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Logical Specifications



Models, Languages, Logics
Programming models

Specify computation by means of machines
Automata
Process Calculi (CCS, π-calculi,...)
Abstract and concrete machines: partial functions, JVM, .NET

Programming languages
Specify computations by means of programming abstractions
Lambda Calculi, Process calculi, rewriting, ...
Expressions denote ... values, functions, objects, ...

Specification Logics
Specify requirements on machines by means of properties
   of states, computations, processes
   of computational artifacts (e.g., networks, messages)
What properties are interesting?



“Programming” with Properties
For design / analysis, one specifies what properties the 
system or implementation should satisfy 
Properties assert constraints on states, behavior, etc.
Some properties may be not realizable

May be contradictory
May be non computable
May be not expressible in the intended model

The meaning of a specification is a property (namely, a 
set of models).

[Spec] = { P | P ⊨ Spec }

P B Spec iff P ⊨ Spec



Specifications
Target system: nondeterministic two register machine

Set of States: S is ℕ x ℕ       Set of Conditions: C
Boot state: sI B S
Control: Set of conditional rules R ⊆ S x S x C (s → s’ if c)
Computation Step: s → s’ if (s → s’ if c) B R and c(s)
Computation C: sI = s0 → s1 → s2 → s3 → s4 →

SpecA: ∀C ∀si B C if si = (xi,yi) then xi +yi is even

Implementation I1
 sI  = (0,0)
(x,y) → (x+1,y+1)

We have I1 ⊨ SpecA (I1 satisfies SpecA)



Specifications
Target system: nondeterministic two register machine

Set of States: S is ℕ x ℕ       Set of Conditions: C
Boot state: sI B S
Control: Set of conditional rules R ⊆ S x S x C (s → s’ if c)
Computation Step: s → s’ if (s → s’ if c) B R and c(s)
Computation C: sI = s0 → s1 → s2 → s3 → s4 →

SpecA: ∀C ∀si B C if si = (xi,yi) then xi +yi is even

Implementation I2
 sI  = (1,1)
(x,y) → (x+x, y+y)
(x,y) → (x-1, y+1) if (x>0)

We also have I2 ⊨ SpecA



Specifications
Target system: nondeterministic two register machine

Set of States: S is ℕ x ℕ       Set of Conditions: C
Boot state: sI B S
Control: Set of conditional rules R ⊆ S x S x C (s → s’ if c)
Computation Step: s → s’ if (s → s’ if c) B R and c(s)
Computation C: sI = s0 → s1 → s2 → s3 → s4 →

SpecA: ∀C ∀si B C if si = (xi,yi) then xi +yi is even
SpecB: ∃C ∃sk B C if sk = (xk,yk) then yk > xk

Implementation I2
 sI  = (1,1)
(x,y) → (x+x, y+y)
(x,y) → (x-1, y+1) (if x>0)

So I2 ⊨ SpecA; I2 ⊨ SpecB; but not I1 ⊨ SpecB



“Programming” with Properties
SpecA: ∀C ∀si B C if si = (xi,yi) then xi +yi is even
SpecB: ∃C ∃sk B C if sk = (xk,yk) then yk > xk

Implementation I1
 sI  = (0,0)
(x,y) → (x+1,y+1)

Implementation I2
 sI  = (1,1)
(x,y) → (x+x, y+y)
(x,y) → (x-1, y+1) (if x>0)

SpecA ⋀ SpecB refines SpecA
SpecC: ∃C ∃sk B C sk = (xk,yk) & yk > xk & xk+yk is even
SpecA ⋀ SpecB entails SpecC

SpecB

SpecA

I1 I2



A Comparision
Operational specifications are naturally monolithic
An operational specification specifies just one model
Always realizable by definition
Good to guide software construction
Good for analysis

A logic is a language to express properties (a.k.a. 
sets of systems / programs)
Logical specifications are naturally modular
A logical specification specifies a class of models

May be not realizable
May be specialized (by refinement) 

Good for design, verification, and analysis
What logics are there ...?



From Logic to Modal Logic



Propositional Logic
Syntax

    A set A of atomic propositions (basic properties)
A, B, C ::= a B A | A ⋀ B | ¬ A | True

Semantics
The universe: a nonempty set U of individuals
A valuation:    v:A → ℘(U)

A formula A expresses a property [A]v ⊆ U

[a]v = v(a)
[A⋀B]v = [A]v ∩ [B]v
[True]v = U

[¬A]v = U \ [A]v



Propositional Logic
Syntax

    A set A of atomic propositions (basic properties)
A, B, C ::= a B A | A ⋀ B | ¬ A | True

Abreviations ...
False @ ¬True
A ⋁ B @ ¬ ( ¬A ⋀ ¬B )

A ⇒ B @ ¬A ⋁ B
Assertions (judgements; sequents)
A1, ..., An ⊢ B1, ..., Bm

Validity
valid ( A ⊢ B ) @ ∀U.∀vU.    [⋀i Ai ]v ⊆ [⋁i Bi ]v

                       ∀U.∀vU.    [¬A ⋁ B ]v =U



Propositional Logic
A Proof System (Sequent Calculus)

Soundness:      if A ⊢ B then valid ( A ⊢ B )
Completeness: if valid ( A ⊢ B ) then A ⊢ B
Decidability:      we can decide A ⊢ B

A, C ⊢ B
A ⊢ ¬C, B

A ⊢ C, B
A, ¬C ⊢ B

C, A,B ⊢ D
C, A⋀B ⊢D

C ⊢ D, A    C ⊢ D, A
C ⊢D, A⋀B

C ⊢ D
C, A ⊢D

C ⊢ D
C ⊢D, A

A ⊢ A

C, A ⊢ D
C, A, A ⊢D

C ⊢ D, A
C ⊢D, A, A



Predicate Logic
Syntax

A set V of variables (x, y, z) 
A set P of atomic predicates (p,q,r) (basic relations)

A, B, C ::= p(x,y) | A ⋀ B | ¬ A |  ∀x.A | True
Semantics
The universe: a nonempty set U of individuals
A interpretation:   I: P → ℘(U × U)
A valuation:  v: V → U

Satisfaction (a model M satisfies a formula A)

M  ⊨ A
A formula denotes (specifies) a set of models
  [A] = { I;v | I;v ⊨ A }



Predicate Logic
Semantics
The universe: a nonempty set U of individuals (a, b)
A interpretation:   I: P → ℘(U × U)
A valuation:  v: V → U

A model:  M = ( I;v )
Satisfaction
I;v ⊨ p(x,y)       iff   ( v(x), v(y) ) B I(p)

M ⊨ ¬ A           iff    not  M ⊨ A
M ⊨ A ⋀ B       iff   M ⊨ A  and  M ⊨ B
I;v ⊨ ∀x.A        iff   ∀a B U . I;v{x/a} ⊨ A

 valid ( A1, ..., An ⊢ B1, ..., Bm ) @ [⋀i Ai ] ⊆ [⋁i Bi ]



Predicate Logic
A Proof System

Soundness:      if A ⊢ B then valid ( A ⊢ B )
Completeness: if valid ( A ⊢ B ) then A ⊢ B
Undecidability:  no algorithm can decide A ⊢ B

One can use predicate logic to reason about quite a lot, 
and certainly about programs, processes, networks,...
But we aim at something more specialized.
The computer science approach: seek and analyze the 
“right” (preferably tractable) abstractions.

C, A{x/y} ⊢ D
C, ∀x.A ⊢D

C ⊢ D, A
C ⊢D, ∀x.A

(x not free in C,D)



Hoare Logic
Simple imperative programs

P  ::=  x := E | if E then P else P | while E do P
Assertions (Hoare triples)

{A} P {B}

 A, B are state formulas (predicate logic formulas)

 A is the precondition, assumed to hold before P runs

 B is the postcondition, concluded to hold after P terminates

Examples
       {x = 0} x:=x+1 { x > 0 }

       {n ≥ 0} x:=1; i:=0; while i<n do (i = i+1; x := x *i) {x = n!}

 N.B. Names in formulas (x,i,n) refer to program variables 



Hoare Logic
A set of program variables V
A state is a valuation s: V → int

Semantics of programs
Expression evaluation: [-]s maps E to [E]s

 [n]s = n ; [x]s = s(x); [E + F]s = [E]s + [F]s; etc ...

Transition relation:  go from s to r by running P:      s → rP

x:=Es   →   s{x / [E]s}

[E]s = true    s → r    r   →   p

s   →   p

while E do PP

while E do P

s   →   r      r   →   p

s   →   p
P;Q

P Q



Hoare Logic
Semantics of assertions

    valid ( {A} P {B} ) @

               ∀s. if s ⊨ A  and s → r then r ⊨ B
Proof System

    Some proof rules such as

Useful to write safety specifications
Do not ensure the program will actually do something:

If P does not terminate, then{A} P {B} is valid for any A,B
But if something happens, all will be ok (if the spec is)

P

{A ⋀ E} P {A}

{A} while E do P {A ⋀ ¬E}

A A’    {A’} P {B’}  B’ B
{A} P {B}



Modal Logic as Program Logic
Modal logics talk about structures consisting of many 
suitably related states (or “worlds”)

Each world is a “classical” model (e.g., a boolean algebra).

 e.g., s ⊨ A 
The novelty: special operators (called modalities) allowing us 
to “jump” from world to world, or quantify over worlds.

e.g., and s → r and r ⊨ A then s ⊨ [next]A
Specific modal logics may talk about time, behavior, 
space, resources, data, knowledge, necessity, etc...
“Program Logic” as a modal logic:

A, B, C ::= p(x,y) | A ⋀ B | ¬ A |  ∀x.A |  [P]A
       s ⊨ [P]A   iff   ∀r. if s → r then r ⊨ AP



Modal Logic (Classical)
Worlds

Intuition: a “world” is a state s (a boolean valuation)
Accessibility (relation between worlds)

A transition relation s → r
Intuition: for each world s, there are some “alternative” 
worlds, namely those worlds r such that s → r

Syntax
A, B, C ::= a B A | A ⋀ B | ¬ A | True | ◻A

Models M = (v, →) 
A valuation v:A → ℘(S)
    Says what holds at each world
A transition system  → 
    Says what worlds are compatible / nearby / next / ...



Modal Logic (Classical)
Model M

A valuation v:A → ℘(S)
A transition system  → 

Semantics
         s ⊨ a       iff   s B v(a) 
          s ⊨ ◻A   iff   ∀r. if s → r then r ⊨ A
         valid ( A1, ..., An ⊢ B1, ..., Bm ) @ [⋀i Ai ] ⊆ [⋁i Bi ]

Examples of (abstract) modal reasoning
valid (A) implies valid (◻A )    (Necessitation)

◻(A ⇒ B)  ⇒ (◻A ⇒ ◻B)      (Axiom K)

◻A ⇒ A                                   (Axiom T; is this sensible?)

What are the axioms? (please specify your model ...)



More Modal Logics
Linear Time Temporal Logic

Models are a time line
Amir Pnueli proposed LTL (1977) for reasoning about 
concurrent and non terminating programs such as operating 
systems.

Branching Time Temporal Logic
Models are trees, each instant may have different futures
Useful to reason about non-determinism

Computational Tree Logic
Models are trees
CTL distinguishes between “path” and “state” modalities

Process Logics
Hennessy-Milner Logics
µ-Calculus
Spatial Logics



Hennessy-Milner Logics



Hennessy-Milner Logic
A modal logic for labeled transition systems

  Labeled transition system
A set A of actions (α,β)

A set S of states
A labeled transition relation T ⊆ S × A × S

N.B. Write s → r when (s, α ,r) ∈ T

Syntax
A, B, C ::= ⋀i∈I Ai | ¬ A | 〈α〉A

Remarks
Infinitary syntax: True @ ⋀i∈∅ Ai

No propositional symbols; the logic just observes actions
Hint: HML is a modal logic of pure behavior

α



Hennessy-Milner Logic
A modal logic for labeled transition systems

  Labeled transition system
A set A of actions (α,β)

A set S of states
A labeled transition relation T ⊆ S × A × S

N.B. Write s → r when (s, α ,r) ∈ T

Syntax (finitary version)
A, B, C ::= A ⋀ B | ¬ A | 〈α〉A

Modalities 〈α〉A observe nearby states

In some α-next state A holds:        〈α〉A
In some α-next states A holds:      [α]A @ ¬ 〈α〉 ¬ A

α



Hennessy-Milner Logic
A modal logic for labeled transition systems

  Labeled transition system
A set A of actions (α,β)
A set S of states

A labeled transition relation T ⊆ S × A × S
N.B. Write s → r when (s, α ,r) ∈ T

Satisfaction
s ⊨ 〈α〉A         iff    exists r.  s → r and r ⊨ A
s ⊨ ¬ A          iff    not  s ⊨ A
s ⊨ A ⋀ B      iff   s ⊨ A  and  s ⊨ B

α

α



P → Q
(new n)P → (new n)Q

Hennessy-Milner Logic (CCS)
Calculus of Communicating Systems (Milner)

A set A of actions (α, τ) where α = n or α = n
      A set P of processes

P, Q, R ::= 0 | P |Q | α.P | (new n)P | x | rec x.P

Labeled Transition System for CCS

We interpret Hennessy-Milner Logic on CCS

α
α

α.P → Pα P → Q    P’ → Q’
P |P’ → Q |Q’

α α
τ

P → Q
P |R → Q |R

α
α

P{x / rec x.P} → Q
rec x.P → Qα

α
(n not in α)



Hennessy-Milner Logic (CCS)
P ⊨ 〈n〉True

P can perform an output on n
P ⊨ [n]False

P refuses to perform an input on n
P ⊨ 〈n〉[n]False

P can input on n, and then refuse to perform an input on n
P ⊨ 〈n〉True ⋀ [n][τ]False

P can input on n, but after any such input will get stuck
P ⊨ 〈n〉〈m〉True ⋀ 〈n〉[m]False

P can do n and then do m, but also do n and after refuse m
P ⊨ [n]〈m〉True ⋀ [n][m]False

P can do m after any n, but also refuse m after any n
So, P cannot really do n



Hennessy-Milner Logic
Other useful modalities

All definable in the infinitary logic (how?)

A, B, C ::= A ⋀ B | ¬ A | 〈S〉A | 〈*〉A | 〈-S〉A
Satisfaction
s ⊨ 〈S〉A         iff    exists r, α ∈ S and s → r and r ⊨ A
s ⊨ 〈*〉A         iff    exists r, β.  s → r and r ⊨ A
s ⊨ 〈-S〉A       iff    exists r, α ∉ S and s → r and r ⊨ A
s ⊨ ¬ A          iff    not  s ⊨ A
s ⊨ A ⋀ B      iff    s ⊨ A  and  s ⊨ B

α

β

α



Characterize the Behavior
Find a set of HML formulas that precisely characterize 
the labeled transition system T below:

The specification thus obtained is usually called a 
“characteristic formula” of T

n

n

a

b

a
n

T @



What can we say about?
Express in HML some properties of the processes

P1 @ n.(n.0 | n.0 )

P2 @ rec x. n.( n.0 | x  )

P3 @ (new n) ( P1 | P2 )



Can we find a model of?
Try to find CCS models for the HML formulas below

F @   〈 n 〉 〈 m 〉True ⋀ 〈 n 〉 [ m ]False

G @   〈 n 〉 〈 n 〉True ⋀ [ τ ] [ * ]False

H @   [-{n, τ}]False ⋀ 〈 τ 〉 〈 n 〉True



Can we distinguish by HML properties ?

a

a b

b
cT1 @

a b
cT2 @



Can we distinguish by HML properties ?

a

a

b

T3 @
c

T4 @
a

b

c



Separation and Expressiveness
Indistinguishability in a general modal logic L

  States s and r are indistinguishable in L if
∀ A. s ⊨ A  iff if r ⊨ A

We define logical equivalence of states, noted =L, by
s  =L  r      @  ∀ A. s ⊨ A  iff if r ⊨ A

Logical equivalence is an equivalence relation on S
A logic L is finer (has more separation power) than a 
logic L’ if =L ⊆ =L’

Given a property P ⊆ S, we say P is expressible in L if 
there is a formula A of L such that [A ] = P
A logic L is more expressive than a logic L’ if every 
property expressive in L’ may be also expressed in L



Bisimulation
Caracterizes coinductively indistinguishable states
A binary relation B ⊆ S × S is a bisimulation if 
for all (s,r) ∈ B
if s → s’ then there is r’ such that r → r’ and (s’,r’) ∈ B
if r → r’ then there is s’ such that s → s’ and (s’,r’) ∈ B
Bisimulations are equivalence relations
Bisimulations are closed under arbitrary unions
Bisimilarity ~ is the greatest bisimulation

~ = ⋃{ B | B is a bisimulation }
We may define similar notions for most modal models 
(Kripke  models); e.g., we may also want to observe 
state valuations, etc, ...

α α
α α



Separation Power of HML
Theorem

If P ~ Q then P =L Q
    This follows from
Lemma

For any formula A, if P ⊨ A and P~ Q then Q ⊨ A
     Proof: induction on the structure of A.
HML does not distinguish between bisimilar states
N.B. Analogous results should hold for most modal 
logics, given a suitable notion of bisimulation.
HML is extensional with relation to pure behaviors.
Some interesting properties of processes are not 
extensional (deadlock, stuckness, race freeness).



Separation Power of HML
Theorem

If P =L Q then P ~ Q
    This follows from
Lemma

=L is a strong bisimulation

     Proof: it may be more easy to show the converse:

If P ≁ Q then P ≠L Q

HML can only observe processes up to a finite depth
If P ⊨ A and P ~k Q then Q ⊨ A for k ≥ size(A)
So, we may have P ~k Q and P ≁ Q.
N.B. If P ≁ Q then there is k such that P ≁k Q.



The µ-Calculus



dead @ [*]False
〈 a 〉dead ⋀ 〈 b 〉True
〈 a 〉dead ⋀ 〈 b 〉(〈 a 〉dead ⋀ 〈 b 〉True)
〈 a 〉dead ⋀ 〈 b 〉(〈 a 〉dead ⋀ 〈 b 〉(〈 a 〉dead ⋀ 〈 b 〉 ... ))
 νX.(〈 a 〉dead ⋀ 〈 b 〉X)

Specifying an infinite amount of information

a

b

L @



The µ-Calculus (Kozen)
Syntax (extension of HML with fixed points operator)

           A set V of propositional variables (x, y, z) 

A, B, C ::= A ⋀ B | ¬A | 〈α〉A | νX.A | X ( ∈ V)
Satisfaction

    A valuation:     v: V → ℘(S) 
s ⊨v 〈α〉A         iff    exists r. s → r and r ⊨v A
s ⊨v ¬A           iff    not  s ⊨v A
s ⊨v A ⋀ B      iff   s ⊨v A  and  s ⊨v B
s ⊨v X             iff   s ∈ v(X) 
s ⊨v νX.A       iff   s ∈ gfp( λP. [A ]v[X/P])
[νX.A]v           =   ∪{P ⊆ S | P  ⊆ [A ]v[X/P] } 

α



The µ-Calculus
Least fixed point
µX.A @ ¬νX.¬A{X/¬X}

Always A (under the actions in S)
inv A @ νX.( A ⋀ [S]X )
useful to specify invariant properties of systems 

Possibly A (after some actions in S)
poss A @ µX.( A ⋀ 〈S〉X )
N.B. poss A = ¬ inv ¬A
A until B (under the actions in S)
A until B @ νX.( B ⋁ ( A ⋀ [S]X ))



The µ-Calculus
Eventually A (after some actions in S)
ev A @ µX.( A ⋀ 〈S〉True ⋀ [S]X)
 A suntil B (under the actions in S)
A suntil B @ νX.( B ⋁ ( A ⋀ 〈S〉True ⋀ [S]X ))

A process is insistent for action s if in every infinite 
computation sequence, s is executed infinitely often.

   insistent s @
A process is unfair w.r.t. the action s if it may always 
perform s, but in some possible infinite computation 
sequence it never actually gets to perform s.

   unfair s @



Spatial Logics for Concurrency



Reasoning about Distributed Systems
Traditional focus

Abstract from irrelevant implementation details
Study extensional models of processes as pure behaviors

A focus on Distributed Systems
Systems where behavior is spatially distributed among sites
Processes behave in time, but site and move in space
Structure of space may change during computation
Non-behavioral aspects just cannot be abstracted way

E.g., geometry, topology, identity, naming, …
Several kinds of spatial structure …
Several possibilities for space / behaviour interaction …

Operational Techniques
Spatial properties also useful for compositional reasoning
Spatial logics can also provide a basis for type systems



Example: Resource Discovery

A Distributed Directory Protocol

B

E

F

C D

A



A Distributed Directory Protocol

Example: Resource Discovery

B

E

F

C D

A
sites



A Distributed Directory Protocol

Example: Resource Discovery

B

E

F

C D

A

resource



“The connection structure is a spanning tree”
N.B.: Key for proving correctness of the protocol.

Spatial Properties

B

E

F

C D

A



“Some link failed; the network is partitioned”

Spatial Properties

B

E

F

C D

A



“Some site crashed; the network is partitioned”

Spatial - Behavioral Properties

B

E

F

D

A



“A new peer joined in”

Spatial - Behavioral Properties

B

E

F

C D

A
G



“It is always possible for any site to eventually acquire 
exclusive access to the resource”

Spatial - Behavioral Properties

B

E

F

C D

A



Concurrency (spatial) monoid <Procs, 0, | >
Spatial identity is (close to) structural congruence
Name Restriction (νn)P

Basic Spatial Structure

| | | | |B E FC DA



Directory @ (ν obj ) (A | B | C | D | E | F)

Basic Spatial Structure

| | | | |B E FC DA



Names identify resources in a (spatial) scope.

Uses of names may be either public or hidden:

n ∈ fn(P)   if and only if  ¬∃Q. P 7 (νn)Q

A name always splits a system in two parts

Hidden names can induce spatial bonds:

Names and Spatial Structure

ourour

yoursmine



Pure names, as construed by Roger Needham [N89], 
abstract general purpose atomic data. 

Names name resources, e.g., values, communication 
channels, secret keys, nonces, in a (spatial) scope.

Uses of names may be either public or hidden:

n ∈ fn(P)   if and only if  ¬∃Q. P 7 (νn)Q

Hidden names may induce spatial bonds:

Names and Spatial Structure

BA



Concurrency (spatial) monoid <Procs, 0, | >
Tree structure (cf., Mobile Ambients) : n[ P ]
Name Restriction: (νn)P

Bigraphical Structure (Milner)

Nested Spatial Structure

| |E FC D| BA

uk pt
ac



Properties of Distributed Models
Temporal & Hennessy-Milner Logics 

Modal logics with modalities for observing temporal structure
Useful for specifying general safety and liveness properties
Do not distinguish between bisimilar processes

Spatial Logics [CM98,CG00,CC02-04,C04]
Modal logics with modalities for observing spatial structure

Each “world” is a structured space
“Space” is seen as a kind of resource (logics can separate, count)

Spatial Observations
Not invariant under traditional behavioral equivalences

n.0 + m.0 =L n.0 | m.0
Intensionality? (more later)

Invariant under a natural notion of spatial equivalence
≈ structural congruence [San01]
≈ extended structural congruence [Cai04]



n,m,p ∈ Names
P,Q ∈ Procs ::=  Processes
  0           Void
  P | Q           Composition
  (νn)P         Restriction
  n!(m).P        Output
  n?(m).P        Input
  Σ αi.Pi          Choice
  (rec X[x].P)[m]      Recursion
      X[m]         Variable

The π-Calculus

Reduction ( P → Q ) :
m!(n).P | m?(p).Q → P | Q{p/n}
P → Q  implies  (νn)P → (νn)Q
P → Q  implies  P | R → Q | R
P 7 P’, P’→Q’, Q’ 7 Q implies P → Q

Spatial Congruence:

P | 0 7 P
P | Q 7 Q | P
(P | Q) | R 7 P | (Q | R)

(νn)0 7 0

(νn)(νm) P 7 (νm)(νn)P
(νn)(P | Q) 7 P | (νn)Q
  if n C fn(P)
(rec X[x].P)[m] 7 
P {x / m}{X/ (rec X[x].P)} 



n,m,p ∈ Names
P,Q ∈ Procs ::=  Processes
  0           Void
  P | Q           Composition
  (νn)P         Restriction
  n!(m).P        Output
  n?(m).P        Input
  Σ αi.Pi          Choice
  (rec X[x].P)[m]      Recursion
      X[m]         Variable

The π-Calculus

Interaction ( P → Q ) :
m, n C p  
      (νp)(n!(m).Q | P) → (νp)(Q | P)
m, n C p
(νp)(Q | n?(q).P) → (νp)(Q|P{q←m})

Spatial Congruence:

P | 0 7 P
P | Q 7 Q | P
(P | Q) | R 7 P | (Q | R)

(νn)0 7 0

(νn)(νm) P 7 (νm)(νn)P
(νn)(P | Q) 7 P | (νn)Q
  if n C fn(P)
(rec X[x].P)[m] 7 
P {x / m}{X/ (rec X[x].P)} 

n!(m)

n?(m)



Behavioral Observations
Processes behave by communicating:  

           n!(msg).Q | n?(x).P   →   Q | P{ x/msg }

Internal

 P    →    Q          α ::= n!(m) | n?(m) | τ

Output            Hennessy-Milner like modalities: 

 P    →    Q           〈α〉 A 

Input              P ⊨ 〈α〉 A iff P → Q and Q ⊨A

 P    →    Q   

τ

n!( m )

n?( m )

α

τ



Spatial Observations
Composition and restriction are interpreted as spatial rather 
than dynamic operations. E.g.,
Any process P can be decomposed in several ways into a 
pair ( Q, R ) such that the spatial identity holds:

                                    P 7 Q | R

                    7 “spatial congruence” 

    P   →   (Q, R)           P | 0 7 P

                     P | Q 7 Q | P
                    (P | Q) | R 7 P | (Q | R)

||



Spatial Observations
Composition and restriction are interpreted as spatial rather 
than dynamic operations. E.g.,
Any process P can be decomposed in several ways into a 
pair ( n, Q ) such that the spatial identity holds:

P 7 (νn)Q

                    7 “spatial congruence” 

    P   →   (n, Q)             (νn)0 7 0
                     (νn)(νm) P 7 (νm)(νn)P

                    (νn)(P | Q) 7 P | (νn)Q

ν



π-Calculus System Observations
Composition

 P    →    Q, R   

Restriction
 P    →    n, Q 

Internal Action
 P    →    Q 

Input Action
 P    →    Q 

Output Action
 P    →    Q 

τ

n!( m )

n?( m )

ν

||

 n,m ∈ Names
 

 α ∈ Actions ::= 

   τ         Internal
   n?( m )     Input Action
   n! ( m )     Output Action



A core Spatial-Behavioral Logic

  A ∧ B, ¬A, ...      Boolean Operators       P ⊨ A
  0           Void

  A | B        Composition       

  Hx.A         Hidden Name Quantifier     

  @n         Free Name Occurrence

      m = n                 Name Equality

  〈α〉A           Action (α ∈ Actions)

  ∀x.A           Universal Quantifier


 
 νX.A         Recursion (Greatest Fixed Point)



Semantics
            

  P ⊨ 0           iff   P 7 0
         
  P ⊨ A | B  iff    ∃Q, R. P 7 Q | R and Q ⊨ A  and  R ⊨ B 
                 

  P ⊨ Hx.A      iff  ∃Q, n # A. P 7 (νn)Q and Q ⊨ A{x/n}
         
  P ⊨ @n         iff  n ∈ fn(P) 

  P ⊨ 〈 α 〉 A   iff  P →  Q and  Q ⊨ A
 

α



Semantics
  [True ]v   @  Procs               
  [A ∧ B]v   @  [A ] v ∩ [B]v            
  [¬A ]v    @  Procs \ [A] v
 [m = n]v   @  if m = n then Procs else F   
 [0]v     @  { P | P 7 0 }   
 [A | B]v   @  { P | E Q,R. P 7 Q | R ∧ Q ∈ [A]v  ∧ R ∈ [B]v }
 [@n]v      @ { P |  n ∈ fn(P) }
 [Hx.A]v   @  { P |  E Q. P 7 (νn)Q ∧ nCfnv(A) ∧ Q ∈ [A]v }
 [〈α〉A]v    @  { P |  EQ. P → Q ∧ Q ∈ [A]v }
 [∀x.A]v    @  ∩ n ∈ Names. [A{x/n}]v
 [X]v  	

	

 	

 	

 	

 @  v(X)
 [νX.A]v    @   �{ ψ ⊆ Procs | ψ ⊆ [A]v[X ← ψ] }

α



Simple Examples
A holds somewhere:
?A 
 
 @ 
 A | True

A holds everywhere:
!A 
 
 @ 
 ¬ (¬ A | True)

Has exactly one thread:
1  
 
 
 @ 
 ¬ 0 ∧ ¬ ( ¬ 0 | ¬ 0 )
         ? (1 ∧ A)           A holds of some thread

A* 

    @   ! (1 ⇒ A)         A holds of every thread
Arithmetic constraints on the number of threads

     gt(n)  
   @ 


After an arbitrary step:
 A      @  [ τ ]A ∨ [ ? ]A ∨ [ ! ]A 

Always in the future:
 * A   @   νX. ( A ∧ X )



Simple Examples
Uses an hidden name x, that satisfies P(x) 
Hx. ( P(x) ∧ ©x )         N.B.: lx.A @ Hx. (A ∧ ¬ © x )

Creating bonds through hidden names:
Let P @ ( (νn) m!(n).n?(p).Q ) | m?(q).q!(q).R 

Then  P ⊨ (¬ 0  | ¬ 0  ) ∧ 〈 τ 〉 1

and    P ⊨ N Hx.( © x  | © x )

Keeps no secrets:
Public   @  ¬ Hx.© x

A holds inside (insider knows all secrets, but does not tell):
inside(A)   @ 
 µX. ((Public ∧ A) ∨ Hx. (© x ∧ X))


 

 
 
 
 
 
 
 N.B.: P ⊨ ¬ inside(A) iff P ⊨ inside(¬A)

NA  @ 〈 τ 〉A 



The Freshness Quantifier (cf. Gabbay-Pitts)

P ⊨v lx.A   iff ∀n∈N. nCfnv(P,A) implies P ⊨v A{x/n}

(A property true of some fresh name is true of any fresh name)

The freshness quantifier lx.A is defined such that a process 
P satisfies lx.A if and only if P satisfies A{x/n} for some 
name n fresh in P and in A.  

Some properties of the fresh name quantifier:

P ⊨v lx.A  iff  E n∈N. nCfnv(P, A) and P ⊨v A{x/n}

∀x.A h lx.A h Ex.A

¬ lx.A i h lx. ¬A
lx. A | lx.B i h lx.(A | B)

lx.NA i h Nlx.A



Some Properties of Hx.A
“Irrelevant”  hidden name quantification reduces to 
freshness quantification:

 Hx.(A ∧¬©x ) i h lx. A

Logical characterisations of scope extrusion:

 (Hx.A) | B i h Hx. (A | B ∧ ¬©x )
 (Hx.A) | (∀x.B) h Hx.(A | B)

Some “inversion” principles:

 Hx.NA i h NHx.A
 (Hx.A) ∧ (Hx.B) i h Hx.(A∧B) ∨ Hx.Hy.(A∧B{x/y})



Resource Control and Secrecy
Spatial implication

 A ▶ B 
@ 
 (¬ A ) | | B

Unique handling of requests
* ( inside ¬ E y. (E x. 〈 y?(x) 〉True | E x. 〈 y?(x) 〉True )) ) 

Resource control (race freedom):
* ( inside ¬ E y. ( E x. 〈 y!(x) 〉True  | 

                                                       E x. 〈 y!(x) 〉True |  E x. 〈 y?(x) 〉True )) ) 

Secrecy:

* ( ¬ E y. H x.( A(x) ∧ 〈 y!(x) 〉True ) )

A(x) @ E y. x(y).True  (never leaks private resources)



“It is always possible for any site to eventually acquire 
exclusive access to the resource”

Spatial - Behavioral Properties



“It is always possible for any site to eventually acquire 
exclusive access to the resource”

 beh(n)       @  ...

 node(n)      @  1 ∧ beh(n)

 owns(n, x)     @  node(n) ∧ © x 

 exclusive(n, x)  @  ( owns(n, x) | ¬© x ) 

 live @ Hx. inside( obj(x) | 
                            ∀n. ?node(n) ⇒ eventually (exclusive(n, x)))

 Safety       @  always ( live )

Spatial - Behavioral Properties



Adjunct Operators
Minimal contextual observations (cf., labeled transitions) are 
not that easy to define in general.

The composition adjunct operator, introduced in the Ambient 
Logic [CG00], allows context dependent properties to be 
defined in a general way (cf., barbed equivalence).

The composition adjunct (guarantee) 

   A | B        Composition       

   A ▷ B       Guarantee        

   P ⊨ A ▷ B   iff   ∀Q. if  Q ⊨ A  then  P | Q ⊨ B
The logical equivalence induced by a spatial logic containing 
just the adjunct operators (and not the “basic” spatial 
operators) is strong bisimilarity [H04] (on finite processes).



Specification of a Simple Protocol

By unfolding we get:
   Server i h lx. Auth(x) ▷N ( Handler(x) | Server )

We can then prove:
   Server | Client h N ( Server | Hx.(Handler(x) | Request(x)))

   Client @ Hx. ( Auth(x) | Request(x) )

   Server @ νY. lx. Auth(x) ▷ N ( Handler(x) | Y )

   Auth(x) @ ... specification of the authentication protocol … 



Expressiveness of Adjunct
Adjunct allows an internal definition of validity [CG00]

 valid(A) @ ( ¬A ) ▷ False         satisfiable(A)  @ A ▷ True

 We have:   P ⊨ valid(A)  iff   ∀Q. Q ⊨ A
Validity and model-checking of static quantifier-free spatial 
logics with adjunct is decidable [CYOH01,CCG03]. 

Composition adjunct does not add to the expressiveness of 
static quantifier free spatial logics [L03] (it does in most other 
fragments). 

Validity and model-checking of spatial logics with adjunct and 
existential name quantifier is undecidable [CT02].
Validity and model-checking of spatial logics with adjunct and 
hidden name quantifier is undecidable [CG04].

Validity and model-checking of spatial logics with adjunct and 
nextstep is undecidable [CL04] (can encode first-order logic).



Behavioral vs. Spatial Observations
Basic behavioral and spatial observations look quite 
elementary. However, the combination of behavioral 
and spatial properties turns out to be very expressive. 

Behavioral observations are definable in pure spatial 
logics, exploiting the adjunct [S01,CC01,HLS03,H04].

Logics with spatial observations and adjunct:
More convenient for compositional reasoning.
Model and validity-checking is undecidable and incomplete.

Logics with behavioral and spatial observations:
Still expressive...
Model-checking is decidable and complete [C04].



Model-Checking



Model-Checking
Main technical issues:

Handling name creation and freshness     
Recursion in the presence of freshness
Operations on Processes w.r.t. structural congruence 

Decidability of Structural Congruence.
For all processes P and Q, we can decide whether Q 7 P. 
For any finite set of names M, we can decide whether Q 7M P. 

Key to the Completeness Proof.

A coinductive characterization of extended structural congruence 
(cf. spatial bisimulation).

A “unique solution” theorem for systems of process equations 
modulo structural congruence (cf. Amadio-Cardelli).



Model-Checker
MCheck: Procs × SVal  × Φ → bool

MCheck(P, v, A )assumes Dom(v) ⊆ fpv(A)

MCheck(P, v, T) @ true

MCheck(P, v, ¬A) @  not MCheck(P, v, A)

MCheck(P, v, A∧B) @  MCheck(P, v, A) & MCheck(P,v,B) 

MCheck(P, v, 0) @  Check(P 7 0)

MCheck(P, v, A | B) @ Exists 〈Q,R〉 ∈ Comp(P).

               MCheck(Q, v, A) & MCheck(R, v,B) 

MCheck(P, v, @n) @ Check(Res(P, n) = ∅) 

MCheck(P, v, 〈α〉A) @ Exists Q ∈ Comm(P,α).MCheck(Q,v,A)



Model-Checking: Process Observations
Composition. For every process P we can compute a finite set 
of pairs of processes Comp(P) such that:

  〈Q,R〉 ∈Comp(P) implies P 7 Q | R 

  P 7 Q | R implies E 〈Q,R〉 B Comp(P). Q 7 Q’ ∧ R 7 R’
N.B.: Comp(P) is finite because we don’t have !P 7 !P | P. 

Name Restriction. For every process P and name n we can 
compute a finite set of processes Res(P,n) such that:

   Q ∈ Res(P,n) implies P 7 (νn)Q 

   P 7 (νn)Q  implies E R B Res(P,n). R 7 Q
N.B.: Res(P,n) = F if and only if n B fn(P) 

Commitment. For every process P and action α we can 
compute a finite set of processes Comm(P,α) such that:

   Q ∈ Comm(P,α) implies P → Q 

   P → Q  implies E  RBComm(P,α). R 7 Q

α

α



Model-Checking: Syntactic Valuations 
Syntactic Valuation.
A syntactic valuation (v ∈ SVal ) is a sequence

[X1 → (S1, A1)] … [Xn → (Sn,An)] 

of assignments such that: 
  Each Xi is a propositional variable.

  Each Ai is a fixpoint formula of the form νXi.Bi.

  fpv(Ai) ⊆ { X1, …, Xi-1 }

  Each Si is a finite set of processes.

N.B.: Each Si approximates the denotation of the formula Ai.
Free Names of formula A under syntactic valuation v.  

  fsv(A) @ 1 { fsv(B) | v(X) =(S, B) ∧ X ∈ fpv(A) } ∪  fn(A)

  c.f.,  fnv(A)   @ 1{ supp(v(X)) | X ∈ fpv(A) } ∪  fn(A)



Model-Checker

MCheck(P, v, ∀x.A) @ 

  let M = fsv(∀x.A) ∪  fn(P) 

    in Forall n B M ∪ {  fresh(M) }. MCheck(P, v, A{x/n})

MCheck(P, v, Hx.A) @  

      let n = fresh(fsv(Hx.A)) and Q B Res(P,n)

    in MCheck(Q, v, A{x/n})

N.B.  fresh(M) picks some name out of the finite set M.
N.B. Any fresh(-) function can be used (e.g., ad-hoc gensym).

MCheck: Procs × SVal  × Φ → bool

MCheck(P, v, A)assumes Dom(v) ⊆ fpv(A)



Model-Checker

MCheck(P, v, νX.A ) @  MCheck(P, v[ X→ ({P}, νX.A)], A)

MCheck(P, v, X) @  

         if In(P,v,X)then true

     else let (S, νX.G) = v(X) 

             in MCheck(P, v[ X→ (S ∪{P}, νX.G)], G)

In(P,v,X) @ let (S, F) = v(X)

             and M = fsv(F) 

           in Exists Q B S.Q 7M P

MCheck: Procs × SVal  × Φ → bool

MCheck(P, v, A)assumes Dom(v) ⊆ fpv(A)



Soundness of the Model-Checker
Semantic valuation. For any (syntactic) valuation v = w[X → (S, νX.A)] we 

define a corresponding (semantic) valuation v* by letting

 v*(X) @ Gfix( λU. Clos(S, M) ∪ [A]w*[ X←U ] ) 

wherever v(X) = (S, νX.A) and M = fsv(νX.A)

Soundness.  If MCheck(P, v, A )= true  then P B [A]v*

    If MCheck(P, v, A )= false then P C [A]v* 

Key to the Proof. 
Support & Closure.
 supp( [A]v* ) ⊆  fnv*( A ) ⊆  fsv( A ) 
 If P B [A]v  and fnv( A ) ⊆ M and P 7M Q then Q B [A]v 

Kozen-Winskel. 
 Define the mapping φ such that φ(S) @ [A]v[X← S ] . Then:
 For all ψ ⊆ Procs, ψ ⊆ Gfix(φ) iff ψ ⊆ φ(Gfix(λ S.φ (ψ ∪ S))) 



Completeness of the Model-Checker

Bounded. A process P is bounded if for every finite set of 
names M, the set of equivalence classes Reach(P) / 7M is finite.
N.B.: All recursion-free processes are bounded.
All finite-control processes are bounded.
It is not the case that every terminating process is bounded.

Completeness & Decidability. 
If P is bounded and P B [A]v* then MCheck(P, v, A )= true

Reachability. 
P B Reach(P)
P B Reach(P), Q B Com(P,α) ⇒ Q B Reach(P)
P B Reach(P), 〈Q,R〉 B Comp(P) ⇒  Q, R B Reach(P)
P B Reach(P), Q B Res(P,n) ⇒ Q B Reach(P)



The Spatial Logic Model Checker [VC04,05,06]
Developed in UNLisbon, based on the techniques described 
above [Cai04] (complete for “bounded” processes).

On-the-fly state-space generation.
Ocaml implementation (available in source form).

Supports the full π-calculus with parametric recursion.

Supports a full adjunct-free logic with parametric recursion.

Version 1.1 is available on the web: 
   http://ctp.di.fct.unl.pt/SLMC/

You may find some worked out examples there.



Expressiveness and Intensionality



Degrees of Observational Power
The logical equivalence induced by spatial logics is quite 
sensitive to the presence of particular process operators, 
logical operators, and to the presentation of structural 
congruence. E.g.,

Sangiorgi has shown, in seminal work [San01], that for the ambient logic 
and finite public ambient calculus, =L coincides with 7 (intensionality).
If we consider the choice-free finite π-calculus and the core spatial logic, 
we also obtain 7 = =L.
However, if we add choice or recursion, then we have 7 ⊂ =L. 
In a certain distributed calculus (below), if the semantics is crafted so 
that a single site may fail (at each reduction step) instead of an arbitrary 
subsystem, then strong bisimilarity collapses to spatial bisimilarity.

It is then important to study “principled” spatial models and 
spatial logics, for which logical equivalence coincides with 
isomorphism of (the intended / observable) spatial structure.



Characterisation of =L in the π-calculus
Logical Equivalence of Processes (=L )

P =L Q   @   ∀A. ( P ⊨ A iff Q ⊨ A )

Axiomatization of logical equivalence on the full pi-calculus 
with choice and recursion [Cai04]:

 =L is the least congruence relation 7ε on processes such that:

   P 7 Q implies P 7ε Q

   P + P 7ε P

   P 7ε Q{Y / (x)P} implies P 7ε (rec Y[x].Q)[x]

 We have:    Both 7ε and =L are decidable.

 We have:   7   ⊂  =L   ⊂  ~ (strict inclusions)

cf. idempotence of ~
co-induction



Spatial Bisimulation (π-calculus)
Caracterizes indistinguishable states (coinductively)
A binary relation B ⊆ P × P is a spatial bisimulation if 
for all (s,r) ∈ B
if s → s’ then there is r’ s.t. r → r’ and (s’,r’) ∈ B
     (and conversely)
if s 7 0 then r 7 0
     (and conversely)
if s 7 p | q for some p,q then there are u,v s.t. r 7 u | v
                                 and (p,u) ∈ B and (p,u) ∈ B 
     (and conversely)
if s 7 (νn)p for some p,n exists u s.t. r 7 (νn)u and (p,u) ∈ B 
     (and conversely)
Spatial bisimilarity ~s : the greatest spatial bisimulation

~s0 = ⋃{ B | B is a spatial bisimulation }

α α



Spatial Bisimulation (π-calculus)
We have

n!() | m!() ≁s n!().m!()+m!().n!()
  although

n!() | m!() ~ n!().m!()+m!().n!()

 (cf. “true concurrency” semantics)
We have
0 ≁s (νn)n!()

  although
0 ~ (νn)n!()

 (~s distinguishes deadlock from proper termination)
If P,Q are sequential (no parallel composition) and 
public (no restricted names) then P ~ Q implies P ~s Q



In general, we may expect spatial observations, as 
captured by a spatial logic SL, to induce a degree of 
intensionality, in the sense that logical equivalence is 
strictly finer than behavioral equivalence.
However, purely behavioral equivalences in process 
calculi with spatial constructs (e.g., mobile ambients) 
are already fairly sensitive to system properties 
usually considered “intensional”, such as arithmetical 
constraints in the number of sites, etc ...
For example, in Sangiorgi [S01] has shown that for 
the public ambient calculus and ambient logic,

7  (=)  =SL  (⊂)  ≈ 
  But how far is =SL from ~ (and ≈)?  
  There are natural models where =SL  (=)  ≈

 

Extensionality in Spatial Observations



A minimal distributed model
A set A of actions (α, τ) where α = n or α = n

      A set P of processes

P, Q, R ::= nil | P |Q | α.P | go.P
      A set N of networks

N, M, S ::= 0 | [ P ] | M | N
Structural congruence 7

   P | nil 7 P                                    N | 0 7 N
   P | Q 7 Q | P                               N | M 7 M | N
  (P | Q) | R 7 P | (Q | R)             (N | M) | S 7 N | (M | S)

 

Extensionality in Spatial Observations

P 7 Q
[ P ] 7 [ Q ]



A minimal distributed model
A set A of actions (α, τ) where α = n or α = n

      A set P of processes

P, Q, R ::= nil | P |Q | α.P | go.P
      A set N of networks

N, M, S ::= 0 | [ P ] | M | N

Reduction →

Extensionality in Spatial Observations

M → N
M |S → N |S

[ α.P | α.Q | R ] → [ P | Q | R ]
[ τ.P | R ] → [ P | R ]
[ go.P | R ] | [ Q ] → [ R ] | [ P | Q ]
[ P ] | N → 0

M7M’  M’ →N’  N’7N
M → N



A minimal distributed model
A set A of actions (α, τ) where α = n or α = n

      A set P of processes

P, Q, R ::= nil | P |Q | α.P | go.P
      A set N of networks

N, M, S ::= 0 | [ P ] | M | N

Reduction →

Extensionality in Spatial Observations

M → N
M |S → N |S

[ α.P | α.Q | R ] → [ P | Q | R ]
[ τ.P | R ] → [ P | R ]
[ go.P | R ] | [ Q ] → [ R ] | [ P | Q ]
[ P ] | N → 0

M7M’  M’ →N’  N’7N
M → Nmigration

failure



A minimal distributed model
A set A of actions (α, τ) where α = n or α = n

      A set P of processes

P, Q, R ::= nil | P |Q | α.P | go.P
      A set N of networks

N, M, S ::= 0 | [ P ] | M | N

Barb observation

We then pick observational equivalence for networks
(undistinguishability) to be strong reduction barbed 
congruence ≃ defined in the standard way.

Extensionality in Spatial Observations

[ α.P | Q ] ↓ α



A minimal distributed model
A set A of actions (α, τ) where α = n or α = n

      A set P of processes

P, Q, R ::= nil | P |Q | α.P | go.P
      A set N of networks

N, M, S ::= 0 | [ P ] | M | N

Labels
  λ ::= τ | α | α | [α]

Labeled observations →

Extensionality in Spatial Observations

[ α.P | Q ] → [ P | Q ]α
[ α.P | Q ] → [ P | Q ]α

N  → N | [ α.nil ][α]

λ



Minimal Spatial Logic

A, B, C ::= True | A ⋀ B | ¬A | 0 | A |B | 〈λ〉A

Theorem (Characterization) [CaiVie06]

M ~ N if and only if M =L N

Theorem (Minimality)
In the model considered, no proper fragment of the minimal 
spatial logic preserves its separation power.

Moral
Spatial observations are not necessarily intensional or arbitrary. 
In distributed systems, computational contexts can already “see” 
some spatial structure, due to migration, failures, differences in 
communication latency, and other phenomena ...

Extensionality in Spatial Observations



Proof Systems for Spatial Logics



A Proof System for Spatial Logic
We define a labeled sequent calculus where labels denote 
π-calculus processes and accessibility is reduction: 

〈 S 〉 u1 : A1, …, un : An ⊢ v1 : B1, …, vm : Bm

Ai, Bj are formulas 
ui, vj, labels are indexes, elements of

the term π-algebra P = 'N, I, 0, |, ν, ↔N , ↔I ( over process 
variables X, where N are name terms, and I are process terms.
S is a finite set of constraints, describing the “current world”
Constraints are either:
Equations u = v between indexes (to handle spatial structure)
Distinctions n #  m               (to handle freshness)
Reductions u → v                       (to handle dynamics)



Closure axioms for constraint sets, e.g.,

Propositional Rules, e.g.:

Spatial Rules, e.g.:

World Rules, e.g.: 

Freshness Rules, e.g.:

A Proof System for Spatial Logic

'S( Γ ⊢ u:A ∧ B, Δ
'S( Γ ⊢ u:A, Δ    'S( Γ ⊢ u:B, Δ

(∧ R)

'S( Γ, u:A ∧ B ⊢ Δ
'S( Γ, u:A,  u:B ⊢ Δ

(∧ L)

'S( Γ, u : A | B ⊢ Δ
'S, u M X |Y ( Γ, X : A, Y : B ⊢ Δ

( | L)  X ,Y  not free in the conclusion

'S( Γ ⊢ u:A | B, Δ
'S( Γ ⊢ v:A, Δ 'S( Γ ⊢ t:B, Δ  u MS v|t

( | R)

'S( Γ ⊢ Δ
' S, u M 0( Γ ⊢ Δ   u|v MS 0

'S( Γ ⊢ Δ
'S, x # N, u M (νx)Y ( Γ ⊢ Δ

(#) Y, x not free in the conclusion

(νn)( u| (νn)v )  MS  ((νn)u) | (νn)v         n #  p, m # p ⇒ (m↔n)p MS p



A Simple Proof

5 ' Z M X |Y, Z M 0, X M 0 ( X : A, Y : B ⊢ Z : A (Id) since z = x 

4 ' Z M X |Y, Z M 0 ( X : A, Y : B ⊢ Z : A 5, (S | 0) since x | y = 0 

3 ' Z M X |Y ( X : A, Y : B, Z : 0 ⊢ Z : A 4, (0 L)

2 ' ( Z : A | B, Z : 0 ⊢ Z : A 3, (| L)

1 ' ( Z : (A | B) ∧ 0 ⊢ Z : A 2, (∧ L) 

' S ( Γ, u : A | B ⊢ Δ
' S, u M X |Y ( Γ, X : A, Y : B ⊢ Δ

( | L)  X ,Y  not free in the conclusion

'S( Γ, u : 0 ⊢ Δ
'S, u M 0( Γ ⊢ Δ

(0 L)

' S ( Γ ⊢ u : A | B, Δ
' S ( Γ ⊢ v : A, Δ   ' S ( Γ ⊢ t : B, Δ   u MS v|t

( | R)

' S ( Γ ⊢ u : 0, Δ
u MS 0

(0 R)



Reasoning with Spatial Logic



“It is always possible for any site to eventually acquire 
exclusive access to the resource”

Spatial - Behavioral Properties



Specifications for Directory Nodes
 idle(f, m, l)   ⇔ 1 ∧
          ∀α.[ α ]
           ∃  a, n.( α= f ?(a, n) ∧ ( idle(f, m, n)) | l!(a, f ) )
                 ∨ (α=τ∧( twaiter(f, m)) | l!(m, f ) )
 towner(f, m) ⇔ 1 ∧
             ∀α.[ α ] ∃ a, n. (α=f ?(a, n)∧owner(f, m, n, a))
 owner(f, m, l, q)   ⇔ ...
 twaiter(f, m)   ⇔ ...
 waiter(f, m, l, q)   ⇔ ...

 node( f ) ⇔ ∃  m,l,q. idle(f, m, l) ∨ twaiter(f, m) ∨ towner(f, m)
                                                ∨ owner(f, m, l, q) ∨ waiter(f, m, l, q)



Specifications for the Directory
 BootState  @    ∃  r, u.( towner(f, u) |
                 (E  f, m, l. idle(f, m, l ))* )
                          ∧ ∀n. (?node(n) ⇒ ?Path(n, r))

 System    @    (∃ n. node(n) ∨ Msg)*

 Link(a, b) @ ∃  c. b!(c, a) ∨ LinkedNode(a, b))

 Path(a, b) ⇔ (a = b) ∨ ∃  c.( Link(a, c) ∨ Link(c, a) | Path(c, b) )

 UniquePath  @  ¬ ∃  a, b. (a ≠ b) ∧ (?Path(a, b) | ?Path(a, b))

                N.B.: UniquePath h NoCycle
 Ok       @     UniquePath
 NeverLoops  @     always(Ok)



Proving a Safety Property
Plan to show: Ok ⇒ M Ok 

Assume: Ok ∧ System 

Then prove: ( N ¬ Ok ) ⇒ False

Assume:  N ¬ Ok 

Use the rule: N A h ∃X, m. ( m | X | 1 ∧ 〈 m 〉 ( X ▷ A) )

∃X, m. ( ( m ∧ Msg )  |  ( X ∧ Ok )  |  ( Node ∧ 〈 m 〉 ( X ▷ ¬ Ok ) ) )

Then, proceed by case analysis on Node @ ∃ n.node(n) 

∃X. N (X ∧ Ok | ( Post ∧ ( X ▷ ¬ Ok ) )

Ok | Post ⇒ Ok
N ( Ok ∧ ¬ Ok )
N False
False

Msg ⇒ ∃f, m, l. f !(m, l) ∨ ∃m. m!()

Node ⇒ [ m ] Post

NeverLoops @ always(Ok) 

Ok @ UniquePath



Proving a Safety Property
Details of one case ( towner(v, n) ):

∃ X, m. ( m  | ( X ∧ Ok ) | ( Node ∧ 〈 m 〉 ( X ▷ ¬ Ok ) ) )

∃ X, m, v, n. ( m  | ( X ∧ Ok ) | ( towner(v, n) ∧ 〈 m 〉 ( X ▷ ¬Ok )))

∃ m,v,u.(v!(m, u) | ( X ∧ Ok ) | ( towner(v, n) ∧ 〈 v?(m, u) 〉 ( X ▷¬Ok )))

∃ m,v,u. (v!(m, u) | ( X ∧ Ok ∧ ¬Path(v, u)) | ( towner(v, n) ∧

                                                           〈 v?(m, u) 〉 ( X ▷ ¬Ok )))

N (X ∧ Ok∧¬Path(v, u) | ( owner(v, n, u, m) ∧ ( X ▷¬Ok ) )

Ok ∧ ¬ Path(a, b) ⇒ ( Path(a, b) ▷ Ok  )      (Auxiliary Lemma)

Ok ∧ ¬ Path(v, u) | owner(v, n, u, m) ⇒ Ok
N ( Ok ∧ ¬ Ok )
N False
False



A Proof Rule for Safety Properties
A property A is distributed if the following entailments hold:

            A | A h A

            A  h True ▶ A

 For example, A* is distributed for all A.

 In our example, property UniquePath is distributed.

Then, the following proof rule is sound for any distributed G:

      S  h ( /i Ci )∗

      Ci  h ∀α. [α ] /j ( α = mj ∧ Pj )

      0j G ⇒ ( mj ▶ (Pj ▷G) )

      S ∧ G h MG



A Spatial Type System for Services



Some Key Features of Distributed Services
Distributed Services

Also known as distributed objects, but ...
On-the-fly system composition
Services depend (call) on other (remote) services
Tasks must be properly scheduled (workflow)
Services may be dynamically bound and (ref) passed around

Procedural Abstraction for Tasks
Using distributed remote procedure call mechanisms
Control flow involves distributed (long term) transactions

Coordination Abstractions
Parallel Composition of Tasks

 Tasks are independent when never get to compete for resources
 Independent tasks appear to run “simultaneously” (no interference)
 This is the default behavior of the “global computer”

Sequential Composition of Tasks
 Causality, data flow, and resource competition leads to sequentiality



Some Key Features of Distributed Services
Resources as disciplined objects

Resources are (at least partially) unshareable services/objects
E.g., a file, a session, a key, a physical device, …
Must be used according to a strict discipline / protocol 
(otherwise faults may occur)

Control of Resources
Resources may be passed around, buffered in pools, etc, ...
In principle, at any given moment the sets of resources usable 
by each one of the ongoing tasks should be kept disjoint (cf., the 
separation principle).
However, resource sharing policies may be of fine granularity 
(think of “multiple readers-unique writer” as a special case)

Spatial-Behavioral Types
We develop a core programming language and a compositional 
type system to discipline interactions and resource usage on 
distributed services systems, inspired by spatial logic.



A General Type Structure for Services
U | V

Independent Tasks            (Spatial Decomposition)
U &V

Optional Tasks
U ; V

Sequential Tasks
Tº

Owned Task
U f V

 Guarantee                        (Spatial Compositionality)
Spatial Logic Semantics of Types

P \ T              (logical satisfaction, compositionally defined)
Types denote “properties of processes”, not “processes”
The semantics of types entails the intended safety properties



Composition with Spatial Types
 

travel

brokergateway

accom

bank user

f : Rec X. flight();(book();X & free();X)

flight() = f.flight();
hotel() = h.hotel();
order() = gw.pay(f); gw.pay(h);

pay(s) =
if bk.debit()
  then s.book()
  else s.free()

br

debit() =

h : Rec X. hotel();(book();X & free();X)

gw : Rec X. pay(book() & free());X

br : Rec X. (flight() | hotel());order();X

BackSys: T( bk) f T( gw ) | T( f ) | T( h ) 

gw

f

h

broker: (T( gw ) | T( f ) | T( h )) f T( br ) 

TravelSvc: T( bk ) f T( br ) 

bk

travel: 0 f T( f )

gateway: T( bk ) f T( gw )



Spatial Decomposition
 

travel

brokergateway

accom

bank

flight() = f.flight();
hotel() = h.hotel();
order() = gw.pay(f); gw.pay(h);

pay(s) =
if bk.debit()
  then s.book()
  else s.free()

br
bk

debit() 
=

gw

f

h

br.flight()

 
 Each of the service calls br.hotel() and br.flight() is handled 

by (spatially) separated parts of the system.

br.hotel()



Reflecting Spatial Decomposition on Types
 

travel

brokergateway

accom

bank user

f : Rec X. flight();(book();X & free();X)

flight() = f.flight();
hotel() = h.hotel();
order() = gw.pay(f); gw.pay(h);

pay(s) =
if bk.debit()
  then s.book()
  else s.free()

br
bk

debit() 
=

h : Rec X. hotel();(book();X & free();X)

gw : Rec X. pay(book() & free());X

br : Rec X. ( flight() | hotel() );order();X

gw

f

h

 
 The semantics of the (U | V) typing implies that the services 

br.hotel() and br.flight() may be (safely) used concurrently.



Composing BackSys and broker
 

travel

brokergateway

accom

bank user

f : Rec X. flight();(book();X & free();X)

flight() = f.flight();
hotel() = h.hotel();
order() = gw.pay(f); gw.pay(h);

pay(s) =
if bk.debit()
  then s.book()
  else s.free()

br
bk

debit() =

h : Rec X. hotel();(book();X & free();X)

gw : Rec X. pay(book() & free());X

br : Rec X. (flight() | hotel());order();X

BackSys: 0 f T( gw ) | T( f ) | T( h ) 

gw

f

h

broker: (T( gw ) | T( f ) | T( h )) f T( br ) 

TravelSys: 0 f T( br ) 

travel: 0 f T( f )

gateway: T( bk ) f T( gw )

bank: 0 f T( b )



Another Decomposition
 

travel

brokergateway

accom

bank user

f : Rec X. flight();(book();X & free();X)

flight() = f.flight();
hotel() = h.hotel();
order() = gw.pay(f); gw.pay(h);

pay(s) =
if bk.debit()
  then s.book()
  else s.free()

br

debit() =

h : Rec X. hotel();(book();X & free();X)

gw : Rec X. pay(book() & free());X

br : Rec X. (flight() | hotel());order();X

BackSys: T( bk) f T( gw ) | T( f ) | T( h ) 

gw

f

h

broker: (T( gw ) | T( f ) | T( h )) f T( br ) 

TravelSvc: T( bk ) f T( br ) 

bk

travel: 0 f T( f )

gateway: T( bk ) f T( gw )



Intended Safety Properties of Typing
 

travel

brokergateway

accom

bank

flight() = f.flight();
hotel() = h.hotel();
order() = gw.pay(f); gw.pay(h);

pay(s) =
if bk.debit()
  then s.book()
  else s.free()

br
bk

debit() 
=

gw

f

h

br.flight()

Flow @ Available ∧ ¬Race ∧ Unique     Safe @ Flow

 
 The subsystem responsible for the distributed execution of a 

given service call should always satisfy the Flow invariant.

br.hotel()



Intended Safety Properties of Typing
 

travel

brokergateway

accom

bank

flight() = f.flight();
hotel() = h.hotel();
order() = gw.pay(f); gw.pay(h);

pay(s) =
if bk.debit()
  then s.book()
  else s.free()

br
bk

debit() 
=

gw

f

h

Flow @ Available ∧ ¬Race ∧ Unique     Safe @ Flow

 
 The subsystem responsible for the distributed execution of a 

given service call should always satisfy the Flow invariant.

br.order()



The Object Model
Objects

Systems

n

Name (unique)

Threads
(active code)

c) E *

Methods
(passive code)

l(x) = E

A system is composed by several 
objects, each one possibly running 

several threads concurrently

Objects may call methods of any 
other objects they know about

Object names may be passed 
around (name mobility)

books
web

bank

toys user



The Process Calculus
Expressionsn, m, p B Names
u,v B Val ::=    Values
  stop      Primitive
  n        Name

x, y, z B Variables
E,F B Expr ::=   Expressions
  x        Identifier
  v         Value
  n.l(v)      Call
  n.c()      Back
  let x = E in F  Composition
  new [M ]    Instantiation

T,S B Thr ::= Threads
  0        Void
  c) E *    Thread
  T  | S      Threads

P,Q,R B Proc ::= Processes
  0          Void
  n[ M ; T ]     Object
  P | Q        Objects

lB Labels
M B Meth ::= Methods
  0         Void
  l(x) = E    Method 
   M |M      Methods 

N.B.:

$ In any object n[M ; T ] 
Methods in M have distinct labels.
Threads in T have distinct names.

$ In any process P
Objects in P have distinct names.



Types
X, Y, Z B Type Variables
T,U,V B Type ::=   Types
  nil      Stop
  l(U)V    Method
  c(m:U)V  Thread
  U | V     Spatial
  U ; V     Sequential
  U & V    Conjunction
  Uº     Owned
  X       Variable
  Rec X.T   Recursion
  
Atomic Typing Assertion.
    n : T (object n has type T)
Typing Contexts  (A, B).
    n1 : T1 , ... ,nk : Tk

N.B.  write A(n1) = T1

  when A is n1 : T1 , ... ,nk : Tk

A valid expression judgment.
 A @  n:  fly();fr(),
   h:  hot();bk()&fr(),
   g:  do(bk())T
 B @  n:  fr(),
   h:  nil,
   g:  nil
 E @  (n.fly() | h.hot() ); g.do(h)


      
       E :: A f B [T ]

Typing Judgment (Expressions).


  
 E :: A f B [T ]
Typing Judgment (Processes).


 P :: A f B



Subtyping
 
 

 
 Conjunction.

 U&V <: U
 U&V <: V
 T <: U, T <: V  ⇒ T <: U&V

Composition.

 U | nil <:> U
  U | V   <:> V | U 
  (U | V) | T <:> U | (V | T)

Sequential.

U ; nil <:> U    U | V <: U ; V 
nil ; U <:> U 
(U ; V) ; T <:> U ; (V; T)
(U ; U’) | (V ; V’) <: (U | V) ; (U’ | V’)

Congruences.

 U <: U’, V <: V’ ⇒ U | V <: U’ | V’
 U <: U’, V <: V’ ⇒ U ; V <: U’ ; V’
  etc...

Owned.

 Uº <: U       nil <: nilº
 Uº <: nil      Uº <: Uºº 
 (U | V)º <: Uº | Vº
 (U ; V)º <: U ; Vº
 Uº ; V    <: Uº | V

Contexts.

  V <: U ⇒ n:V <: n:U’



Soundness of Typing

There is an embedding      of our types into a spatial logic 
such that:

In particular, if P :: f A is derivable then P \ Safe holds
The soundness proof is driven by semantical reasoning 
(think of A f B as a logical relation).
It is very natural and modular (we look once at each rule).
The type system is indeed a proof system (in the standard 
sense) for satisfaction (P \ A) w.r.t. the underlying logic. 

Soundness of Typing.

     Let P :: A f B. Then P \  A  f  B  .

     Let P :: f A. Then P \  A  .



State and Resource Control (Example)

server [
   init() = s!(stop);
 open() = 
        let x = pool.alloc() in s!(x)
 use() = 
        let x = s? in ( x.use() ; s!(x) )
 close() =
        let x = s? 
        in ( pool.free(x); s!(stop); )
]

R    @ use()*
PoolType   @ !( free(Rº) & alloc()R )
pool : PoolType 

ResType  @ use()*
SrvType   @ init(); (open(); use()*; close())*
server[ ... ] :: pool : PoolType f server : Srvtype 



Sharing and Resource Control (Example)

server [

   *login() = 
        let l = new ListO in 
           new [
              buy(i) = l.add(i)
              quit() = r.drop(l)
           ]

  dump() = r.pick()

]

List    @ add(Elt)*
BagType   @ !( pick()List & drop(Listº) )
r : BagType 

Session   @ Rec X. (buy(Elt);X  & quit())
SrvType   @ ( ! login()Session )  |   ( dump()List )*
server[ ... ] :: r : BagType f server : Srvtype 



Road Map
Specifications

Operational vs. Logical Specifications
Logics (review)
Program Logics
Modal Logics

Logics for Concurrency and Distribution
Hennessy-Milner Logics
µ-Calculi
Spatial Logics

Verification Techniques
Model Checking
Proof Systems
Type Systems

References and (lots of) Further Reading
Check the Spatial Logic Model Cheker web site for an up to 
date annotated bibliography on logics for concurrency and 
distribution



Assignments


