Deciding a Fragment of («, 5)-Privacy

Laouen Fernet ® and Sebastian Modersheim
DTU Compute, Richard Petersens Plads, Building 321
2800 Kongens Lyngby, Denmark
{1pkf,samo}@dtu.dk

October 2021

Abstract

We show how to automate fragments of the logical framework («, §)-
privacy which provides an alternative to bisimilarity-based and trace-
based definitions of privacy goals for security protocols. We consider the
so-called message-analysis problem, which is at the core of («, 8)-privacy:
given a set of concrete messages and their structure, which models can
the intruder rule out? While in general this problem is undecidable, we
give a decision procedure for a standard class of algebraic theories.

Keywords: Privacy, Formal Methods, Security protocols, Automated verifica-
tion.

1 Introduction

The problem of privacy in security protocols is relevant in many fields, such as
electronic voting, digital health information, mobile payments and distributed
systems in general. Privacy is a security goal of its own, it cannot be described
as regular secrecy. For example, in voting it is not the values of the votes
that are secret, since there is a public tally, but rather the relation between a
voter and a vote. It is best if privacy is taken into account during the design of
communication protocols. But even then, it is difficult to get enough guarantees
about privacy goals. Formal methods are a successful way of addressing the
issue. By studying a protocol at an abstract level, they can be used to check
digital applications against possible misuse.

The symbolic modeling of protocols allows one to define various privacy
goals. The standard approach uses the notion of observational equivalence [1, 2]:
it is common to consider privacy as a bisimilarity between processes in the ap-
plied m-calculus. For instance, for electronic voting protocols, a privacy goal
could be that two processes differing only by a swap of votes are indistinguish-
able [3, 4, 5]. There are many examples of communication protocols that are
not secure with regards to privacy. This is the case also for protocols which

https://orcid.org/0000-0001-9028-1480
https://orcid.org/0000-0002-6901-8319

have been designed to provide some privacy goals. Indeed, recent papers show
privacy issues in voting protocols (Helios [3, 4]) as well as contact-tracing ap-
plications (GAEN API [6], SwissCovid [7, 8]). While tools exist to provide
automated verification [9, 10], it can be hard to formalize a privacy goal as a
bisimilarity property, so automated verification is actually challenging. In such
cases, it is hard to specify all desirable privacy goals using the notion of observa-
tional equivalence. Additionally, the standard approach cannot guarantee that
the privacy goals verified cover all possibilities of misuse. These limits are the
motivation for studying a new approach that is declarative and more intuitive.

(«, B)-privacy [11, 12] is an approach based on first-order logic with Herbrand
universes, which allows for a novel way of specifying privacy goals. Instead of
specifying pairs of things that should be indistinguishable to the intruder, one
instead positively specifies what relations about the private data the intruder is
allowed to learn and it is then considered a violation if the intruder is actually
able to find out more.

The authors of [12] mainly argue that («, 8)-privacy is a more declarative way
to specify goals without emphasis on questions of automation. For instance, they
describe the goal of a voting protocol as releasing to the intruder the number of
votes for each candidate or option and that this can actually justify the more
technical “encoding” into bisimilarity-based approaches with the vote-swap idea
mentioned before.

We now argue that actually the direct automation of («,)-privacy frag-
ments can have advantages over bisimilarity approaches. The reason is that
(a, B)-privacy is a reachability problem [13]: there is a state-transition system
where every state is characterized by two Herbrand formulae o and 8, namely
what payload information « is currently published as well as the technical in-
formation [like exchanged messages between honest agents and intruder and
what the intruder knows about the structure of these messages. The privacy
question is now whether in any reachable state, 8 allows to rule out a model of
a.

Thus, the main challenge lies in checking the («, 8)-privacy property for a
given state, while in bisimilarity approaches, the main challenge lies in checking
for every state S that is reachable in one process if there exists a reachable
state S’ in the other process so that S and S’ are in a certain relation. This
includes that the intruder knowledge in these states is statically equivalent, i.e.,
the intruder cannot tell S and S” apart. Bisimilarity thus means a challenge on
top of static equivalence that is hard to handle in automated methods, while in
(a, B)-privacy, reachability is trivial, but verifying privacy in the reached states
is in general undecidable.

In this paper we show that for the fragment of message-analysis problems
identified in [12] (and a suitable intruder theory), the check for («,)-privacy in
each state is akin—and typically not more complex—than a static equivalence
problem of the same size. For this fragment, (a, 8)-privacy thus allows us to
get rid of all the troubles of bisimilarity and reduce everything to a static-
equivalence-style problem.

We present our first contributions in Section 3 by introducing the notions of

destructor theories and frames with shorthands. In Section 4, we present our
main contribution under the form of several algorithms constituting a decision
procedure. Proofs for our results are presented in Appendix A.

2 Preliminaries

2.1 Herbrand Logic

Much of the preliminaries are adapted from [12]. The approach of («, 8)-privacy
is based on Herbrand logic [14], which is First-Order Logic (FOL) with Herbrand
universes. A reachable state of a protocol will later be characterized by two
formulae v and 8 in Herbrand logic.

In Herbrand logic, an alphabet ¥ = ¥y W X; W X, consists of ¥ the set
of free function symbols, ¥; the set of interpreted function symbols and X, the
set of relation symbols. The main difference to standard FOL (that has no free
function symbols Xy) is that the universe is fixed by the set of terms that can
be built using ¥¢. More precisely, let V be a countable set of variable symbols,
disjoint from ¥. We denote with 7s(V) the set of all terms that can be built
from the function symbols in ¥ and the variables in V), i.e., a term is either a
variable z or a function applied to subterms f(t1,...,t,). We simply write Ty
when V = (), and call its elements ground terms (over signature X.). Let = be a
congruence relation on Ty, .

The Herbrand universe U (over ¥ and V) is defined in the quotient algebra
A =Tsy) le, U = {[t]~ | t € Tx,}, where [t[~ = {t' € Ts, | t = t'}. The
algebra interprets every n-ary function symbol f € X as a function fA: U= U
such that fA([t1]~, -, [tn]~) = [f(ts, . tn)]~-

A (X, V)-interpretation T maps every interpreted function symbol f € ¥; to
a function Z(f) : U™ — U, every relation symbol r € X, to a relation Z(r) C U™,
and every variable € V to an element Z(z) € U. We extend Z to a function
on T (V) as expected:

Z(f(t1,...,tn)) = FA(Z(t1),...,Z(t,)) for f € 5y

Z(flt1s-- - tn)) =Z()(Z(t1),...,Z(ty)) for f € &;

Note that we write f[t1,...,t,] for f € 3; with square parentheses to visually
distinguish interpreted functions from free functions. The rest of the syntax and
semantics is like in standard FOL. We write Z |= ¢ when a formula ¢ over ¥
and V is true in a (X, V)-interpretation Z, and we then call Z a (3, V)-model.
We may just say interpretation and model when ¥ and V are clear from the
context. We also say ¢ entails 1 and write ¢ = 1, if all ¢p-models are ¢-models.

We employ the standard syntactic sugar and write, for example, Vz.¢ for
—-Jdz.—~¢ and x € {t1,...,t,} forx =t1V---Va =t,. Slightly abusing notation,
we will also consider a substitution [z — t1,...,2, — t,] as a formula 27 =
ti Ao+ Axy, = t,. This allows us to write § = ¢ for a substitution 6 and a
formula ¢ that has no symbols to interpret other than variables in the domain
of 8. In particular, we can write ¢’ |= o when the substitution ¢’ is an instance
of 0. We denote with ¢ the identity substitution.

2.2 Frames

We use frames to represent the knowledge of the intruder. The idea is that the
intruder has recorded a number of messages and can refer to them using labels.
We identify a subset ¥,, C X of free functions, that we call cryptographic
operators. They are used to represent a black-box model of cryptography, which
is defined with a set of algebraic equations.

Definition 1 (Frame). A frame is written as F = {{ly — t1,...,lx = & [},
where the |; are distinguished constants and the t; are terms that do not contain
any l;. We call {ly,..., 1k} and {t1,...,tx} the domain and the image of the
frame, respectively. The set Ry = Ts,,({l1,...,Ix}) is the set of recipes, i.e.,
the least set that contains |, ..., and that is closed under all the cryptographic
operators of X,p,. We will simply write R when [is clear from the context.

A frame F can be regarded as a substitution that replaces every |; of its
domain with the corresponding ¢;. For a recipe r, we thus write F {|r [} for the
term obtained by applying this substitution to r. A generable term is any term ¢
for which there is a recipe r with ¢ &~ fF {|r [}. Note that by default, the intruder
does not know all constants but they can be explicitly included in the frame if
needed.

Two frames F 1 and F 5 with the same domain are statically equivalent, writ-
ten F1 ~ F o, if the intruder cannot distinguish them, i.e., when for all pairs of
recipes 71 and 7o it holds that F1{ri} = F1{r} < F{ri}=F2{r2}.
It is possible to axiomatize in Herbrand logic the notions of frames, recipes,
generable terms, and static equivalence of frames [12].

2.3 (a,p)-Privacy

The idea of (a, 8)-privacy is to declare a payload-level formula « over an alpha-
bet ¥y C X at the abstract level, defining intentionally released information (for
instance the number of votes cast in an election), and a technical-level formula
B over the full ¥, including all information visible to the intruder (e.g., cryp-
tographic messages of a voting system and information about their structure).
Intuitively, we want that the intruder does not learn from g anything on the
payload-level that does not already follow from «, i.e., every model of a can be
extended to a model of 3:

Definition 2 (Model-theoretical («, 8)-privacy). Let X be a countable signature,
Y9 C X a payload alphabet, o a formula over g and B a formula over ¥ such
that fv(a) = fv(B), both o and § are consistent and 8 = «. We say that (a, §)-
privacy holds iff for every (2o, fv(a))-model T |= « there exists a (X, fu(B))-
model T' |= B, such that T and ' agree on the interpretation of all interpreted
function and relation symbols of ¢ and all free variables of c.

3 The Fragment

In the (o, B)-privacy framework, we have a state transition system where every
state contains at least a pair of formulae a and 3, as well as other information to
represent the current state of some honest agents. Privacy is then a reachability
problem [13], i.e., whether we can reach a state where 8 allows the intruder to
exclude at least one model of a. We focus in this paper only on the problem for
a single state, i.e., deciding («, §)-privacy for a given pair (a, 3).

Even this is undecidable due to the expressiveness of Herbrand logic. We
therefore restrict ourselves in this paper to (a, 8)-pairs of a particular form that
is called message-analysis problem in [12], which consists of two restrictions.
The first restriction here is that the payload alphabet ¥, is a finite set of free
constants that are part of X,,. We say in this case that « is combinatoric.
Thus the Herbrand universe U of ¥ is also finite, and every model of « is just a
mapping from fv(a) to U. We will write @ for such a mapping in the following.
For example if a =z € {a,b,c} Ay € {a,b} Az # y, then 0 = [z — a,y — b] is
a model of a. We also call fv(«) the privacy variables, and say the domain of a
privacy variable x are those values from Y that x can have in any model of a.
We denote with © the set of all models of a. The second restriction is that in
every reachable state of the system, the intruder knowledge can be characterized
by a frame struct where the messages can contain variables from «, and a frame
concr = O(struct), where 6 is a model of « representing the true values of the
privacy variables in this state, and thus concr are the concrete messages that
the intruder observes. The formula /3 then consists of «, the definition of struct
and concr, and stipulates that struct ~ concr.

Ezxample 1. Consider a structural frame
struct = {l; — scrypt(k, x),la — scrypt(k, y), I3 — scrypt(k, 2) [}

and the model § = [x — 0,y — 1,z — 0], where the variables z,y,z in
struct represent some votes that have been symmetrically encrypted (scrypt)
by a trusted authority with a key k. (We formally introduce this algebraic
theory in Example 3.) Let the payload formula be @ = z,y,z € {0,1}. The
intruder is not able to learn the values of the votes without the key. However,
they! can observe that concr{ |y [} ~ concr{ l3[}. Using static equivalence be-
tween struct and concr, the intruder deduces that struct{|l; [} = struct{ls[}.
The only way to unify the equation, with respect to =, is with x = 2. This
constitutes a breach of privacy, as it does not follow from « (some models have
been excluded). There are also other relations that can be derived at this point:

r #yand y # z.

The problem we solve in this paper is thus: given an (o, 3)-pair that is
a message-analysis problem, check whether (a, 8)-privacy holds. Note here a
fundamental difference with respect to approaches based on static equivalence
of frames where privacy means that the intruder cannot distinguish two frames

1We use the pronoun “they” for gender-neutral expression.

that represent different possibilities. In («, 8)-privacy, in contrast, we have
a symbolic frame struct and an instance concr, and the intruder knows that
concr is the instance of struct that represents what really happened. Thus the
intruder can exclude every model of o under which struct and concr would be
distinguishable.

Interestingly, the problem of («, 8)-privacy in a message-analysis problem is
related to static equivalence of frames. As [12] observes, in theory one could
compute all models of the given « (there are finitely many since « is combina-
toric) and compute concr; = 6;(struct) for every model 6;; then (a, 8)-privacy
holds iff the concr; are all statically equivalent. This is practically not feasi-
ble, since the number of models is in general in the order of |So|/*(®)l. The
algorithms we present here will typically not be more complex than standard
static equivalence algorithms (in the same algebraic theory). However, in corner
cases our current implementation can produce in general an exponential set of
recipes. It is part of the future work to investigate whether this can be avoided
with another representation that avoids the enumeration of combinations.

Reachable States Before we go into detail about the algorithm itself, we
want to briefly sketch what kinds of protocol descriptions can be considered, so
that in every reachable state we have a message-analysis problem. This is only
a sketch because we lack the space to make a fully-fledged definition. What we
can support with message-analysis problems is basically what one would have in
strand spaces: protocols where every role can be described as a linear sequence
of message exchanges. This corresponds in the applied 7-calculus to processes
for roles that do not contain any repetition, parallelism, or branching. That
is, when checking incoming messages with an if or let statement, the else
branch has to be empty (i.e., when the conditions are not satisfied, the protocol
aborts). In this case, the intruder always learns the outcome of the check, and
for privacy it is sometimes interesting to consider protocols that can hide this,
e.g., sending in the negative case a decoy-answer [15]. This is a generalization
of the message-analysis problem, i.e., the intruder in general does no longer
know the structure of a message for sure, but only that it is one of several
possibilities, say structy, ..., struct,, and figuring out which struct; it is may
allow for breaking the privacy. This requires an extension to our algorithms that
is not overly difficult, but we lack the space to present it here. However, with
message-analysis problems we cover the realm of standard security protocols
that could be written in Alice-and-Bob notation.

In addition to normal variables for received messages, we have the mentioned
privacy variables (recall they are non-deterministically chosen from a given sub-
set of ¥y). The formalism for describing the state transition system should thus
include a mechanism to specify the choice of such variables, and what infor-
mation about them is released by augmenting « upon state transitions. Note
that the intruder is active and can send a message determined by a recipe over
the domain of struct in that state. Since struct contains privacy variables, the
intruder can “experiment” by sending a message with a privacy variable to an

honest agent, and thus observe if there is an answer (i.e., passing checks that
the agent makes) and learn the message structure of the answer.

Ezxample 2. Consider a door with a tag reader. Agents a, b, c can use a personal
tag to open the door; their tags each have a symmetric key k(a), k(a) and k(a),
respectively (where k is a private free function). The toy protocol is that the
reader sends a nonce and the tag replies with the encrypted nonce. For instance
the following state is reachable in two protocol executions: the structural knowl-
edge is struct = {|l; — n,ly — scrypt(k(z1),n),ls — n', 1y — scrypt(k(z2),n') [},
where n,n’ represent nonces and x1,x9 are variables for agent names, and the
concrete instantiation is § = [z1 — a,z — al, i.e., both interactions were with
the same agent x1 = x5 = a. The privacy goal of unlinkability can be expressed
by a payload formula that every agent variable can be any of the agents, i.e.,
in the example state we have o« = x1, 29 € {a,b,c}. Thus, the intruder should
not be able to tell whether replies come from the same agent. If the intruder
is just passively listening (as in the example state above), unlinkability indeed
holds (since the nonces n and n’ are different). However, if the intruder im-
personates a reader and replays a nonce n to a tag, we would get to the state
struct = { Iy = n,ly — scrypt(k(z1),n),ls — n,lsy — scrypt(k(xzs2),n)[}. Here,
they can deduce that scrypt(k(x1),n) = scrypt(k(z2),n) and thus 1 = z5. This
could be fixed by including also a nonce from the tag in the message, but note
this is only a toy protocol, and one would need to also solve distance bounding.

3.1 Destructor Theories

Even with the restriction to message-analysis problems, («, 3)-privacy is still
undecidable, since the word problem (whether s = ¢, given s and t) in algebraic
theories is. We restrict ourselves here to theories we call destructor theories, a
concept similar to subterm-convergent theories. The main difference is that we
like to distinguish constructors like encryption and destructors like decryption
and be able to verify if the application of a destructor was successful.

This verification is motivated by the fact that most modern cryptographic
primitives allow one to check whether a decryption is successful or not, e.g., by
including MACs or specific padding. In some protocol verification approaches,
this is modeled by applying encryption again to the result of the decryption and
comparing with the original term, i.e., checking crypt(pub(k), derypt(priv(k),c)) ~
c. This seems a bit absurd and would not work with randomized encryption in
general. We therefore model destructors to yield an error value if it is applied
to terms for which it does not work. Given that this error message does not
normally occur in protocols, we can regard this as destructors having the re-
turn type Maybe Msg in Haskell notation, i.e., returning Just r if successful or
Nothing in case of an error. This allows us to discard all “garbage terms” and
makes reasoning a bit simpler.

Definition 3 (Destructor theory). A destructor theory consists of

o a set Ypup C Xy of public functions that the intruder is able to apply; it is

further partitioned into constructors and destructors. Let in the following
constr and destr range over constructors and destructors, respectively.

e a set E of algebraic equations of the form destr(k, constr(ty,...,t,)) = t;,
where i € {1,...,n}, fo(k) C fu(ti,...,tn) and the symbols of E are
disjoint from . The first argument of a destructor is called a key.?

We also require that for any two equations destr(k, constr(ty,...,t,)) = t;
and destr’ (K, constr’(t1, ..., t,,)) = t; of E, it must be the case that either

— constr # constr’ or

—k=K,n=m, andty =1t|,...,t,my =1,,.

i.e., when we deal with the same constructor, the respective subterms and
keys must be the same (but the extracted t; and t; may be different).

Finally, every destructor occurs in only one equation.

Let = be the least congruence relation on ground terms induced by E. We define
the congruence = of the destructor theory as the least congruence relation over
ground terms that subsumes =g and such that for all ground terms k and m
destr(k, m) ~ error whenever destr(k, m) %o m’ for all destructor-free m’. Here
error is a distinguished constant in ¥\ Xg.

Finally, we require that in all given frames, the image contains no destructors
(and the algorithms will preserve this property).

Note that the error behavior cannot directly be represented by algebraic
equations because of the negative side-condition. However, observe that the
underlying theory E gives rise to a term rewriting system (replacing = with
—) that is convergent: termination is obvious and for confluence observe that
there are no critical pairs (see, e.g., [16]). This gives immediately a decision
procedure for the word problem in a2y (normalize and compare syntactically)
and in & (build the ~p-normal forms, replace all remaining destructor-subterms
by error; again compare syntactically).

3.2 Unification and All That

In general, we will deal with terms that contain variables, albeit only privacy
variables, i.e., ranging over constants of ¥y. Thus destructor-free symbolic terms
cannot give rise to a redex and we can use the standard syntactic unification
algorithm on destructor-free terms—with one exception. We need to adapt the
unification of variables slightly: the unification of = with ¢ is only possible if
either ¢ is a constant in the domain of x, or another variable y such that their
domains have a non-empty intersection; their domains are then restricted to
this intersection. Since a substitution |1 — t1,..., 2z, — t,] can be expressed
as a set of equations {x; = t1,...,2, = t,}, we allow to use the notation

2For some destructors, e.g., opening a pair, one does not need a key; for uniformity one
could use here a fixed public constant as a dummy value, but slightly abusing notation, we
just omit the key argument in such a case.

unify(oy,...,on) for a most general unifier (MGU) of all equations from the
;.

3.3 The ana Function

Finally, we can repackage the destructor equations into a function ana that,
given a term with a constructor, yields which destructors may be applicable:

Definition 4.
ana(constr(ty, ..., t,)) = (k,{(destr,t;) | destr(k,constr(t1,...,t,)) =t; € E})

Intuitively, given a term that can be decrypted, ana returns the key required for
decryption and all derivable terms according to the algebraic equations.

Ezxample 3. The theory we use in examples throughout this paper is as follows
(adapted from [12]). Let ¥ = X ;WX, WX, be an alphabet and V a set of variables.
We consider the cryptographic operators defined in Table 1 and X, = X,,.

e pub(s) and priv(s) represent an asymmetric key pair from a secret seed
(where the lack of destructors reflects that it is hard to find the seed from
the keys);

e crypt(p,r,t) and dcrypt(p’,t) formalize asymmetric encryption with ran-
domness;

e sign(p/,t) and retrieve(p’,t) formalize digital signatures;
e scrypt(k,t) and dscrypt(k,t) formalize symmetric cryptography;
e pair, proj; and proj, formalize serialization;

e h is a cryptographic hash function (where the lack of destructors reflects
that it is hard to find a pre-image).

Table 1: Example set ¥,
Constructors \ Destructors \ Properties

pub, priv

crypt derypt derypt(priv(s), crypt(pub(s),r,t)) =t

sign retrieve retrieve(pub(s), sign(priv(s),t)) =t

scrypt dscrypt dscrypt(k, scrypt(k,t)) =t

pair proj,, proj; | proj, (pair(t, £2)) =t
projy(pair(t, t2)) = 2

h

In case there is no key required, the argument is omitted as written in the
equations in Table 1. We introduce a “dummy” key ko known by the intruder

covering this case for the return value of ana.

(priv(s), {(dcrypt,t')}) if ¢ = crypt(pub(s),r,t’)

(k, {(dscrypt,t")}) if t = scrypt(k,t’)
ana(t) = < (pub(s), {(retrieve,t')}) if ¢ = sign(priv(s),t’)

(ko, {(projy,t1), (projy,t2)}) if t = pair(ty,ta)

(ko, {}) otherwise

3.4 Frames with Shorthands

We define an extension of the concept of frames to easily handle decryption
of terms. A frame with shorthands consists in a frame with additional labels,
which are actually recipes over the initial labels.

Definition 5 (Frame with shorthands). A frame with shorthands is written
as F/' ={li = t1,..., Ik = tge,my — s1,...,my — s, [}, where F = {{I; —
ti,...,lx = tg [} is a frame, the m; are recipes over the |; and F{m; [} = s;.
We call the mappings my +— s1,...,m, — S, shorthands. The domain of a
frame with shorthands is defined to be the domain of the underlying frame.

We will treat these m; like the labels I;. As a consequence, the set Ry is now
Ts,,({l1,-- Ik, m1,...,my}), ie., all the shorthands can be used. This gives
the same recipes as Ry, but the shorthands make a difference when we restrict
ourselves to constructive recipes, i.e., recipes without destructors which we define
as Rf = Tse ({lh,...,Ik}) and Ry, = Tse ({l1,. .., Ik, m1,...,my}) where 37,
are the constructors. Thus Ry, can use destructors from the shorthands, but
otherwise only constructors, and thus in general Ry, 2 R{-. Similarly, we say
that a term ¢ is constructive if it does not contain any destructor.

Recall that initially all terms in a frame’s image are constructive. Our algo-
rithms will ensure that all s; added through shorthands are also constructive.

Ezample 4. Let k € Tx(V) and z € V. Consider the frames

F ={— scrypt(k,z),ly = k |}
F =11 scrypt(k,z),lg — k,my — x|}

where m; = dscrypt(la, ;). Here F” is the frame F with the shorthand m; +— .
Indeed, we have that F { dscrypt(l,11) [} = dscrypt(k, scrypt(k, x)) ~ .
4 Decision Procedure

We now give a decision procedure for the fragment of («, 8)-privacy that we have
defined in the previous section: a message-analysis problem with respect to a
destructor theory. We are thus given a triple (o, struct,) where « expresses
the privacy goal at this state and the models of a can be characterized by

10

substitutions from the free variables of « to constants of Xy. The substitution
0 is one of the models, namely what is the reality, i.e., the true value of the
free variables of a.. Finally, struct is a frame with privacy variables representing
all the messages that the intruder received in the exchange with honest agents
up to this state. This means that the intruder knows the structure of each
message, because the protocol description is public and there is no branching;
what the intruder might not know is the value 6 of the privacy variables (as well
as constants representing strong keys and nonces). The intruder also knows the
concrete messages concr = 0(struct). The question our algorithm will answer is
what models of « the intruder can exclude from this, i.e., the 8’ = « such that
coner & §'(struct). To avoid enumerating all models (there are exponentially
many in general) and to be able to easily integrate our algorithm with reasoning
about other constraints, the algorithm returns a set of equations and inequations
that can be derived by the intruder.

4.1 Composition
4.1.1 Composition in a Structural Frame

This first piece of the procedure is concerned with the intruder composing mes-
sages, i.e., using only constructive recipes. Note that the intruder can also use
shorthands that represent the result of previous decryption operations. This
composition task is similar in many intruder algorithms: either the goal term ¢
is directly in the knowledge or it is of the form f(¢1,...,t,) where f is a public
constructor and the ¢; can be composed recursively. The novelty of our algo-
rithm here is that both the terms in struct and ¢ may contain privacy variables,
and composition may reveal information about these variables to the intruder.
For a variable z € V, the intruder knows all values in the domain of x. Thus,
if the variable occurs in a term to compose with only public constructors, they
can compare all possibilities and see which one is correct, i.e., to what constant
the variable x is mapped. Much of this evaluation must be postponed to a later
stage of the algorithm. For now the composition algorithm just computes under
which values of the variables the goal term ¢ can be produced, i.e., it returns a
set of pairs (r,0) of a recipe r and a substitution o where o is an MGU under
which r produces the goal t.

Ezample 5. Asin Example 1, struct = {1, — scrypt(k, x),la — scrypt(k, y), |5 —
scrypt(k,z) [} and @ = [z — 0,y — 1,z — 0]. The intruder has several ways to
compose the term scrypt(k, z), depending on which model of « is true:

composeUnder (0, struct, scrypt(k, x)) = {(l1,€), (I2, [z = v]), (I3, [— 2])}

The other algorithms will actually rule out [x — y] since 6 =z = y.

We argue that the algorithm is correct, in the sense that the pairs found
by this algorithm really allow to compose the term in the given frame, under a
unifier; the algorithm finds all constructive recipes together with an MGU.

11

Algorithm 1: Composition in a structural frame

composeUnder (0, struct, t) =

1
2 let RU = {(l,0) | | = t' € struct,o = unify(t =¢')} in
3 if t €V then

a | | RUU{(0@), [t 0()])}

5 else if t = f(t1,...,t,) and f € ¥, then
6 RUU{(f(r1,...,7rn),0) | (r1,01) € composeUnder(8, struct,ty),
7 e

8 (rn,on) € composeUnder(0, struct, t,,),
9 o = unify(oy,...,on)}
10 else

11 L RU

Theorem 1 (Correctness of composeUnder). Let 0 be a substitution, struct be
a frame and t € Tx(V). Then

1. Y(r,0) € composeUnder(0, struct,t), o(struct{r[}) = o(t).

2. ¥r € Re, I, 7(struct{r}) = 7(t) =
(o, (r,0) € composeUnder(0, struct,t) and T |= o).

4.1.2 Composition in a Ground Frame

At the concrete level, the terms in the frame are all ground, i.e., they do not
contain variables. The intruder does not have to reason about possible variable
instantiations but only cares about the recipes they can use. This can be seen
as a special case of the previous algorithm. We will use the function compose
which does the same as composeUnder but drops the unifiers attached to the
recipes (they are always the identity, for a ground frame and a ground term).

4.2 Analysis

The next step in our procedure is to augment the frame with shorthands as far
as possible with messages the intruder can decrypt. This follows again common
lines of intruder deduction reasoning, namely performing a saturation [17], but
there are several crucial differences here. While the standard approach in static
equivalence of frames just looks at each frame in isolation and computes a set, of
subterms that are derivable, we need to look at both concr and struct side by
side here, because some analysis steps may only be possible for some instances
of struct. Roughly speaking, if a decryption step is possible in concr but not
in all instances of struct, we can exclude those instances, and vice-versa, if a
decryption step is possible in some instances of struct, but not in concr, we can
exclude those.

12

The intruder analyzes struct and adds shorthands for terms that can be de-
crypted. This will make all derivable subterms available with only composition
(constructive recipes).

Ezxample 6. Let ki,ko,a € o and z,y,z € V. Consider the substitution
0 =[x — ky,y — a, z — kq] and the frame struct = {11 — scrypt(x,y),ls — 2z [}.
Then the analysis extends the frame by adding a shorthand like so: struct gnq =
{Ily = scrypt(z,y),la — z,dscrypt(la, l1) — y[}. Since the decryption is success-
ful in coner = O(struct), the intruder is able to compose the key in struct with
the same recipe lo. This also enables the intruder to learn that = 2. Note that
x is changed to z in the frame because concr{ dscrypt(ls, 1) [} 5 error, so we can
rule out all instances of x and z so that struct{] dscrypt(lz,11) [} ~ error. How-
ever, there are more relations that could be deduced. For instance, the intruder
is now able to check the pair of recipes (I, dscrypt(ls, I1)) with composition only
(using the shorthand). The intruder can therefore learn that also x # y, but
this is handled by the final algorithm findRelations below.

Consider the same struct but with § = [x — ky,y — a,z — ko], so that
the above analysis step is not possible. When trying to compose the key x, the
algorithm composeUnder returns (lg, [x — z]) as a possibility. This does not
work in concr, so the intruder cannot actually obtain a new term, but conclude
that x # z.

We define a recursive function analyzeRec that will apply one analysis step
from calling ana, add terms if the decryption was successful, and call itself to
perform the other analysis steps. To tackle the problem, we first consider that
the intruder knowledge has been split into three frames. That way, we can
make the distinction between the terms that have to be analyzed in the future,
the terms that might be decrypted later, and the terms that have already been
completely analyzed. Note that we do need to consider the terms “on hold”,
i.e., that might be decrypted later, because the intruder might learn at a later
point how to compose the required key.

The wrapper function analyze simply calls analyzeRec with the arguments
properly initialized. All terms are initially considered “new” because they have
to be analyzed. There are, at the start, no elements “on hold” or “done”. The
intruder does not know any equations between the variables at the beginning,
so we indicate the identity substitution ¢ as the initial value. Moreover, we also
indicate an empty set as the initial value of the set Ez of substitutions excluding
some models of the variables (“exceptions”).

The result of applying ana gives the key required to decrypt the term, and
a set F'T of pairs (function, term) of derivable terms. If the decryption fails in
concr, i.e., the key cannot be composed at the concrete level, then it also fails in
struct and no new terms can be added. However, since composition of the key
at the structural level might be possible even in this case, the unifiers allowing
to compose the key in struct exclude some models. We add such substitutions
to the set Fx. Note that in the algorithms we write | as a label even though
it can actually be a recipe, because we treat the recipes from shorthands as
regular labels.

13

If the decryption is successful in concr, then it is also successful in struct
and we can define recipes for the new terms. The shorthands added at this
point use the destructors paired with the new terms, and some recipe found for
composing the key in concr. The choice of this recipe is irrelevant: we also add
a shorthand in D for the key, if there is not one already in the frame, so that
we can later check the different ways to compose it. The keyword “pick” in the
definition below refers to this choice, it means “take any one element from the
set”.

We put the new mappings in a frame LT, and add this to the new terms
to analyze. We do not need to add terms for which the intruder already has
a label or shorthand. All terms that were on hold also need to be analyzed
again, as the intruder might be able to successfully decrypt them with the new
knowledge. We apply the substitution ¢,.,,, required to compose the key with
the different recipes the intruder found in concr for the corresponding ground
key, to all terms in the split frame so that the shorthands are correct. We update
the equations that the intruder found by unifying with the previous substitution
.

The analysis adds shorthands for any successful decryption of terms. The
function analyze also preserves the property of static equivalence between struct
and concr. Recall that © denotes the set of models of . Our results are
expressed over © so that they can be used to check whether some models can
be excluded. The algorithm presented here does not simply return the analyzed
frame, but also a unifier o and a set of substitutions Ez. The intruder knows
that the concrete instantiation of variables is an instance of ¢ and can exclude
all substitutions in Fz. These properties are formally expressed in Theorem 2.

Theorem 2 (Correctuness of analyze). Let 0 be a substitution, struct be a frame
and (struct gna, o, Bx) = analyze(0, struct). Then

1. Vr € R, struct gnod{| 7 [} = o(struct{ r[}).

2. Vr e R, 3 € RS

struct gna

, struct gna{| 7' [} & o(struct{ r[}).
3. V0" € ©,0'(struct) ~ O(struct) = 0' = o AN, icp, 0
4. Y0 €0, o0 =

(0’ (struct) ~ O(struct) <= 0'(structana) ~ 0(structana))

Theorem 3 (Termination of analyze). Let 0 be a substitution and struct be a
frame. Then the call analyze(0, struct) terminates.

4.3 Intruder Findings

The final algorithm we present generates a formula ¢, which contains all equa-
tions and inequations between variables that the intruder is able to derive from
their knowledge. We argue that, after analysis, all checks that the intruder
can do to compare struct and concr are covered by only composing the terms

14

Algorithm 2: Analysis of a structural frame

1 analyze(, struct) =

2 L analyzeRec(0, struct,{ },{ [}, &,{})

3 analyzeRec(§,N,H, D, o, Ex) =

4 if N ={ [} then

5 L (HUD,o, Ez)

6 else

7 let {1+ ¢} ULT = N

8 (k, FT) = ana(t)

9 struct = NUHUD
10 coner = 0(struct)
11 SR = composeUnder (0, struct, k)
12 GR = compose(concr,0(k))

13 Onew = unify({o | (r,o) € SR,r € GR})

14 Expew = {0 | (r,0) € SR,r ¢ GR} in
15 if GR = {} then

16 L analyzeRec(0, LT {1 — t[} UH, D, 0, Ex U Expeq)
17 else

18 pick r € GR

19 let LT pew =1 f(r,)) =t | (f,t') € FT,

20 Vr' ' =t ¢ struct [} in
21 analyzeRec (6,

22 Onew (LT pew U LT U H),

23 {0

24 Onew({{ I — t [}

25 U r—= k| Y " — k¢ struct |} U D),
26 unify(o, Opew),

27 Ez U Ezpeq)

in the frames. We show that this procedure allows automated verification of
(a, B)-privacy goals.

We specify a function findRelations that starts by analyzing the frame before
trying to find more relations. The analysis of struct includes the analyzed frame
struct q4nq as well as a unifier and a set of substitutions, excluding some models
of the variables. These relations have to be included in the formula ¢, since it
already constitutes some deduction that the intruder was able to make.

First, the intruder tries to compose the terms inside concr in different ways.
If the intruder has several ways to compose a term, i.e., the composition al-
gorithm returned several recipes, then pairs of recipes from these possibilities
must also produce the same corresponding term in struct. This gives a number
of equations.

Second, the intruder tries to compose the terms inside struct in different

15

ways, under some unifiers. If they are able to compose a term in several ways,
then we check whether the pairs of recipes produce the same corresponding term
in concr. If it is the case, then there is nothing to deduce, as this follows from
static equivalence. However, if a pair of recipes distinguishes the frames, i.e.,
we have found (I, 7) such that concr{ [} % concr{ r [}, then the intruder knows
that the unifier attached to r can be excluded. They can deduce the negation
of the unifier, i.e., a disjunction of inequations.

4.3.1 Pairs from Equivalence Classes

When we want to compare all elements of a set R = {rq,...,r,} for equality,
it is obviously sufficient to pick one element, say 71, and compare the pairs
(r1,72),...,(r1,7s). The function pairsEcs does just that, i.e., given R returns
such a set of pairs.

Algorithm 3: Relations between variables

1 findRelations(0, struct) =
let (structang, o, Bx) = analyze(0, struct)
CONCT gna = O(struct 4nq)
pairs = Ui ie coner,,, PairsEcs(compose(concr ana, t))
eqs = {struct gna{ m1 [} = structone{ re [} | (r1,72) € pairs}
ineqs = Ex U{o’ || — t € struct gnq,
(r,0") € composeUnder(0, struct gna,t),
coner gna{| 1} % concrana{ r[}} in
| unify(o, eqs) N N\yrcineqs 70

© 0w N O ok wN

We formalize the correctness of the decision procedure that has been de-
scribed. We argue that the algorithm findRelations is sound and complete, i.e.,
the formula ¢ can be used to automatically verify privacy for a message-analysis
problem by applying our algorithms. Note that the step of verifying whether ¢
actually excludes models of o can be performed with existing SAT solvers.

Theorem 4 (Correctness of findRelations). Let («,) be a message-analysis
problem, where struct = {1y — t1,..., | — tg [} for some tq,...,t; € Tu(fv(a))
and concr = O(struct) for some 0 € ©. Let ¢ = findRelations (6, struct). Then

(o, B)-privacy holds <= V' € ©,0' = ¢

5 Conclusions

We have designed a decision procedure for message-analysis problems in («, 3)-
privacy with destructor theories. This procedure is not all that different from
algorithms for static equivalence of frames [17]: we split in composition and
decryption, have a saturation procedure for decryption, and finally check if we
can compose a term in one saturated frame in a different way while the other

16

frame gives a different result. However, we do not decide static equivalence,
rather, one frame, struct, has privacy variables, the other, concr, is a ground
instance of struct, and the question is if the intruder can learn something about
this instantiation. In particular whatever works in concr, must work in struct;
thus if it works only under some unifier o, then we rule out all models that are
not instances of o, and vice-versa, if something works in struct under ¢ but not
in concr, then we rule out all instances of o.

The fact that the algorithm just returns a substitution that must be the case
and a set of substitutions that we can rule out allows for a flexible integration
into more complex scenarios. First, we can allow for further variables over
finite domains, but that are not part of . This can be for instance when there
are choices that are not themselves relevant for the privacy goals like a session
identifier: if the intruder finds them out during analysis, this is not directly a
violation of privacy, but if that allows for ruling out some model of «a, then it
is.

Second, when an agent process can branch on a condition (see for instance
the discussion of the AF-protocols in [12]), then the reachable states in general
have a form that generalizes message-analysis problems, namely there are several
possible frames struct; and associated conditions ¢;, and the intruder knows that

((¢1 A structy = struct) V...V (édn A struct, = struct)) A struct ~ coner .

Here, we can apply almost the same algorithms for each struct; with concr,
except that here we may rule out all models of a A ¢;, meaning we know —¢;.

For future work, we plan to obtain a fully-fledged analysis tool, i.e., explor-
ing the entire set of reachable states, and consider here in particular symbolic
representations to avoid exponential blow-ups.

Further, we want to relax the constraints about the algebraic equations.
Instead of using only destructor theories, we want to allow for a larger class
of protocols to be machine-checked with the framework described, in particular
the properties of exponentiation needed for Diffie-Hellman.

Acknowledgments Thanks to Luca Vigano and Sébastien Gondron for useful
comments. This work has been supported by the EU H2020-SU-ICT-03-2018
Project No. 830929 CyberSec4Europe (cybersecdeurope.eu).

References

[1] H. Comon-Lundh and V. Cortier. Computational soundness of observa-
tional equivalence. In 15th ACM Conference on Computer and Communi-
cations Security, pages 109-118. ACM, 2008.

[2] V. Cortier and S. Delaune. A method for proving observational equivalence.
In 2009 22nd IEEE Computer Security Foundations Symposium, pages 266—
276. TEEE, 2009.

17

https://www.cybersec4europe.eu

[3]

[10]

[11]

[14]

[15]

D. Bernhard, O. Pereira, B. Smyth, and B. Warinschi. Adapting Helios
for provable ballot privacy. In ESORICS’11: 16th European Symposium
on Research in Computer Security, volume 6879 of LNCS, pages 335-354.
Springer, 2011.

V. Cortier, F. Dupressoir, C. C. Dragan, B. Schmidt, P. Y. Strub, and
B. Warinschi. Machine-checked proofs of privacy for electronic voting pro-
tocols. In 2017 IEEE Symposium on Security and Privacy, pages 993—-1008.
IEEE, 2017.

M. Moran and D. S. Wallach. Verification of STAR-vote and evaluation
of FDR and ProVerif. Lecture Notes in Computer Science, 10510:422-436,
2017.

Boutet, A. et al. Contact Tracing by Giant Data Collectors: Opening
Pandora’s Box of Threats to Privacy, Sovereignty and National Security.
University works, https://hal.inria.fr/hal-03116024, 2020.

V. Tovino, S. Vaudenay, and M. Vuagnoux. On the effectiveness of time
travel to inject COVID-19 alerts. Cryptology ePrint Archive, Report
2020/1393, 2020.

S. Vaudenay and M. Vuagnoux. Analysis of SwissCovid, 2020. URL: https:
/ /lasec.epfl.ch /people /vaudenay /swisscovid /swisscovid-ana.pdf.

D. Basin, J. Dreier, and R. Sasse. Automated symbolic proofs of observa-
tional equivalence. In 22nd ACM SIGSAC Conference on Computer and
Communications Security, pages 1144-1155. ACM, 2015.

B. Blanchet. Modeling and verifying security protocols with the applied pi
calculus and ProVerif. Foundations and Trends in Privacy and Security,
1(1-2):1-135, 2016.

T. Grof}, S. Modersheim, and L. Vigano. Defining privacy is supposed to be
easy. In 19th 2013 International Conferences on Logic for Programming,
Artificial Intelligence and Reasoning, pages 619-635. Springer, 2013.

S. Modersheim and L. Vigano. Alpha-beta privacy. ACM Trans. Priv.
Secur., 22(1):1-35, 2019.

Sébastien Gondron, Sebastian Modersheim, and Luca Vigano. Privacy as
reachability. Technical report, DTU, 2021. http://www2.compute.dtu.dk/
~samo/abg.pdf.

M. Genesereth and T. Hinrichs. Herbrand logic. Technical Report LG-
2006-02, Stanford University, 2006.

M. Abadi and C. Fournet. Private authentication. Theoretical Computer
Science, 322(3):427-476, 2004.

18

https://hal.inria.fr/hal-03116024
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
https://lasec.epfl.ch/people/vaudenay/swisscovid/swisscovid-ana.pdf
http://www2.compute.dtu.dk/~samo/abg.pdf
http://www2.compute.dtu.dk/~samo/abg.pdf

[16] F. Baader and T. Nipkow. Term Rewriting and All That. Cambridge
University Press, 1998.

[17] M. Abadi and V. Cortier. Deciding knowledge in security protocols under
equational theories. Lecture Notes in Computer Science, 3142:46-58, 2004.

A Proofs

Theorem 1 (Correctness of composeUnder). Let 0 be a substitution, struct be
a frame and t € Ts(V). Then

1. ¥(r,o) € composeUnder(8, struct,t), o(struct{ r[}) = o(t).

2. Vr e RS, 3r, 7(struct{r[}) = 7(t) =
(o, (r,0) € composeUnder (0, struct,t) and T |= o).

Sketch. 1. The idea is to proceed by induction on the structure of ¢t. For the
pairs found by comparing with labels or composing a variable, the property
holds trivially. For the additional pairs found with terms f(¢1,...,%,)
composed with a public function, the point is that the pairs returned for
the arguments are correct by induction. The property is then verified for
composing t because it reduces to mapping the unifiers returned to all
arguments.

2. The idea is to proceed by induction on the structure of » € R¢. For
a label, there is a pair (r,e) returned so the property holds. For a
recipe that is a composition, i.e., r = f(r1,...,r,) for some f and some
71,...,7n € RE the point is that the recipes are paired with MGUs by in-
duction. The property is then verified for r because a substitution 7 such
that 7(struct{|r [}) = 7(¢) also unifies the arguments inside the function
application, so the algorithm can compute an MGU from the results of
the recursive calls.

O

Theorem 2 (Correctness of analyze). Let 0 be a substitution, struct be a frame
and (struct gnq, o, Ex) = analyze(0, struct). Then

1. Vr € R, struct gno{| 7 [} = o(struct{|r}).
2. Vr € R,3r" € Ryt » Structana{| ' [} = o(struct{|r [}).
8. V0" € ©,0'(struct) ~ O(struct) = 0' = o AN, icp, 0.

4. V9 €0, 0 =
(0 (struct) ~ O(struct) <= @' (struct gnqg) ~ 0(structgnq))

Proof. 1. When analyzing | — constr(ty,...,¢,), the frame is augmented
with mappings of the form destr(r,|) — ¢; following the destructor theory.
Thus, the “labels” added are recipes over the domain of struct. These

19

shorthands are correct when applying o, which is required to compose the
keys for decryption steps. The frame struct qpq is the frame o(struct) with
shorthands.

. We proceed by induction on the structure of . We consider the occurrence
of a destructor destr such that no subrecipe for the arguments of destr
contains destructors.

e If the destructor is applied to a label and the decryption is successful,
then a shorthand m = destr(rg,) — t' has been added in the frame,
i.e., o(struct{{m[}) ~ ¢, where 7 is some recipe for the key k such
that destr(k,t) =t' € E.

e If the destructor is applied to a constructor, i.e., for some ry,r1,..., 7y,
r = destr(rg, constr(ry,...,7r,)), and the decryption is successful,
then the recipe can be simplified to one of the r; yielding the same
term.

e If the decryption is not successful, then we can replace the application
of destr by the constant error, which represents failed decryption

We have covered all cases since the subrecipes do not contain destructors.
By induction, we can replace all occurrences of destructors in the recipe,
i.e., we can define a constructive recipe r’ which is the same as r but all
occurrences of destructors and have been replaced by the methods listed
above.

. We first show that the intruder can exclude all models that are not in-
stances of o. The substitution ¢ has been built from unification of some o;

in successful analysis steps, i.e., where (r;,0;) € composeUnder(0, struct, k)

was a possibility to compose a decryption key k, and r; € compose(0(struct), 0(k))
is also a recipe for the corresponding key 0(k) in 0(struct). It suffices to

show that 6" |= o; for all o;. From Theorem 1 follows that o; is the MGU

under which k can be derived in 0, i.e., &' (struct{ r; [}) # 6'(k) for any ¢’

that is not an instance of ¢;. Since the intruder can see that r; produces

the correct decryption key in é(struct), all models that are not consistent

with o; can be excluded.

We next show that all models that are instances of a substitution ¢’ € Fx
can be excluded by the intruder as well. The substitution ¢’ has been
found during analysis of some mapping | — ¢ where the key k can be com-
posed in the current struct under some unifier but #(k) cannot be com-
posed in O(struct). There exists (rg,0’) € composeUnder (6, struct, k) for
some recipe 7. There is a destructor destr for the decryption under consid-
eration. We define the recipe r = destr(ry, |) for this decryption step. The
decryption fails in 0(struct), so 0(struct{ r[}) ~ 0(struct{ error[}). Since
0’ (struct) ~ 6(struct), we also have that 6’ (struct{ r [}) = 0’ (struct{] error [}).
However, the decryption is successful in struct, so o’ (struct{| r [}) % o' (struct{ error [}).
Therefore, 6’ is not an instance of ¢’, because if it were there would be a
pair of recipes, namely (r,error), to distinguish the frames.

20

4. Let 6’ € © such that 6’ = 0. Using property 1. and the fact that ¢’ | o,
we have that for any recipe r, ¢’ (structan.{| 7 [}) = 0'(struct{ r[}). This
also holds in particular for 6. Therefore, ¢’ (struct) ~ 0(struct) if and only
if 0'(struct gne) ~ 0(struct nq) because any pair of recipes distinguishing
0’ (struct) and 6(struct) would also distinguish the analyzed frames, and
vice-versa.

O

Theorem 3 (Termination of analyze). Let 6 be a substitution and struct be a
frame. Then the call analyze(0, struct) terminates.

Proof. By definition, analyze calls analyzeRec, so what we really want to show
is that the call to analyzeRec terminates. We now consider that the frame
struct has been split into three frames N, H, D and denote with ¢ and Ez
the unifier and the set of substitutions passed as arguments to analyzeRec,
respectively. The size of a term ¢ € Tx(V) is defined as 1 for a variable and
size(f(t1,...,tn)) = 1+ Y i size(t;) for a function application. We abuse
the notation and write size(IN U H) to mean the sum of the size of all terms in
NUH. We consider the tuple (size(NUH),#N). When analyzing the mapping
| —te N:

e If the decryption of ¢ fails, | — t is removed from N and put in H. Then
size(N U H) stays the same but #N has decreased by 1.

e If the decryption of ¢ succeeds, | — ¢ is removed from N and put in D.
The new terms from the analysis and the terms that were on hold are
put in N. Then size(N U H) has decreased by at least 1 (¢ is not present
anymore but some of its subterms might be).

The lexicographic order on (N, <) x (N, <) forms a well-order and the sequence
of tuples for the recursive calls is a strictly decreasing sequence bounded by
(0,0), so such a sequence is finite and the call terminates. O

Theorem 4 (Correctness of findRelations). Let («,3) be a message-analysis
problem, where struct = {1y — t1,..., g — tg [} for some t1,..., 1t € Te(fv(a))
and concr = 0(struct) for some 6 € ©. Let ¢ = findRelations(6, struct). Then

(a, B)-privacy holds <= V0’ € ©,0' = ¢

Proof. Let (structana,o, Ex) = analyze(0, struct). First, recall that we have
(o, B)-privacy holds <= VO € O,0(struct) ~ 6(struct). We show that
Vo' € ©,0'(struct) ~ §(struct) <= 0’ |= ¢. The models that are not instances
of o can already be excluded and violate the privacy of « because ¢ = 0. We
now consider ¢ € © such that ¢’ = o.

o If 0'(struct) £ O(struct): then O'(structans) # O(structqpe) from The-
orem 2, so there exists a pair of recipes (r1,r2) that distinguishes the
frames. From Theorem 2, we can assume without loss of generality that
r1, 79 are constructive. Moreover, either one the recipes is a label (or from

21

a shorthand) or both recipes have the same constructor at the top-level
and one pair of the recipes for the arguments distinguishes the frames.
So we can further assume that r; is a label (or from a shorthand). This
justifies the fact that findRelations will perform a check for this pair of
recipes.

— If ' (struct gno{m1 [}) % 0’ (structaned r2 [}) and for the concrete ob-
servation 0(structanqd r1[}) = 0(struct ne{ 72 [}): then 6’ cannot be
an instance of the substitution ¢ unifying, among others, the fol-

lowing equation: structaned ri[} = structana{ r2[}. The algorithm
returns ¢ such that ¢ = o, so 0" |~ ¢.

— If 0/ (struct anad r1 [}) = 0’ (struct anad 2 [}) and for the concrete obser-
vation O(struct gne{ 1 [}) % 0(struct gnef{ r2 [}): then 0" is an instance
of some substitution ¢’ found when checking inequations. The algo-
rithm returns ¢ such that ¢ = —o’, so 0" |}~ ¢.

If 0'(struct) ~ O(struct): then 0'(structane) ~ 0(structqan,) from Theo-

rem 2. For every t € Ty and (ry,r2) € pairsEcs(compose((struct gna),t)),

we have by definition of compose that 0(struct gna{ r1[}) = 0(structana{ 2 [})-
Since 8 (struct gng) ~ 0(struct gnq), then 0’ (struct gno{ r1 [}) = 0’ (struct gnad r2 [})-
Therefore, ' |= o, where o unifies all equations found from calling compose

on terms in f(struct,,,). Let inegs be the set of substitutions Fz found
during analysis union with the substitutions found by the findRelations
algorithm. If #" were an instance of some ¢’ € inegs, then ' (struct 4nq) #
O(struct gne) and thus €' (struct) # 6(struct) following Theorem 2. This
would contradict the assumption, so 6’ |= —o’. Therefore, 8 = o A

A, Cinegs —o’ which is exactly ¢’ = ¢.

O

22

	Introduction
	Preliminaries
	Herbrand Logic
	Frames
	(alpha, beta)-Privacy

	The Fragment
	Destructor Theories
	Unification and All That
	The ana Function
	Frames with Shorthands

	Decision Procedure
	Composition
	Composition in a Structural Frame
	Composition in a Ground Frame

	Analysis
	Intruder Findings
	Pairs from Equivalence Classes

	Conclusions
	Proofs

