Integrated Design and Process Technology, IDPT-2002
Printed in the United States of America, June, 2002
(©2002 Society for Desing and Process Science

Computing Systems for Railways
A Role for Domain Engineering

Dines Bj;z)rner(a) , Chris George(b), and Sgren Prehn(©
(a) Dept. of Computer Science, Technical University of Denmark, DK—-2800 Kgs. Lyngby, Denmark; db@imm.dtu.dk
(b) UNU/IIST, P.O. Box 3058, Macau SAR, via Hong Kong, China; cwg@iist.unu.edu

(c) Terma Electronics, Bregneradvej 134, DK-3460 Birkergd, Denmark; snp@terma.com

ABSTRACT: Railways are usually considered to be very
large scale, infrastructure supporting systems. They are dis-
tributed. They exhibit thousands of concurrent, but highly
related (interwoven) activities. And, even without any com-
puting or communication support, railway systems function
as a result of critical interplays between railway staff, users
and railway (and other, technological) equipment.

To develop computing systems support for railway activ-
ities requires, it is emphasised in this paper, first that the de-
velopers understand those parts of the railways which are to
be supported, we call it the domain (D); secondly that the
developers understand what support is desired, we call it the
requirements (R); and, thirdly, that the developers correctly
implement these requirements as some computing system
(S). Correctness is needed in order to deliver expected rail-
way services, to avoid failures that may lead to injury to peo-
ple or loss of property or human life. Correctness can be
expressed as a relation: D, S = R: The computing system
implementation (S) can be shown to implement the require-
ments (R) based on assumptions made about the domain
(D). To help ensure correctness, the domain, the require-
ments and the computing system are suitably formalised.

The formal models, D, R, and S, are usually rather large
documents. For developers and clients to trust that these
formal specifications indeed do describe, what is intended,
they need be structured such that their readers can grasp
smaller parts (“a page at a time”) and their composition.
To develop a domain description we propose to decompose
the overall development into the development of descrip-
tions of domain intrinsics, domain technologies, do-
main management & organisation, domain rules & reg-
ulations, domain human behaviour, and possibly other
domain facets.

The paper will briefly explain — and exemplify — some
of these development concepts.

Invited paper for the IDPT’2002 Session on Integration of Modelling
Techniques for Train Control Systems (Pasadena, Calif., 24-28 June 2002)

(a)’s Work on this paper was partially supported by the Commission
of the European Communities (EU) under contract HPRN-CT-1999—
00104 AMORE: Algorithmic Methods for Optimising Railways in Eu-
rope. (b—c)’s Work was partially supported by UNU/IIST.

I. INTRODUCTION
A. Domains, Requirements and Software Design

We assume the basic dogma: Before software can be de-
signed it must be requirements specified. And before re-
quirements can be expressed, an understanding of the world
in which these requirements reside, the domain, must be for-
mulated.

The software design describes how a computer (the hard-
ware) is to proceed in order to achieve stated requirements.
The requirements usually describe three things: (1) Which
phenomena of the domain shall be supported by computing
(the domain requirements); (2) which interface between the
machine (hardware + software) and external phenomena:
People, and other sensors and actuators, shall be provided
(the interface requirements); and (3) what performance,
dependability, maintenance, platform, and documentation
measures are expected (the machine requirements).

Domain descriptions are indicative: Describe the “cho-
sen world as it is”, ie. the domain — without any reference
to requirements, let alone software design. Requirements
prescriptions are putative: Prescribe what there is to be,
properties, not designs, of the machine.

Domain descriptions must describe the chosen domain
with its imperfections, not try “paint a picture” of a “world
as one would like it to be”. In this paper we shall focus on
such domain descriptions.

In this paper we only briefly touch upon the methodolog-
ical principles, techniques and tools that allow the software
developer, based on formal descriptions of the domain to
rigorously project, instantiate, extend and initialise a do-
main description “into” a domain requirements definition,
and, from domain and interface requirements definitions, to
similarly rigorously develop software architecture designs.
We cover such principles, techniques and tools in other pa-
pers, eg. [4], [6], [7], [8], and in our lecture notes'.

B. The Problem to be Addressed

In this paper we shall survey some aspects of domain en-
gineering only.

The overall problem that we are generally studying is that
of methods for the development of large scale, typically in-
frastructure component software systems.

IURL: http://www.imm.dtu.dk/~db/TheSEBook

Excluded from our software development method
concerns are therefore those related to the discovery, the
invention of algorithms & data structures, for well-
-delineated problems such as sorting and searching, graph
operations, fast Fourier transforms, parsing, &c. The bor-
derline between infrastructure software systems and al-
gorithms and & structures is indeed a fuzzy one — and
one that we really do not wish to further investigate here.
Suffice it to say that the infrastructure software systems
we have in mind will indeed contain many examples of al-
gorithms & data structures | But as concerns the princi-
ples and techniques of methods — we only claim that we in-
vestigate some that are deemed applicable to infrastructure
software systems development.

C. Some Typographical Conventions

The text alternates between paragraphs which either con-
tain plain text, or characterises, or defines a
concept, which are then usually followed by paragraphs
which discuss the concept, and paragraphs which state
a principle, a technique, or a tool. We use
the » delimiter to show the end of the specialised
paragraphs.

We make a distinction between characterisations and def-
initions: The former are (oftentimes necessarily) informal,
the latter sometimes formalisable.

II. DOMAIN PERSPECTIVES AND FACETS

We treat the subject of domain engineering in two parts.
First we consider the plethora of stake-holders, that is: In-
dividuals and institutions that are more-or-less interested in,
or influenced by what goes on in the domain. Then we con-
sider a concept of domain facets.

Modelling stake-holder perspectives and domain facets
takes place, during development, “concurrently”: One alter-
nates “to-and-from” iteratively.

A. Stake—holders and Stake—holder Perspectives

Railway systems are characterised by a rather large set of
diverse stake—holders. Failure of control systems are often
due to misunderstandings of their diverse views of the do-
main and the sometimes thereby conflicting requirements.

A.1 Stake-holders

Characterisation: Stake-holder. By a stake—holder we
mean a closely knit, tightly related group of either people or
institutions, pressure groups — where the “fabric” that “re-
lates” members of the group, “separates” these from other
such stake-holder groups, and from non-stake-holder enti-
ties. .

Examples: Stake—holders typically include enterprise
staff: (i) owners, (ii) management (a) executive man-
agement (b) line management, and (c) “floor”, ie. op-
erations management, and (iii) workers of all kinds,

(iv) families of the above, (v) the customers of the enter-
prise, (vi) competitors, and the external, “2nd tier” stake—
holders: (vii) resource providers (a) IT resource provi-
ders?, (b) non-IT/non—finance 3, and (c) financial service
providers, (viii) regulatory agencies who oversee enterprise
operations4, (ix) local and state authorities, (x) politicians,
and the (xi) “public at large”. They all have a perspective
on the enterprise. . .

Discussion: It always makes good, commercial as well
as technical, sense to incorporate the views of as many
stake—holder groups as are relevant in the software devel-
opment process. One need not refer to social, including so-
-called democratic, reasons for this inclusion. It is simply
more fun to make sure that one has indeed understood as
much of the domain (and, for that matter, as much of pos-
sible requirements) as is feasible, before embarking on sub-
sequent, costly software development phases. .

The Principle of Modelling the Stake—holder Con-
cept expresses that the developer and the client, when set-
ting out on a domain description, clearly defines which
stake-holders must be recognised and duly involved in the
development. .

Technique of Modelling the Stake-holder Concept:
Consider modelling each stake-holder group as a process, or
a set of processes (ie. behaviour[s]), or define suitable stake-
holder specific context and/or state components and associ-
ated (observer and generator) functions. .

A.2 Stake-holder Perspectives

Characterisation: Stake-holder Perspective. By a
stake—holder perspective we mean a partial description, a
description which emphasises the designations, definitions
and refutable assertions’ that are particular to a given stake-
-holder group, or the interface between pairs, etc., of such.

Discussion: Each perspective usually gives rise to a dis-
tinct view of the domain. These views share properties.
A good structuring of the “totality” of perspectives can be
helped by suitable, usually algebraic specification language
constructs, such as possibly the class, scheme and object
constructs of the RAISE [23] Specification Language RSL
[22]. We shall presently not illustrate this point. .

The Principle of Modelling the Stake—holder Per-
spective Concept expresses that the developer and the
client, when setting out on a domain description together,
suitably as part of the contract, clearly defines which stake-
-holder perspectives must be recognised and duly included

2Viz.: Computer hardware and other IT equipment, software houses, fa-
cilities management, etc.

3Viz.: Consumable goods, leasing agencies, etc.

4Viz.: Environment bureaus, financial industry authorities (eg.: The US
Federal Reserve Board), food and drug administration (eg.: The US FDA),
health authorities (eg.: The US HEW), etc., depending on the enterprise.

5Designations, definitions and refutable assertions are concepts defined
in [36].

in the descriptions. .

Example: Strategic, Tactical and Operations Resource
Management. We now present a rather lengthy example.
It purports to illustrate the interface between a number of
stake-holder perspectives. The stake-holders are here: An
enterprise’s top level, executive management (which plan,
takes and follows up on strategic decisions), its line man-
agement (which plan, takes and follows up on tactical de-
cisions), its operations management (which plan, takes and
follows up on operational decisions), and the enterprise
“workers” (who carry out decisions through tasks). Strate-
gic management here has to do with upgrading or downsiz-
ing, ie. converting an enterprise’s resources from one form
to another — making sure that resources are available for
tactical management. Tactical management here has to do
with temporally scheduling and spatially allocating these re-
sources, in preparation for operations management. Opera-
tions management here makes final scheduling and alloca-
tion, but now to tasks, in preparation for actual enterprise
(“floor”) operations.

Let R, Rn, L, T, E and A stand for resources, resource
names, spatial locations, times, enterprises (with their es-
timates, service and/or production plans, orders on hand,
etc.), respectively tasks (actions). SR, TR and OR stand for
strategic, tactical and operational resource views, respec-
tively.® SR expresses (temporal) schedules: Which sets
of resources are either bound or free in which (pragmati-
cally speaking: overall, ie. “larger”) time intervals. TR ex-
presses temporal and spatial allocations of sets of resources,
in certain (pragmatically speaking: mode finer “grained”,
ie. “smaller”) time intervals, and to certain locations. OR
expresses that certain actions, A, are to be, or are being, ap-
plied to (parameter—named) resources in certain time inter-
vals.

type R, Rn, L, T, E
RS = R-set
SR = (TxT) m RS,
TR = (TXT) 7 RS 7= L,
OR = (TXT) m» RS w» A
A =(Rn 7 RS) > (Rn 7 RS)
value
obs_Rn: R — Rn
srm: RS — ExE 5 E x (SRS x SR)
trm: SR — EXE 5 E x (TRS x TR)
orm: TR - ExE S E x OR
p: RS x E — Bool
ope: OR — TR — SR — (EXEXEXE) — E x RS

SRS = SR-infset
TRS = TR-set

The partial, including loosely specified, and in cases the

61n the formalisation, take for example that of OR, ie.: OR = (TxT)
m RS m A = defines OR to be the type of maps (7) from time pe-
riods (intervals (T xT)) into maps from sets of resources RS into actions
(A) [to be performed on these resources during the stated time interval].

These actions are partial functions (5) from argument (Rn) named sets of
resources (RS) into similarly such named results.

non-deterministic functions: srm, trm and orm stand for
strategic, tactical, respectively operations resource manage-
ment. P is a predicate which determines whether the enter-
prise can continue to operate (with its state and in its envi-
ronment, €), or not. To keep our model “small”, we have
had to resort to a “trick”: Putting all the facts knowable and
needed in order for management to function adequately into
E | Besides the enterprise itself, E also models its environ-
ment: That part of the world which affects the enterprise.

There are, accordingly, the following management func-
tions:

Strategic resource management, srm(rs)(e,e’””’), let us
call the result (€’,(srs,sr)) [see “definition” of the enter-
prise “function” below], proceeds on the basis of the en-
terprise (€) and its current resources (r's), and “ideally esti-
mates” all possible strategic resource acquisitions (upgrad-
ing) and/or down-sizings (divestmments) (Srs), and selects
one, desirable strategic resource schedule (Sr). The “estima-
tion” is heuristic. Too little is normally known to compute Sr
algorithmically. One can, however, based on careful analy-
sis of sSrm’s pre/post conditions, usually provide some form
of computerised decision support for strategic management.

Tactical resource management, trm(sr)(e,e”””’), let us call
the result(e”,(trs,tr)), proceeds on the basis of the enterprise
(e) and one chosen strategic resource view (Sr) and “ideally
calculates” all possible tactical resource possibilities (1rs),
and selects one, desirable tactical resource schedule & allo-
cation (tr). Again trm can not be fully algorithmitised. But
some combinations of partial answer computations and de-
cision support can be provided.

Operations resource management, orm(tr)(e,e””), let us
call the result (€””,0r), proceeds on the basis of the enter-
prise (e) and one chosen tactical resource view (r) and ef-
fectively decides on one operations resource view (0r). Typ-
ically orm can be algorithmitised — applying standard op-
erations research techniques.

We refer to [5] for details on the above and below model.

Actual enterprise operation, Ope, enables, but does not
guarantee, some “‘common’” view of the enterprise: ope de-
pends on the views of the enterprise, its context, state and
environment, €, as “passed down” by management; and
ope applies, according to prescriptions kept in the enter-
prise context and state, actions, a, to named (rn:Rn) sets of
resources.

The above account is, obviously, rather “idealised”. But,
hopefully, indicative of what is going on.

Relating the above schematic example to the railway do-
main we may suggest: Resources R include access to (not
necessarily ownership of) the rail net, rights to rent pas-
senger train carriages and locomotives, staff, monies, etc.
Strategic resources is, for example, about needing addi-
tional or changed rail net access rights, needing further or
different kinds of train sets, etc. Strategic resource manage-
ment , Sfm, typically brings many operators together, ne-
gotiating with rail infrastructure owners about access rights,

and with train set leasing (and lease finance) companies for
rental of train sets, etc. Srs:SRS designates all possible out-
comes of a company’s own strategic planning, sr:SR desig-
nates a negotiated solution. Tactical resources is, for exam-
ple, now about the rostering of train staff (crew allocation),
allocation of train sets to maintenance locations, etc. Tacti-
cal resource management , trm, typically involves negotia-
tion with trade unions, with maintenance units, etc. trs:TRS
designates all possible outcomes of a company’s own tac-
tical planning (its negotiating options), tr:TR designates a
negotiated solution. &c.

To give a further abstraction of the “life cycle” of the en-
terprise, we “idealise” it, as now shown:

value
enterprise: RS = E = Unit
enterprise(rs)(e) =
if p(rs)(e) then
let (¢/,(srs,sr)) = srm(rs)(e,e

(e” (trs,tr)) = trm(sr)(e,e”"),

(e ,or) = orm(tr)(e.,e”"),

" rsh = ope(or)(tr)(sr)(e,e',e”,e”’) in
let e/////:E . p/(e////’e/////) in
enterprise(rs’)(e”””’) end end

else stop end

"
)9

p’: E x E — Bool

The enterprise re-invocation argument, rs’, a result of op-
erations, is intended to reflect the use of strategically, tac-
tically and operationally acquired, spatially and task allo-
cated and scheduled resources, including partial consump-
tion, “wear & tear”, loss, replacements, etc.

Thelet e””””:E « p'(e”””,€"”) in ... shall model a chang-
ing environment.

Thus there were two forms of recursion at play here: The
simple tail-recursion, and the recursive “build-up” of the en-
terprise state €””’. The latter is the interesting one. Solution,
by iteration towards some acceptable, not necessarily mini-
mal fix-point, “mimics” the way the three levels of manage-
ment and the “floor” operations change that state and “pass
it around, up-&-down” the management “hierarchy”. The
operate function “unifies” the views that different manage-
ment levels have of the enterprise, and influences their de-
cision making. Dependence on E also models potential in-
teraction between enterprise management and, conceivably,
all other stake-holders. .

Discussion: We remind the reader that — in the previ-
ous example — we are “only” modelling the domain ! That
model is, obviously, sketchy. But we believe it portrays im-
portant facets of domain modelling and stake-holder per-
spectives. The stake—holders were, to repeat: Strategy (“ex-
ecutive”’) management (Srm, p), tactical (“line””) manage-
ment (trm), operations (“floor””) management (orm), and
the workers (ope). The perspective being modelled focused
on two aspects: Their individual jobs, as “modelled” by the

“functions” (Srm, p, trm, orm, ope), and their interactions,
as “modelled” by the passing around of arguments (e, €',
e”, e”,e"") The let ”":E « p'(€””,€”") in ... which
“models” the changing environment is thus summarising the
perspectives of “all other” stake—holders !

We are modelling a domain with all its imperfections: We
are not specifying anything algorithmically; all functions
are rather loosely, hence partially defined, in fact only their
signature is given. This means that we model well-managed
as well as badly, sloppily, or disastrously managed enter-
prises. We can, of course, define a great number of predi-
cates on the enterprise state and its environment (€:E), and
we can partially characterise intrinsics — facts that must al-
ways be true of an enterprise, no matter how.

If we “programme-specified” the enterprise then we
would not be modelling the domain of enterprises, but a
specifically “business process engineered” enterprise. Or
we would be into requirements engineering — we claim. =

Technique of Modelling the Stake—holder Perspective
Concept: Emphasise how the distinct stake-holders inter-
act, which phenomena in the domain they generate, share,
or consume. This ‘technique’ follows up on the ‘Stake—
holder’ modelling technique. .

A.3 Discussion

The stake-holder example given above is “sketchy”. It
identifies, we believe, the most important entities and opera-
tions that are relevant to a small number of interacting stake-
holders. We believe that “rough sketches” like the above are
necessary in the iterative development of domains.

B. Domain Facets

We shall outline the following facets:

Domain intrinsics: That which is common to all facets.

Domain support technologies: That in terms of which
several other facets (intrinsics, management & organisation,
and rules & regulations) are implemented.

Domain management & organisation: That which pri-
marily determines and constrains communication between
enterprise stake-holders.

Domain rules & regulations: That which guides the
work of enterprise stake-holders, their interaction, and the
interaction with non-enterprise stake-holders.

Domain human behaviour: The way in which domain
stake-holders despatch their actions and interactions wrt.
enterprise: dutifully, forgetfully, sloppily, yes even crimi-
nally.

We shall briefly characterise each of these facets. We ven-
ture to express “specification patterns” that “most closely
capture” essences of the facet.

Separating the treatment of each of these (and possibly
other) facets reflect a principle:

The Development Principle of Separation of Concerns
expresses that when possible one should separate distin-

guishable concerns and treat them separately. .

Discussion: We believe that the facets we shall present
can be treated separately in most developments — but not
necessarily always. Separation or not is a matter also of de-
velopment as well as of presentation style.

The separation, in more generality, of computing systems
development into the triptych of domain engineering, re-
quirements engineering and machine (hardware + software)
design, is also a result of separation of concerns — as are the
separations of domain requirements, interface requirements
and machine requirements (within requirements engineer-
ing), as well as the separations of software architecture and
program organisation design [6]. .

B.1 Intrinsics

Railways, although they have many “players and actors”
revolve around some core notions: The rail net and trains on
these.

e The Concept:

Characterisation: Intrinsics: That which is common to
all facets. .

e An Example:

Example: Rail nets and switches. We first give a sum-
mary view of a domain model for railway nets, first infor-
mally, then formally, leaving out axioms: A railway netcon-
sists of two or more stations and one or more lines. Nets,
lines and stations consists of rail units. A rail unit is either
a linear unit, or a switch unit, or a crossover unit, etc. Units
have connectors. A linear unit has two connectors, a switch
unit has three, a crossover unit has four, etc. A line is a lin-
ear sequence of connected linear units. A station usually has
all kinds of units. A line connects exactly two distinct sta-
tions. A station contains one or more tracks (say, pragmati-
cally, for passenger platforms or for cargo sidings). A path
is a pair of connectors of a unit, and pragmatically defines a
way for a train to traverse that unit. A unitis at any one time
in a state (o), which we may consider a set of paths. Over a
lifetime a unit may attain one or another state in that unit’s
state space (w).

type
N,L,S, Tr, U, C
value
obs_Ls: N — L-set, obs_Ss: N — S-set,
obs_Us: (N|L|S) — U-set, obs_Cs: U — C-set
obs_Trs: S — Tr-set
type
P =U x (CxC), ¥ = P-set,) = S-set
P = {| p:P’ « let (u,(c,c’))=p in (c,c')€ obs_¥(u) end |}
value
obs_¥: U — X, 0bs Q: U— Q)

[7] elaborates further on the model just presented: Formally
defines the axioms that suitably constrain the types.

From the perspective of a train passenger or a cargo cus-
tomer it is not part of the intrinsics that nets have units
and units have connectors. Therefore also paths, states and
state-spaces are not part of the intrinsics of a net as seen from
such stake—holders.

From the perspective of the train driver and of those who
provide the setting of switches and signalling in general,
units, paths, and states are indeed part of the intrinsics: The
intrinsics of a rail switch is that it can take on a number
of states. A simple switch (C‘ Y:/) has three connectors:
{¢,¢|, ¢/} cis the connector of the common rail from which
one can either “go straight” ¢|, or “fork” ¢,. So we have that
Wy,

1588

{(07 C\)}v {(07 C‘), (C\) C)}, {(C\) C)}:
{(07 C/)}7 {(C, C/)7 (0/70)}7 {(C/v C)},

{(07 C/)7 (C‘ ’ C)}7 {(C, C/)7 (0/70)7 (C\) C)}7 {(C/v 0)7 (C‘) C)}}
ideally models a general switch. Any particular switch wy,_
may have w,_ Cw,, . Nothing is said about how a state is de-
termined: Who sets and resets it, whether determined solely
by the physical position of the switch gear, or also by visi-
ble or virtual (ie. invisible, intangible) signals up or down

the rail away from the switch. .

e Methodological Consequences:

The Principle of Modelling the Intrinsics Domain
Facet expresses that in any modelling one first form and de-
scribe the intrinsic concepts. .

Technique of Modelling the Intrinsics Domain Facet:
The intrinsics model of a domain is a partial specification.
As such it involves the use of well-nigh all description prin-
ciples. Typically we resort to property oriented models, ie.
sorts and axioms. .

e Discussion:

Thus the intrinsics become part of every one of the next
facets. From an algebraic semantics point of view these lat-
ter are extension of the above.

B.2 Support Technologies

Railway systems are dominated by a rather large, if not
“huge” varieties of technology legacy: Old, newer and lat-
est mechanics, electro—mechanics, electronics and mecha—
tronics support for large diversities of functions.

e The Concept:

Characterisation: Support Technology — that in terms
of which several other facets (intrinsics, management & or-
ganisation, and rules & regulations) are implemented. .

e An Example:

Example: Railway switches. An example of different
technology stimuli: A railway switch, “in ye olde days”
of the “childhood” of railways, was manually “thrown”;

later it could be” mechanically controlled from a distance by
wires and momentum “amplification”; again later it could
be electro-mechanically controlled from a further distance
by electric signals that then activated mechanical controls;
and today switches are usually controlled in groups that are
electronically interlocked.

An aspect of supporting technology includes the record-
ing of state-behaviour in response to external stimuli. Fig-
ure 1 indicates a way of formalising this aspect of a support-
ing technology.

sw/psd

di/1-pdd-edd

sw/1-psd-esd sw/pss

di/pdd di/1-pds-eds

Sw/1-pss-ess

di/pds
States:
Input stimuli: s: Switched state
sw: Switch to switched state d: Direct (reverted) state
di: Revert to direct state e: Error state
Probabilities: 0<=p..<=1
pss: Switching to swi state from swi state

psd: Switching to switched state from direct state
pds: Reverting to direct state from switched state
pds: Reverting to direct state from direct state
esd: Switching to error state from direct state
edd: Reverting to error state from direct state
ess: Switching to error state from switched state
eds: Reverting to error state from switched state

Fig. 1. Probabilistic State Switching

Figure 1 intends to model the probabilistic (erroneous and
correct) behaviour of a switch when subjected to settings
(to switched (s) state) and re-settings (to direct (d) state).
A switch may go to the switched state from the direct state
when subjected to a switch setting § with probability psd.
Etcetera. -

e Another Example:

Another example shows another aspect of support tech-
nology.

Example: Railway Optical Gates. Train traffic (iTF), in-
trinsically, is a total function over some time interval, from
time (T) to monotonically positioned (P) trains (TN).

Conventional optical gates “sample”, at regular intervals,
the intrinsic train traffic. Hence the collection of all optical
gates is a partial function® from intrinsic to sampled train
traffics (sTF).

type
T, TN

7Tt was, but can still be &c.’
8This example is due to my former MSc Thesis student Kristian M.
Kalsing

pP=U*
iTF=T — (N x (TN 7 P))
STE=T 7 (N x (TN 7 P))
value
[optical gates | og: iTF = sTF
[close] c: N x (P x P) = Bool
axiom
V itt:iTF « let stt = og(itt) in V t:T t € dom stt «
t € dom itt AV Tn:TN « tn € dom itt(t) =
tn € dom stt(t) A c((itt(t))(tn),(stt(t))(tn)) end

The axioms express a property that one expects to hold for
optical gates: That the optical gate—recorded train positions
are close to those of the trains in the actual world

N was defined in Section II-B.1. Since units change state
with time, N need be part of any model of traffic. .

e Methodological Consequences:

Technique of Modelling the Support Technology Do-
main Facet: The support technologies model of a domain
is a partial specification — hence all the usual abstraction
and modelling principles, techniques and tools apply. More
specifically: Support technologies (st:ST) “implements”
intrinsic contexts and states: ~; : I';,0; : X; in terms of
“actual” contexts and states: vy, : I'g, 04 : 24

type
Syntax,
I'.i, VAL, I'_a, VAL a,
ST=Ti5T.a
value
sts:ST-set
axiom
V st:ST o st € sts = ...

Support technology is not a refinement, but an extension.
Support technology typically introduces considerations of
technology accuracy, failure, etc. Axioms characterise
members of the set of support technologies sts. An example
axiom was given in the optical gate example .

The Principle of Modelling the Support Technology
Domain Facet is a principle that is relative to all other do-
main facets. It expresses that one must first describe essen-
tial intrinsics. Then it expresses that support technology is
any means of implementing concrete instantiations of some
intrinsics, of some management & organisation, and/or of
some rules & regulations. Generally the principle states that
one must always be on the look-out for and inspire new sup-
port technologies. The most abstract form of the principle
is: “What is a support technology one day becomes part of
the domain intrinsics a future day”. .

e Discussion:

[52] exemplify the use of the Duration Calculus [14],
[18], [17], [13], [16] in describing supporting technologies

that help achieve safe operation of a road level rail crossing.

The support technology facet descriptions “re—appear”
in the requirements definitions: Projected, instantiated, ex-
tended and initialised [6]. In the domain description we
“only” record our understanding of all aspects of support
technology “failures”. In the requirements definition we
then follow up and make decisions as to which kinds of
“breakdowns” the computing system, the machine, is to
handle, and what is to be achieved by such “handlings”.

B.3 Management and Organisation

Railway systems are characterised by usually highly
structured management organisations, rules and regulations
set up by upper echelons of management to be followed by
lower levels and by “ground” staff and users.

Examples: Train Monitoring In China, as an exam-
ple, re—scheduling of trains occur at stations and involves
telephone negotiations with neighbouring stations (“up and
down the lines”). Such re—scheduling negotiations by
phone imply reasonably strict management & organisation
(M&O). This kind of M&O reflects the geographical layout
of the rail net. .

e The Concept:

Characterisation: Management and Organisation: That
which primarily determines and constrains communication
between enterprise stake-holders. .

e Conceptual Examples — I:

Discussion: People staff enterprises, the components
of infrastructures with which we are concerned, for which
we develop software. The larger these enterprises, these
infrastructure components, are, the more need there is for
management & organisation. The role of management is
roughly, for our purposes, twofold: Firstly, to perform
strategic, tactical and operational work, to make strategic,
tactical and operational policies (cf. Section II-A.2) — in-
cluding rules & regulations, cf. Section II-B.4 — and to see
to it that they are followed. The réle of management is, sec-
ondly, to react to adverse conditions: Unforeseen situations,
and decide upon their handling, ie. conflict resolution.

Policy setting should help non-management staff operate
normal situations — for which no management interference
is thus needed. And management “back-stops” problems:
Takes these problems off the shoulders of non-management
staff.

To help management and staff know who’s in charge
wrt. policy setting and problem handling, a clear concep-
tion of the overall organisation is needed: Organisation de-
fines lines of communication within management and staff
and between these. Whenever management and staff has
to turn to others for assistance they usually, in a reasonably
well-functioning enterprise, follow the command line: The

paths of organigrams — the usually hierarchical box and ar-
row/line diagrams. .

e Methodological Consequences — I:

Techniques of Modelling the Management & Organ-
isational Domain Attributes Concepts: The manage-
ment & organisation model of a domain is a partial specifi-
cation — hence all the usual abstraction and modelling prin-
ciples, techniques and tools apply. More specifically: Man-
agement is a set of predicates, observer and generator func-
tions which either parameterise other, the operations func-
tions, that is: Determine their behaviour, or yield results that
become arguments to these other functions. We have indi-
cated, earlier, some of the techniques. Organisation is a set
of constraints on communication behaviours. “Hierarchi-
cal”, rather than “linear”, and “matrix” structured organisa-
tions can also be modelled as sets (of recursively invoked
sets) of equations. .

e Conceptual Example — II:

Examples: Management & Organisation To relate
“classical” organigrams to formal descriptions we first show
such an organigram, see Figure 2, and then we show
schematic processes which — for a rather simple case (ie.
scenario) — model managers and managed !

A Hierarchical Organisation

Board

g g (TTTTTTTTTT o g Tt \
! unit |
| Manager |
i 1 .

} }

Admin.

Functional
Manager
**’[Unit **’[Unit] Unit
Functional |
Manager
**’{ Unit **’{ Unit

Fig. 2. Organisational Structures

2
(N

type Msg, U, 3, Sx

channel { ms[i]:Msg |i:Sx }

value
sys: Unit — Unit
mgr: U — in,out { ms[i] |i:Sx } Unit
stf: i:Sx — ¥ — in,out ms[i] Unit

sys() = || { stf(i)(io) | i:Sx } || mgr(s))

mgr(y) =
lety =...;
(|| {ms[i]!msg;f-m(msg)(:))[i:Sx })
[] (] {let msg’ = ms[i]? in
g m(msg’)(¢)) end[i:Sx}) in
mgr(y)’) end

stf(i)(o) =
leto’ = ...;
((let msg = ms[i] ? in f_s(msg)(o) end)
(
(ms[i] ! msg’; g_s(msg’)(0))) in
stf(i)(o’) end

fom, g.m: Msg — ¥ — U,
fs,gstMsg—=X =%

Both manager and staff processes recurse (ie. iterates)
over possibly changing states. Management process non-
-deterministically, external choice, “alternates” between
“broadcast”—issuing orders to staff and receiving individ-
ual messages from staff. Staff processes likewise non-
-deterministically, external choice, “alternates” between
receiving orders from management and issuing individ-
ual messages to management. The example also illus-
trates modelling stake-holder behaviours as interacting
(here CSP-like, [29], [30], [48]) processes. .

e Methodological Consequences — II:

Discussion: The strategic, tactical and operations re-
source management example of Section II-A.2 illustrated
another management & organisation description pattern. It
is based on a set of, in this case, recursive equations. Any
way of solving these equations, finding a suitable fix-point,
or an approximation thereof, including just choosing and
imposing an arbitrary “solution”, reflects some management
communication. The syntactic ordering of the equations —
in this case: a “linear” passing of enterprise “results” from
“upper” equations onto “lower” equations — reflects some
organisation. .

The Principle of Modelling the Management & Or-
ganisation Domain Facets expresses that relations be-
tween resources, and decisions to acquire and dispose re-
sources, to de—, re— and schedule and de—, re— and allocate
resources, and to de—, re— and activate resources, are the pre-
rogatives of well-functioning management, reflect a func-
tioning organisation, and imply invocation of procedures

that are modelled as actions that “set up” and “take-down”
contexts and change states. As such these principles tell us
which sub-problems of development to tackle. .

Techniques of Modelling the Management & Organisa-
tion Domain Facet: We have already, under techniques for
modelling ‘Stake—holder’ and ‘Stake—holder Perspectives’,
mentioned some of the techniques. Two “extremes” were
shown: Earlier we modelled individual management groups
by their respective functions (strm, trm, orm), and their in-
teraction (ie. organisation) by “solutions” to a set of recur-
sive equations ! Presently we modelled management & or-
ganisation, especially the latter, by communicating sequen-
tial behaviours. .

e Discussion:

The domain models of management and organisation,
eventually find their way into requirements, and, hence, the
software design — for the cases that the requirements are
about computing support of management and its organisa-
tion.

Support to the solution of the recursive equations of the
earlier stake—holder example may be offered in the form of
constraint based logic solvers which may partially handle
logic characterisations of the strategic and tactical manage-
ment functions, and in the form of computerised support of
message passing between the various management groups
of the stake—holder example, as well as of the generic ex-
ample of the present part.

B.4 Rules & Regulations

Railway systems are characterised by large varieties of
rules for appropriate behaviour: Of trains, train despatch,
monitoring and control, of supporting technology, and
hence of humans at all levels.

e The Concept:

Characterisation: Rule. That which guides the work
of enterprise stake-holders and their support technologies,
as well as their interaction and the interaction with non-
enterprise stake-holders. .

Characterisation: Regulation. That which stipulate
what is to happen if a rule can be detected not to have been
followed when such was deemed necessary. .

Rules & regulations are set by enterprises, equipment
manufacturers, enterprise associations, [government] regu-
latory agencies, and by law.

e Two Examples:

We give two examples:

Example: Train at Stations.

Rule: In China arrival and departure of trains at, respec-
tively from railway stations are subject to the following rule:
In any three minute interval at most one train may either ar-
rive or depart.

Regulation: Disciplinary procedures. .
and:

Example: Train along Lines.

Rule: In many countries railway lines (between stations)
are segmented into blocks or sectors. The purpose is to stip-
ulate that if two or more trains are moving — obviously in
the same direction — along the line, then there must be at
least one free sector (ie. without a train) between any two
such trains.

Regulation: Disciplinary procedures. .

e Methodological Consequences:

Technique of Modelling the Rules & Regulations Do-
main Facets: There are usually three kinds of syntax in-
volved wrt. (ie. when expressing) rules & regulations (resp.
when invoking actions that are subject to rules & regula-
tions): The syntaxes (Syntax_rul, Syntax_reg) describ-
ing rules, respectively regulations; and the syntax (Syn-
tax_cmd) of [always current] domain external action stim-
uli. A rule, denotationally, is a predicate over domain stim-
uli, and current and next domain configurations (I'). A reg-
ulation, denotationally, is a state changing function over do-
main stimuli, and current and next domain configurations
(I"). We omit treatment of [current] stimuli:

type
Syntax_cmd, Syntax_rul, Syntax reg, I'
Rules_and_Regulations = Syntax_rul x Syntax_reg
RUL =T — I — Bool,
REG=T—-T

value
interp: Syntax_rul — I"' — RUL-set,
interp: Syntax_reg — I' = REG

valid: RUL-set — I'" x I" — Bool
valid(ruls)(v,7") =
V rul:RUL e rul € ruls = rul(y)(y")
axiom
V (s_ruls,s_reg):Rules_and_Regulations,y:I" ¢
let (ruls,reg)=(interp(s_rul)(vy),interp(s_reg)(y)) in
34" 4" T » ~valid(ruls)(y,7")
= reg(y")=7" A valid(ruls)(y,y")
end

Rules & regulations are therefore modelled by abstract or
concrete syntaxes of syntactic rules etc., by abstract types
of denotations, and by semantics definitions, usually in the
form of axioms or denotation—ascribing functions. .

The Principle of Modelling the Rules & Regulations
Domain Facet expresses that domains are governed by
rules & regulations: By laws of nature or edicts by humans.
Laws of nature can be part of intrinsics, or can be modelled
as rules & regulations constraining the intrinsics. Edicts by
humans usually change, but are usually considered part of
an irregularly changing context, not a recurrently changing
state. Modelling techniques follow these principles. .

¢ Rules & Regulation Scripts:

‘We discuss an issue, that arises with the above and which
points to possible precautionary and/or remedial actions —
as they would first be expressed in some requirements:

Discussion: Domain rules & regulations are usually for-
mulated in “almost legalese”, ie. in rather precise, albeit per-
haps “stilted” subsets of the professional language of the
domain in question. In cases such rules & regulation lan-
guages can be formalised, and we then call them script lan-
guages. A particular set of rules & regulations is thus a
script. Such script languages can be mechanised: Mak-
ing it “easy” for appropriate (rules & regulation issuing)
stake-holders to script such scripts — and to have them in-
serted into their computing system: As predicates that de-
tect rule violations, respectively suggest alternative actions
(than causing a potentially violating action) or remedy an
actual rule violation. .

The rules & regulations, that may be stipulated for a do-
main, can thus find their way into requirements that specify
computerised support for their enforcement.

B.5 Human Behaviour

Railway systems are characterised by large physical dis-
tances between staff at all levels, staff whose behaviour can-
not always be closely monitored.

e The Concept:

Discussion: Some people try their best to perform ac-
tions according to expectations set by their colleagues, cus-
tomers, etc. And they usually succeed in doing so. They
are therefore judged reliable and trustworthy, good, punc-
tual professionals (b_p) of their domain. Some people set
lower standards for their professional conduct: Are some-
times or often sloppy (b_s), make mistakes, unknowingly or
even knowingly. And yet other people are outright delin-
quent (b_d) in the despatch of their work: Could’nt care less
about living up to expectations of their colleagues and cus-
tomers. Finally some people are explicitly criminal (b_c)
in the conduct of what they do: Deliberately “do the oppo-
site” of what is expected, circumvent rules & regulations,
etc. And we must abstract and model, in any given situation
where a human interferes in the “workings” of a domain ac-
tion, any one of the above possible behaviours. .

Characterisation: Human Behaviour. The way in which
domain stake-holders despatch their actions and interactions
wrt. an enterprise: professionally, sloppily, delinquently,
yes even criminally. .

e Methodological Consequences:

Techniques of Modelling the Human Behaviour (I-1II)
Domain Facet: We often model the “arbitrariness” of hu-
man behaviour by internal non-determinism:

..bp[lbs[]bd][] bec..

The exact, possibly deterministic, meaning of each of the
b’s can be separately described.

In addition we can model human behaviour by the arbi-
trary selection of elements from sets and of subsets of sets:

type
X
value
hb_i: X-set ... — ...,
hb_i(xs,...) =let x:X e x € xsin ... end

hb_j: X-set... — ...,
hb_j(xs,...) = let xs":X-set » xs' C xsin ... end

The above shows just fragments of formal descriptions of
those parts which reflect human behaviour. Similar, loose,
descriptions are used when describing faulty supporting
technologies, or the “uncertainties” of the intrinsic world. =
Technique of Modelling the Human Behaviour (III)
Domain Facet: Commensurate with the above, humans in-
terpret rules & regulations differently, and not always “con-
sistently” in the sense of repeatedly applying the same inter-
pretations. Our final specification pattern is therefore:

type
RULS = RUL-set
Action = T' = T-infset
value
interpret: Syntax_rul — I' — RULS-infset

human _behaviour: Action — Syntax_rr — I' = T’
human_behaviour(a)(srr)(y) as 7/
post
let vs = a(y) in
4 Teqy €8s A
let rules:RULS e rules € interpret(srr)(y) in
V rule:RUL e rule € rules = rule(y)(vy)
end end

The above is, necessarily, sketchy: There is a possibly in-
finite variety of ways of interpreting some rule[s]. A human,
in carrying out an action, interprets applicable rules and
choose a set which that person believes suits some (profes-
sional, sloppy, delinquent or criminal) intent. “Suits” means
that it satisfies the intent, ie. yields true on the pre/post state
pair, when the action is performed — whether as intended
by the ones who issued the rules & regulations or not. .

Discussion: Please observe the difference between the
version of interpret as indicated in the “Rules & Regula-
tions” part of the paper and the present version: The former
reflected the semantics as intended by the stake—holder who
issued the rules & regulations. The latter reflects the profes-
sional, or the sloppy, or the delinquent, or the criminal se-
mantics as intended by the similarly “qualified” staff which
carries out the rule abiding or rule violating actions. Please

also observe that we do not here exemplify any regulations.

The Principle of Modelling the Human Behaviour
Domain Facet expresses what has now been mentioned
several times, namely that some people are perfect: Fol-
low rules & regulations as per intentions; other people are
sloppy: Fail to follow the prescriptions; and yet other peo-
ple are derelict or even criminal in the pursuit of their job:
Deliberately flaunts rules & regulations. And the principle
concludes that one must be prepared for the “worst”. That
is: Model it all. .

III. CONCLUSION

Before software design for railway control applications
— applications that are usually safety—critical — can be
contemplated we must establish, firmly, the requirements.
Before requirements for such applications can be defined,
we must understand the domain. This is the main message
of this paper.

A corollary message is that of providing a number of prin-
ciples and techniques for developing domain descriptions,
and in particular to illustrate such which are applicable to
specific facets of (as here: Railway) domains.

A. Summary

We have covered a number of domain facets: Intrinsics
(“the very basics’), support technologies (implementations
of some parts of other facets), management & organisation,
rules & regulations, and human behaviour. One can possi-
bly think of other facets. With each domain facet the “full
force” of all abstraction and modelling principles and tech-
niques apply, and a careful “sequencing” (“fitting-in”") of the
treatment of ‘that’ facet wrt. other facets must be consid-
ered.

For each of the facets we have shown principles of and
techniques for their modelling, and we have indicated that
these facet models may eventually find their way into re-
quirements models, and hence determine software designs.

B. Discussion

One will never be able, it is conjectured, to achieve a
complete domain model. But one can do far better than is
practice today — where no such models are even attempted.
Most claims of domain models are biased towards contem-
plated software designs, embody requirements, or are cov-
ering only some of the domain (thus implicitly) being pro-
jected onto requirements, etc.

When indeed errors, ie. “holes” in the domain descrip-
tion, are still discovered, later, perhaps after final software
delivery, then it is now easier, we claim, to pinpoint where
these errors first occurred, and hence who were the perpetra-
tors: The software, cum domain or requirements or design,
developers, or the stake-holders, or both parties.

C. Relations to Requirements and Software Design

The results of informal as well as formal domain descrip-
tions of supporting technologies, of management and or-
ganisations, of rules and regulations, and of human short-
comings find their way into those requirements which de-
fine computerised support for taking precautionary actions
where technology failures and human errors can be de-
tected.

In the validation interaction between the software devel-
opers — who are major “players” in the development of
both domain descriptions and requirements definitions —
and the domain stake—holders, in that validation process, we
claim, many errors — that before could, and hence would,
creep unconsciously into the software development — can
now be avoided.

On one hand it is now easier to resolve legal issues, and,
as well, to repair malfunctioning software. The latter be-
cause, in its development, from domains via requirements
to designs, we adhere to an unstated principle: That of ho-
momorphic development: If two or more algebraically in-
dependent (“orthogonal”’) concepts are expressed in the do-
main and are to be “found”, somehow, also in the software,
then their implementation must be likewise distinguishable.

IV. BIBLIOGRAPHICAL NOTES

Space does not permit it, but below we refer to, and would
have liked, more individually to comment on, a long list
of additional reports, workshop papers and journal publica-
tions. Most are related to the issue of formalising require-
ments and design of mostly safety—critical railway software
applications. Suffice it, for now, also for these additional
references to serve as a starting point for studies: [34], [43],
[44], [15], [37], [3], [26], [25], [19], [45], [12], [31], [38],
[32], [20], [21], [46], [2], [24], [50], [11], [47], [27], [42],
[33], [28], [41], [11, [51], [35], [60], [541, [40], [391, [53],
[49], [9], [10]. As is seen, many of the papers are from
five workshops organised by Formal Methods Europe: [55],
[56], [57], [58], [59].

REFERENCES

[1] Patrick Behm. METEOR : an industrial success in formal develop-
ment. In FME Rail Workshop # 1 [55]. Matra (F).

[2] C. Bernardeschi, A. Fantechi, S. Gnesi, and G. Mongardi. Prov-
ing safety properties for embedded control systems. In A. Hlaw-
iczka, J.G. Silva, and L.Simoncini, editors, Dependable Computing -
EDCC-2. Second European Dependable Computing Conference Pro-
ceedings; Taormina, Italy, pages 321-32. Springer-Verlag; Berlin,
Germany, 1996.

[3] Dines Bjgrner. A Architecture for Running Map Systems. Techni-
cal Report db/arch/01, UNU/IIST, the UN University’s International
Institute for Software Technology, P.O.Box 3058, Macau; E-Mail:
library@iist.unu.edu, February 1994.

[4] Dines Bjgrner. Domains as Prerequisites for Requirements and Soft-
ware &c. In M. Broy and B. Rumpe, editors, RTSE’97: Requirements
Targeted Software and Systems Engineering, volume 1526 of Lecture
Notes in Computer Science, pages 1-41. Springer-Verlag, Berlin Hei-
delberg, 1998.

[5] Dines Bjgrner. Domain Modelling: Strategic, Tactical & Operational
Resource Management, In Jim Davies, Bill Roscoe and Jim Wood-

[6]

[7]

[8]

[9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

11

cock, editors, Festschrift to Tony Hoare: Millenium Perspective in
Computer Science. Oxford University and Microsoft, September 13—
14, 1999; Palgrave Publs., pp 23-40, 2000.

Dines Bjgrner. Where do Software Architectures come from ?
Systematic Development from Domains and Requirements. A Re—
assessment of Software Engineering ? South African Journal of
Computer Science, Number 22, March 1999, pp 3-13. Guest Editor:
Chris Brink.

Dines Bjgrner. Formal Software Techniques in Railway Systems.
In Eckehard Schnieder, editor, 9th IFAC Symposium on Control in
Transportation Systems, pages 1-12, Technical University, Braun-
schweig, Germany, 13—15 June 2000. VDI/VDE-Gesellschaft Mess—
und Automatisieringstechnik, VDI-Gesellschaft fiir Fahrzeug— und
Verkehrstechnik. Invited plenum lecture.

Dines Bjgrner. Pinnacles of Software Engineering: 25 Years of For-
mal Methods. Annals of Software Engineering, 2000. Eds. Dilip Patel
and Wang Yi.

Dines Bjgrner, Jakob Braad, and Karin S. Mogensen (Eds.). Models
of Railway Systems: Domain. In FME Rail Workshop #5 [59]; (60
pages) Dept. of IT, Techn. Univ. of Denmark.

Dines Bjgrner, Jakob Braad, and Karin S. Mogensen (Eds.). Models
of Railway Systems: Requirements. In FME Rail Workshop #5 [59];
(62 pages) Dept. of IT, Techn. Univ. of Denmark.

Dines Bjgrner, C.W. George, and S. Prehn. Scheduling and
rescheduling of trains, page 24 pages. Academic Press, 1999.

Dines Bjgrner, Dong YuLin, and S. Prehn. Domain Analy-
sis: A Case Study of Railway Station Management. Tech-
nical Report db/03/01, UNU/IIST, UN University’s International
Institute for Software Technology, P.O.Box 3058, Macau; E-Mail:
library@iist.unu.edu, November 12 1994. Presented at
KICS’94: The Kunming (Yunnan, PRC) Intl. CASE Symposium,
Nov. 1994.

Zhou Chaochen. Duration Calculi: An Overview. Research Re-
port 10, UNU/IIST, P.O.Box 3058, Macau, June 1993. Published
in: Formal Methods in Programming and Their Applications, Con-
ference Proceedings, June 28 — July 2, 1993, Novosibirsk, Russia;
(Eds.: D. Bjgrner, M. Broy and I. Pottosin) LNCS 736, Springer-
Verlag, 1993, pp 36-59.

Zhou Chaochen, C. A. R. Hoare, and A. P. Ravn. A Calculus of Du-
rations. Information Proc. Letters, 40(5), 1992.

Zhou Chaochen and Yu Huiqun. A Duration Model for Rail-
way Scheduling. Technical Report 24b, UNU/IIST, P.O.Box 3058,
Macau, May 1994.

Zhou Chaochen, Zhang Jingzhong, Yang Lu, and Li Xiaoshan. Lin-
ear Duration Invariants. Research Report 11, UNU/IIST, P.O.Box
3058, Macau, July 1993. Published in: Formal Techniques in Real-
Time and Fault-Tolerant systems, LNCS 863, 1994.

Zhou Chaochen, Anders P. Ravn, and Michael R. Hansen. An Ex-
tended Duration Calculus for Real-time Systems. Research Report 9,
UNU/IIST, P.O.Box 3058, Macau, January 1993. Published in: Hy-
brid Systems, LNCS 736, 1993.

Zhou Chaochen and Li Xiaoshan. A Mean Value Duration Calculus.
Research Report 5, UNU/IIST, P.O.Box 3058, Macau, March 1993.
Published as Chapter 25 in A Classical Mind, Festschrift for C.A.R.
Hoare, Prentice-Hall International, 1994, pp 432-451.

B. Dehbonei and L.-F. Mejia. Formal methods in the railways sig-
nalling industry. In M. Naftalin, T. Denvir, and M. Bertran, edi-
tors, FME ’94: Industrial Benefit of Formal Methods. Second In-
ternational Symposium of Formal Methods Europe. Proceedings;
Barcelona, Spain, pages 26-34. Springer-Verlag, Berlin, Germany;
Lecture Notes in Computer Science LNCS, 1994.

B. Dehbonei and L.-F. Mejia. Formal development of safety-critical
software systems in railway signaling. In M. G. Hinchey and J. P.
Bowen, editors, Applications of Formal Methods, Series in Computer
Science, pages 227-252. Prentice Hall International, 1995.

L.H. Eriksson. Specifying railway interlocking requirements for
practical use. In Erwin Schoitsch, editor, SAFECOMP’96: 15th In-
ternational Conference on Computer Safety, Reliability and Security,
page 243, Vienna, Austria, 1996. Springer.

Chris George, Peter Haff, Klaus Havelund, Anne Haxthausen, Robert
Milne, Claus Bendix Nielsen, Sgren Prehn, and Kim Ritter Wagner.
The RAISE Specification Language. The BCS Practitioner Series.
Prentice-Hall, Hemel Hampstead, England, 1992.

(23]

[24]

[25]

[26]

(271

(28]

[29]
[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]
[40]
[41]

[42]

[43]

[44]

Chris George, Anne Haxthausen, Steven Hughes, Robert Milne,
Sgren Prehn, and Jan Storbank Pedersen. The RAISE Method. The
BCS Practitioner Series. Prentice-Hall, Hemel Hampstead, England,
1995.

C.W. George. A Theory of Distributed Train Rescheduling. In Marie-
Claude Gaudel and Jim Woodcock, editors, FME’96: Industrial Ben-
efit and Advances in Formal Methods, pages 499-517. Springer-
Verlag, March 1996.

G. Guiho and L.-F. Mejia. Operational safety critical software meth-
ods in railways. In Anon, editor, IFIP Transactions A (Computer
Science and Technology),, pages 262-9. IFIP World Congress, Ham-
burg, Germany, 1984.

K.M. Hansen. Validation of a railway interlocking model. In M. Naf-
talin, T. Denvir, and M. Bertran, editors, FME ’94: Industrial Bene-
fit of Formal Methods. Second International Symposium of Formal
Methods Europe. Proceedings; Barcelona, Spain, pages 582—601.
Springer-Verlag, Berlin, Germany; Lecture Notes in Computer Sci-
ence LNCS 873, 1994.

K.M. Hansen. Formalising Railway Interlocking Systems. In
FME Rail Workshop 2 [56], ScanRail Consult (now Atkins), Sig-
nalling Assessment, Pilestrede 58/6, DK—1112 Copenhagen K, Den-
mark, 1998.

A.E. Haxthausen and J. Peleska. Formal Development and Verifica-
tion of a Distributed Railway Control System. In FME Rail Workshop
#1[55]; Techn. Univ. of Denmark, resp. Univ. of Bremen, Germany.
C.AR. Hoare. Communicating Sequential Processes. Communica-
tions of the ACM, 21(8), Aug. 1978.

C.A.R. Hoare. Communicating Sequential Processes. Prentice-Hall
International, 1985.

M. Ingleby. Safety properties of a control network: Local and global
reasoning in machine proof. In Proceedings of Real Time Systems.
Paris, January 1994, Huddersfield HD1 3DH, UK, 1998. School of
Computing and Mathematics, University of Huddersfield.

M. Ingleby. A Galois theory of local reasoning in control systems
with compositionality. In Proceedings of Mathematics of Depend-
able Systems. Oxford UP (UK), 1995, Huddersfield HD1 3DH, UK,
1998. School of Computing and Mathematics, University of Hudder-
sfield.

M. Ingleby. A predicate logic for harmonised interlocking functions.
In FME Rail Workshop 1 [55], Huddersfield HD1 3DH, UK, 1998.
School of Computing and Mathematics, University of Huddersfield.
M. Ingleby and I. Mitchell. Proving safety of a railway signalling

system incorporating geographic data. SAFECOMP 1992: Safety of

Computer Control Systems 1992, pages 129-134, 1992.

David Jackson. Mechanical Verification of British Rail Interlocking.
In FME Rail Workshop #2 [56]. Praxis Critical Systems (UK).
Michael A. Jackson. Software Requirements & Specifications: a lex-
icon of practice, principles and prejudices. ACM Press. Addison-
Wesley Publishing Company, Wokingham, nr. Reading, England; E-
mail: ipc@awpub.add-wes.co.uk, 1995. ISBN 0-201-87712-0; xiv +
228 pages.

T. King. Formalising British Rail’s signalling rules. Lecture Notes in
Computer Science, 873, 1994.

T. King. Formalising British Rail’s signalling rules. In M. Bertran
M. Naftalin, T. Denvir, editor, FME’94: Industrial Benefit of Formal
Methods, pages 45-54. Springer-Verlag, October 1994.

Peter Gorm Larsen. A VDM-SL Specification of the Dwarf Signal
Controller. In FME Rail Workshop # 3 [57], IFAD (DK).

Peter Gorm Larsen. The KLV System in VDM-SL. In FME Rail
Workshop # 3 [57], IFAD (DK).

Fernando Mejia. Reverse engineering of a safety critical software
with B. In FME Rail Workshop # 1 [55], GEC Alsthom (F).

L.-F. Mejia. Formalising existing safety-critical software. In
FME Rail Workshop 2 [56]; 33, rue des Bateliers, F-93400 Saint—
Ouen, France, 1998. Alstom Transport.

Markus Montigel. Formal representation of track topologies by dou-
ble vertex graphs. In Proceedings of Railcomp 92 held in Washing-
ton DC, Computers in Railways 3, volume 2: Technology. Computa-
tional Mechanics Publications, 1992.

Markus Montigel. Elemente eines Computergestiitzten Werkzeugs
zur Entwicklung von Eisenbahnsicherungsanlagen mit Petri-Netzen.
Technical Report Schriftenreihe des IVT Nr. 92, IVT: Institut fiir
Verkerhrsplanung, Transporttechnik, Strassen- und Eisenbahnbau,
ETH, Ziirich, Dezember 1992. In German.

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

Markus Montigel. Modellierung und Gewiéhrleistung von Abhéngig-
keiten in Eisenbahnsicherungsanlagen. PhD thesis, ETH: Swiss Fed-
eral Institute of Technology, ETH Honggerberg, CH-8093 Ziirich,
Swtizerland, June 1994.

J. Peleska and M. Siegel. From testing theory to test driver implemen-
tation. In M.-C. Gaudel and J. Woodcock, editors, FME '96: Indus-
trial Benefit and Advances in Formal Methods. Third International
Symposium of Formal Methods Europe. Proceedings; Oxford, UK,
pages 538-56. Springer-Verlag; Berlin, Germany, 1996.

Jakob Lyng Petersen. Mathematical Methods for validating Railway
Interlocking Systems. PhD thesis, Dept. of IT, Techn. Univ. of Den-
mark, Bldg. 344, DK-2800 Lyngby, February, November 1998.
A.W. Roscoe. Theory and Practice of Concurrency. Prentice—Hall,
1997.

Denis Sabatier. The B Method in Railways. In FME Rail Workshop
#4 [58], Steria, France.

A.C. Simpson, J.C.P. Woodcock, and J.W. Davies. The Mechan-
ical Verification of Solid State Interlocking Geographic Data. In
L. Groves and S. Reeves, editors, Proceedings of Formal Methods
Pacific, pages 223-242, Wellington, New Zealand, 9-11 July 1997.
Springer—Verlag.

Andy Simpson. CSP applied in Model-Checking for Interlocking
Safety. In FME Rail Workshop #2 [56]. Oxford University (UK).
Jens U. Skakkebzk, Anders P. Ravn, Hans Rischel, and Zhou
ChaoChen. Specification of Embedded, Real-time Systems. EuroMi-
cro Workshop on Formal Methods for Real-time Systems, 1992 De-
cember 1991. The example: A railway road/rail crossing.

J. Woodcock. A CSP Model of the Alcatel Dwarf Case Study. In
Thierry Lecomte and Peter Gorm Larsen, editors, FME Rail Work-
shop #5 [59], Oxford Univ, Programming Research Group.

Michael Meyer zu Horste. Modelling and Simulation of Train Con-
trol Systems with Petri Nets. In FME Rail Workshop #4 [58]; Tech-
nische Universitit Braunschweig (D).

FME Rail Workshop Proceedings:
P.G. Larsen, editor. FME Rail Workshop # 1, volume 1 of FME Rail
Seminars, Forskerparken, DK—6000 Odense, Denmark, 8-9 June
1998. FME: Formal Methods Europe, IFAD. ESSI Project 26538.
Workshop venue: Breukelen, The Netherlands. Organised by Origin
Nederland, a member of the Philips group of companies, P.O.Box
1444, NL-3430 BK Nieuwegein, The Netherlands.
J.C.P. Woodcock, editor. FME Rail Workshop #2, volume 2 of
FME Rail Seminars, Keble Court, 26 Temple Street, Oxford OX4
1JS, UK, Telephone: +44 1865 728460, Telefax: +44 1865 201114,
October 1998. ESSI Project 26538. Workshop venue: Canary Wharf,
London Docklands, England. Organised by Formal Systems Ltd.,
Oxford. Hosted by London Underground.
Maria Fahlén, editor. FME Rail Workshop # 3, volume 3 of FME Rail
Seminars, Falun, Sweden, May 12-14 1998. FME: Formal Methods
Europe, Banverket. ESSI Project 26538. Workshop venue: Stock-
holm, Sweden. Organised by Banverket (Swedish Rail’s Infrastruc-
ture Division), Falun, Sweden.
Markus Montigel, editor. FME Rail Workshop #4, volume 4 of
FME Rail Seminars, Herzogenburgerstr. 68, A-3100 St. Polten, Aus-
tria, February 17-19 1999. FME: Formal Methods Europe, Fach-
hochschulstudiengang St. Polten. ESSI Project 26538. Workshop
venue: St. Polten, Austria. Organised by Fachhochschulstudiengang
St. Polten and Alcatel, Austria.
Thierry Lecomte and Peter Gorm Larsen, editors. FME Rail Work-
shop #5, volume 5 of FME Rail Seminars. FME: Formal Methods
Europe, Springer Verlag, September 20-24 1999. ESSI Project
26538. Workshop venue: Toulouse, France. Organised as part of
FM’99: World Congress of Formal Methods.

TRAIN, A Project Proposal:

Dines Bjgrner. Train: The Railway Infrastructure — an R&D
project proposal, 1998. This is a 125 page draft proposal for
a thorough study and support tool (demo etc.) development of
railway domains. We refer to http://www.imm.dtu.dk/-
“db/train/train.html and http://www.imm.dtu.-
dk/"db/train/train.ps.Pls. state your interest.

