Undecidability in Epistemic Planning

Thomas Bolander, DTU Compute, Tech Univ of Denmark
Joint work with: Guillaume Aucher, Univ Rennes 1

DTU Compute
Department of Applied Mathematics and Computer Science

Bolander: Undecidability in Epistemic Planning

=]
—
=

i

p. 1/17

Introduction

This talk is based on [Aucher & Bolander, [JCAI
2013]. Our paper in a nutshell:

What we have shown: Undecidability of planning
when allowing (arbitrary levels of) higher-order
reasoning (epistemic planning). Higher-order
reasoning here means reasoning about the beliefs of
yourself and other agents (and nesting of such).

How we have shown it: Reduction of the halting
problem for two-counter machines.

Structure of talk:
1. Motivation.
2. Introducing the basics: planning + logic 4+ two-counter machines.
3. Sketching the proof: How to encode two-counter machines as
epistemic planning problems.
4. Summary and related work.

Automated planning

Automated planning (or, simply, planning):
e Given is a planning task: initial state + goal formula + finite set
of actions.
e Aim is to compute a solution: sequence of actions that leads from
the initial state to a state satisfying the goal formula.

Put(b,table)

Example.
Goal: On(A,B) A On(B,C).

initial state

In automated planning, such a graph is called a state space (induced by
a planning task).

Why higher-order reasoning in planning?

initial state

goal

> Tuesday, December 3rd
19.30 Workshop Dinner

Bolander: Undecidability in Epistemic Planning — p. 4/17

http://jakubszymanik.com/false-belief/

Why higher-order reasoning in planning?

initial state

goal

> Tuesday, December 3rd
19.30 Workshop Dinner

For more motivation for higher-order reasoning in planning, see my talk
at the workshop on False-belief tasks and logic at ILLC on Thursday.

ief tas

g, December, 5, Amsterd,

http://jakubszymanik.com/false-belief/

Bolander: Undecidability in Epistemic Planning — p. 4/17

http://jakubszymanik.com/false-belief/

Our framework for planning with higher-order
reasoning
In classical planning states are models of propositional logic. Classical

planning only deals with planning domains that are deterministic,
static, fully observable and single-agent.

Our framework for planning with higher-order
reasoning
In classical planning states are models of propositional logic. Classical

planning only deals with planning domains that are deterministic,
static, fully observable and single-agent.

Our planning framework, epistemic planning, does away with all of
these limiting assumptions on planning domains.

Our framework for planning with higher-order
reasoning

In classical planning states are models of propositional logic. Classical
planning only deals with planning domains that are deterministic,
static, fully observable and single-agent.

Our planning framework, epistemic planning, does away with all of
these limiting assumptions on planning domains.

From classical planning to epistemic planning: Replace the
propositional logic underlying classical planning by Dynamic Epistemic
Logic (DEL).

‘ Classical DEL-based
States models of prop. logic models of MA epist. logic
Goal formula | formula of prop. logic formula of MA epist. logic
Actions action schemas event models of DEL

DEL by example: A private announcement

0,1 0,1
8 0.1 Q

wiip w2

epistemic model

DEL by example: A private announcement

precond.
event
—_——
0,1 0,1 0,1
8 0.1 Q
wi:p w2 e1:p e:T
epistemic model event model

e Event models: Only preconditions, no postconditions. Means:
Purely epistemic planning, no change of ontic facts.

e Event model above: Private announcement of p to agent 0.

DEL by example: A private announcement

precond.

event
——

0

0, 1 07 1
Qo1Q
w2

wiip e1:p e:T
-
epistemic model event model
product update epistemic model

e Event models: Only preconditions, no postconditions. Means:
Purely epistemic planning, no change of ontic facts.

e Event model above: Private announcement of p to agent 0.
e Product update: As in [Baltag et al., 1998].

DEL by example: A private announcement

precond.

event
——

0

0, 1 07 1
Qo1Q
w2

wiip er.p e: T
-
epistemic model event model
product update epistemic model

e Event models: Only preconditions, no postconditions. Means:
Purely epistemic planning, no change of ontic facts.

e Event model above: Private announcement of p to agent 0.
e Product update: As in [Baltag et al., 1998].

DEL by example: A private announcement

precond.

event
——

0

0, 1 07 1
Qo1Q
w2

wi:p et:p e:T
-
epistemic model event model
product update epistemic model

e Event models: Only preconditions, no postconditions. Means:
Purely epistemic planning, no change of ontic facts.

e Event model above: Private announcement of p to agent 0.
¢ Product update: As in [Baltag et al., 1998].

DEL by example: A private announcement

precond.

event
——

0,1 0 0,1 0 0,1 0
Wg;?—)‘("% @ €1:p e: T N wiép:p
epistemic model event model
product update epistemic model

e Event models: Only preconditions, no postconditions. Means:
Purely epistemic planning, no change of ontic facts.

e Event model above: Private announcement of p to agent 0.
¢ Product update: As in [Baltag et al., 1998].

DEL by example: A private announcement

precond.

event
——

0,1 0 0,1 0 0,1 0
W18(P7—)‘<";Z @ er’p el N wier:p
epistemic model event model
product update epistemic model

e Event models: Only preconditions, no postconditions. Means:
Purely epistemic planning, no change of ontic facts.

e Event model above: Private announcement of p to agent 0.
¢ Product update: As in [Baltag et al., 1998].

DEL by example: A private announcement

precond.

event
——

0,1 01 0,1 0 0,1 0
W18(P7—)‘</;Vi @ er’p el N wier:p
epistemic model event model
product update epistemic model

e Event models: Only preconditions, no postconditions. Means:
Purely epistemic planning, no change of ontic facts.

e Event model above: Private announcement of p to agent 0.
¢ Product update: As in [Baltag et al., 1998].

DEL by example: A private announcement

precond.

event
——

0,1 0,1 0 0,1 0 ewie:p
Qo1Q _
® =
wi:p w2 er:p e:T wier:p
- o W2e
epistemic model event model
product update epistemic model

e Event models: Only preconditions, no postconditions. Means:
Purely epistemic planning, no change of ontic facts.

e Event model above: Private announcement of p to agent 0.
¢ Product update: As in [Baltag et al., 1998].

DEL by example: A private announcement

precond.

event
——

0,1 0,1 0 0,1
QorQ _
wi:p w2 e1:p e:T
epistemic model event model
product update epistemic model

Event models: Only preconditions, no postconditions. Means:
Purely epistemic planning, no change of ontic facts.

Event model above: Private announcement of p to agent 0.
Product update: As in [Baltag et al., 1998].

In resulting model: Agent 0 knows p (Clpp holds), but agent 1
didn't learn anything.

Planning interpretation of DEL

0,1 0,1

8 0,1 Q

wiip w2

(epistemic) state

e Epistemic states: Pointed, finite epistemic models.

Planning interpretation of DEL

0,1 01 0 0,1
g% 0,1 Q R 1 Q
witp W2 e:p el
(epistemic) state (epistemic) action

e Epistemic states: Pointed, finite epistemic models.

e Epistemic actions: Pointed, finite event models.

Planning interpretation of DEL

0,1 o 0,1 0 0,1
ng(p?—%é © elg:p—le;(;:)"l— N
(epistemic) state (epistemic) action
state transition function resulting state

e Epistemic states: Pointed, finite epistemic models.
e Epistemic actions: Pointed, finite event models.

¢ Result of applying an action in a state: Product update of state
with action.

Epistemic planning tasks and plan existence problem

Definition

An epistemic planning task is (sp, A, ¢z), where
e sy is the initial state: an epistemic state.
e Ais a finite set of epistemic actions.

® ¢4 is the goal formula: a formula of epistemic logic.

Epistemic planning tasks and plan existence problem

Definition

An epistemic planning task is (sp, A, ¢z), where
e sy is the initial state: an epistemic state.
e Ais a finite set of epistemic actions.

® ¢4 is the goal formula: a formula of epistemic logic.

Definition
A solution to a planning task (sg, A, ¢g) is a sequence of actions
ai,...,an € Asuch that sy ® a1 ® - - ® a, |= Py

Epistemic planning tasks and plan existence problem

Definition

An epistemic planning task is (sp, A, ¢z), where
e sy is the initial state: an epistemic state.
e Ais a finite set of epistemic actions.

® ¢4 is the goal formula: a formula of epistemic logic.

Definition
A solution to a planning task (sg, A, ¢g) is a sequence of actions
ai,...,an € Asuch that sy ® a1 ® - - ® a, |= Py

Definition

The plan existence problem in epistemic planning is the following
decision problem “Given an epistemic planning task (sp, A, ¢g), does it
have a solution?”

We will now show undecidability of the plan existence problem...

Two-counter machines
Configurations: n , where k, I, m € N.

/I Ro Rl

instruction reglster 0 reglster 1

Instruction set: inc(0),inc(1), jump(j), jzdec(0, j), jzdec(1,), halt.

Computation step example:

1m0 k+1\'+1\ |

/ Ro R1 Ri

The halting problem for two-counter machines is undecidable [Minsky,
1967].

Proof idea for undecidability of epistemic planning

Our proof idea is this. For each two-register machine, construct a
corresponding planning task where:

e The initial state encodes the initial configuration of the machine.
e The actions encode the instructions of the machine.

e The goal formula is true of all epistemic states representing halting
configurations of the machine.
Then show that the two-register machine halts iff the corresponding
planning task has a solution. (Execution paths of the planning task
encodes computations of the machine).

Encodings

Encoding configurations as epistemic states:

g /?Pj \P3

A kHL [P gy 3/}2 m 1 3/}3
» P2 ® 3

C;Ipz C;Ipa

p2 p3

worlds p1 worlds worlds

QI P1
P1

Encodings

Encoding configurations as epistemic states:

g 2 \P3
A kT RAPL 1 [AP mod 3/}3

worlds p1 worlds p2 worlds P3
C;I b1 C;I p2 » D3
p1 p2

p3
Encoding instructions as epistemic actions:

=(p1V p2Vp3)
inc(0 cﬁAOT p2 AOT Bpa
P1 AQOL P2/\<>DJ_

opl/\DJ_ op2/\DJ_

inc(0)
The computation step k+1]/+1]m] is

mimicked by:

encoding(| k | 1 | m |) ® encoding(inc(0)) =

v/—/?\v =(p1V p2V p3)

C,Ipl C,IP2 .—. C;lpa
+{GeP1 T P2 Hoips ® piAOT p2AOT GEP3 =
x| ~| gl

Qipl C;IP2 C;lp3 OIPMODL GIP2A<>DL
p1

P2 P3 p1AOL e AL

inc(0)
The computation step k+1]/+1]m] is

mimicked by:

encoding(| k | 1 | m |) ® encoding(inc(0)) =

v/—/?\v =(p1V p2V p3)

C,Ipl C,IP2 .—. C;lpa
+{GeP1 T P2 Hoips ® piAOT p2AOT GEP3 =
x| ~| gl

Qipl C;IP2 C;lp3 OIPMODL GIP2A<>DL
p1

P2 P3 p1AOL e AL

®

inc(0)
The computation step k+1]/+1]m] is

mimicked by:

encoding(| k | 1 | m |) ® encoding(inc(0)) =

6;———/?;T——?}P3

+ ZIgpl : ZIgpz + l
< : -~ :

P P1 » 2 Q» P3
C;Ipl GI i

p2 p3

R

_ Qim

+HGops3
g

G» P3

p3

®

=(p1V P2V p3)

pAOT

C;Ipl/\ODJ_
p1AOL

p2AOT GO P3
p2AOOL
e AL

inc(0)
The computation step k+1]/+1]m] is

mimicked by:

encoding(| k | 1 | m |) ® encoding(inc(0)) =

v/—/?\v =(p1V p2V p3)

(’;Ipl (’;Ipz .—. C;lpa
A}
RELTe T Hole @ GfanoT GpenoT cle =
Qipl C;IP2 C;ip3 C;IplAODL C;IpzAODL
p1 p2 p3 pAOL eppALL
P2 Gy P3
— — i
+{Ge P2 'EF G P3
©5P2 C;ip3

P3

inc(0)
The computation step k+1]/+1]m] is

mimicked by:

encoding(| k | 1 | m |) ® encoding(inc(0)) =

v/—/?\v =(p1V p2V p3)

(’;Ipl (’;Ipz .—. C;lpa
A}
e Tdde Hale © Gfan0T GpeAoT Gle -
Qipl C;IP2 C;ip3 C;IplAODL C;IpzAODL
p1 p2 p3 pAOL eppALL
P2 Gy P3
— — i
+{Ge P2 'EF G P3

3 P2 C;i P3
p2 p3

inc(0)
The computation step k+1]/+1]m] is

mimicked by:

encoding(| k | 1 | m |) ® encoding(inc(0)) =

v/—/?\v =(p1V p2V p3)

C;Ipl C;IP2 .—. Gy P3
A}
+{ 8P i Gep2 + Q‘,Lp3 ® piAOT p2AOT GEP3 =
N - g|
QIPI C;IP2 C;lp3 C;IplAODL C;IpzAODL
p1 p2 p3 pAOL eppALL
P2 Gy P3
— A i
+{Ge P2 'EF G P3
» P2 c;im
p2 P3

P2

inc(0)
The computation step k+1]/+1]m] is

mimicked by:

encoding(| k | 1 | m |) ® encoding(inc(0)) =

&

A
+{GePL +{GeP2 JEF GoP3

» P1 » 2 Q» P3
C;Ipl QI i

<

p2 p3

k+1

®

=(p1V P2V p3)

pAOT

C;Ipl/\ODJ_
p1AOL

p2AOT GO P3
p2AOOL
e AL

inc(0)
The computation step k+1]/+1]m] is

mimicked by:

encoding((k | I'] m)) ® encoding(inc(0)) =
v/—/?\v =(p1V p2V p3)
GIPl C,IP2 B le3
+ G?Pl : Ge P2 JErQE p3 ® AT pAOT Ofps =

= Qipl C;ip2 C;lp3 OIPMODL GIP2A<>DL
p1

P2 P3 p1AOL e AL

k+1

= encoding((k+1|/+1]|m]

Summary of results on (un)decidability of plan

existence in epistemic planning

L transitive | Euclidean reflexive

K

KT v

K4 v

K45 v v < belief

S4 v v

S5 v v v < knowledge
Th Single-agent | Multi-agent

eor_em] planning planning
The figure to the right K UuD UD
summarises our results on KT uD uD
decidability (D) and undecidability K4 uD uD
(UD) of the plan existence K45 D ub
roblem in epistemic planning. S4 ub Ub

P P P g S5 D ub

Corollary: Undecidability of model checking in L}
The DEL language L}g is defined by the following BNF:

¢ u=p| ¢ | (6Ag) | Lid | [r]¢
mu=(&e) | (rUm) | (mm) | «°

where p € P, i € A and (€, e) is any pointed event model [van
Ditmarsch et al., 2007]. Define (m)¢ := —[r]—¢.

Semantics:

M,w = [(€,e)]¢ iff M,w = pre(e) implies (M, w) ® (€,e) E ¢
M,w = [rUnr]e iff M,w = [7]¢ and M, w = [y]o

M,w = [mqe iff Mow = [7][]e

M, w = [7*]o iff M, w = [r]"¢,for all n

Corollary: Undecidability of model checking in L}

[Miller & Moss, 2005] shows that the satisfiability problem of L}, is
undecidable. Our results above immediately gives us that even the
model checking problem is undecidable.

Theorem
The model checking problem of the language LT,z is undecidable.

Proof.

The plan existence problem considered above is reducible to the model
checking problem of L}, : Consider an epistemic planning task
T = (s0,{a1,...,am},Pg). T has a solution iff the following holds:

0 (31U Uam))d.

Summary and related work

e Previously known undecidability results for DEL-based epistemic
planning: S5, with postconditions, > 3 agents [Bolander &
Andersen, JANCL 2011].

Summary and related work

e Previously known undecidability results for DEL-based epistemic
planning: S5, with postconditions, > 3 agents [Bolander &
Andersen, JANCL 2011].

e New results presented here: S5, without postconditions, > 2
agents [Aucher & Bolander, 1JCAI 2013].

Summary and related work

e Previously known undecidability results for DEL-based epistemic
planning: S5, with postconditions, > 3 agents [Bolander &
Andersen, JANCL 2011].

e New results presented here: S5, without postconditions, > 2
agents [Aucher & Bolander, 1JCAI 2013].

e In essence: allowing arbitrary levels of higher-order reasoning
leads to undecidability of planning. Reason: no bound on level of
higher-order reasoning = no bound on depth of epistemic state =
no bound of size of epistemic states = state space can become
infinite.

Summary and related work

Previously known undecidability results for DEL-based epistemic
planning: S5, with postconditions, > 3 agents [Bolander &
Andersen, JANCL 2011].

New results presented here: S5, without postconditions, > 2
agents [Aucher & Bolander, 1JCAI 2013].

In essence: allowing arbitrary levels of higher-order reasoning
leads to undecidability of planning. Reason: no bound on level of
higher-order reasoning = no bound on depth of epistemic state =
no bound of size of epistemic states = state space can become
infinite.

Decidable fragments of epistemic planning:

Summary and related work

Previously known undecidability results for DEL-based epistemic
planning: S5, with postconditions, > 3 agents [Bolander &
Andersen, JANCL 2011].

New results presented here: S5, without postconditions, > 2
agents [Aucher & Bolander, 1JCAI 2013].

In essence: allowing arbitrary levels of higher-order reasoning
leads to undecidability of planning. Reason: no bound on level of
higher-order reasoning = no bound on depth of epistemic state =
no bound of size of epistemic states = state space can become
infinite.

Decidable fragments of epistemic planning:

e Single-agent K45 and S5: Replace epistemic states by their
bisimulation contractions. These have bounded depth.

Summary and related work

Previously known undecidability results for DEL-based epistemic
planning: S5, with postconditions, > 3 agents [Bolander &
Andersen, JANCL 2011].

New results presented here: S5, without postconditions, > 2
agents [Aucher & Bolander, 1JCAI 2013].

In essence: allowing arbitrary levels of higher-order reasoning
leads to undecidability of planning. Reason: no bound on level of
higher-order reasoning = no bound on depth of epistemic state =
no bound of size of epistemic states = state space can become
infinite.

Decidable fragments of epistemic planning:

e Single-agent K45 and S5: Replace epistemic states by their
bisimulation contractions. These have bounded depth.

e Multi-agent planning with propositional preconditions [Yu, Wen &
Liu, 2013]: Replace epistemic states by their k-bisimulation
contractions, where k is the modal depth of the goal formula. These
have bounded depth.

Summary and related work

e Other formalisms for epistemic planning:

e Decentralised POMDPs: Finite state space explicitly given.
Planning complexities are wrt. this state space.

e Formalisms based on concurrent epistemic game structures
(ATEL [Hoek & Wooldridge, 2002], ATOL [Jamroga et al., 2004],
CSL [Jamroga & Aagotnes, 2007], etc.): Finite state space explicitly
given. Planning complexities are wrt. this state space.

So in these formalisms you cannot model e.g. the message sending
actions in the coordinated attack problem.

	Introduction: Motivation, basic notions
	Technical stuff: proof constructions
	Main results
	Concluding remarks: Related work etc.

