ed F are processes, process E ;F executes E and then behaves like F

E
µ−→ E ′

E ;F
µ−→ E ′;F

(µ 6= √
)

E
√
−→ E ′

E ;F
τ−→ F
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Sequential Composition

Sequentialization

The binary operator for sequential composition is denoted by

· ; ·
· ≫ ·

If E ed F are processes, process E ;F executes E and then behaves like F

E
µ−→ E ′

E ;F
µ−→ E ′;F

(µ 6= √
)

E
√
−→ E ′

E ;F
τ−→ F

Another ”one shot” vending machine

coin; choc
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Sequential Composition ctd

Disabling Operator

The disabling binary operator

[>

permits to interrupt some actions when specific events happen.

E
µ−→ E ′

E [> F
µ−→ E ′ [> F

(µ 6= √
)

E
√
−→ E ′

E [> F
τ−→ E ′

F
µ−→ F ′

E [> F
µ−→ F ′
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Sequential Composition ctd

Disabling Operator

The disabling binary operator

[>

permits to interrupt some actions when specific events happen.

E
µ−→ E ′

E [> F
µ−→ E ′ [> F

(µ 6= √
)

E
√
−→ E ′

E [> F
τ−→ E ′

F
µ−→ F ′

E [> F
µ−→ F ′

A cheating customer

(coin → choc → stop) [> (bang → choc → stop)

This describes a vending machine that when ”banged” gives away a
chocolate without getting the coin
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Choice - 1

Nondeterministic Choice

E
µ−→ E ′

E + F
µ−→ E ′

F
µ−→ F ′

E + F
µ−→ F ′
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Choice - 1

Nondeterministic Choice

E
µ−→ E ′

E + F
µ−→ E ′

F
µ−→ F ′

E + F
µ−→ F ′

User’s Choice

coin → (choc → stop + water → stop)
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Choice - 1

Nondeterministic Choice

E
µ−→ E ′

E + F
µ−→ E ′

F
µ−→ F ′

E + F
µ−→ F ′

User’s Choice

coin → (choc → stop + water → stop)

Machine’s Choice

coin → choc → stop + coin → water → stop
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Choice - 2

Internal Choice

E ⊕ F
τ−→ E E ⊕ F

τ−→ F
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Choice - 2

Internal Choice

E ⊕ F
τ−→ E E ⊕ F

τ−→ F

Machine’s Choice

coin → (choc → stop ⊕ water → stop)
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Choice - 3

External Choice

E
α−→ E ′

E � F
α−→ E ′

(α 6= τ)
F

α−→ F ′

E � F
α−→ F ′

(α 6= τ)

E
τ−→ E ′

E � F
τ−→ E ′ � F

F
τ−→ F ′

E � F
τ−→ E � F ′
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Choice - 3

External Choice

E
α−→ E ′

E � F
α−→ E ′

(α 6= τ)
F

α−→ F ′

E � F
α−→ F ′

(α 6= τ)

E
τ−→ E ′

E � F
τ−→ E ′ � F

F
τ−→ F ′

E � F
τ−→ E � F ′

User’s Choice

coin →
(
(choc → stop ⊕ water → stop) � water → stop

)
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Different Transitions

External Choice

coin →
(
(choc → stop ⊕ water → stop) � water → stop

)

coin−−→
(choc → stop ⊕ water → stop) � water → stop

τ−→
(choc → stop � water → stop)
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Different Transitions

External Choice

coin →
(
(choc → stop ⊕ water → stop) � water → stop

)

coin−−→
(choc → stop ⊕ water → stop) � water → stop

τ−→
(choc → stop � water → stop)

Internal Choice

coin →
(
(choc → stop ⊕ water → stop) ⊕ water → stop

)

coin−−→
(choc → stop ⊕ water → stop) ⊕ water → stop

τ−→
choc → stop ⊕ water → stop

τ−→
choc → stop
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Parallel Composition - 1

Milner’s Parallel

E
µ−→ E ′

E |F µ−→ E ′|F
F

µ−→ F ′

E |F µ−→ E |F ′
E

α−→ E ′ F
α−→ F ′

E |F τ−→ E ′|F ′
(α 6= τ)
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Parallel Composition - 1

Milner’s Parallel

E
µ−→ E ′

E |F µ−→ E ′|F
F

µ−→ F ′

E |F µ−→ E |F ′
E

α−→ E ′ F
α−→ F ′

E |F τ−→ E ′|F ′
(α 6= τ)

User-Machine interaction

(
coin → (choc → stop ⊕ water → stop)

)
| (coin → choc → stop)
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We can have different interactions

Appropriate Interaction
(
coin → (choc → stop ⊕ water → stop)

)
| (coin → choc → stop)

τ−→
(choc → stop ⊕ water → stop) | (choc → stop)

τ−→
(choc → stop ) | (choc → stop)

τ−→
stop | stop
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We can have different interactions

Appropriate Interaction
(
coin → (choc → stop ⊕ water → stop)

)
| (coin → choc → stop)

τ−→
(choc → stop ⊕ water → stop) | (choc → stop)

τ−→
(choc → stop ) | (choc → stop)

τ−→
stop | stop

Inappropriate Interaction - Coin thrown away
(
coin → (choc → stop ⊕ water → stop)

)
| (coin → choc → stop)

τ−→
(choc → stop ⊕ water → stop) | (choc → stop)

τ−→
(water → stop) | (choc → stop)
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Parallel Composition - 2

Merge Operator with Synchronization Function

E
µ−→ E ′

E ‖ F
µ−→ E ′ ‖ F

F
µ−→ F ′

E ‖ F
µ−→ E ‖ F ′

E
a−→ E ′ F

b−→ F ′

E ‖ F
γ(a,b)−−−→ E ′ ‖ F ′

with µ ∈ Λ ∪ {τ}
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Parallel Composition - 2

Merge Operator with Synchronization Function

E
µ−→ E ′

E ‖ F
µ−→ E ′ ‖ F

F
µ−→ F ′

E ‖ F
µ−→ E ‖ F ′

E
a−→ E ′ F

b−→ F ′

E ‖ F
γ(a,b)−−−→ E ′ ‖ F ′

with µ ∈ Λ ∪ {τ}

Another interaction

getCoin.(giveChoc .nil + giveWater .nil) ‖ putCoin.getChoc .nil

with γ(getCoin, putCoin) = ok e γ(giveChoc , getChoc) = ok.
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Parallel Composition - 3

Communication Merge

E
a−→ E ′ F

b−→ F ′

E |cF
γ(a,b)−−−→ E ′ ‖ F ′
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E
µ−→ E ′

ETF
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Communication Merge

E
a−→ E ′ F

b−→ F ′

E |cF
γ(a,b)−−−→ E ′ ‖ F ′

Left Merge

E
µ−→ E ′

ETF
µ−→ E ′ ‖ F

Interleaving

E
µ−→ E ′

E ||| F
µ−→ E ′ ||| F

F
µ−→ F ′

E ||| F
µ−→ E ||| F ′
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Parallel Composition - 4

Hoare’s Parallel

E
µ−→ E ′

E |[L]| F
µ−→ E ′ |[L]| F

(µ 6∈ L)
F

µ−→ F ′

E |[L]| F
µ−→ E |[L]| F ′

(µ 6∈ L)

E
a−→ E ′ F

a−→ F ′

E |[L]| F
a−→ E ′ |[L]| F ′

(a ∈ L)
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a−→ E ′ F
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The operator |[L]| is strongly related with some of the operators seen
before.
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E |[L]| F
a−→ E ′ |[L]| F ′

(a ∈ L)

The operator |[L]| is strongly related with some of the operators seen
before.

1 |[L]| and ‖ are equivalent if γ(a, a) = a, ∀a ∈ L,
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Parallel Composition - 4

Hoare’s Parallel

E
µ−→ E ′

E |[L]| F
µ−→ E ′ |[L]| F

(µ 6∈ L)
F

µ−→ F ′

E |[L]| F
µ−→ E |[L]| F ′

(µ 6∈ L)

E
a−→ E ′ F

a−→ F ′

E |[L]| F
a−→ E ′ |[L]| F ′

(a ∈ L)

The operator |[L]| is strongly related with some of the operators seen
before.

1 |[L]| and ‖ are equivalent if γ(a, a) = a, ∀a ∈ L,

2 |[L]| and ||| are equivalent if L = ∅,
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Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of
suitable synchronization algebras (assume E

∗−→ E for all E ).

Definition

A Synchronization Algebra una 4-tuple 〈Λ, ∗, 0, •〉 where

1 Λ is a set of labels containing the special labels ∗ e 0,
2 • is an associative and commutative binary operation over Λ (i.e.

• : Λ × Λ → Λ) that satisfies:
1 a • 0 = 0 for all a ∈ Λ,
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1 Λ is a set of labels containing the special labels ∗ e 0,
2 • is an associative and commutative binary operation over Λ (i.e.

• : Λ × Λ → Λ) that satisfies:
1 a • 0 = 0 for all a ∈ Λ,
2 ∗ • ∗ = ∗,
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R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 52 / 104



Interaction via Synchronization Algebra

Most operators for parallel composition can be expressed in terms of
suitable synchronization algebras (assume E

∗−→ E for all E ).

Definition

A Synchronization Algebra una 4-tuple 〈Λ, ∗, 0, •〉 where

1 Λ is a set of labels containing the special labels ∗ e 0,
2 • is an associative and commutative binary operation over Λ (i.e.

• : Λ × Λ → Λ) that satisfies:
1 a • 0 = 0 for all a ∈ Λ,
2 ∗ • ∗ = ∗,
3 a • b = ∗ implies a = b = ∗, for all a, b ∈ Λ.

E
α−→ E ′ F

β−→ F ′

E • F
α•β−−→ E ′ • F ′

(α • β 6= 0)

• ∗ α 0

∗ ∗ α 0

α α 0 0

0 0 0 0
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Interaction with Value Passing

Single Evolutions

(v is a value)

a(x).E
a(v)−−→ E{v/x} a e.E

a val(e)−−−−−→ E

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 53 / 104



Interaction with Value Passing

Single Evolutions

(v is a value)

a(x).E
a(v)−−→ E{v/x} a e.E

a val(e)−−−−−→ E

Interaction

E
a v−−→ E ′ F

a(v)−−→ F ′

E |F τ−→ E ′|F ′
E

a(v)−−→ E ′ F
a v−−→ F ′

E |F τ−→ E ′|F ′
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Conditional Execution

val(e) = true E
µ−→ E ′

if e then E else F
µ−→ E ′

val(e) = false F
µ−→ F ′

if e then E else F
µ−→ F ′
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Conditional Execution

val(e) = true E
µ−→ E ′

if e then E else F
µ−→ E ′

val(e) = false F
µ−→ F ′

if e then E else F
µ−→ F ′

Let us consider a vending machine that accept 20 cents coins (or higher)
and offers a chocolate:

coin(x). if x ≥ 20 then choc .nil else nil

The user interacts with the machine as follows:

coin(x). if x ≥ 20 then choc .nil else nil | coin 40.choc .nil
τ−→

if 40 ≥ 20 then choc .nil else nil | choc .nil
τ−→

nil | nil
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Abstraction - 1

Restriction

E
α−→ E ′

E \L α−→ E ′ \L
(α , α 6∈ L)
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Abstraction - 1

Restriction

E
α−→ E ′

E \L α−→ E ′ \L
(α , α 6∈ L)

Forcing Interaction
(

(coin.ok .nil) | ok.(choc .nil + water .nil)
)
\ ok | coin.choc .nil

τ−→(
(ok .nil) | ok.(choc .nil + water .nil)

)
\ ok | choc .nil

τ−→(
nil | (choc .nil + water .nil)

)
\ ok | choc .nil

τ−→(
nil | nil

)
\ ok | nil

A malicious user executing ok.choc .nil would be stopped.
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Abstraction - 2

Hiding

E
α−→ E ′

E/L
α−→ E ′/L

(α 6∈ L)
E

α−→ E ′

E/L
τ−→ E ′/L

(α ∈ L)

Avoiding Interaction
(

(coin.ok.nil) |[ok]| ok.(choc .nil + water .nil)
)
/ ok

The ok signal is internalized thus it cannot be used by a dishonest user.
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Abstraction - 3

Renaming

E
µ−→ E ′

E [f ]
f (µ)−−→ E ′[f ]

Multilingual Interaction

An Italian user
soldo. acqua. nil

can interact with the machine with English indication by applying:

( soldo. acqua. nil ) [coin/soldo, water/acqua]
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Infinite Behaviour - 1

Recursion

E{rec X .E/X} µ−→ E ′

rec X .E
µ−→ E ′

Long Lasting Vending Machine

rec D. coin. (choc .D + water .D)

rec D. coin. (choc .D + water .D) } coin−−→

choc . rec D. coin. (choc .D + water .D)
+

water . rec D. coin. (choc .D + water .D)





choc−−−→

rec D. coin. (choc .D + water .D) } coin−−→ . . .
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Infinite Behaviour - 2

Replication

E
µ−→ E ′

!E
µ−→ E ′| !E

or, equivalently
E | !E µ−→ E ′

!E
µ−→ E ′

The replication operator can be defined by the following equation
!E , E |!E that can be expressed in terms of rec as follows: recX .(E |X )

Chocolate ad libitum

! coin. choc . nil
coin−−→

choc . nil | ! coin. choc . nil
coin−−→

choc . nil | choc . nil | ! coin. choc . nil
choc−−−→

nil | choc . nil | ! coin. choc . nil
choc−−−→

nil | nil | ! coin. choc . nil
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Infinite Behaviour - 3

Iteration

E ∗ ǫ−→ √ and
E

µ−→ E ′

E ∗ µ−→ E ′;E ∗

This iteration operator is the classical one of regular expressions.
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A few Process Description Languages
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CCS: Calculus of Communicating Processes

Milner - 1980

The set of actions Actτ consists of a set of labels Λ, of the set Λ of
complementary labels and of the distinct action τ , the syntax is

E ::= nil
∣∣ µ.E

∣∣ E\L
∣∣ E [f ]

∣∣ E1 + E2

∣∣ E1|E2

∣∣ recX .E

Moreover we have:

µ ∈ Actτ ;

L ⊆ Λ;

f : Actτ → Actτ ;

f (ᾱ) = f (α) and f (τ) = τ .

CCS has been studied with Bisimulation and Testing Semantics

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 62 / 104



SCCS: Synchronous Calculus of Communicating Processes

Milner - 1983

The set of actions Act is an Abelian group containing a set of labels Λ,
and of complementary actions Λ with over-dashed actions, the neutral
element is 1, the syntax is

E ::= nil
∣∣ µ : E

∣∣ E ↾ L
∣∣ E1 + E2

∣∣ E1 × E2

∣∣ recX .E

where

µ ∈ Act ∪ {1},
L ⊆ Λ,

: denotes action prefixing

There is no relabelling operator, it is expressible via the other operators.

SCCS has been studied with Bisimulation Semantics
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TCSP: Theoretical Communicating Sequential Processes

Brookes-Hoare-Roscoe - 1984

The set of actions is a set Λ, and the syntax is

E ::= stop
∣∣ skip

∣∣ a → E
∣∣ E\L

∣∣ E [f ]
∣∣ E1;E2

∣∣ E1 ⊓ E2∣∣ E1 � E2

∣∣ E1 ‖ E2

∣∣ E1 ||| E2

∣∣ E1 |[L]| E2

∣∣ A

where

a ∈ Λ, L ⊆ Λ, f : Λ → Λ,

the operators ⊓ and � denote internal and external choice
respectively;

the operator → denotes action prefixing

A is a process constant

CSP has been studied with Failure Semantics - a variant of Testing Sem.
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ACP: Algebra of Communicating Processes

Bergstra-Klop - 1984

The set of actions Λτ consists of a finite set of labels Λ and of special
action τ , the syntax is

E ::=
√ ∣∣ a

∣∣ E\L
∣∣ E/L

∣∣ E [f ]
∣∣ E1

�E2

∣∣ E1 + E2∣∣ E1 ‖ E2

∣∣ E1TE2

∣∣ E1|cE2

∣∣ A

a ∈ Λτ , L ⊆ Λ, f : Λ → Λ;

the operator � denotes sequential composition;

A is a process constant.

The original notation for operators ·\L, ·/L e ·[f ] are δL(·), τL(·) and
ρf (·)) respectively.

ACP has been studied with Bisimulation and Branching Bis. Semantics
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LOTOS: Language of Temporal Order Specification

Standard ISO - 1988

The set of actions Λi contains a set of labels Λ and the distinct label i , the
syntax is

E ::= stop
∣∣ exit

∣∣ µ;E
∣∣ E/L

∣∣ E [f ]
∣∣ E1 ≫ E2

∣∣ E1 [> E2∣∣ E1 + E2

∣∣ E1 ‖ E2

∣∣ E1 ||| E2

∣∣ E1 |[L]| E2

∣∣ A

µ ∈ Λi , L ⊆ Λ, f : Λ → Λ;

the operator ; denotes action prefixing;

the operator ≫ denotes parallel composition;

A is a process constant.

LOTOS has been studied with Bisimulation and Testing Semantics
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A gentle introduction to π-calculus
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From CCS to π-calculus - 1

Consider a scenario of somebody willing to buy a pizza.

In CCS, we can model this situation by composing in parallel the client C ,
and the “pizzaiolo” P .
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From CCS to π-calculus - 1

Consider a scenario of somebody willing to buy a pizza.

In CCS, we can model this situation by composing in parallel the client C ,
and the “pizzaiolo” P .

C , askPizza.pay .pizza P , askPizza.pay .pizza

The client C asks for a pizza, pays for it and takes it away.
The “pizzaiolo” P receives the request for the pizza, gets the money and
delivers the pizza.
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From CCS to π-calculus - 2

If we use values, i.e. CCS with value passing, we can add further details to
our system.
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From CCS to π-calculus - 2

If we use values, i.e. CCS with value passing, we can add further details to
our system.

C , askPizza〈margherita〉.pay 〈5 Euro〉.pizza

The client asks for a Margherita, pays the due amount and eats the pizza.
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From CCS to π-calculus - 2

If we use values, i.e. CCS with value passing, we can add further details to
our system.

C , askPizza〈margherita〉.pay 〈5 Euro〉.pizza

P , askPizza(x).pay(y).if y = price(x) then pizza else

if y > price(x) then pizza.output〈y − price(x)〉 else askMoney

The client asks for a Margherita, pays the due amount and eats the pizza.
The “pizzaiolo” receives the request for the pizza, gets the money then
checks the received amount and gives back the requested pizza and
possibly the change.
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From CCS to π-calculus - 3

With π-calculus we can do more: home delivery of pizza!

C , askPizza〈myHome〉.pay .myHome(x).eat〈x〉
P , askPizza(y).pay .(νpizza)y〈pizza〉.P

The client can communicate the address where he wants the pizza be
delivered.
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delivered.
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From CCS to π-calculus - 3

With π-calculus we can do more: home delivery of pizza!

C , askPizza〈myHome〉.pay .myHome(x).eat〈x〉
P , askPizza(y).pay .(νpizza)y〈pizza〉.P

The client can communicate the address where he wants the pizza be
delivered.

askPizza〈myHome〉.pay .myHome(x).eat〈x〉 |
askPizza(y).pay .(νpizza)y〈pizza〉.P

τ−→ pay .myHome(x).eat〈x〉|pay .(νpizza)myHome〈pizza〉.P
τ−→ myHome(x).eat〈x〉|(νpizza)myHome〈pizza〉.P
τ−→ (νpizza)(eat〈pizza〉|P)
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Syntax of π-calculus

We assume a countably infinite set of names N is defined.

(Processes) P ::= S sum
| P1|P2 parallel composition
| (νx)P name restriction
| !P replication

(Sums) S ::= 0 inactive process (nil)
| π.P prefix
| S1 + S2 choice

(Prefixes) π ::= x〈y〉 sends y on x

| x(z) replaces z with the name received on x

| τ internal action
| [x = y ]π matching: tests equality of x and y
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Notation, Comments and Remarks

(νz)P is alike CCS restriction P\z .

!P models replication and denotes the parallel composition of an
arbitrary number of copies of P .

[x = y ]π.P is known as name matching: it is equivalent to
if x = y then π.P .

Occurrences of 0 will sometimes be omitted, thus, e.g., x〈y〉.0 will be
written x〈y〉.
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x(z) indicates input while x〈y〉 indicates output.
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Notation, Comments and Remarks

(νz)P is alike CCS restriction P\z .

!P models replication and denotes the parallel composition of an
arbitrary number of copies of P .

[x = y ]π.P is known as name matching: it is equivalent to
if x = y then π.P .

Occurrences of 0 will sometimes be omitted, thus, e.g., x〈y〉.0 will be
written x〈y〉.
x(z) indicates input while x〈y〉 indicates output.

In x(z).P e (νz)P , the name z is bound in P (i.e., P is the scope of
such name). A name that is not bound is called free.

fn(P) e bn(P) are the sets of all free, resp. bound, names of P .

We take processes up to alpha-conversion, denoted by =α, which
permits renaming of a bound name with a fresh name that is not
already used.
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An LTS for π-calculus

(IN) a(x).P
ab−→ P [b/x] (OUT ) a〈b〉.P āb−→ P

(COM)
P

ab−→ P ′ Q
āb−→ Q ′

P | Q
τ−→ P ′ | Q ′

Symmetric Com Rule

(RES)
P

α−→ P ′
b 6∈ n(α)

(νb)P
α−→ (νb)P ′

(OP)
P

āb−→ P ′
a 6= b

(νb)P
ā(b)−→ P ′

(CLO)
P

ab−→ P ′ Q
ā(b)−→ Q ′

b 6∈ fn(P)
P | Q

τ−→ (νb)(P ′ | Q ′)
Symmetric Close Rule

(PAR)
P

α−→ P ′
bn(α) ∩ fn(Q) = ∅

P | Q
α−→ P ′ | Q

Symmetric Par Rule

(EQ)
P

α−→ P ′

[a = a]P
α−→ P ′

(REP)
P |!P α−→ P ′

!P
α−→ P ′
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Structural Congruence for π-calculus - I

Why Structural Congruence?

The syntax of π-calculus processes is to some extent too concrete (even
when taken up-to α-conversion):

1 The order processes are composed in parallel should not matter.

2 The order processes ”summed” should not matter.

3 The order names are restricted should not matter.

In fact, we shall make sure that processes differing only for the above
aspects are always equivalent.
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Why Structural Congruence?

The syntax of π-calculus processes is to some extent too concrete (even
when taken up-to α-conversion):

1 The order processes are composed in parallel should not matter.

2 The order processes ”summed” should not matter.

3 The order names are restricted should not matter.

In fact, we shall make sure that processes differing only for the above
aspects are always equivalent.

By taking processes up to a suitable structural congruence we can:

1 Write processes in a canonical form.

2 Represent all possible interactions with fewer rules.
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Structural Congruence for π-calculus - II

P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

S + 0 ≡ S S1 + S2 ≡ S2 + S1 S1 + (S2 + S3) ≡ (S1 + S2) + S3
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P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

S + 0 ≡ S S1 + S2 ≡ S2 + S1 S1 + (S2 + S3) ≡ (S1 + S2) + S3

!P ≡ P | !P [a = a]π.P ≡ π.P

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P
a /∈ fn(P)

P | (νa)Q ≡ (νa)(P | Q)
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S + 0 ≡ S S1 + S2 ≡ S2 + S1 S1 + (S2 + S3) ≡ (S1 + S2) + S3

!P ≡ P | !P [a = a]π.P ≡ π.P

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P
a /∈ fn(P)

P | (νa)Q ≡ (νa)(P | Q)

P ≡ P
P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R
(equivalence)
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P | 0 ≡ P P1 | P2 ≡ P2 | P1 P1 | (P2 | P3) ≡ (P1 | P2) | P3

S + 0 ≡ S S1 + S2 ≡ S2 + S1 S1 + (S2 + S3) ≡ (S1 + S2) + S3

!P ≡ P | !P [a = a]π.P ≡ π.P

(νa)0 ≡ 0 (νa)(νb)P ≡ (νb)(νa)P
a /∈ fn(P)

P | (νa)Q ≡ (νa)(P | Q)

P ≡ P
P ≡ Q

Q ≡ P

P ≡ Q Q ≡ R

P ≡ R
(equivalence)

P =α P ′

P ≡ P ′

P ≡ P ′

C[P ] ≡ C[P ′]
(congruence)
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Canonical Form

For each π-calculus process P there exist:

1 a finite number of names x1, ..., xk ,

2 a finite number of sums S1, ...,Sn, and

3 a finite number of processes P1, ...,Pm such that

P ≡ (νx1)...(νxk)
(
S1|...|Sn|!P1|...|!Pm

)

The structural congruence permits rearranging the terms describing
π-calculus processes so that any two possibly interacting subterms
(composed in parallel) can be put side by side.

All interactions can then be expressed by considering only a very small
number of cases.
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Reduction Semantics: An alternative sem. for π-calculus

The so-called reduction semantics focuses on internal moves P 7−→ Q only
and takes significantly advantage of structural congruence.

(RTAU)
(τ.P + S) 7−→ P

(RCOM)
(a(x).P1 + S1)|(a〈b〉.P2 + S2) 7−→ P1[b/x]|P2

(RPAR)
P 7−→ P ′

P | Q 7−→ P ′ | Q

(RRES)
P 7−→ P ′

(νa)P 7−→ (νa)P ′

(RSTRUCT )
P ≡ Q Q 7−→ Q ′ Q ′ ≡ P ′

P 7−→ P ′
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Harmony Lemma

The reduction semantics and the LTS semantics can be tightly reconciled.

Notation

Given two relations R and S on processes, we write P RS Q if there
exists a process R such that P R R and R S Q.

Theorem (Harmony Lemma)

For any π-calculus process P we have:

1 P ≡ α−→ P ′ implies P
α−→ ≡ P ′

2 P 7−→ P ′ if and only if P
τ−→ ≡ P ′
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Electoral Propaganda

We shall see how the use of restricted channels can prevent intrusions.

Assume we want to campaign for Romano and have set up the following
scenario :

Naive Campaigning

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker
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Electoral Propaganda

We shall see how the use of restricted channels can prevent intrusions.

Assume we want to campaign for Romano and have set up the following
scenario :

Naive Campaigning

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker

This system will evolve as follows:

Ad 7−→ wire〈vote for Romano〉 | Loudspeaker

7−→ highvolume〈vote for Romano〉
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Electoral Propaganda and Intrusions

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker
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Electoral Propaganda and Intrusions

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker

Let Rival , wire(z).wire〈vote for Silvio〉

Ad | Rival 7−→ wire〈vote for Romano〉 | Loudspeaker | Rival

7−→ wire〈vote for Silvio〉 | Loudspeaker

7−→ highvolume〈vote for Silvio〉
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Electoral Propaganda and Intrusions

Speaker , air〈vote for Romano〉
Microphone , air(x).wire〈x〉
Loudspeaker , wire(y).highvolume〈y〉

Ad , Speaker | Microphone | Loudspeaker

Let Rival , wire(z).wire〈vote for Silvio〉

Ad | Rival 7−→ wire〈vote for Romano〉 | Loudspeaker | Rival

7−→ wire〈vote for Silvio〉 | Loudspeaker

7−→ highvolume〈vote for Silvio〉

Rival could use wire because it is a public channel.
A secure propaganda would be:

SecureAd , (ν air ,wire)(Speaker | Microphone | Loudspeaker)
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Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 81 / 104



Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

cBS is the communication channel between Bob and the server

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 81 / 104



Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

cBS is the communication channel between Bob and the server

cAB is the new (secure) channel that Alice and Bob want to establish
to communicate.

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 81 / 104



Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

cBS is the communication channel between Bob and the server

cAB is the new (secure) channel that Alice and Bob want to establish
to communicate.

We can code Alice, Bob and the Server as follows:

A , (νcAB)cAS 〈cAB 〉.cAB〈mess〉
S , !cAS (x).cBS 〈x〉 | !cBS(y).cAS 〈y〉
B , cBS (z).z(w). < use z >
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Establishing Secure Communication Channels

Consider two processes Alice e Bob, that want to establish a secret
channel using a Trusted Server with which they have a trustworthy
(secret) communication link. We have that

cAS is the communication channel between Alice and the server

cBS is the communication channel between Bob and the server

cAB is the new (secure) channel that Alice and Bob want to establish
to communicate.

We can code Alice, Bob and the Server as follows:

A , (νcAB)cAS 〈cAB 〉.cAB〈mess〉
S , !cAS (x).cBS 〈x〉 | !cBS(y).cAS 〈y〉
B , cBS (z).z(w). < use z >

(νcAS , cBS )(A|S |B) 7−→7−→7−→ (νcAS , cBS , cAB )(S | < use mess >)
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And now . . . Global Computing with Klaim
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Global Computers

Global Computers can be seen as Distributed Systems with a number of
distinguishing features:

Wide area distribution
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Global Computers

Global Computers can be seen as Distributed Systems with a number of
distinguishing features:

Wide area distribution

Variability of interconnection structures

Physical (and Logical) Mobility

Possibility of Disconnections

Indistinguishability of Failures from Slow Reactions
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Global Computers

Global Computers can be seen as Distributed Systems with a number of
distinguishing features:

Wide area distribution

Variability of interconnection structures

Physical (and Logical) Mobility

Possibility of Disconnections

Indistinguishability of Failures from Slow Reactions

Importance of Quality of Service
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Programming Global Computers

Programming Languages would definitely benefit from
explicit primitives for

Distribution

computing over different (explicit) localities

Mobility

moving agents and computations over localities

Concurrency

considering parallel and non-deterministic computations

Access Rights

maintaining privacy and integrity of data

Languages for Global Computing would of course benefit from formal
semantics and associated logics for reasoning on programs behaviour.
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Our Research Goals

Developing a simple programming language and associated tools for
network aware and migrating applications with a tractable semantic theory
that permits programs (services) verification.

Our Starting Points (1980 — . . . )

Process Algebras

CCS, CSP, . . .

Calculi and languages for Mobility

Pi-calculus, Obliq, Ambients, . . .

Tuple Based Interaction Models

Linda

Modal and Temporal Logics

HML, CTL, ACTL, µ-calculus, . . .
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Kernel Language for Agent Interaction and Mobility

Process Calculus Flavored

Small set of basic combinator;

Clean operational semantics.

Linda based communication model

Asynchronous communication;

Shared tuple spaces;

Pattern Matching

Explicit use of localities

Multiple distributed tuple spaces;

Code and Process mobility.
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Tuples and Templates

Tuples

(”foo”, 10 + 5, true)

contain only Actual Fields

Templates

(”foo”, 10 + 5, !u)

contain both Actual Fields and Formal Fields

Pattern Matching

Formal fields match any field of the same type

Actual fields match if identical

tuple (”foo”, 10 + 5, true) matches template (!s, 15, !b)
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From Linda and Process Algebras to Klaim

Explicit Localities to model distribution

Physical Locality (sites)

Logical Locality (names for sites)

A distinct name self (or here) indicates the site a process is on.

Allocation environment to associate sites to logical localities

This avoids the programmers to know the exact physical structure.

Process Algebras Operators to compose programs

Sequentialization

Parallel composition

Creation of new names
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Klaim Nodes and Klaim Nets

Klaim Nodes

consist of:

a site

a tuple space

a set of parallel processes

an allocation environment

Klaim Nets

are:

a set of Klaim nodes linked via the allocation environment
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Klaim Syntax

P ::= nil (null process)∣∣ a.P (action prefixing)∣∣ P1 | P2 (parallel composition)∣∣ P1+P2 (choice)∣∣ X (process variable)
∣∣ A〈P̃, ℓ̃, ẽ〉 (process invocation)

a ::= out(t)@ℓ
∣∣ in(t)@ℓ

∣∣ read(t)@ℓ
∣∣ eval(P)@ℓ

∣∣ newloc(u)

t ::= e
∣∣ P

∣∣ ℓ
∣∣ ! x

∣∣ !X
∣∣ ! u

∣∣ t1, t2

N ::= s ::ρ P (node)∣∣ N1 ‖ N2 (net composition)
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Dining Philosophers in Klaim

Pi =
# think...

in(“chopstick”)@ci .
in(“chopstick”)@c(i+1)mod n.

# eat...

out(“chopstick”)@ci .
out(“chopstick”)@c(i+1)mod n.

Pi

c0 :: (“chopstick”) ‖ p0 :: P0 ‖ c1 :: (“chopstick”) ‖ p1 :: P1 ‖
c2 :: (“chopstick”) ‖ p2 :: P2 ‖ c3 :: (“chopstick”) ‖ p3 :: P3 ‖
c4 :: (“chopstick”) ‖ p4 :: P4

ATTENTION

This system may deadlock! One of the well-known solutions can be
devised to avoid problems.
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Structural Congruence

Monoid Laws for ‖
N ‖ 0 ≡ N

N1 ‖ N2 ≡ N2 ‖ N1

(N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

Congruence Laws

(Alpha) N ≡ N ′ if N =α N ′

(RCom) (νl1)(νl2)N ≡ (νl2)(νl1)N

(Ext) N1 ‖ (νl)N2 ≡ (νl)(N1 ‖ N2) if l 6∈ fn(N1)

(Abs) l ::ρ C ≡ l ::ρ (C |nil)

(Clone) l ::ρ C1|C2 ≡ l ::ρ C1 ‖ l ::ρ C2

(Rec) l ::ρ recX .P ≡ l ::ρ P [recX .P/X ]
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Matching Function

match(l , l) = ǫ

match(!x , l) = [l/x]

match(!X ,P) = [P/X ]

match(T1, t1) = σ1 match(T2, t2) = σ2

match( T1,T2 , t1, t2 ) = σ1 ◦ σ2
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Process Reduction Rules

(Red-Out)
ρ(u) = l ′ E [[ t ]]ρ = t ′

l ::ρ u〈t〉.P ‖ l ′ ::ρ′ nil 7−→ l ::ρ P ‖ l ′ ::ρ′ 〈t ′〉

(Red-Eval)
ρ(u) = l ′

l ::ρ eval(P2)@u.P1 ‖ l ′ ::ρ′ nil 7−→ l ::ρ P1 ‖ l ′ ::ρ′ P2

(Red-In)
ρ(u) = l ′ match(E [[ T ]]ρ, t) = σ

l ::ρ in(T )@u.P ‖ l ′ ::ρ′ 〈t〉 7−→ l ::ρ Pσ ‖ l ′ ::ρ′ nil

(Red-Read)
ρ(u) = l ′ match(E [[ T ]]ρ, t) = σ

l ::ρ read(T )@u.P ‖ l ′ ::ρ′ 〈t〉 7−→ l ::ρ Pσ ‖ l ′ ::ρ′ 〈t〉

(Red-New) l ::ρ newloc(l ′).P 7−→ (νl ′)(l ::ρ P ‖ l ′ ::ρ[l ′/self] nil)
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Nets Reduction Rules

(Red-Par)
N1 7−→ N ′

1

N1 ‖ N2 7−→ N ′
1 ‖ N2

(Red-Res)
N 7−→ N ′

(νl)N 7−→ (νl)N ′

(Red-Struct)
N ≡ M 7−→ M ′ ≡ N ′

N 7−→ N ′
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µKlaim: A core calculus for Klaim

We take away from Klaim:

distinction between logical and physical localities/addresses: No
allocation environment

higher order communication: No process in tuples

µKlaim Syntax

N ::= l :: R
∣∣ N1 ‖ N2

R ::= P
∣∣ 〈et〉

P ::= nil
∣∣ act.P

∣∣ P1 | P2

∣∣ X
∣∣ recX .P

act ::= l〈t〉
∣∣ in(T )@l

∣∣ read(T )@l
∣∣

eval(P)@l
∣∣ newloc(u)

t ::= f
∣∣ f , t where f ::= e

∣∣ l
∣∣ u

T ::= F
∣∣ F ,T where F ::= f

∣∣ ! x
∣∣ ! u
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Matching predicate

Matching µKlaim:

(M1) match(V ,V ) = [] (M2) match(! x ,V ) = [V/x]

(M3) match(l , l) = [] (M4) match(! u, l) = [l/u]

(M5)
match(f , t) = σ1 match(F ,T ) = σ2

match( (f , t) , (F ,T ) ) = σ1 ◦ σ2

Matching examples:

match((”Foo”, l), (!x , !u)) =
[
”Foo”/x , l/u

]

match((”Foo”, 5), (”Foo”, !x)) =
[
5/x

]

R. De Nicola (DSI-UNIFI) Process Algebras and Concurrent Systems Globan 2006 97 / 104



Structural congruence

(Commutativity) N1 ‖ N2 ≡ N2 ‖ N1

(Associativity) (N1 ‖ N2) ‖ N3 ≡ N1 ‖ (N2 ‖ N3)

(Absorbtion) l :: P ≡ l :: (P |nil)

(Unfolding) l :: recX .P ≡ l :: P [recX .P/X ]

(Cloning) l :: (P1|P2) ≡ l :: P1 ‖ l :: P2
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Labelled Operational Semantics

Actions and Transitions

The set of transition labels λ is: λ ::= l : act
∣∣ τ

the operational semantics of µKlaim nets is defined using relation
·−→ .

Some Rules

l1 :: l2〈t〉.P
l1:l2〈E [[ t ]]〉−−−−−−−→ l1 :: P

N1
l1:l2〈et〉−−−−→ N2

N1 ‖ l2 :: P
τ−→ N2 ‖ l2 :: P ‖ l2 :: 〈et〉

l1 :: in(T )@l2.P
l1:in(T )@l2−−−−−−→ l :: P

N1
l1:in(T )@l2−−−−−−→ N2 σ = match(T , et)

N1 ‖ l2 :: 〈et〉 τ−→ N2σ ‖ l2 :: nil
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Transition Rules - 1

l :: act.P
l :[[act]]−−−−→ l :: P (Act)

N1
l1:l2〈et〉−−−−→ N2

N1 ‖ l2 :: P
τ−→ N2 ‖ l2 :: P ‖ l2 :: 〈et〉

(Out)

N1
l1:eval(Q)@l2−−−−−−−→ N2

N1 ‖ l2 :: P
τ−→ N2 ‖ l2 :: P ‖ l2 :: Q

(Eval)

N1
l1:in(T )@l2−−−−−−→ N2 σ = match(T , et)

N1 ‖ l2 :: 〈et〉 τ−→ N2σ ‖ l2 :: nil
(In)
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Transition Rules - 2

N1
l1:read(T )@l2−−−−−−−−→ N2 σ = match(T , et)

N1 ‖ l2 :: 〈et〉 τ−→ N2σ ‖ l2 :: 〈et〉
(Read)

N1
l1:newloc(u)−−−−−−−→ N2 l 6∈ N2

N1 ‖ N2[l/u] ‖ l :: nil
(New)

N1
l :act−−→ N2

N1 ‖ N
l :act−−→ N2 ‖ N

(Par)

N1 ≡ N ′
1 N ′

1
λ−→ N ′

2 N ′
2 ≡ N2

N1
λ−→ N2

(Struct)
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Conclusions?

It is just a start! No conclusions ....

For work going on in Firenze, please visit our web site
http://music.dsi.unifi.it

Most Importantly see:
http://rap.dsi.unifi.it/tapas

Many Thanks for your attention
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