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Chapter 1

5 RA

It is an exciting time to be in the world of digital design. With the end of Dennard Scaling and the slowing
of Moore’s Law, there has perhaps never been a greater need for innovation in the field. Semiconductor
companies continue to squeeze out every drop of performance they can, but the cost of these improvements
has been rising drastically. Chisel reduces this cost by improving productivity. If designers can build
more in less time, while amortizing the cost of verification through reuse, companies can spend less on
Non-Recurring Engineering (NRE). In addition, both students and individual contributors can innovate
more easily on their own.

FEHBE), T —PEEFROT AR B o BEE Dennard 4 LA EE R B AR, AEIX 4]
R — N EHERAEFT . LSRR F R TR RS EEERIIERE, (HR X B ok
MRS E R BT o chiseDEISBGAAET=T1, 8> 13X O ﬁﬂ%wﬁﬁ% EXERLIT RN
%, R RS AMEEIERA, AR ATLUEFES TR (NRE) HEGED. Ao, 24
AR BT 7T LR ] S 5 AT 61T -

Chisel is unlike most languages in that it is embedded in another programming language, Scala.
Fundamentally, Chisel is a library of classes and functions representing the primitives necessary to
express synchronous, digital circuits. A Chisel design is really a Scala program that generates a circuit
as it executes. To many, this may seem counterintuitive: “Why not just make Chisel a stand-alone
language like VHDL or SystemVerilog?” My answer to this question is as follows: the software world
has seen a substantial amount of innovation in design methodology in the past couple of decades. Rather
than attempting to adapt these techniques to a new hardware language, we can simply use a modern

programming language and gain those benefits for free.

Chisel MR 2 RZHOESIHE, Bk A fEscalamiEiEF N - EA E, chiseligd — 1> A KK
E, FPREFRFEIDETF B EPILERS - — chisel (1K IT R R IEMscalafe |7, FEE ERIHUT
R WTRE AU, XERERK: Rt A AN EEchisel Ak — B H)iE
5, 1B,&VHDLEESystemVerilog? " A XN @ EIZ 2 a0 R B F 2 EE R %
L WERJLTERBERRZAHFIERL W - BATAT IR AEH - IRREES, FERF

EHRAIFAL, TIAREXEEAFE— M HHGREES -

A longstanding criticism of Chisel is that it is “difficult to learn.” Much of this perception is due to the
prevalence of large, complex designs created by experts to solve their own research or commercial needs.
When learning a popular language like C++, one does not start by reading the source code of GCC. Rather,

there are a plethora of courses, textbooks, and other learning materials that cater toward newcomers. In
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Digital Design with Chisel, Martin has created an important resource for anyone who wishes to learn
Chisel.

— PNEE B chisel FLALZ E XA REFXMBEZRTARZHAR, ERIK
T, XERR TG R, BRI M B SRR EGR L E . DA
WORHIE S, BRC++, AT ENFRGCCHIRIE TG, RN, KERRE, R, 5
FHEFHTAITRZES BRI - XA (A ChiselB#EFi%it) B, Martinfllig T — 1 EE
AIBEIR, 7 —SBAEE A 3] chisel (A -

Martin is an experienced educator, and it shows in the organization of this book. Starting with
installation and primitives, he builds the reader’s understanding like a building, brick-by-brick. The
included exercises are the mortar that solidifies understanding, ensuring that each concept sets in the
reader’s mind. The book culminates with hardware generators like a roof giving the rest of the structure
purpose. At the end, the reader is left with the knowledge to build a simple, yet useful design: a RISC
Processor.

Martinfe — MEER M EE, NXABRHFAEMA BN . NLESE LG, MG
EREF—H, B PR, — SR, FEE TS AR - N AL ST 2 A B DL B E
FREZKIE, ORGSR T B« XABE A TREAERS, BE—1ER,
R H AR HIGEH « fERE, BEERERAt T —MREE, BART — PRISCA S -

In Digital Design with Chisel, Martin has laid a strong foundation for productive digital design. What
you build with it is up to you.

7t (i Chisel i F%11) . Martinfgft TIRSRAVEERMFIA, HTERK T RE
LIEE, BURTR .

Jack Koenig Chisel and FIRRTL Maintainer Staff Engineer, SiFive

Jack Koenig Chisel FTFIRRTL4ES 35 Staff Engineer, Sifive



Chapter 2

This book is an introduction to digital design with the focus on using the hardware construction language
Chisel. Chisel brings advances from software engineering, such as object-orientated and functional
languages, into digital design.

This book addresses hardware designers and software engineers. Hardware designers, with knowledge
of Verilog or VHDL, can upgrade their productivity with a modern language for their next ASIC or FPGA
design.

Software engineers, with knowledge of object-oriented and functional programming, can leverage
their knowledge to program hardware, for example, FPGA accelerators executing in the cloud.

The approach of this book is to present small to medium-sized typical hardware components to explore
digital design with Chisel.

XA A E— DR ET A S S chisel TR AT A8 « Chisel ok 1 8B TRER]
55, G H AN R EGRRE, FEARTHIT -

XA AR SO AN TARE A o BEFIRITIW, 5% VerilogBlVHDLIAIIR, AT LLE
W AE SIS, AT T — 1 ASICEUZFPGA BT -

B TRENG, & AN SRS MR B RAIR, AT LSRR T A =68 1, i,
Z=FPGA -

XA T T S BN B R TR N BRI R 7, RIRER A F chise T %0

B RREIEE

As Chisel allows agile hardware design, so does open access and on-demand printing allow agile textbook
publishing. Less than 6 months after the first edition of this book I am able to provide an improved and
extended second edition.

WE& Chisel RV BEERE (i, B AL T AT UF R ABERT T, RVFBEREERIH 217 -
PSR —RRLUE HIAEI S AR, ] DURHFE— e RN R A58 iR -

Besides minor fixes, the main changes in the second edition are as follows. The testing section has
been extended. The sequential building blocks chapter contains more example circuits. A new chapter
on input processing explains input synchronization, shows how to design a debouncing circuit, and

how to filter a noisy input signal. The example designs chapter has been extended to show different
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implementations of a FIFO. The FIFO variations also show how to use type parameters and inheritance in
digital design.

BrT/NBE, EEREFEWT o MRG0 - TR RIS T E L Rl
B —METRIETAERMALE, BETRMARD, KR T WM — ARk, FaniE
B PRERIAGES . X ORPIBOTETEEEI T, KU T — PFIFORAFIZIT - FIFOK)ZE
PRI T HERCT T B RS BRI -

Bk

I want to thank everyone who has worked on Chisel for creating such a cool hardware construction
language. Chisel is so joyful to use and therefore worth writing a book about. I am thankful to the whole
Chisel community, which is so welcoming and friendly and never tired to answer questions on Chisel.

I would also like to thank my students in the last years of an advanced computer architecture course
where most of them picked up Chisel for the final project. Thank you for moving out of your comfort
zone and taking up the journey of learning and using a bleeding-edge hardware description language.
Many of your questions have helped to shape this book.

HAE R P A e chisel LTI AZ I, MAITO0E T — D ERRIEEETE S - chisel fiH]
EAIEH MR, TEE X —ABIRER-

HARBAEE D ehiseltt X, ARFHXFIMCGRAASF, F HIMAKS FE chisel (7] [A] RUBE 7 -

HA R R AR R IOT ENIR LA, TR R0 58 F chisel (F 0 &2 301
H. BERITEHEEX, AT EIMEHETRERIES - RITRSER R B AL
LTRSS
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Chapter 3

Sip

This book is an introduction to digital system design using a modern hardware construction language,
Chisel. In this book, we focus on a higher abstraction level than usual in digital design books, to enable
you to build more complex, interacting digital systems in a shorter time.

XA — I RE A9 121 5 Chisel MU T RETBOTHIFIE - FEIXAT, FARELE
FP R BRSO i S 2, (IR O B2 B RRE M R ST P HE

This book and Chisel are targeting two groups of developers: (1) hardware designers and (2) software
programmers. Hardware designers who are fluid in VHDL or Verilog and using other languages such as
Python, Java, or Tcl to generate hardware can move to a single hardware construction language where
hardware generation is part of the language. Software programmers may become interested in hardware
design, e.g., as future chips from Intel will include programmable hardware to speed up programs. It is
perfectly fine to use Chisel as your first hardware description language.

X F FiChisel i B PREEAZE M AT & & . (1) BEAFRITERM (2) B4R . &
EVHDLES & Verilog, FRETES, %EPython, Java, B E TCL/TKE AL REE A, FEAS R —4
REMFEEES . X, AR EAET 0. (2) MEFRTE B HREF R,
B4R, B Intel R A 2NN AT SR i 1 F A AR PP

Chisel brings advances in software engineering, such as object-orientated and functional languages,
into digital design. Chisel does not only allow to express hardware at the register-transfer level but allows
you to write hardware generators.

Chisel"R V& 4T [ % AR £ UE 5 2 RVEUE TRAIEH I ABT R0 - Chisel MY
AR REERT FasC MM EZ, T H ARG S A Es -

Hardware is now commonly described with a hardware description language. The time of drawing
hardware components, even with CAD tools, is over. Some high-level schematics can give an overview of
the system but are not intended to describe the system.

R A S 5 ol T o R A A TR 5 AT R SE R RORS R, 2R HHCAD TR HE
B, IR ESETEET - A—EEmBEE A A R—1 REREBREL, BERENNERR
R ARG -

The two most common hardware description languages are Verilog and VHDL. Both languages are
old, contain many legacies, and have a moving line of what constructs of the language are synthesizable
to hardware. Do not get me wrong: VHDL and Verilog are perfectly able to describe a hardware block

that can be synthesized into an ASIC. For hardware design in Chisel, Verilog serves as an intermediate

11


https://chisel.eecs.berkeley.edu/
https://chisel.eecs.berkeley.edu/
https://en.wikipedia.org/wiki/Application-specific_integrated_circuit

language for testing and synthesis.

PR B P OB (- 157895 = 2 VerilogfIVHDL « X H - /ME SR I EM, A KEHN, 32
FEGR G BIRE R R EE 5 Z W — D shp gl A AR VHDLM Verilog Rl ASE
FERIAFH TR A RASICHIRE IR o X T Chisel (U %11, verilog 78 24 — AL &
AEE -

This book is not a general introduction to hardware design and the fundamentals of it. For an
introduction of the basics in digital design, such as how to build a gate out of CMOS transistors, refer to
other digital design books. However, this book intends to teach digital design at an abstraction level that is
current practice to describe ASICs or designs targeting FPGA.! As prerequisites for this book, we assume
basic knowledge of Boolean algebra and the binary number system. Furthermore, some programming
experience in any programming language is assumed. No knowledge of Verilog or VHDL is needed.
Chisel can be your first programming language to describe digital hardware. As the build process in the
examples is based on sbt and make basic knowledge of the command-line interface (CLI, also called
terminal or Unix shell) will be helpful.

XA AR R R AR — R . W SR BT RO R AR A, Bl
EFHCMOS A ETEE— TR, (RESHZFHEHFROTH . BE, XA HAZREIRE
— MG E R HITERT R, EN A S HIRASICEZ1%1T FPGARIFF - 2 {ERIX A BT E
TRk, FAVERRRE —EE AR FIBoolean algebrafll —HHIEAGRIENIR . HEZH), —ELEEG
BB S MRELN 2 FHER - A7 E Verilogsl ;2 VHDLE AR - Chisel 828 50 /R EIEH— 1>
Imieih 5 FRIIAECARE MR o VRN B R R 2 T sbrflimake, ARG 17 S KA
IH(CLI, X FRterminal B2 Unix shell) &2 H A -

Chisel itself is not a big language. The basic constructs fit on one page and can be learned within
a few days. Therefore, this book is not a big book, as well. Chisel is for sure smaller than VHDL and
Verilog, which carry many legacies. The power of Chisel comes from the embedding of Chisel within
Scala, which itself in an expressive language. Chisel inherits the feature from Scala being “a language
that grows on you”Scala. However, Scala is not the topic of this book.

Chisel R A G AR — N KIET « EARFE 97X Bone page, FIUIEERHHNY%>] . T
B, XRPBHARRE—ARKF . Chisel 1% 52 L VHDLF Verilog B/, k&R ZH - Chisel 171 &
KRBT ER#HALEScala 1Y, Scalak & & — 1~H JJIES - Chiseldt#ScalafF 4 “a language that
grows on you’ fJScalaf )% {HSE, ScalaNJEASF5 15 -

This book is a tutorial in digital design and the Chisel language; it is not a Chisel language reference,
nor is it a book on complete chip design.

XA — DT IR M Chisel 75 5 HIZF, A ZChiselift 5 2% BEA AZ — A 5EER
AR>S e

All code examples shown in this book are extracted from complete programs that have been compiled
and tested. Therefore, the code shall not contain any syntax errors. The code examples are available
from the GitHub repository of this book. Besides showing Chisel code, we have also tried to show useful
designs and principles of good hardware description style.

P 9 AR RS ] 52 B ad Gn R ARG FIRERE « BT LA, RS AROZ & 8 A 75 I (W] -
RG] FLEAF Hgithub repo « B T 3R ChiselfCHE LISL, Tt B4 F A Fir it

' As the author is more familiar with FPGAs than ASICs as target technology, some design optimizations shown in this book
are targeting FPGA technology.

HEFEZ ML TASIC, FEEFPGA—LL, i i—ub il 25 FPGA I A
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PR KA ] -

FrE R RIS F) 7ok B 2203 G i nialad AR - BTLL, AEAROZ S A R G L AR -
RIS HF7EAR B HFIGitHub R « Fr TR HEChisel RS LIAN, Tt il EFE B H At FiF i
REE At KRS FRTAIL)

This book is optimized for reading on a laptop or tablet (e.g., an iPad). We include links to further
reading in the running text, mostly to Wikipedia articles.

XA FBEEREGE PR Loy RET T . JATET BATREEM 7R, R
& Wikipediaf) X & -

3.1 “ZZEChiselfIFPGAT A

Chisel is a Scala library, and the easiest way to install Chisel and Scala is with sbt, the Scala build tool.
Scala itself depends on the installation of the Java JDK 1.8. As Oracle has changed the license for Java, it
may be easier to install OpenJDK from AdoptOpenJDK

Chisel/&—"ScalaZE, %3 ChiselMIScalafik ffl HHY 7 1A i sbr, Scala Build Tool - ScalaZf &
AT 42T ava IDK 1.8 - Kl Oracle & 485  Java® 24 T license, i1t AdoptOpenI DK 435 /2 5 B
"t

3.1.1 macOS

Install the Java OpenJDK 8 from AdoptOpenJDK.On Mac OS X, with the packet manager Homebrew,
sbt is installed with:

M AdoptOpen]DK %#EJava Open]DK 8 - #EMac OS X+, E i3 & H K Homebrew, sbtr] L)
TR A 2

S brew install sbt git

Install GTKWave and IntelliJ (the community edition). When importing a project, select the JDK 1.8
you installed before (not Java 11!)

%%¢ GTKWave Fll IntelliJ (FEXARA). H5IA—"PTH, ALHEIDK 1.8, X2 IR7EATILZHEM
(A& Java 11))

3.1.2 Linux/Ubuntu

Install Java and useful tools in Ubuntu with:

FEUbuntu [ 23 Java i I L&, -

$ sudo apt install openjdk-8-jdk git make gtkwave

For Ubuntu, which is based on Debian, programs are usually installed from a Debian file (.deb). However,
as of the time of this writing sbt is not available as a ready to install package. Therefore, the installation
process is a little bit more involved:

% F % FTDebianfJUbuntu R 5%, UM I8 H B 13 (deb) TAFHEAT 24 - XM, H9E AR
i, sbof ANREEILIXMOT AL . Bit, 23R SRR
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echo "deb https://dl.bintray.com/sbt/debian /" | \
sudo tee -a /etc/apt/sources.list.d/sbt.list

sudo apt-key adv —--keyserver hkp://keyserver.ubuntu.com:80 \
——recv 2EEOEA64E40A89B84B2DF73499E82A75642AC823

sudo apt-get update

sudo apt-get install sbt

3.1.3 Windows

Install the Java OpenJDK from AdoptOpenJDK. Chisel and Scala can also be installed and used under
Windows. Install GTKWave and IntelliJ (the community edition). When importing a project, select the
JDK 1.8 you installed before (not Java 11!) sbt can be installed with a Windows installer, see: Installing
sbt on Windows. Install a git client.

M AdoptOpenIDK % #$£Java OpenIDK -  ChiselflScalath S ##Windows##{E RS « % 2% GTK-
Wave 1 IntelliJ (F:[XRRA) - M5 A—"PTIH, ALFIDK 1.8, {RIERLEDN (Filava 11! )
sbt Al LU FHwindows %3528 3%, S M. FEwindowsZA$Esbt. 3% git 25 F .

3.1.4 FPGA L H

To build hardware for an FPGA, you need a synthesize tool. The two major FPGA vendors, Intel® and
Xilinx, provide free versions of their tools that cover small to medium-sized FPGAs. Those medium-sized
FPGAs are large enough to build multicore RISC style processors. Intel provides the Quartus Prime Lite
Edition and Xilinx the Vivado Design Suite, WebPACK Edition.

T HMIEEFPGAREME, IRFFELEE TR . AT EIFPGA T EMNA, Intel* MXilinx R
THMRENTER, WE T IERIIFEEE RN DNFPGA. Hi, FEMKKFPGAC LS £
BNZIERISCEEM AL FRLS o Intel#E L T Quartus Prime Lite U4 F1Vivado Design Suite, WebPACK
R -

3.2 Hello World

Each book on a programming language shall start with a minimal example, called the Hello World example.

Following code is the first approach:

B—RImiETE S T2 NI filHello World W)/ Mil 7T 85 « UM RIER S —F5 1%

object HelloScala extends App{
println ("Hello Chisel World!")

}

Compiling and executing this short program with sbt
ik, P IX TR AR PP @ 1 st

$ sbt "runMain HelloScala"

3former Altera
4eB sz 2 Altera
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)

1

"

leads to the expected output of a Hello World program:
FEJ5 . Hello WorldFE P4 Hi 1 FIUIIHIA 2

[info] Running HelloScala
Hello Chisel World!

However, is this Chisel? Is this hardware generated to print a string? No, this is plain Scala code and not a
representative Hello World program for a hardware design.
IR, XL ZChisel? X MEAPAAH T H BFAFEBEIG? FARXEE, X EPR 2R
T Scalafti5, FHAAREMEHLITHIHello World 27 -

3.3 Chisel Hello World

What is then the equivalent of a Hello World program for a hardware design? The minimal useful and
visible design? A blinking LED is the hardware (or even embedded software) version of Hello World. If a
LED blinks, we are ready to solve bigger problems!

AF 2 Hello Worldf& 5755 i FORE (R 50T & AT 40 @& /NRI AT B AT IR ? — I KR
FILEDSRRE {1 (& A ZUER) BUAR T Hello World - Q15R—NLEDINKR,  BA T3t AT LA IR B
KEA]E -

class Hello extends Module {
val io = IO(new Bundle {
val led = Output(Ulnt(1.W))

iy
val CNT_MAX = (50000000 / 2 — 1).U;

val cntReg = Reglnit (0.U(32.W))
val blkReg Reglnit (0.U(1.W))

cntReg := cntReg + 1.U

when(cntReg === CNT_MAX) {
cntReg := 0.U
blkReg := ~blkReg

}
io.led := blkReg

Listing 3.1: hello

listinghello shows a blinking LED, described in Chisel. It is not important that you understand the
details of this code example. We will cover those in the following chapters. Just note that the circuit is
usually clocked with a high frequency, e.g., 50 MHz, and we need a counter to derive timing in the Hz
range to achieve a visible blinking. In the above example, we count from 0 up to 25000000-1 and then
toggle the blinking signal (blkReg := ~blkReg) and restart the counter (cntReg := 0.U). That hardware
then blinks the LED at 1 Hz.

hellof I H)5E — > 13 Chisel f#iA B A KRLED « 452 75 B X RS R 194077 B A E 2
1 BATR SN EXENEAEL FETH . (UNFEERX D ARIEE & =R i e,
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HIUnSOMHz, FAl 17 E— 1 THEES R 2 515 BIHZ 0 5 2R SCE T AL B ALV« 73X 7
Elﬂ?kﬂ‘MOiJriﬁz@stoooooo 1, SRJG i % INKR1S 5 (blkReg := ~blkReg) , %G BT RS (cntReg :=
0.U)« X MEH LI HZBR A KRLED -

3.4 ChiselJIDE

This book makes no assumptions about your programming environment or editor to use. Learning of the
basics should be easy with just using sbt at the command line and an editor of your choice. In the tradition
of other books, all commands that you shall type in a shell/terminal/CLI are preceded by a $ character,
which you shall not type in. As an example, here is the Unix /s command, which lists files in the current
folder:

XA BOR BOR AR AR REEASE AN G FH A BB s o A A 4T 7 8 FH sboe R Bf 3 — >R O 4
) i B i T DIRBEZGHINIT . EHMERHES, IERTERAKIGR G ZI2H —
NSFERE, XN FIRATERA  — M+, Unix @95 H 25 SCHER T S0 s i d:

S 1s

That said, an integrated development environment (IDE), where a compiler is running in the back-
ground, can speed up coding. As Chisel is a Scala library, all IDEs that support Scala are also good IDEs
for Chisel. It is possible in IntelliJ and Eclipse to generate a project from the sbt project configuration in
build.sbt.

Wt R, — M oIFESR e 5T KR RIT ZHEADE), A LUIN#E S EE - A JChiseliE
—MScalalE, Fi’H FIIDEs#H} 3 #Scala, 37 ##Chisel. £ IntelliJ F1 Eclipse H 42 pl— &
5 build.sbrFi B H)sbt TREZ AT T -

In IntelliJ you can create a new project from existing sources with: File - New - Project from Existing
Sources... and then select the build.sbt file from the project.

TEIntelli), 157] LLiE TS File - New - Project from Existing Sources... QIZEFTEFITH, MEBMHE
IR, ONJEEFE I H Abuild.sbtSLf: -

In Eclipse you can create a project via fEEclipse /R A LAf#E 32— H i@ 1

$ sbt eclipse

and import that project into Eclipse.’

HH 5 A—1 T AEclipse » ©

Visual Studio Code is another option for a Chisel IDE. TheScala Metals extension provides Scala
support. On the left bar select Extensions and search for Metals and install Scala (Metals). To import an
sbt based project open the folder with File - Open.

Visual Studio Code & 7 —1>Chisel IDEfJ%M - Scala Metals i B T Scala=(#f - ZEfl#=
1%5¥ Extensions , 18R Metals, Z3EScala (Metals). 79 T 5|\ sbt HEEMAITIE ,  File - OpentT T
SR -

>This function needs the Eclipse plugin for sbt.
OIX N THRE TR B sbtAEclipseffi ¢ -
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3.5 VjmJRESANE T HIhEE

This book is open source and hosted at GitHub: chisel-book. All Chisel code examples, shown in this
book, are included in the repository. The code compiles with a recent version of Chisel, and many
examples also include a test bench. We collect larger Chisel examples in the accompanying repository
chisel-examples. If you find an error or typo in the book, a GitHub pull request is the most convenient
way to incorporate your improvement. You can also provide feedback or comments for improvements by
filing an issue on GitHub or sending a plain, old school email.

XA ZAEGitHub: chisel-book LR - 45 B K Chisel | TAFEL S EIZ CHEF - X LU
IH T BT W Chisel R E i, 1RZFFEBELE T test bench - FATUEE T 1R Z Chisel | F7Echisel-
examples 0 B o GISRARIEE] THHREGE E R, 7] LIRS pull request - /R A LAFEgithub Fir 5k —
Pissuee P Bt B IR B KA — 1R B AR -

This book is freely available as a PDF eBook and in classical printed form. The eBook version features
links to further resources and Wikipedia entries. We use Wikipedia entries for background information
(e.g., binary number system) that does not directly fit into this book. We optimized the format of the
eBook for reading on a tablet, such as an iPad.

IXARE B8 A BRI APDFAL 7R - FLT ML 2 B BRI Wikipedia A\ [ - 3A]
fif FHWikipediae i I 5 AR F 38 B HAE R H FADAWGI 0 — 2 HE e 250 - B THRTH
POHERR, DA & BY 5, Bilddipad -

3.6 EHLIEY

Here a list of further reading for digital design and Chisel: iX L Hi T ¢ T4 LB % 1T FIChisel B IR
R IR

e Digital Design: A Systems Approach, by William J. Dally and R. Curtis Harting, is a modern
textbook on digital design. It is available in two versions: using Verilog or VHDL as a hardware

description language.
Digital Design: A Systems Approach, /£ 7&William J. Dally #1 R. Curtis Harting, , & — 742
REEF BT RIER - BEEMW DR, 8 H Verilog 82 VHDLE N HH#ATE = -

The official Chisel documentation and further documents are available online:

Chisel B /7 A1 2 5 B SRS AT 2 BRI ) L

e The Chisel home page is the official starting point to download and learn Chisel.

Chisel & T & H 1R 22 F1 2 > chisel {7 -

e The Chisel Tutorial provides a ready setup project containing small exercises with testers and

solutions.
Chisel Tutorial f&fft | —ME&ZARAINE ,  GFE/DAHKARRRE R AR -
The Chisel Wiki contains a short users guide to Chisel and links to further information.

Chisel Wikif & T /INchisel 9 7 At FIHE 215 B RIEERE -
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W =

e The Chisel Testers are in their repository that contains a Wiki documentation.

Chisel Testers BJFEEMANTFICE, & T —Pwiki XX -

e The Generator Bootcamp is a Chisel course focusing on hardware generators, as a Jupyter notebook

Generator Bootcamp #&chisel 2, TIETERE LRSS, 1Ejupyter notebook -

o A Chisel Style Guide by Christopher Celio.
Chisel Style Guide, {E# f&Christopher Celio -

e The chisel-lab contains Chisel exercises for the course “Digital Electronics 2" at the Technical

University of Denmark.

e The chisel-lab f3% F T7E /& H R K 2£“Digital Electronics 2” 12 AChisel %5 >] -

3.7 %>

Each chapter ends with a hands-on exercise. For the introduction exercise, we will use an FPGA board to
get one LED blinking. As a first step clone (or fork) the chisel-examples repository from GitHub. The
Hello World example is in the folder hello-world, set up as a minimal project. You can explore the Chisel
code of the blinking LED in src/main/scala/Hello.scala. Compile the blinking LED with the following
steps:

BOIENHEEBHE TSRS BT HE%S], FAEE 2 EH—MFPGANR T LH)—
FILED - %—cloneB # forkchisel-examples &% - Hello Worldffl ¥ 7Ehello-world /R E , =2
— RPN LR o« VRAT LARZELED A SRR Chisel (NS fEsre/main/scala/Hello.scala - 1% T N iR A5
Y IFLEDIAIE TRE:

$ git clone https:// github.com/schoeberl/chisel —examples. git
$ cd chisel —examples/hello—world/
$ make

After some initial downloading of Chisel components, this will produce the Verilog file Hello.v.
Explore this Verilog file. You will see that it contains two inputs clock and reset and one output io_led.
When you compare this Verilog file with the Chisel module, you will notice that the Chisel module does
not contain clock or reset. Those signals are implicitly generated, and in most designs, it is convenient not
to need to deal with these low-level details. Chisel provides register components, and those are connected
automatically to clock and reset (if needed).

FEChisel3if 7> M2 G, BFST H— "1 Verilog 3 Hello.v - P %X Verilog X, 1R
SE TR S BN A clockFreset F1— i thio_led - SR H Verilog 3 A FAChisel BB R
1R 2 % BN Chisel B B AR NG & clock Flreset - X Eef5 5 R PR CAE R, & RF & H 4
X LR Z AT A TR o ChiselR LRI F FAEIRFTFE, & BohiEEclockHreset.

The next step is to set up an FPGA project file for the synthesize tool, assign the pins, and compile’
the Verilog code, and configure the FPGA with the resulting bitfile. We cannot provide the details of these

"The real process is more elaborated with following steps: synthesizing the logic, performing place and route, performing
timing analysis, and generating a bitfile. However, for the purpose of this introduction example we simply call it “compile” your
code.
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steps. Please consult the manual of your Intel Quartus or Xilinx Vivado tool. However, the examples
repository contains some ready to use Quartus projects in folder guartus for several popular FPGA boards
(e.g., DE2-115). If the repository contains support for your board, start Quartus, open the project, compile
it by pressing the Play button, and configure the FPGA board with the Programmer button and one of the
LEDs should blink.

NP REENFPGATRE M, ECSIM, IRJEYm 1% VerilogiURY ,  feJe Ml AR B AIbi U JE
5#FPGA - AT AL PRI IEANERE - ESEIRNEDATEFM - AR, HIEGE
BHEE T — 55 LT FIFPGA R IQuartus 7] B TIEE quartus STAFER A« U056 S Fr
AT ELFEIRIUFPGA, [B51Quartus, TTTFLAE, 4aiF, K%, RE—TLEDRFZ A -

Gratulation! You managed to get your first design in Chisel running in an FPGA! [F £ T ! 1R
JEHFEFPGA 15247 T /RS — > Chisel i !

If the LED is not blinking, check the status of reset. On the DE2-115 configuration, the reset input
is connected to SWO. UIRLEDIZ H INFK, EresetHIRAS - ZEDE2-115ECEH, resetfI il A%
FESWO.

Now change the blinking frequency to a slower or a faster value and rerun the build process. Blinking
frequencies and also blinking patterns communicate different “emotions”. E.g., a slow blinking LED
signals that everything is ok, a fast blinking LED signals an alarm state. Explore which frequencies
express best those two different emotions.

AR N FRE IR IR G BT — R TR (RERASIHERFA AR A 7 20T LIRS [FT Y
W& Fla— PN RERRNHFERE—TIERE, — DMRENAGE SRR DRE - FRWE
FES RLX AN F B -

As a more challenging extension to the exercise, generate the following blinking pattern: the LED
shall be on for 200 ms every second. For this pattern, you might decouple the change of the LED blinking
from the counter reset. You will need a second constant where you change the state of the blkReg register.
What kind of emotion does this pattern produce? Is it alarming or more like a sign-of-live signal? —*> 5
BAEWRSIERZRS), El—D T ARASEZ: LED—®H 5200 ms. FF FHXME, 4RATE
2T EES B AR BLEDIIN K o 17K 2T/ EE A H BRI bIkReg FF 2 IR XA
WA E 2 FRAPIREYE? RERLZEER —PIEFZTHESR?

If you do not have an FPGA board (yet), you can still run the blinking LED example. You will use the
Chisel simulation. To avoid a too long simulation time change the clock frequency in the Chisel code
from 50000000 to 50000. Execute following instruction to simulate the blinking LED:

R GE) BH—1FPGAMN, ARATIIRAT LUSTTIANMRLEDA T« {72 B Chisel -
TFIIEAR K HIBEUET F], EZEChisel fUAS AR ERIZR , M5000000027950000 - HUUTLLRFES,
LA A PRLED:

$ sbt test

This will execute the tester that runs for one million clock cycles. The blinking frequency depends
on the simulation speed, which depends on the speed of your computer. Therefore, you might need to
experiment a little bit with the assumed clock frequency to see the simulated blinking LED.

XRPATIE, ZTRFE005 IR . INHRIRBUR TELEE, Wil Rt EEE . T
&, WRFEEL—T, ERABZAR MR, £&SEIFIAFELED -
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Chapter 4

B A S o

In this section, we introduce the basic components for digital design: combinational circuits and flip-flops.
These essential elements can be combined to build larger, more interesting circuits.

FEIXANET, BTN BETF AT AVERER 7 « X EEARPERF D AT LB EH B E R, BF
AR LB A o

Digital systems in general built use binary signals, which means a single bit or signal can only have
one of two possible values. These values are often called 0 and 1. However, we also use following terms:
low/high, false/true, and de-asserted/asserted. These terms mean the same two possible values of a binary
signal.

BT RARERRY, FHZHFBES, BRE-TbuEREFES, ATUE ZEHEZ 1A
BEfE - IXEEBUE R H W08 - B2, TANEHEEHWTHAE. e, BB, MdEEH
AEE R« X EEARTEAE SRR, R — D ot IS5 A T RE(E -

41 EESABAHEE

Chisel provides three data types to describe signals, combinational logic, and registers: Bits, Ulnt, and
SiInt. Ulnt and Sint extend Bits, and all three types represent a vector of bits. Ulnt gives this vector of bits
the meaning of an unsigned integer and SInt of a signed integer.! Chisel uses two’s complement as signed
integer representation. Here is the definition for different types, an 8-bit Bits, an 8-bit unsigned integer,
and a 10-bit signed integer:

Chiself@ fft T = MEURE R B FRMAR S, HEBHE, MEFFI: Bis, Ulnt, FSt-
UlntHicodeSIntie Birs FIFfE, I HPTE I = MR B CRbisHIRE - UlntR7m X Pbits i) R E &
—DTFFSIEERL, SRR — a5 IR . 2 Chisel{f Ftwo’s complementZR 7~ H 177 5 £
B . DUFEARRERE S, 8iBits, 8AITLAFSHAL, F— 10605775 8H.

Bits (8.W)
Ulnt (8.W)

3 SInt(10.W)

!"The type Bits in the current version of Chisel is missing operations and therefore not very useful for user code.

*Bits RELAEAR ChiselRUAZ K HIHRME, FF BAEHRI7E A& f R A .
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)

The width of a vector of bits is defined by a Chisel width type (Width). The following expression casts the
Scala integer n to a Chisel width, which is used for the definition of the Bits vector:

Bitsf{) % & B B4 Chisel FIwidth 2 (Width) 7€ 3 o LL T Foritscalaf R nf % /i Chisel fwidth,
M T Bits RERIE L - -

n.W
Bits (n.W)

Constants can be defined by using a Scala integer and converting it to a Chisel type:
W & 7] LB i ScalaBE B 8 S H B B A Chisel 2 Y - & L — M HOMIUIntH &, FIE L —
03fSInt H & -

0.U
-3.5

Constants can also be defined with a width, by using the Chisel width type:
R LS TR E L, Chisel fiwidthB A . & L — P40 f)H =S -

8.U(4.W)

If you find the notion of 8.U and 4.W a little bit funny, consider it as a variant of an integer constant with
a type. This notation is similar to 8L, representing a long integer constant in C, Java, and Scala.
YRR UMAWHIER R TEELH#R, R LI E R — B B — PRI X E
AAREMTSL, KF—1C, JavadiScalad KM .

Possible pitfall: One possible error when defining constants with a dedicated width is missing the
.W specifier for a width. E.g., 1.U(32) will not define a 32-bit wide constant representing 1. Instead, the
expression (32) is interpreted as bit extraction from position 32, which results in a single bit constant of 0.
Probably not what the original intention of the programmer was.

WA — D AREAERRE, HEATEL—1HE W, EX—PRE. B, 1.U(32) N
DR THINCRINF & M, B 328 BIEFE M2 AL A, G5RE—1
BATTHHE B0 . FIRENERIEE IEE -

Chisel benefits from Scala’s type inference and in many places type information can be left out.
The same is also valid for bit widths. In many cases, Chisel will automatically infer the correct width.
Therefore, a Chisel description of hardware is more concise and better readable than VHDL or Verilog.

Chisel % i T ScalaF )R AU HENT, I HARZ 17 RIUE B AT LIBTE S - RARHE T AL5E -
TEARZ W5, Chiselz BEIHERTIEMRITEE - T2, chisel#fiid B6E 415 5 L VHDLE] Verilog 5
IERERIIR=

For constants defined in other bases than decimal, the constant is defined in a string with a preceding
h for hexadecimal (base 16), o for octal (base 8), and b for binary (base 2). The following example shows
the definition of constant 255 in different bases. In this example we omit the bit width and Chisel infers
the minimum width to fit the constants in, in this case 8 bits.

T UHEENEROTER LSMNIRE, HEEE XN TFE, Tk, o8t
Hl, bRE23EH . LUNEIEI TR T HR2558E X, EARIBIZER . EX T, FlTEm T
fL%E, chiselEWT T &/ NI HRFRE R, X D0 T80 . (16dthlIFIR255, 8%
7R255, iIERIR255)
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I "hff".U
2 "o377" .U
3 "bI111_1111".U

The above code shows how to use an underscore to group digits in the string that represents a constant.
The underscore is ignored.

PLEACHIHRR T A 0 F RGBS HART IR E & . TS5 2R -

To represent logic values, Chisel defines the type Bool. Bool can represent a true or false value. The
following code shows the definition of type Bool and the definition of Bool constants, by converting the
Scala Boolean constants true and false to Chisel Bool constants.

T RRIZBEAE, Chisel’E X T Bool2k %! - BoolF] DA %%ﬂ—?trueﬁfalseﬁ o ITNHIRIEER

T BoolZRAURE LA K Bool H & IIE X, 1B F#iScala Boolean ' & truefllfalse, %!|Chisel ¥JBoolZk
ﬁ.{ o

1 Bool ()
true .B
3 false .B

()

4.2 HAEHMK

Chisel uses Boolean algebra operators, as they are defined in C, Java, Scala, and several other programming
languages, to described combinational circuits: & is the AND operator and | is the OR operator. Following
line of code defines a circuit that combines signals @ and b with and gates and combines the result with
signal ¢ with or gates.

Chiself¥ fiBoolean algebraf# {EAF, FIC, Java, Scalaflr]fEIRZ HEREESTHE LAT—
B, EHAHERE . UNMUEE LT — DX afbi# Tand B, R E SR Mot TorZ
R ) FEL B

I val logic = a &b | ¢

oai
. » ogic

Figure 4.1: Logic for the expression . The wires can be a single bit or multiple bits. The Chisel expres-
sion, and the schematics are the same.

a —

AND
b |

Figure 4.1 shows the schematic of this combinatorial expression. Note that this circuit may be for a
vector of bits and not only single wires that are combined with the AND and OR circuits.

KA 41 ZATZITHEEZENESHNERE. EEIXPEBATEARER—THE
fbits, FFADURFFADUE BRI ANDFIORZE A2

In this example, we do not define the type nor the width of signal logic. Both are inferred from the

type and width of the expression. The standard logic operations in Chisel are:
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)

XM, BATANE R BB B logicHITEE o PR MR BNk =00 5 v o o
B, FREChisel BB HEHRE &

val and = a & b // bitwise and
val or = a | b // bitwise or
val xor = a ~ b // bitwise xor

val not = ~ a // bitwise negation

The arithmetic operations use the standard operators:

val add = a + b // addition

val sub = a — b // subtraction
val neg = —a // negate

val mul = a * b // multiplication
val div = a / b // division

val mod = a % b // modulo operation
FARBRAEE bR EART
FARBAEEAPMERIERT L. D% 2. % 3. M B 4. SRIE 5. BRi% 6. REL
The resulting width of the operation is the maximum width of the operators for addition and subtraction,
the sum of the two widths for the multiplication, and usually the width of the numerator for divide and

modulo operations.>

DIEFNBHE BV ELE R0 BB R R PRI RO B, FRIRHR R AE R AE GV AL P R B R i
TEINFA, BRIZAREURIERZE TR PR A 5E - 4

A signal can also first be defined as a Wire of some type. Afterward, we can assign a value to the wire
with the = update operator.

— A (E BT DR B SN SRR M Wire - WS BeNTAT DU X A wirel— M, (8
H:=-

val w = Wire(Ulnt())

3w :=a&b

A single bit can be extracted as follows:

— Al B fAbit AT LABCAN T R HR

val sign = x(31)

A subfield can be extracted from end to start position:

— o BT DU S B 5

val lowByte = largeWord (7, 0)

Bit fields are concatenated with Cat.
bt S Car & .

3The exact details are available in the FIRRTL specification.
*3¥ ILFIRRTL specification.
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Operator Description Data types

*/ % multiplication, division, modulus  Ulnt, SInt

+ - addition, subtraction Ulnt, SInt

=== =/= equal, not equal Ulnt, SInt, returns Bool
> >=< <= comparison Ulnt, SInt, returns Bool
« » shift left, shift right

T NOT Ulnt, SInt, Bool

&l AND, OR, XOR Ulnt, SInt, Bool

! logical NOT Bool

&& || logical AND, OR Bool

Table 4.1: Chisel defined hardware operators.

Function Description Data types
v.andR v.orR v.xorR  AND, OR, XOR reduction  Ulnt, SInt, returns Bool
v(n) extraction of a single bit Ulnt, SInt
v(end, start) bitfield extraction Ulnt, SInt
Fill(n, v) bitstring replication, n times  Ulnt, SInt
Cat(a, b, ...) bit field concatenation Ulnt, SInt

Table 4.2: Chisel defined hardware functions, invoked on v.

I val word = Cat(highByte, lowByte)

Table 4.2 shows the full list of operators (see also builtin operators). The Chisel operator precedence
is determined by the evaluation order of the circuit, which follows the Scala operator precedence. If in

doubt, it is always a good praxis to use parentheses.’

Table 4.2/~ | BAERF 5 1453 (& Fbuiltin operators) -  ChiselZVERF I 55 BUAR T HL 1% 1Y
MEAENTT, E5FScala operator precedence - IS E SR HE, FHES & —MFRISIM - ©
Table 4.2 shows various functions defined on and for Chisel data types.

Table 4.2% 7R | BAIEFFSHI27E

421 B

A multiplexer is a circuit that selects between alternatives. In the most basic form, it selects between two
alternatives. Figure 4.2 shows such a 2:1 multiplexer, or mux for short. Depending on the value of the
select signal (sel) signal y will represent signal a or signal b.

BRER—MEFET R . AREANEN, EHETERFEL—. F224285 12
B, SR AmuxERRR . BURTIERFEE T (sel), y2FRRETad0EETb-

A multiplexer can be built from logic. However, as multiplexing is such a standard operation, Chisel

provides a multiplexer,

5The operator precedence in Chisel is a side effect of the hardware elaboration when the tree of hardware nodes is created
by executing the Scala operators. The Scala operator precedence is similar but not identical to Java/C. Verilog has the same
operator precedence as C, but VHDL has a different one. Verilog has precedence ordering for logic operations, but in VHDL
those operators have the same precedence and are evaluated from left to right.

S7Echisel RERAERF S WM S SR BE LA ORI i, RO REAR T s R B HA T scalat® VEFFAIEERY - ScalalfE
FERISE IR I S Java/CRIUERANSER] - VerilogMICHE RIFERIRIEFF L £, ERVHDLEZAF . Verilogh 124
ERBRERF SRS, (B VHDLE, XER(ERF IR SR E R, RN RITF
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y —»

Figure 4.2: A basic 2:1 multiplexer.

— N E M LUE A A . HE, BRI FH#EME, Chiself2ft T —HEH

val result = Mux(sel , a, b)

where a is selected when the sel is true.B, otherwise b is selected. The type of sel is a Chisel Bool; the

inputs a and b can be any Chisel base type or aggregate (bundles or vectors) as long as they are the same

type.

XU R sel e true. BEE, Hiffa, RZEFD - self)FRELEChiselBool, aflblEIyHi AT LA
AR Chise = AR RE S (RESERE) , RECNHRIMEMA .

With logical and arithmetical operations and a multiplexer, every combinational circuit can be
described. However, Chisel provides further components and control abstractions for a more elegant
description of a combinational circuit, which are described in a later chapter.

WP EMEARERE, — P EHES, B HAEBRMEEIENA . H2, Chiseli®ft T ELH
P AIFEH TS P R B AT R AR 2H B L, X EEAERA S T

The second basic component needed to describe a digital circuit is a state element, also called register,

which is described next.

BT EIR — DT R EAE R R — RS EIT, JOREF AR, M-

4.3 WREHFFS

Chisel provides a register, which is a collection of D flip-flops. The register is implicitly connected to
a global clock and is updated on the rising edge. When an initialization value is provided at the declaration
of the register, it uses a synchronous reset connected to a global reset signal.

Chisel{&{t T — M2 288, X2 — 1D flip-flopsHIEE A o X FF FFARbe SRR — 1 B B,
HH A o =P VIREREEF FEaE HRHRERLE, EFRNE-PMRPEN, &
B EEAES

A register can be any Chisel type that can be represented as a collection of bits. Following code
defines an 8-bit register, initialized with O at reset:

— DR AT LU A M bits 85 FChisel R AL o TRMURSE L T — 1\ L fFas . EE ALY
A0 -

val reg = Reglnit(0.U(8.W))
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An input is connected to the register with the = update operator and the output of the register can be used

just with the name in an expression:

— M GERBIF A, =BT ERER,  f AR g AT UG R A S 2 A -

reg :=d
2 val q = reg

A register can also be connected to its input at the definition:

TR AT LU R R AR A B 2 R R

val regNxt = RegNext(d);

A register can also be connected to its input and a constant as initial value at the definition:

AT LUE R E AT — D B R IIREIE N E X

val bothReg = RegNext(d, 0.U)

To distinguish between signals representing combinational logic and registers, a common practice is
to postfix register names with Reg. Another common practice, coming from Java and Scala, is to use
camelCase for identifier consisting of several words. The convention is to start functions and variables
with a lower case and classes (types) with an upper case.

HTRAFRRAEERMFERIES, — DR EEST Fa AN LHZEReg - 7
—MHE IR, K BJavafliScala, 2% f#FcamelCase, HJLMFIAHMKITRIA - XD TEE
RERZEHE TG, RAETFHAE.

4.3.1 it#

Counting is a fundamental operation in digital systems. On might count events. However, more often
counting is used to define a time interval. Counting the clock cycles and triggering an action when the
time interval has expired.

TERE — PR EARBRIEAERT RS WWHTRERE 2L . B2, SFITECRBER £
SE XL — DI IRIBIFE o TR B, I 51— DRIE, 24 [R] [B] BRI AR {2 -

A simple approach is counting up to a value. However, in computer science, and digital design,
counting starts at 0. Therefore, if we want to count till 10, we count from 0 to 9. The following code
shows such a counter that counts till 9 and wraps around to 0 when reaching 9.

—PNRBER TR TR —ME . B2, FEIFENREMET R, i8N E . T
f&, ARIATEEEEN0, TR MoEE9. LU NMUEFRR— T RS, #&E)9, HiREE|04 %
FI ORI 5 -

I val cntReg = Reglnit (0.U(8.W))
2 cntReg := Mux(cntReg === 100.U, 0.U, cntReg + 1.U)
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S}

4.4 fFFBundlefliVeciH {15514

Chisel provides two constructs to group related signals: (1) a Bundle to group signals of different types
and (2) a Vec to represent an indexable collection of signals of the same type. Bundles and Vecs can be

arbitrarily nested.

Chiself# (M M EERM/NAMKAIES: (1) — 1 EBundle, HLANFREES M Q) — &
Vec, ERF—NFIRFIFIMFERINES - BundlesFlVecs] U\E B

A Chisel bundle groups several signals. The entire bundle can be referenced as a whole, or individual
fields can be accessed by their name. We can define a bundle (collection of signals) by defining a class

that extends Bundle and list the fields as vals within the constructor block.

Chiselfll R Z M55 - B bundlem] LIEEIAS| Y, sl imEd bl 104 F "”Jlﬁllﬂ FATAT
U —T R (FEEMEE) | #idEX—1RE, T Bundle, FAEBNES vals|h -

val ch = Wire(new Channel ())
ch.data := 123.U
ch.valid := true.B

val b = ch.valid

To use a bundle, we create it with new and wrap it into a Wire. The fields are accessed with the dot
notation:
NTAERER, FAVERnew, FIEEEEH Wire . BRI SPRATIA -

Dot notation is common in object-oriented languages, where x.y means x is a reference to an object
and y is a field of that object. As Chisel is object-oriented, we use dot notation to access fields in a bundle.
A bundle is similar to a struct in C, a record in VHDL, or a struct in SystemVerilog. A bundle can also be
referenced as a whole:

AARRETE A 38 HHE REE, xyBWEGRE — PR RBGIH, y2& DX R
1 . K 9Chisels& [ [a] X R E), AT H SRR E DT RIHER A E . — P HRELTCES
Hstruct, VHDLErecord, B 5&SystemVerilogfstruct - 5 A] LEEAA#E 5] H -

val channel = ch

A Chisel Vec represents a collection of signals of the same type (a vector). Each element can be
accessed by an index. A Chisel Vec is similar to array data structures in other programing languages.” A
Vec is created by calling the constructor with two parameters: the number of elements and the type of the
elements. A combinational Vec needs to be wrapped into a Wire

Chisel ) Vec UK — RIIMEFRREHIES - FANITEF LB RG]V - Chiself)Vec K LT
—BHIREMERCREES - 8 VecBid AN D ZEUIL AMERE: TTRIBEMITRERIR
o HAEPEH Vec Te W T B Wire -

Individual elements are accessed with (index). *2.—JTZ 1B (index) ¥ V5 A2 -

1.U
3.U

v(0) :
v(l) :

"The name Array is already used in Scala.

8Array B4 scala P B (# H -
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)

3 v(2) := 5.U

5 val idx = 1.U(2.W)
val a = v(idx)

A vector wrapped into a Wire is a multiplexer. We can also wrap a vector into a register to define an
array of registers. Following example defines a register file for a processor; 32 registers each 32-bits wide,
as for a classic 32-bit RISC processor, like the 32-bit version of RISC-V.

WEREHA Wiret R E—PERE . HATHATLEEM &R ATFFREE L —FFFd. L
MBI RESCT AT AR A A U M EF A, BT AAVEME, flins i3
RISCAbFE S, BUE32-bithi A HIRISC-V -

val registerFile = Reg(Vec(32, Ulnt(32.W)))

An element of that register file is accessed with an index and used as a normal register. {725 H—" ™ TC

ZEERGVIR], FRIEERE 76 -

registerFile (idx) := dIn
val dOut = registerFile (idx)

We can freely mix bundles and vectors. When creating a vector with a bundle type, we need to pass a
prototype for the vector fields. Using our Channel, which we defined above, we can create a vector of
channels with:

FATAT S RIRIE AR A & - HOE—MEERRRENAE, BIFELXPREEA
[ FEFHFEAE Channel, BEATUAEE LK, AT AGIE — A & BiEE @

val vecBundle = Wire(Vec(8, new Channel()))

A bundle may as well contain a vector: — A A BEEL & — N[ = :

class BundleVec extends Bundle {
val field = Ulnt(8.W)
val vector = Vec(4,Ulnt(8.W))

When we want a register of a bundle type that needs a reset value, we first create a Wire of that bundle,
set the individual fields as needed, and then passing this bundle to a Reglnit:

HHNTEE DT Ereset[HAVF IR, HATELOE D BEI MR Wire, 5E
B, RIS IEIR R L4 Reglnit -

val initVal = Wire(new Channel())

3 initVal.data := 0.U

initVal.valid := false.B

val channelReg = Reglnit(initVal)

With combinations of Bundles and Vecs we can define our own data structures, which are powerful

abstractions. 1813 BundlefVecH 4, FATRTLIE XFATE CREURLEEW, XA 2F 18IS .
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4.5 Chisel4: 5RO

After seeing some initial Chisel code, it might look similar to classic programming languages such as Java
or C. However, Chisel (or any other hardware description language) does define hardware components.
While in a software program one line of code after the other is executed, in hardware all lines of code
execute in parallel.

TEEE|—LChiselUhD, FIRER R KA BIRIEIE T 5 ETavasi CHLEAEML - {HSE, Chisel (2
RHEHEEREATES) Wl TR . MEYHEIRES, —TREEN—ITdEHdT, miE
AT 2 FRexecute in parallel -

It is essential to keep in mind that Chisel code does generate hardware. Try to imagine, or draw on a
sheet of paper, the individual blocks that are generated by your Chisel circuit description. Each creation
of a component adds hardware; each assignment statement generates gates and/or flip-flops.

AEAE, ChiselfCHS B SE 2 A M AF . ZElUEREE AL LA PR, L&
fChisel FELES IR A - BRI BIRA RS INAE L « B DE R I A 1A/l 25 -

More technically, when Chisel executes your code it runs as a Scala program, and by executing
the Chisel statements, it collects the hardware components and connects those nodes. This network of
hardware nodes is the hardware, which can spill out Verilog code for ASIC or FPGA synthesis or can be
tested with a Chisel tester. The network of hardware nodes is what is executed in fully parallel.

MR EHE, ChiselHUTRADES, ERAERScalafE fFFia 17, I B B HfTChiseliEf),
W SRR R FFEBOX BT A o BT R Ml R, ATRE ST A2 T ASICEUFPGAZE &
) VerilogfUhs, =i FChiselMIR A« BEARTT S MEZ S22 HFTHITH -

For a software engineer imagine this immense parallelism that you can create in hardware without
needing to partition your application into threads and getting the locking correct for the communication.

TR, TSR, &AL fEREA P O, Mo/ N R RE P 9 AR FF
TERREE B -

4.6 4:>]

In the introduction you implemented a blinking LED on an FPGA board (from chisel-examples), which
is a reasonable hardware Hello World example. It used only internal state, a single LED output, and no
input. Copy that project into a new folder and extend it by adding some inputs to the io Bundle with val
sw = Input(Ulnt(2.W)).

EFWH, FHFE T — D INSRILEDZE — TFPGAMR | (OF Hchisel-example) , iXE—1
RUE A Hello world¥1Hl - ‘& A RMHANFKARE, — 1 LEDHEH, "HEA - LI1TH
B HIB— MRS, HAERval sw = Input(Ulnt(2.W))iFs Il —SEH A Ziofl 7K -

val io = IO(new Bundle {
val sw = Input(Ulnt(2.W))
val led = Output(Ulnt(1.W))
P

For those switches, you also need to assign and list the fields as pin names for the FPGA board. You can
find examples of pin assignments in the Quartus project files of the ALU project (e.g., for the DE2-115
FPGA board).
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S FX LT R, IR AT LL4SFPGANR F HIPINSY Bt 4 5 - R AT LAHR 2 & M) 6 4 1) ] -+
FEQuartus™ i H X AFFHAJALUTH (140, DE2-115 FPGA ¥ F) (e.g., for the DE2-115 FPGA
board) -

When you have defined those inputs and the pin assignment, start with a simple test: drop all blinking
logic from the design and connect one switch to the LED output; compile and configure the FPGA device.
Can you switch the LED on an off with the switch? If yes, you have now inputs available. If not, you need
to debug your FPGA configuration. The pin assignment can also be done with the GUI version of the tool.

HIREEE T X B AMER R, JHia— DR AN RERIT A N2,
R H A —/\@JLED% H; HIEIF I EFPGAAE o /R AT LU IF %TELEDTT%%C%W 5?40
%%Xﬁﬂ’\] Rt E TR HBEIN  WEREH , IRFEZEIRAFPGAR Edebug » iX 1 A] LU

1L GUIRA ) TR 5K, -

Now use two switches and implement one of the basic combinational functions, e.g., AND two
switches and show the result on the LED. Change the function. The next step involves three input switches
to implement a multiplexer: one acts as a select signal, and the other two are the two inputs for the 2:1
multiplexer.

IAEFERBE DT RIF FEA — D EEARRIE S B REL, B0, “HASI THFAELEDE RS
HUZEE . NP EAEZRATTORER - IEHS, — P RIEEREES, AW RS XX?HJ
ANERZFEIN -

Now you have been able to implement simple combinational functions and test them in real hardware
in an FPGA. As a next step, we will take a first look at how the build process works to generate an FPGA
configuration. Furthermore, we will also explore a simple testing framework from Chisel, which allows
you to test circuits without configuring an FPGA and toggle switches.

IAE VR E 22 A] LLRM T2 18] B O 2H & e O AE — D SE PR EIFPGARE AT 1] B AR - (B8 F —
%zﬂ? SF— MERES BN AERFPCGARE - HEH, TATHEHEER— /[\T“Eﬁﬁﬂ’ﬁcmsel{mlhﬂi‘[

X AVFIRANE I B FPGAFIFF KSR i L B -
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Chapter 5

AN

Nol

To get started with more interesting Chisel code we first need to learn how to compile Chisel programs,
how to generate Verilog code for execution in an FPGA, and how to write tests for debugging and to
verify that our circuits are correct.

T IR B B EIChisel {URS , FATTER —Fe 2ot ) AN fr S I Chisel B2 /77, 40171 2E Al Verilog T
5 FHRAEFPGATIAT . ANUAAA 5 i T debug MIES IEF A TH) L B2 TE R -

Chisel is written in Scala, so any build process that supports Scala is possible with a Chisel project.
One popular build tool for Scala is sbt, which stands for the Scala interactive build tool. Besides driving
the build and test process, sbt also downloads the correct version of Scala and the Chisel libraries.

Chisels& FHIScalaB ], BT UL AT ) S FrScalaf) #5 3 13 42 3& F FChisel W H - — >3 X0
HScalatE i T. B &Esbt, sbtiZScala interactive Build ToolfJ & 5 - B T WX ShIE@EAMT 2, sbrth
N EIERARIScalahit 2 A Chisel £ -

5.1 f#Hsbt#@/rr5H

The Scala library that represents Chisel and the Chisel testers are automatically downloaded during
the build process from a Maven repository. The libraries are referenced by build.sbt. It is possible to
configure build.sbt with latest.release to always use the most actual version of Chisel. However, this
means on each build the version is looked up from the Maven repository. This lookup needs an Internet
connection for the build to succeed. Better use a dedicated version of Chisel and all other Scala libraries
in your build.sbt. Maybe sometimes it is also good to be able to write hardware code and test it without an
Internet connection. For example, it is cool to do hardware design on a plane.

Scala £ H1 & 7R Chisel FChiselll it &8 FUER 77, il F5E# S BN —Maven 2 FEH F#H
JE S S build.sbt# 5 - B AT LUE T build.sbti B, 1 Flatest. release 5 72 FH He# fIChisel it
Ko (HE, FERXBXIEEHETEMaven G . BETELIKIERE, A THERD . &
A FH— 17 % fChiselhiUAS, BT E BB HIScalaEEAEVRFbuild.sbt - AT RER BN B IRGENS T 5 i
T EAT M EEZEE O TR EBREN - Flin, =AW B TR

51.1 JRCH55H

sbt inherits the source convention from the Maven build automation tool. Maven also organizes
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repositories of open-source Java libraries.

2

1

sbtdk A& % B TMaven H 5 {015 5 T B iOUR ST VEN - Maventt & 22 F- T ava bkl 28 % 1) &

2

project
| src
main
L,scala
L,package
sub-package
test
scala
L,package
| target
| generated

Figure 5.1: Source tree of a Chisel project (using sbt)

Figure 5.1 shows the organization of the source tree of a typical Chisel project. The root of the project

is the project home, which contains build.sbt. It may also include a Makefile for the build process, a
README, and a LICENSE file. Folder src contains all source code. From there it is split between main,
containing the hardware sources and fest containing testers. Chisel inherits from Scala, which inherits

from Java the organization of source in packages. Packages organize your Chisel code into namespaces.

Packages can also contain sub-packages. The folder farget contains the class files and other generated

files. I recommend to also use a folder for generated Verilog files, which is usually call generated.

bl

Figure 5.1% 7~ T — 1~ I BIChisel™ H FIRE SCHEH BIZ5H - i B AR H & 52 51 H homelt
, X B A E Thuildsbte AT LLE & — MMakefilef] T# #i2#, — TREADME, #l—

ALICENSEX # o X044 Fesectl & T A E TR « 78X B, mainfl & 68 4R Ftest (1 &
Mizs, H—"1%5 X - Chiseld# HScala, ScalaZf7& HJavaf R S ELEELRIEEH o B ELIE

(G

IChisel {CHIZH A i an 45 25 A « BRPF ALt m] LIS NI EL « S0 Rtarget ELFE R ICAFFI R

ETE RO o BAHEREH — D SCHF B A R Verilog S, 53X AN SUPFR— B FR Jy generated -

To use the facility of namespaces in Chisel, you need to declare that a class/module is defined in a

package, in this example in mypacket:

79T fEHChiselfn 2 25 A TR, IR ZH B R BRI EH0E L, EX 07T B,

TEmypacket:

pa

ckage mypack

import chisel3._
class Abc extends Module {

va

}

I io = IO(new Bundle {})

Note that in this example we see the import of the chisel3 packet to use Chisel classes.

EEEX T HATERG| Achisel 3L, FA{E Fchisel 2R .

IThat is also the place where you downloaded the Chisel library on your first build: https://mvnrepository.com/

artifact/edu.berkeley.cs/chisel3.
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[S)

To use the module Abc in a different context (packet name space), the components of packet mypacket
need to be imported. The underscore (_) acts as wildcard, meaning that all classes of mypacket are
imported.

N T HEHAbAERIE— D AR TT (M ma=E) | P mypacker s ZHGIH -
TRIZOFRLTHATFIT, BWREFTHmypacketMZEEWSIF -

import mypack._

class AbcUser extends Module {
val io = IO(new Bundle {})

val abc = new Abc ()

}

L A] IS 25 5] A SR Bmypack) B K51, 172 1 H 4 Zmypack.Abct FmypackH' B %
HAbe

class AbcUser2 extends Module {
val io = IO(new Bundle {})

val abc = new mypack.Abc ()

}

FIHAR—TERADREE, HOLEEHER LA

import mypack.Abc

class AbcUser3 extends Module {
val io = IO(new Bundle {})

val abc = new Abc ()

}

5.1.2 j&%Tsbt

—~ChiselZil B A] LL# 413 H- BT 13—~ 18 B Fsbt i &

$ sbt run

This command will compile all your Chisel code from the source tree and searches for classes that
contain an object that includes a main method, or simpler that extends App. If there is more than one such
object, all objects are listed and one can be selected. You can also directly specify the object that shall be
executed as a parameter to sbr:

XA 2 AREVRETE BTE SR N ChiselICHS H 2R & object & B main /7 AR R
B RLHIApp . AIREAZ R—PRLBIXS G, BrA R RA S H LR ANE - R a] IR
BEHUTHUE Asbt/ERZEIX 2.

$ sbt "runMain mypacket.MyObject"

Per default sht searches only the main part of the source tree and not the test part.> However, Chisel
testers, as described here, contain a main, but shall be placed in the fest part of the source tree. To execute

a main in the tester tree use following sbt command:

3This is a convention form Java/Scala that the test folder contains unit tests and not objects with a main.
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FRIEER DA sbt 2 2 48 RmainiB 43 IR ST A2 M E 5 o {HS&, Chiselfll iy, EiXHE
AR, &H— 1 main, (H2RNIZBEIR SR Ptestih 7 o A 17 FUATIEH Amain, {5 40
Nsbtfii

I $ sbt "test:runMain mypacket.MyTester"

Now that we know the basic structure of a Chisel project and how to compile and run it with sbt, we

can continue with a simple testing framework.
BUAEF A IRAIIE T Chisel T H B A AT AN (3 F st s 1T, BedI 1T ARSI iR — 11 2
AOMRAEZR T -

5.1.3 THEHWK®E

Hello.scala scala.lib

1

scalac

!

chisel3.lib

Hello.class
Chisel
JVM
' m
. FIRRTL
Hello.fir JVM
Chisel
Tester
JVM
\ Treadle Verilog
JVUM Emitter
JVM

— '

good/bad Hello.ved Hello.v

S

GTKWave Circuit
Synthesis

!

Hello.bit
/

Figure 5.2: Tool flow of the Chisel ecosystem.

Figure 5.2 shows the tool flow of Chisel. The digital circuit is described in a Chisel class shown
as Hello.scala. The Scala compiler compiles this class, together with the Chisel and Scala libraries,
and generates the Java class Hello.class that can be executed by a standard Java virtual machine (JVM).

Executing this class with a Chisel driver generates the so-called flexible intermediate representation for
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RTL (FIRRTL), an intermediate representation of digital circuits. In our example the file is Hello.fir. The
FIRRTL compiler performs transformations on the circuit.

Bl 5.2 7R T Chisel ) TEAE « X DMECFRLES, 7EChiseldt, R R{7Hello.scala- scalaZf
BEARYRIE XK, MChiselMScalalZE, FFAERL T BEM— PRI avafE UL AVMYBAT HJavak .
B Chisel JEBHEF, PUTIX K, LT PrBRTLA R EH H %5 (FIRRTL) |, — DT B
P AR IR « ZEBATHEF B, XS0 & Hello fir X PFIRRTLYRIFZS LA | FLBE AFEHE -

Treadle is a FIRRTL interpreter to simulate the circuit. Together with the Chisel tester it can be used
to debug and test Chisel circuits. With assertions we can provide test results. Treadle can also generate
waveform files (Hello.vcd) that can be viewed with a waveform viewer (e.g., the free viewer GTKWave or
Modelsim).

Treadle;& —"FIRRTLE Ry, HBI— DS - BEA Chiselllitdy, &7 LUH Rdebug il
I Chisel % - iEiTassertion, FAl1r] LIFR AN LE R - Treadlett 7] DAAE I TE S A4 (Hello.ved)
A LUGEIE ROE Mg (BN, 53k OSSR GTK Wave Bl /& Modelsim)  E{TAL%E -

One FIRRTL transformation, the Verilog emitter, generates Verilog code for synthesis (Hello.v). A
circuit synthesize tool (e.g., Intel Quartus, Xilinx Vivado, or an ASIC tool) synthesizes the circuit. In
an FPGA design flow, the tool generates the FPGA bitstream that is used to configure the FPGA, e.g.,
Hello.bit.

—MFIRRTLZEHE, Verilogk 2%, A RHTEEE B VerilogfUiE(Hello.v) - FEEZEA THE (f
40, Intel#IQuartus, Xilinx Vivado, B{REASICTE) &M . E— I FPGARITHER, TE
=4 T FPGARbitstream, FHT3CEFPGA, I, Hello.bit-

5.2 f¥fChiselil]iz

Tests of hardware designs are usually called test benches. The test bench instantiates the design under test
(DUT), drives input ports, observes output ports, and compares them with expected values.

R (15 T — PR Htestbench - iXLetestbench W IR LM%t (DUT) |, JXBhH Ak
M, MZEHHimO, 5ENMBRERLE.

5.2.1 PeekPokeTester

Chisel provides test benches in the form of a PeekPokeTester. One strength of Chisel is that it can use the
full power of Scala to write those test benches. One can, for example, code the expected functionality
of the hardware in a software simulator and compare the simulation of the hardware with the software
simulation. This method is very efficient when testing an implementation of a processor [?].

Chisel#Z i f'Jtestbench Y PeekPokeTester - - H A1 Chisel ) —MLE & T REMS 2 1 ff i ScalaG A
iXLtestbench . — DA, FTUE, AT RIAERUERRI 8% 5 B AORE AR DI AE,  FFIEEE 107 EANER
P BT . XN TERIFE AR, SIS A B g B 1% .

To use the PeekPokeTester, following packages need to be imported:

{5 F PeekPokeTester, LA NEFEFTFESGIA:

I import chisel3._

2 import chisel3. iotesters
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1

2

Testing a circuit contains (at least) three components: (1) the device under test (often called DUT), (2) the
testing logic, also called test bench, and (3) the tester objects that contains the main function to start the
testing.

M RFE (2) =D 1 B2 EE (RERADUT) 2. W25, W
Frtestbench 3. £ & main 5K £ AT S BRI B 0L -

The following code shows our simple design under test. It contains two input ports and one output
port, all with a 2-bit width. The circuit does a bit-wise AND to it returns on the output:

DA AR R B 1 Fefi 178 B p e sz M it - BRI AW DM — M im0, 222005
) o XA FL B HATHR A ANDFF IR [B] 25 %0 H -

class DeviceUnderTest extends Module {
val io = IO(new Bundle {

val a = Input(Ulnt (2.W))

val b = Input(Ulnt (2.W))

val out = Output(Ulnt (2.W))

1)

io.out := io.a & io.b

}

The test bench for this DUT extends PeekPokeTester and has the DUT as a parameter for the constructor:
ZDUTtestbenchfi & T PeekPokeTester, FH1EDUTIE N & #s IS4l

class TesterSimple (dut: DeviceUnderTest ) extends
PeekPokeTester (dut) {

3 poke(dut.io.a, 0.U)

poke(dut.io.b, 1.U)

step (1)

println ("Result is: " + peek(dut.io.out).toString)
poke(dut.io.a, 3.U)

poke(dut.io.b, 2.U)

step (1)
println ("Result is: " + peek(dut.io.out).toString)

}
A PeekPokeTester can set input values with poke() and read back output values with peek(). The tester
advances the simulation by one step (= one clock cycle) with step(1). We can print the values of the
outputs with printin().
PeekPokeTester 7] LA Fpoke( )X BEWIIATE, FiE T peek( )L HEUE . NI 2@ T H — P Hstep(1) 7=
B, 38— RS E REUE . BATRT LAE F printin( )3 TEN G Hi -

The test is created and run with the following tester main: UL, HoE T LI iETT:

object TesterSimple extends App {
chisel3 .iotesters .Driver (() => new DeviceUnderTest()) { ¢ =>
new TesterSimple (c)

}
}

When you run the test, you will see the results printed to the terminal (besides other information): X4 {32
T, ReE BT HEFE RSN, STENE R O K45
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[info] [0.004] SEED 1544207645120

[info] [0.008] Result is: O

[info] [0.009] Result is: 2

test DeviceUnderTest Success: 0 tests passed in 7 cycles
taking 0.021820 seconds

[info] [0.010] RAN 2 CYCLES PASSED

We see that 0 AND 1 results in 0; 3 AND 2 results in 2. Besides manually inspecting printouts, which
is an excellent starting point, we can also express our expectations in the test bench itself with expect(),
having the output port and the expected value as parameters. The following example shows testing with
expect():

HATEFIOMIMS R0, 3FRK522. BRILZINTFHEELER, IR MIFRFGES, &
AT LEEMNR & L0 Fexpect(), FARFORBATRIEARHE, Bk HimH, FEAIIFRE-
PUR B8 72 15 FH expect(OVE I A 51 F -

class Tester(dut: DeviceUnderTest) extends PeekPokeTester(dut) {

poke(dut.io.a, 3.U)
poke(dut.io.b, 1.U)
step (1)
expect(dut.io.out, 1)
poke(dut.io.a, 2.U)
poke(dut.io.b, 0.U)

step (1)
expect(dut.io.out, 0)

}
Executing this test does not print out any values from the hardware, but that all tests passed as all expect

values are correct.

PUTIRAATED AR AE,  (ERPTE S R E IR IER -

[info] [0.001] SEED 1544208437832

test DeviceUnderTest Success: 2 tests passed in 7 cycles
taking 0.018000 seconds

[info] [0.009] RAN 2 CYCLES PASSED

A failed test, when either the DUT or the test bench contains an error, produces an error message describing
the difference between the expected and actual value. In the following, we changed the test bench to
expect a 4, which is an error:

— RGN, SDUTEGEMIK G /EE T — MR, A T —PMERIEE, il TR EM
EPREMZES - ZELUT, BATUEMIK & OEFE 4, FET M ER:

[info] [0.002] SEED 1544208642263

[info] [0.011]] EXPECT AT 2 io_out got 0 expected 4 FAIL
test DeviceUnderTest Success: 1 tests passed in 7 cycles
taking 0.022101 seconds

[info] [0.012] RAN 2 CYCLES FAILED FIRST AT CYCLE 2
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In this section, we described the basic testing facility with Chisel for simple tests. However, in Chisel,

the full power of Scala is available to write testers.
FEATIH, BAHA T Chisel H T/ BN EANK TR . {HE, FEChiseld, ScalafJz
HPEIRE P T 5 M 5 -

5.2.2 f{#HScalaTest

ScalaTest is a testing tool for Scala (and Java), which we can use to run Chisel testers. To use it, include

the library in your build.sbt with the following line:
ScalaTest & —{>Scala(FlJava)FJit T B, AT LLANRIZTChiselilliz . A THATE,
TR BAEbuild.sbt B30

libraryDependencies += "org.scalatest" %% "scalatest™ % "3.0.5" % "test"

Tests are usually found in src/test/scala and can be run with: Uiz 5 7Esrc/test/scalatif 2.2, {5 FH LA
T

S sbt test

A minimal test (a testing hello world) to test a Scala Integer addition:
—A /Nl (Wsthello world) SRS calaf& 7Y

import org.scalatest._

class ExampleSpec extends FlatSpec with Matchers {

"Integers" should "add" in ({

val i = 2
val j =3
i + j should be (5)

}

Although Chisel testing is more heavyweight than unit testing of Scala programs, we can wrap a Chisel
test into a ScalaTest class. For the Tester shown before this is:

RUE Chiselll il Scalafe TN B EE, FATAT LLRF Chiselillil 2 ScalaTestR H - X
T E/RE Tester 7ELL 2 Hi:

class SimpleSpec extends FlatSpec with Matchers {
"Tester" should "pass" in {
chisel3 .iotesters .Driver (() => new DeviceUnderTest()) { ¢ =>

new Tester(c)
} should be (true)
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The main benefit of this exercise is to be able to run all tests with a simple sbt fest (instead of a running
main). You can run just a single test with sbt, as follows:

XGRS B R B AR AT LGB sbr testi TRTARIR (M AZmain) o VRAT USRS —
AR Rsbrd TN, BREWT

S sbt "testOnly SimpleSpec"

5.2.3 ¥

Testers, as described above, work well for small designs and for unit testing, as it is common in software
development. A collection of unit tests can also serve for regression testing.

MR, B LR eAcee, ST R, MBI, EREIT AR TR - ER—1
BT ER S, o9 EAMEARSS -

However, for debugging more complex designs, one would like to investigate several signals at once.
A classic approach to debug digital designs is displaying the signals in a waveform. In a waveform the
signals are displayed over time.

B2, W Tdebug®INE AL, MISER—IMEUELZNMES - —1MEHRTE T
RME T BT B R debugdU 730 - AEBIEERIE, ([F5hEERAER .

Chisel testers can generate a waveform that includes all registers and all 10 signals. In the following
examples we show waveform testers for the DeviceUnderTest from the former example (the 2-bit AND
function). For the following example we import following classes:

Chiselfll iR &8 7T LAAE BCELFE BT 7 77 2 o5 S RIBOE B . LUNGI, Bl 1530oR T #diles
HRETIEE, SRARAMEITF QOIANDEED) - FRMFlF, BAI5INTRIE.

import chisel3 .iotesters.PeekPokeTester
import chisel3.iotesters.Driver

import org.scalatest._

We start with a simple tester that pokes values to the inputs and advances the clock with step. We do not

read any output or compare it with expect.
FADFIEHE — R A RMSES, EEEEARIA, H A stepE i &, Fof A 2R BUE A H
HHAHFH expectifF T HER.

class WaveformTester (dut: DeviceUnderTest) extends PeekPokeTester(dut) {

poke(dut.io.a, 0)
poke(dut.io.b, 0)
step (1)
poke(dut.io.a, 1)
poke(dut.io.b, 0)
step (1)
poke(dut.io.a, 0)
poke (dut.io.b, 1)
step (1)
poke(dut.io.a, 1)
poke (dut.io.b, 1)
step (1)
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}

Instead we call Driver.execute with parameters to generate waveform files (.vcd files).

M, B 1EHZSEE Driverexecute, A=A 3 (ved ) -

class WaveformSpec extends FlatSpec with Matchers {
"Waveform" should "pass" in {
Driver.execute (Array ("—generate —vcd—output", "on"), () => new DeviceUnderTest ()
) { ¢ =
new WaveformTester (c)
} should be (true)

You can view the waveform with the free viewer GTKWave or with ModelSim. Start GTKWave and
select File — Open New Window and navigate to the folder where the Chisel tester put the .vcd file. Per
default the generated files are in test_run_dir then the name of the tester appended with a number. Within
this folder you should be able to find DeviceUnderTest.ved. You can select the signals from the left side
and drag them into the main window. If you want to save a configuration of signals you can do so with
File — Write Save File and load it later with File — Read Save File.

PRAT LIER B SO, (A SR AR MR 2% . GTKWaveal/&ModelSim - T 7FGTKWave,
H 1L ¥ File — Open New Window, 2617 I Chiselill i #5 77 il ved SCAH B S0 R - HRAEEAIA
A R SO fEtest_run_dir, MNHERHIZ TR T —DECE o XA UERTS, IRROZAERS IR
#DeviceUnderTest.ved - {RATLLNZEMNER(E S, HEENHRAIIETAT - WRFEZERAF

SEHNEE, VRAT LA File — Write Save File, % File — Read Save File L\ J513EHY

Explicitly enumerating all possible input values does not scale. Therefore, we will use some Scala
code to drive the DUT. Following tester enumerates all possible values for the 2 2-bit input signals.

TR 3 2 50 2 B AT BE(E 2 B A dm AN REZE D o TR, A& 6 H — 2ScalafU G IX
HIDUT - LA NRERS2 T RTE RIRE(E, 2P 2bitEIAGE S -

class WaveformCounterTester (dut: DeviceUnderTest) extends PeekPokeTester(dut) {

for (a <— 0 until 4) {
for (b <— 0 until 4) {
poke(dut.io.a, a)
poke(dut.io.b, b)
step (1)

}

We add a ScalaTest spec for this new tester
FATEE XA AN T ScalaTestfspec -
class WaveformCounterSpec extends FlatSpec with Matchers {
"WaveformCounter" should "pass" in {
Driver.execute (Array ("—generate —vcd—output", "on"), () => new DeviceUnderTest ()

) { ¢ =>
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5 dut: 0 2 0
6 dut: 0 3 0
7 dut: 1 0 O
g dut: 1 1 1
9 dut: 1 2 0
10 dut: 1 3 1
11 dut: 2 00

new WaveformCounterTester(c)
} should be (true)

}
F BRI T

sbt "testOnly WaveformCounterSpec"

5.2.4 printf Debugging

Another form of debugging is the so-called “printf debugging”. This form comes from simply putting
printf statements in C code to print variables of interest during the execution of the program. This printf
debugging is also available during testing of Chisel circuits. The printing happens at the rising edge of the
clock. A printf statement can be inserted just anywhere in the module definition, as shown in the printf
debugging version of the DUT.

FH—MIE R i debugZ FIT1E B “printf debugging” XTI 20 & K H HECHE S Bprintf 5 B FH R 7E
HUTRF RS REF, FTEIESLERAAN & - printf debuggingtt A] LLZEMH Chisel BB FIFRHEB 3K
FTES AR AL B BT - prinefA] IAERRER E SO BB A BB AL E, 5240 FDUTSHprintf
debugginghfi 7K -

class DeviceUnderTestPrintf extends Module ({
val io = IO(new Bundle {
val a = Input(Ulnt(2.W))
val b = Input(Ulnt(2.W))
val out = Output(Ulnt(2.W))
1)

io.out := io.a & io.b
printf ("dut: %d %d %d\n", io.a, io.b, io.out)
}

When testing this module with the counter based tester, which iterates over all possible values, we get
following output, verifying that the AND function is correct:

L E T RS R MRS T I, ETEEA T RTE AT RERI(E, FATERILI N R, IR
T 5 I BRI -

Circuit state created
[info] [0.001] SEED 1579707298694
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12 dut:
13 dut:
14 dut:
15 dut:
16 dut:
17 dut:
18 dut: 3 3

19 test DeviceUnderTestPrintf Success: 0 tests passed in 21 cycles
20 taking 0.036380 seconds

21 [info] [0.024] RAN 16 CYCLES PASSED

W W W N N DN
W - O W
I I I SR

Chisel printf supports C and Scala style formatting.
Chisel [printf 3 #7C and Scala KUk FIRE = -

5.3 %]

For this exercise, we will revisit the blinking LED from chisel-examples and explore Chisel testing.

ST b, AR E =R — T INHRLED Mchisel-examples 3482 Chiselil] iz, -

5.3.1 — 1 ®/NIiH

First, let us find out what a minimal Chisel project is. Explore the files in the Hello World example. The
Hello.scala is the single hardware source file. It contains the hardware description of the blinking LED
(class Hello) and an App that generates the Verilog code.

BHIE, BAEE— T 22 My NChisel T H « FREREFRIFEEF - §lF . X DMUHEHello.scalajz:
— AR ERAE . B8 E T (class Hello)FIREHEA , F1— P App FIRAE Aiverilog U

Each file starts with the import of Chisel and related packages:

BN LA | F chisel FIAE % L 2 46

import chisel3._

Then follows the hardware description, as shown in Listing hello. To generate the Verilog description, we
need an application. A Scala object that extends App is an application that implicitly generates the main
function where the application starts. The only action of this application is to create a new HelloWorld
object and pass it to the Chisel driver execute function. The first argument is an array of Strings, where
build options can be set (e.g., the output folder). The following code will generate the Verilog file Hello.v.
PURRE AR, B2 helloHIRR) o« F T AR — 1> Verilogfiid, FATFHE— 1PN H - ScalaXf
Fextends App Z— R, BEENAFGEH TR AR E RE . XA R ME—25sh 2 A all—
ASHTH I HelloWorldW 5, HAE'E % AChiseldX Bliexecute %L - X PHIE— 1 SEE— 1 FRF T
B,

object Hello extends App {
2 chisel3 . Driver.execute (Array[String ](), () => new Hello())

3}

and explore the generated Hello.v with an editor. The generated Verilog code may not be very readable,

but we can find out some details. The file starts with a module Hello, which is the same name as our
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=2}

-

Chisel module. We can identify our LED port as output io_led. Pin names are the Chisel names with a
prepended io_. Besides our LED pin, the module also contains clock and reset input signals. Those two
signals are added automatically by Chisel.

18 g 88 28 B IR R AL Hello.v - 4 B Verilog RS T BEN R AR AT 3L, (H 2 F A TR PAFL
B —L841TT o XA ST LAHellofE R IT35 XA A AT A ChisellE R [7] 42 o FeflTR] ARG & Fed]
HILED H Noutput io_led - 5|14 F 7 Chisel )4 FHi Bio_- BT HATHILEDS I, X MR
WALE T clockFresetiii NG5 - XG5 Bchisel HBANN -

Furthermore, we can identify the definition of our two registers cntReg and blkReg. We may also find
the reset and update of those registers at the end of the module definition. Note, that Chisel generates a
synchronous reset.

B, FATR LIS ERATHIW A 3 77 85 cntReg FblkReg - FA T AT L& PlresetFliX L4735 77
e, AERIERE AR . TEEE], ChiselE M T —PRIPEAL .

For sbt to be able to fetch the correct Scala compiler and the Chisel library, we need a build.sbt:

7T iksbt A LIANBUERA ) scalaZfi i & Fichisel library, FAl 155 Zbuild.sbt:

scalaVersion := "2.11.7"

resolvers ++= Seq(
Resolver.sonatypeRepo("snapshots"),
Resolver.sonatypeRepo("releases")

)
libraryDependencies += "edu.berkeley.cs" %% "chisel3" % "3.2.2"

libraryDependencies += "edu.berkeley.cs" %% "chisel—iotesters" % "1.3.2"

Note that in this example, we have a concrete Chisel version number to avoid checking on each run for a

new version (which will fail if we are not connected to the Internet, e.g., when doing hardware design

during a flight). Change the build.sbt configuration to use the latest Chisel version by changing the library

dependency to

FERETEX 0 FH, TATE — D BRI ChiseliRARE T, P78 GB 1T IR & SRR
(ARRAERFI I RN, Flan, BAOTETCHLLE) - BEbuild. sbrid B 2 A BB Chisel iUA,

T8 B 2 library A {55

libraryDependencies += "edu.berkeley.cs" %% "chisel3" % "latest.release"

and rerun the build with sbz. Is there a newer version of Chisel available and will it be automatically
downloaded?
F BAEH sor EFNZETbuild « AT — D EGBTARCAS fchisel, F H HBh FEWE?

For convenience, the project also contains a Makefile. It just contains the sbt command, so we do not
need to remember it and can generate the Verilog code with:

RTTE, ZPWEWEE T — 1 Makefile- '©EE T sbtfin<, FTURNTANFEILH B
FHET T, R B AT ELE A Miverilog Y :

make

Besides a README file, the example project also contains project files for different FPGA board. E.g.,
in quartus/altde2-115 you can find the two project files to define a Quartus project for the DE2-115 board.
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The main definitions (source files, device, pin assignments) can be found in a plain text file hello.qsf.
Explore the file and find out which pins are connected to which signals. If you need to adapt the project to
a different board, there is where the changes are applied. If you have Quartus installed, open that project,
compile with the green Play button, and then configure the FPGA.

Bx T READMESCA, X TREFI A S T3 T ARFPGARIL E UM - 40, FEquartus/altde2-
115 VR AT AR B AN H S5 RE SLEHR T DE2- 115K F #IQuartus T H - FZ%E L (FICHE, 2%
f, FTHEIRE L) W LAZE hello.qst A ISR o BRERSUHHF Z I IER ML E S . 1R
IRFERA— D AFF AT E , X ERFEE 220 . ARIR%3E T Quartus, FTTHE4
iH, f¥HPlaycompilerH, SX/EFEFPGA Li##iTi%E -

Note that the Hello World is a minimal Chisel project. More realistic projects have their source files
organized in packages and contain testers. The next exercise will explore such a project.

LR E|Hello Worldj&:— 1> f/NChisel T H « B Z LRI E RIS EAM - EE, I
AEIEES . TR 2RI

5.3.2 — ML

In the last chapter’s exercise, you have extended the blinking LED example with some input to build an
AND gate and a multiplexer and run this hardware in an FPGA. We will now use this example and test the
functionality with a Chisel tester to automate testing and also to be independent of an FPGA. Use your
designs from the previous chapter and add a Chisel tester to test the functionality. Try to enumerate all
possible inputs and test the output with except().

fEE—FMGRH, BOid —LE A B T LEDINARRIRG] R — 5 TF— 12 E
%%, FFAEFPGAHBATIZIEM: - IUFE, BATRIEH RG], M Chisel (UMK INEE HEh
MR FH IS TFFPGA o _E—F A AT H AN Chisel 2% ALK RE - 2 Mezspira vl
RERIEIA, 1 FHexceptiMlisHi t -

Testing within Chisel can speed up the debugging of your design. However, it is always a good idea
to synthesize your design for an FPGA and run tests with the FPGA. There you can perform a reality
check on the size of your design (usually in LUTs and flip-flops) and your performance of your design
in maximum clocking frequency. As a reference point, a textbook style pipelined RISC processor may
consume about 3000 4-bit LUTs and may run around 100 MHz in a low-cost FPGA (Intel Cyclone or
Xilinx Spartan).

FEChisel HEAT MR AT LUINBR T A0 0E BE - (B2, RIS 48 5 BIFPGAFT iz 171
HIGARRE— N FFERE - FPGA- fEALE, B I EBOTHIR/ D GERE  (FELUTHIfR A 28
1) BIREHERRIN R T RSO ERE . (A2 %, BRIBAFUKRISCA F & 7] BETH #E
23000 4(ZLUT, 7] LLZE(RAZAFPGA (Intel CycloneEf Xilinx Spartan) -
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Chapter 6
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CompC

Figure 6.1: A design consisting of a hierarchy of components.

A larger digital design is structured into a set of components, often in a hierarchical way. Each
component has an interface with input and output wires, usually called ports. These are similar to input
and output pins on an integrated circuit (IC). Components are connected by wiring up the inputs and
outputs. Components may contain subcomponents to build the hierarchy. The outermost component,
which is connected to physical pins on a chip, is called the top-level component.

— R TFEIR— RINEFFR MR, LW ZEUBRRTTE . B HER
B—TEARIH RO, SEEI R E o X ERIICH B5 A S 5 RIR 0L 2HAER o e A
Mg HOER . AHFREESE TBAFHRMERY . RINEHAM, EREE R R H5] i,
W LR

Figure 6.1 shows an example design. Component C has three input ports and two output ports. The
component itself is assembled out of two subcomponents: B and C, which are connected to the inputs and
outputs of C. One output of A is connected to an input of B. Component D is at the same hierarchy level
as component C and connected to it.

6. 1K T — Rk . CAMFHM M AN HM— M HimH - AEAS SN TE
HiE ATIB, ERFIEAFCHIE L o AR—DEHERSBRIFA - HIFDIEFCHEHF
B, JBEMER-

In this chapter, we will explain how components are described in Chisel and provide several examples
of standard components. Those standard components serve two purposes: (1) they provide examples of
Chisel code and (2) they provide a library of components ready to be reused in your design.

FEARET RN 2 ERA M EChisel il I # A, FRBt—SAREA G T . IXLEPREA I
FAWMER: LA Chise iU RIHIT - 2. MITIREEAHZE, AIREST BB EH -
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Hardware components are called modules in Chisel. Each module extends the class Module and contains
a field io for the interface. The interface is defined by a Bundle that is wrapped into a call to 10().

B {4 40 {4 7EChisel £ 7 Aimodule - &P moduledfi & T Moduleds, FHE & T — 5 H Wiok -
FUAE S Bundle AT 3L, WERIEIO() -

The Bundle contains fields to represent input and output ports of the module. The direction is given by
wrapping a field into either a call to Input() or Output(). The direction is from the view of the component
itself.

Bundlet & T 18 25 R L A H N AN I o 5 mE I PEAY Inpur( )85 5 Outpur() R 5E 77
[a] o 7 [ 52 AR AER 0 2R B R )

The following code shows the definition of the two example components A and B from Figure 6.1:

DU AR T 4H A ER 53 AFIB M Figure 6.1:

class CompA extends Module {
val io = IO(new Bundle {

val a = Input(Ulnt(8.W))
val b = Input(Ulnt(8.W))
val x = Output(Ulnt (8.W))
val y = Output(Ulnt(8.W))

9]

Component A has two inputs, named a and b, and two outputs, named x and y. For the ports of component
B we chose the names inl, in2, and out.

HAHFR T EW RN, & RaMb, MK, a2 Ry X THEER DB, HlTENA
WRinl, in2, Flout -

All ports use an unsigned integer (Ulnt) with a bit width of 8. As this example code is about connecting
components and building a hierarchy, we do not show any implementation within the components. The
implementation of the component is written at the place where the comments states “function of X”.

PR B3 5 FH AL 58 9 8H(Ulnn) JE R %’ﬂ%% 4 AR AT RCRS, SRR TR RER 2 A
BREER, BONARE X DED NS o XDE B9 5 1R E W XA R E -

As we have no function associated with those example components, we used generic port names. For
a real design use descriptive port names, such as data, valid, or ready.

B BATR T IX ) 700 s, Bl R A 28R« 3T — P EIERNT, Fdl
FERRAYER YR O 28K, Flidata, validsiEready -

Component C has three input and two output ports. It is built out of components A and B. We show
how A and B are connected to the ports of C and also the connection between an output port of A and an
input port of B:

HRGE > CH = AR AR B H i e B BAERER P ATIB - Bl 15 B AFIB AR 3% 4
Blewim By, DLEAVES St ATABAE i A ANl 2 5%

class CompC extends Module {
val io = IO(new Bundle ({
val in_a = Input(Ulnt(8.W))
val in_b = Input(Ulnt(8.W))
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val in_c = Input(Ulnt(8.W))

val out_x = Output(Ulnt(8.W))

val out_y = Output(UInt(8.W))
1)

// create components A and B
val compA = Module(new CompA())

val compB = Module(new CompB())

// connect A

compA.io.a := io.in_a
compA.io.b := io.in_b
io.out_x := compA.io.x

// connect B

compB.io.inl := compA.io.y
compB.io.in2 := io.in_c
io.out_y := compB.io.out

Components are created with new, e.g., new CompA(), and need to be wrapped into a call to Module().
The reference to that module is stored in a local variable, in this example val compA = Module(new
CompA()).

HSER A FnewEATOIEE, 1A, new CompA(), %g%ﬁ@%ﬁModule() o Gl HAMEIRAE
AR EF N, FEX M Fval compA = Module(new CompA()) -

With this reference, we can access the 1O ports by dereferencing the io field of the module and the
individual fields of the 10 Bundle.

B TIXTEIH, FATATLUEIZIO, VilRRER fiotd A1 B HIONE, T A Bundle -

The simplest component in our design has just an input port, named in, and an output port named out.

AT e fa] B ARR 0 R — MM A 1, A 2% D in A1 Hi 9 H out -

class CompD extends Module {
val io = IO(new Bundle {
val in = Input(Ulnt(8.W))
val out = Output(Ulnt(8.W))
P

The final missing piece of our example design is the top-level component, which itself is assembled

out of components C and D:

BJaBABIF 5D H ) —# R TR, EAS HCHIDAR, -

class TopLevel extends Module ({
val io = IO(new Bundle ({
val in_a = Input(Ulnt(8.W))
val in_b = Input(Ulnt(8.W))
val in_c = Input(Ulnt(8.W))
val out_m = Output(UInt(8.W))
val out_n = Output(UlInt(8.W))
)
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// create C and D
val ¢ = Module(new CompC())
val d = Module(new CompD())

// connect C

c.io.in_a := io.in_a
c.io.in_b := io.in_b
c.io.in_c := io.in_c
io.out_m := c.io.out_x

/] connect D

d.io.in := c.io.out_y

io.out_n := d.io.out
}

Good component design is similar to the good design of functions or methods in software design. One
of the main questions is how much functionality shall we put into a component and how large should a
component be. The two extremes are tiny components, such an adder, and huge components, such as a
full microprocessor,

RIFREMFBOT R RIT U DIREEU R Rt Bkt . FER-Z —2 BTN Z
BAZ DI B LLRAFNZ K - XM iR/ A, flaninizes, DUERIAT, §i
WNSEEE AL 2R

Beginners in hardware design often start with tiny components. The problem is that digital design
books use tiny components to show the principles. But the sizes of the examples (in those books, and also
in this book) is small to fit into a page and to not distract by too many details.

BRSO W) 2 Bl W NGB T 8R « (RIEE TR 50T 1 68 G/ AR ok B R
o ERIREIFIAR/N (FEXEEH LIRS F) RN LUE & TEH B A0 BOREZ AT -

The interface to a component is a little bit verbose (with types, names, directions, IO construction).
As arule of thumb, I would propose that the core of the component, the function, should be at least as
long as the interface of the component.

HEFEMFEAESIUK (BFERE, &K, 7|, 1I0#%) - RIELE, FEAFRZL
& iR, NMEDSHEFREO K.

For tiny components, such as a counter, Chisel provides a more lightweight way to describe them as
functions that return hardware.

TR (BIAniTEEs) | Chiself& it T R ITRIDIRE RFE AT THER 9% [EIRE 1 ) o £
iopav

6.2 —MzHREZEEIT

One of the central components for circuits that compute, e.g., a microprocessor, is an arithmetic-logic
unit, or ALU for short. Figure 6.2 shows the symbol of an ALU.

HATH — ML OAT BT, Fla0, RUCEEES . Rarithmetic-logic unit, B & H R
#&ALU - Figure 62387~ | ALUFFS -

The ALU has two data inputs, labeled A and B in the figure, one function input fi, and an output,
labeled Y. The ALU operates on A and B and provides the result at the output. The input fn selects the
operation on A and B. The operations are usually some arithmetic, such as addition and subtraction, and

some logical functions such as and, or, xor. That’s why it is called ALU.
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1

"

>ALU Y —»

— B —»

Figure 6.2: An arithmetic logic unit, or ALU for short.

ALUE W EUE R, BRI NAMIB, — DR Am, — DA% Hilabeled Y -
ALUBRETEATIB, I BIRMELERAH L o i B TAMBIHITIRIE . X PDRIEZHE —LH
%, BlanhmiEmnis, 5 B— B IEREpn, M, 5, Rl IRV ABFRNALU -

The function input fn selects the operation. The ALU is usually a combinational circuit without any
state elements. An ALU might also have additional outputs to signal properties of the result, such as zero
or the sign.

PR B N\ i IR - ALUZH 2 — DS B AR, e EMIIRSITTE - —1ALUA]
FEH —LeRo M B N THE S 4 RIBE M, BIAN0ER IEMAT S -

The following code shows an ALU with 16-bit inputs and outputs that supports: addition, subtraction,
or, and and operation, selected by a 2-bit fi signal.

PUR ARSI R T — D B F 160 A MR ALU, SCRFINTR, %, B0, MS#HE, &
o ZARImMES -

class Alu extends Module {
val io = IO(new Bundle {
Input (Ulnt(16.W))
Input (Ulnt(16.W))
val fn = Input(Ulnt(2.W))
val y = Output(Ulnt(16.W))
D)

val a

val

// some default value is needed
io.y := 0.U

// The ALU selection
switch (io.fn) {

is (0.U) { io.y := io.a + io.b }
is(1.U) { io.y := io.a — io.b }
is(2.U) { io.y := io.a | io.b }
is(3.U) { io.y := io.a & io.b }

}

In this example, we use a new Chisel construct, the switch/is construct to describe the table that selects the

output of our ALU. To use this utility function, we need to import another Chisel package:
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FEX M, FATME Fnew Chisel 9451, switch/is T F GBI TIALUR B 32 - A T f#
XA eR AL, AT ESI A Echisel 1.2

I import chisel3 . util._

6.3 IRER

For connecting components with multiple 1O ports, Chisel provides the bulk connection operator <>.
This operator connects parts of bundles in both directions. Chisel uses the names of the leave fields for the
connection. If a name is missing, it is not connected.

N THEREEZ M08 ORAM, Chiself& it | EERIZEF<> . s EAFERTEE
Mo Chiselff BT BN IRIATIER . WREBDZIR, MERRERE -

As an example, let us assume we build a pipelined processor. The fetch stage has a following interface:

TER— 07, WEBNTBGE, BATEE— MUK - TN B — I e

class Fetch extends Module {

I
2 val io = IO(new Bundle {

3 val instr = Output(UInt(32.W))
4 val pc = Output(Ulnt(32.W))
5D

6 // ... Implementation od fetch

7}

The next stage is the decode stage.

NP BUE RS EL -

I class Decode extends Module {

2 val io = IO(new Bundle ({

: val instr = Input(Ulnt(32.W))
4 val pc = Input(Ulnt(32.W))

5 val aluOp = Output(Ulnt (5.W))
6 val regA = Output(UlInt(32.W))
7 val regB = Output(Ulnt(32.W))
8 1

9 // ... Implementation of decode

10 }

The final stage of our simple processor is the execute stage.

AT BAL RS B A B B AT -

1 class Execute extends Module {

2 val io = IO(new Bundle {

: val aluOp = Input(Ulnt(5.W))
4 val regA = Input(Ulnt(32.W))

5 val regB = Input(Ulnt(32.W))
6 val result = Output(UInt(32.W))
7D
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8 // ... Implementation of execute

To connect all three stages we need just two <> operators. We can also connect the port of a submodule
with the parent module.

N TER=ZI B, BTFER D <>BRIERT - BT AT DU B SRR T 1) 7 iR i
[

I val fetch = Module(new Fetch())
2 val decode = Module(new Decode())
val execute = Module(new Execute)

5 fetch.io <> decode.io
6 decode.io <> execute.io

7 10 <> execute.io

6.4 fif H R E BB R AHRGT

Modules are the general way to structure your hardware description. However, there is some boilerplate
code when declaring a module and when instantiating and connecting it.

RS EA R E R TR - (B2, B — SRR A R DL S 5% B i
1B AT LA

A lightweight way to structure your hardware is to use functions. Scala functions can take Chisel (and
Scala) parameters and return generated hardware. As a simple example, we generate an adder:

F s A R T T iR R DI RE - ScalabKi (AT ISR HChisel (F1Scala) ZXE{ IR | 4= A A
o VER—DRIBAIZRE, BATER— NS

I def adder (x: Ulnt, y: Ulnt) = {
2 X +y

3}

We can then create two adders by simply calling the function adder.

FATRT LB PRAIER M INEES, 8 Y e & ladder.

I //— start components_fn_use
2 val x = adder(a, b)

3 // another adder

4 val y = adder(c, d)

Note that this is a hardware generator. You are not executing any add operation during elaboration, but
create two adders (hardware instances). The adder is an artificial example to keep it simple. Chisel has
already an adder generation function, like +(that: Ulnt).

FEREX AR hardware generator - VR R ZAEA SO FE AT AEMAEINERAE, T2 @& w0
Fay (BEOFRER) o &SRR — D ALRIBIT, REERERE o chisel &5 HUE AR ERLE
B, B2 +(that: Ulnt) -
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Functions as lightweight hardware generators can also contain state (including a register). Following
example returns a one clock cycle delay element (a register). If a function has just a single statement, we
can write it in one line and omit the curly braces ().

REE N R ERE AR, BT LESRE, GfFJILFFEESE . LUNEIFRE T —
HEMKITR (—PMHFFR) o WR-IPEHBEAR-ITRE-KEY, HIATLEEH-T5
AN, HBWES(0-

def delay(x: Ulnt) = RegNext(x)

By calling the function with the function itself as parameter, this generated a two clock cycle delay.

T XA RE, ARG, XA I IRUEER -

val delOut = delay(delay(delln))

Again, this is a too short example to be useful, as RegNext() already is that function creating the register
for the delay.
Bk, XMRIFRE, DUETABER, B RegNext() AR REL, Q& —IER -
Functions can be declared as part of a Module. However, functions that shall be used in different
modules are better placed into a Scala object that collects utility functions.
AT LLURF R E B9 Module B — 873 « (H52, eRELN SR A T AR R ARRER 7 A —
WA SRR F HIScalaXf & H -
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Chapter /

HETEERIR

(1]

In this chapter, we explore various combinational circuits, basic building blocks that we can use to
construct more complex systems. In principle, all combinational circuits can be described with Boolean
equations. However, more often, a description in the form of a table is more efficient. We let the synthesize
tool extract and minimize the Boolean equations. Two basic circuits, best described in a table form, are a
decoder and an encoder.

FEARZET, BITEREMAESBE, EAREEER, BT LIERMZEEME RN R
gi-. BEARLFEMASERBEEIARERWRE . HE, EE LB, — DRI
WEE AR . FALSEE TEINBOGRS/ M /RE - DR, IR =% 7 5
kR, —DEEES. A DEmiEE

7.1 HEHR

Before describing some standard combinational building blocks, we will explore how combinational
circuits can be expressed in Chisel. The simplest form is a Boolean expression, which can be assigned a
name:

FEFA AR — LR A & ISR, BA TS HRA & BB AT EChisel MR R - & &
AREA/REZ, XA AT OB 454 7

val e = (a & b) | ¢

The Boolean expression is given a name (e) by assigning it to a Scala value. The expression can be reused

in other expressions:

fiRZERIATGEIL LS — D2 Fe—PScalaff - X PRIAFAT IR ERIAXEHHEH

val f = ~e

Such an expression is considered fixed. A reassignment to e with = would result in a Scala compiler
error: reassignment to val. A try with the Chisel operator :=, as shown below,

XFERIE BN N ER o 1B =2hefii %2 FEScaladiiE a5 FE1%: reassignment to val -
FIXChise BRI ERF =, BRETT
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results in a runtime exception: Cannot reassign to read-only.
SEHruntime 5t AFEE B ECLE H B

Chisel also supports describing combinational circuits with conditional updates. Such a circuit is
declared as a Wire. Then you uses conditional operations, such as when, to describe the logic of the circuit.
The following code declares a Wire w of type Ulnt and assigns a default value of 0. The when block takes
a Chisel Bool and reassigns 3 to w if cond is true.B.

Chiselt STHRFA & FUB BT SRR 0T o IXRERTRLBR S0 B — P Wire, SR (%%
THR(E, Fliiwhen, SR/EHIAFRBAZH . B TRIRIEERY TR U Wire, FHEE DA
Z5ERINMEO - whenBif 73325 —ChiselJBool, HEF T ECAw, WHRFHFtrueB -

I val w = Wire(UlInt())

3w = 0.U
4 when (cond) {
sw = 3.U

(v}

The logic of the circuit is a multiplexer, where the two inputs are the constants 0 and 3 and the condition
cond the select signal. Keep in mind that we describe hardware circuits and not a software program with
conditional execution.

B ZHEE— P E RS, XEBDEAZON, REFtcondBEFEES - oA
REECERLEE, AR E R P A A SR AT

The Chisel condition construct when also has a form of else, it is called otherwise. With assigning a
value under any condition we can omit the default value assignment:

Chiselz& I i Ewhenth 5 —else IR, & Fotherwise - 75 HE EE 55 Nl 45 — MME 5>
B, FATA LR ERINE:

I val w = Wire(UlInt())

"

when (cond) {

- w2

w := 1.U

5 } .otherwise {
6w = 2.U

7}

- Zpuoo -
- puod -

Figure 7.1: A chain of multiplexers.

Chisel also supports a chain of conditionals (a if/elseif/else chain) with .elsewhen:
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ChiseltE L Hr— 27251 (iffelseiflelse 251)) , 1#FH.elsewhen:

val w = Wire(Ulnt())

3 when (cond) {

[S)

w = 1.U

} .elsewhen (cond2) {
w = 2.U

} .otherwise {

w := 3.U

}

This chain of when, .elsewhen, and .otherwise construct a chain of multiplexers. Figure 7.1 shows this
chain of multiplexers. That chain introduce a priority, i.e., when cond is true, the other conditions are not

evaluated.

—7% B when, .elsewhen, 1 .otherwiseHil | —EHEHHEE . BH 718 - TiXEEHE . I H
SINTSEEMT, 40 condsg BTG, HERISFHEAHIEAN -

Note the .’ in .elsewhen that is needed to chain methods in Scala. Those .elsewhen branches can be
arbitrary long. However, if the chain of conditions depends on a single signal, it is better to use the switch

statement, which is introduced in the following subsection with a decoder circuit.

FEE R T elsewhenZ H 77 ZH)— 1 BB JT1E, FEscala. AL elsewhen 43 3L A] DL E K
. (B2, WMRFGRPRAT PR —FS, KIFEHswitchE Y, £ T~/ AR
IR

For more complex combinational circuits it might be practical to assign a default value to a Wire. A
default assignment can be combined with the wire declaration with WireDefault.

ST ESRA R, FREMESWire— M EUAMEREXFRA . — PDBOAME R DLE R {E
FWireDefault/E 4% BH -

val w = WireDefault (0.U)

3 when (cond) {

6

w := 3.U
}

// ... and some more complex conditional assignments

One might question why using when, .elsewhen, and otherwise when Scala has if, else if, and else?
Those statements are for conditional execution of Scala code, not generating Chisel (multiplexer) hardware.
Those Scala conditionals have their use in Chisel when we write circuit generators, which take parameters

to conditionally generate different hardware instances.

— A RERY IR R, BESAScalafif, else if, 1 else, N1T 4 f# Fwhen, .elsewhen, #1 oth-
erwise? FRLE 7 B2 A OR 5% R E0UATScalafCRG B, 11 NS 42 A{Chisel (B A &%) R AP
LEScalast FFE A1 S FEL R A Al s PR B ZE chisel /B B ER 1Y, B AEIMES RS A AN R i
PESEAF A A
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a b
00 0001

01 0010
10 0100
11 1000

Table 7.1: Truth table for a 2 to 4 decoder.

7.2 [REES

A decoder converts a binary number of n bits to an m-bit signal, where m < 2". The output is one-hot
encoded (where exactly one bit is one).

— RS 2R HE— n ALA ZHEHIEGEH — D mALH TR X m < 27 iR
B GXEF—-ARRIT—)

— b0 —»

— a0 —» F— b1 —»
Decoder

— al —b F— b2 —»

— b3 —»

Figure 7.2: A 2-bit to 4-bit decoder.

Figure 7.2 shows a 2-bit to 4-bit decoder. We can describe the function of the decoder with a truth
table, such as Table 7.2.

R 7.280R T — P2 Bani RS 2 - BATrT LU DR s, HEESR, B 72

A Chisel switch statement describes the logic as a truth table. The switch statement is not part of the

core Chisel language. Therefore, we need to include the elements of the package chisel.util.
—PChiselswitch )= MR [ 1XMEH, {EN—1MEMEEK . switchF B AEChiselik 5 HI
OERS o T, FATFHES| Mchisel.util ¥ HEHITTE -

import chisel3 . util._

The following code introduces the switch statement of Chisel to describe a decoder:

DU ACHES 5] A T ChiselfswitchE BH, A — RIS 2s -

result := 0.U

switch(sel) {

is (0.U) { result := 1.U}
is (1.U) { result := 2.U}
is (2.U) { result := 4.U}
is (3.U) { result := 8.U}

The above switch statement lists all possible values of the sel signal and assigns the decoded value to

the result signal. Note that even if we enumerate all possible input values, Chisel still needs us to assign
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&)

6

a default value, as we do by assigning O to result. This assignment will never be active and therefore
optimized away by the backend tool. It is intended to avoid situations with incomplete assignments for
combinational circuits (in Chisel a Wire) that will result in unintended latches in hardware description
languages such as VHDL and Verilog. Chisel does not allow incomplete assignments.
DA Eswitch BA %1 25 1 BT Hsell5 5 AT REME, FF BRI B (E M Sresultl 55 - TEF, HI
FERATH 25 B A R AT BE(E . ChisellJ R T Z W — D BOAE . SR ATIEOM (H Lresult. X
MREAHEBE, BERE R TREEMML . XPRMERN, #eHSEBANELESE
WCME, (Chisel®, Wire) £ FH— M AHEBKBIFS, EESHATES, B 2ZVHDLE
#& Verilog - Chisel N fLIFIETE 2 ME -

In the example before we used unsigned integers for the signals. Maybe a clearer representation of an
encode circuit uses the binary notation:

FEHAVRTRIET, BAERES IR S EER  wTEE— 1 BB 8 9w i FE 8% 156 A —07E
TR

switch (sel)

{
is ("b00".U) { result := "b0001".U}
is ("b01".U) { result := "b0010" .U}
is ("b10".U) { result := "b0100" .U}
is ("bl1".U) { result := "b1000" .U}

}

A table gives a very readable representation of the decoder function but is also a little bit verbose.
When examining the table, we see a regular structure: a 1 is shifted left by the number represented by sel.
Therefore, we can express a decoder with the Chisel shift operation «.

—RBRME T ENZE R ES SRR, BRI EREE . SRERBEAI R,
HATERN T —DE NN 1M AR Tsel ML TR, AT IRIE — D FEG R E
14 Chisel B i #E« -

result := 1.U << sel

Decoders are used as a building block for a multiplexer by using the output as an enable with an AND
gate for the multiplexer data input. However, in Chisel, we do not need to construct a multiplexer, as a
Mux is available in the core library. Decoders can also be used for address decoding, and then the outputs
are used as select signals, e.g., different IO devices connected to a microprocessor.

FREEE N — 1 B E SR, B ERMERE, AR5 ERESIENRIA -
H&, FEChisel AN AT EEFE AL, REZEAIMux/Er] A . 28T LUHREIE L, &
Jak R BOEFENE S, G, AFEMIOZ I ERS]— AR .

7.3 ZmhEes

An encoder converts a one-hot encoded input signal into a binary encoded output signal. The encoder
does the inverse operation of a decoder.
G e E IS (5 5 30 R mAS T S e Y o GRS e R AR B ST R AR
Figure 7.3 shows a 4-bit one-hot input to a 2-bit binary output encoder, and Table 7.3 shows the

truth table of the encode function. However, an encoder works only as expected when the input signal is
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— a0 —»|

— al —» — b0 —»
Encoder

— a2 —» — b1 —»

— a3 —»

Figure 7.3: 4-24w15 23

a b
0001 00
0010 01
0100 10
1000 11
777N

Table 7.2: 4-24mTES 28 I E(H T -

one-hot coded. For all other input values, the output is undefined. As we cannot describe a function with
undefined outputs, we use a default assignment that catches all undefined input patterns.

R 73R T — DAl A2 — Do — Ot hilkn t mises . I HR7.3RM T Jafi e
WEESR . HE, —MRESAERAGESEMAREN N ER TE. YTHERRA,
AR E LAY o B LEATT AN BETR AR A R SU AR 8, FdT 0 A O (B A R IR R 8 SRR
B«

The following Chisel code assigns a default value of 00 and then uses the switch statement for the

legal input values.

PLR Chisel fCH5 € BRI EIA00, F B AF Fswitch BB HIE & 15 A (E -

b := "b00".U
switch (a) {
is ("b0001".U) { b := "b00".U}
is ("b0010".U) { b := "b01".U}
is ("b0100".U) { b := "bl0".U}
is ("b1000".U) { b := "bll".U}

}

7.4 %3]

Describe a combinational circuit to convert a 4-bit binary input to the encoding of a 7-segment display.
You can either define the codes for the decimal digits, which was the initial usage of a 7-segment display
or additionally, define encodings for the remaining bit pattern to be able to display all 16 values of a single
digit in hexadecimal. When you have an FPGA board with a 7-segment display, connect 4 switches or
buttons to the input of your circuit and the output to the 7-segment display.

R —HEGHEE, BB SRR, BITBEIR . ARATLUE A2 B R
i, X RTBE RIS, B, EXHEMMgmE T, FRERITE Tt ir 167
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Chapter 8

s P S SE R R

Sequential circuits are circuits where the output depends on the input and previous values. As we
are interested in synchronous design (clocked designs), we mean synchronous sequential circuits when
we talk about sequential circuits.! To build sequential circuits, we need elements that can store state: the
so-called registers.

HSf P FEL B ) 1 EUR T R ARI R —ME . BN TSGR R R T (BREmsgit) | Fdl]
Vi FPr g, HATRAZRISR FEE . 2. HTIHEENFRE, RITFEEPRESHTE. i
LABA TR 35 7% -

8.1 FHH7

JAN

— clock —

Figure 8.1: — "DAF 7oz

The fundamental elements for building sequential circuits are registers. A register is a collection of D
flip-flops. A D flip-flop captures the value of its input at the rising edge of the clock and stores it at its
output. Alternatively, in other words: the register updates its output with the value of the input on the
rising edge of the clock.

RERITE RN FRBITTRZTFa - FHAEDRSRNES - DA S AR B BT
MECE A, FECE N EFER - 8B MR —fE, FFaaEn sl LA EHEE
H, ZEHIAE -

"We can also build sequential circuits with asynchronous logic and feedback, but this is a specific niche topic and cannot be
expressed in Chisel.

PEAT AT LR R, A AEE B AR SR, (ERIX AR — MRS @ A Chisel 1 #0R
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Figure 8.1 shows the schematic symbol of a register. It contains an input D and an output Q. Each
register also contains an input for a clock signal. As this global clock signal is connected to all registers in
a synchronous circuit, it is usually not drawn in our schematics. The little triangle on the bottom of the
box symbolizes the clock input and tells us that this is a register. We omit the clock signal in the following
schematics.

K8 1R A EER S - EEEMADMEILQ. B MAFFasti S T clocklENHIA -
FE—NFREPRFRE, (Eh2RNMESERIITETERE, - REERAE . —PH=
RIS TR B, SFEADIE—FFE - FATEL N EE 2R (ES

The omission of the global clock signal is also reflected by Chisel where no explicit connection of a
signal to the register’s clock input is needed.

WGSBS S, MAEChisel PR BRHR, X BIREME T HARES .

In Chisel a register with input d and output q is defined with:

£ Chisel — 13 17 s dffir A Qi H BE#E -

val q = RegNext(d)

Note that we do not need to connect a clock to the register, Chisel implicitly does this. A register’s input
and output can be arbitrary complex types made out of a combination of vectors and bundles.
XEEH—T, HAAFEAFFEENB, X DFEChisel NEREHETER - Fa IR
Ak ] DL AR R B T vectorflibundlefH & HIE 24 K7 .
A register can also be defined and used in two steps:

B Ay AT LUBEE SN 25 (5 -

val regDelay = Reg(Ulnt (4.W))
regDelay := delayln

First, we define the register and give it a name. Second, we connect the signal delayln to the input of
the register. Note also that the name of the register contains the string Reg. To easily distinguish between
combinational circuits and sequential circuits, it is common practice to have the marker Reg as part of to
the name. Also, note that names in Scala (and therefore also in Chisel) are usually in CamelCase. Variable
names start with lowercase and classes start with upper case.

HRBENEL THFER/HBE 14T, HRBANTER T ESdelaynBFFa BN - E
A e % FIEReg T IR o« O T R X 0 H & BB METIREEATTER, —BE AT R
FEF L NN Reg A FAE N T2k o« H HitfscalafJ& 5 ([FIFEE R Tehisel) 2% LlCamelCaseH
. BEAWLVNGTT L, #ETRARFLEFEHREHEN .

A register can also be initialized on reset. The reset signal is, as the clock signal, implicit in Chisel.
We supply the reset value, e.g., zero, as a parameter to the register constructor Reglnit. The input for the
register is connected with a Chisel assignment statement.

— DA AT IR EAAIA o reser(E 5B clock[F5 —F, FEChisel/ZRSMER] - Fl1H2
HTEAME, i, T, VSR G TG 2 Reglnit - FF -2 0% N\ Z 181 Chisel i
(B BEAH] -

val valReg = Reglnit (0.U(4.W))
valReg := inVal
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The default implementation of reset in Chisel is a synchronous reset.> For a synchronous reset no
change is needed on a D flip-flop, just a multiplexer needs to be added to the input that selects between
the initialization value under reset and the data values.

Chisel BN E BERFA LA 4 NTF—PFRPEL, AHFEEDMARFERL, A2—1
SHGHERGRIERA, FTRRE A BEMEIREIE -

19891 —

— init —»

- data

A

Figure 8.2: A D flip-flop based register with a synchronous reset.

Figure 8.2 shows the schematics of a register with a synchronous reset where the reset drives the
multiplexer. However, as synchronous reset is used quite often modern FPGAs flip-flops contain a
synchronous reset (and set) input to not wast LUT resources for the multiplexer.

KA 82R— 1 BEARPEMNFFRER, XEFPEMNNEHEG . HE — P FEP
BNEERER, ERAMAFPGAR S — P HEE (MXE) RHRANREEHEEHILUTER -

Sequential circuits change their value over time. Therefore, their behavior can be described by a
diagram showing the signals over time. Such a diagram is called a waveform or timing diagram.

B LB AT R R - T, MATTHOAT D9 mT LAl RS R AN IS TR RS 5 - aX ke
R BT B B B

Figure 8.3 shows a waveform for the register with a reset and some input data applied to it. Time
advances from left to right. On top of the figure, we see the clock that drives our circuit. In the first clock
cycle, before a reset, the register is undefined. In the second clock cycle reset is asserted high, and on the
rising edge of this clock cycle (labeled B) the register captures the initial value of 0. Input inVal is ignored.
In the next clock cycle reset is 0, and the value of inVal is captured on the next rising edge (labeled C).
From then on reset stays 0, as it should be, and the register output follows the input signal with one clock

cycle delay.

3Support for asynchronous reset is currently under development
*HATERSE AL

aoce [ LT LT L LI LF LT L

reset J 1

inVal HEEN N S R

regval e s Z L7
A B c D E F

Figure 8.3: A waveform diagram for a register with a reset.
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Figure 8.3 XM T — M EHEEME LR AR B0V K - BRI ENESIA IR - £
EA R LD, FATES GRS BT R - AR EY, EEEZH, FHEE
RAENH] - S ARSI A SR, DUAER MR LA (FBRB) | SRR
TOMIKIEAME - inValfH AW ARG -« £ T — 1 EH, resetZ20, I HinValfe ~— LT

(PRAC) BEHIEE] . MitreseURAEO, ZHIRMIZIE, FFfFasikiHRMEBMAG S, £—1HH
FEIR .

Waveforms are an excellent tool to specify the behavior of a circuit graphically. Especially in more
complex circuits where many operations happen in parallel and data move pipelined through the circuit,
timing diagrams are convenient. Chisel testers can also produce waveforms during testing that can be
displayed with a waveform viewer and used for debugging

Bt R LEE iR E BT VB TR o Kl RAEVF S BIEFAT K LR B S IR i %
o HAE R BB K S, B P EAR DT o chiselliR &S mT DAFEI G R i = A v
RHETE HE Y B E 5 H Tdebug, HINAERN fIFF5 T A FIRLER RO R & AE — L
LSRR S calaX G 1 BHEE -

A typical design pattern is a register with an enable signal. Only when the enable signal is true (high),
the register captures the input; otherwise, it keeps its old value. The enable can be implemented, similar
to the synchronous reset, with a multiplexer at the input of the register. One input to the multiplexer is the
feedback of the output of the register.

— PP FERRUE - PFEHM— I HEES . AELHEES R2uve (F) BN
g, aFfEseiEgA, BUEE, ERFFEERME. FEESTLUEERLTRPEM, HH
N ET BB AR BN TS« HoA— B 28 I A\ B A it A S 0 -

s|qeus —

- data

Figure 8.4: A D flip-flop based register with an enable signal.

Figure 8.4 shows the schematics of a register with enable. As this is also a common design pattern,

modern FPGA flip-flops contain a dedicated enable input, and no additional resources are needed.
K 84X — P EAEMHAEESTHERE . X2 — D LR RE, S RAFPGAM 4 25

BE—1

cock [ LT LT LI LML LI

enable Il_ll

awval N2 3 s =z N7 A
regEnable | 7

A B C D E F

Figure 8.5: A waveform diagram for a register with an enable signal.

Figure 8.5 shows an example waveform for a register with enable. Most of the time, enable it high

(true) and the register follows the input with one clock cycle delay. Only in the fourth clock cycle enable
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is low, and the register keeps its value (5) at rising edge D.

BWh 85KRM T — ML EIF 7, HTSHEERESNEFFES . REHEE, FEZENE
fi(true), FFAFAHESFHEAN—DFHER . JURAESEN A FHenable ZIROLK), TR%FFEHA
LD (5) PREFIBAIE -

A register with an enable can be described in a few lines of Chisel code with a conditional update:

— BB AR E 8 ] LU IS AT chisel B A — 25 1 BEE w4 -

val enableReg = Reg(Ulnt(4.W))

3 when (enable) {

N S

enableReg := inVal
}

A register with enable can also be reset:

HA R EF s ] LI E A

val resetEnableReg = Reglnit(0.U(4.W))

when (enable) {
resetEnableReg := inVal

}

A register can also be part of an expression. Following circuit detects the rising edge of a signal by
comparing its current value with the one from the last clock cycle.

— AR LR FRIAA A —# 7 o UM T ES R LA, @i B S R {E
ERI(E -

val risingEdge = din & !RegNext(din)

Now that we have explored all basic uses of a register, we put those registers to good use and build
more interesting sequential circuits.

WA, BICERR T HFAESHNIEEARE, BRI XLEFASUA ERANEERE
AR FEL B

8.2 IIEEE

A

Figure 8.6: An adder and a register result in counter.
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One of the most basic sequential circuits is a counter. In its simplest form, a counter is a register
where the output is connected to an adder and the adder’s output is connected to the input of the register.
Figure 8.6 shows such a free-running counter.

TR R REANR FREZ — . URRERAMEN, ITEEEE S A B HhEREInE
g, MINESS AR HE RS et o B 8.6 /R [ iXFE— B BT R8s -

A free-running counter with a 4-bit register counts from O to 15 and then wraps around to 0 again. A
counter shall also be reset to a known value.

BHAF AL B BT EEs oS4, SRR EISE BIXIN0 - ITEER N EENE
FA{E -

val cntReg = Reglnit(0.U(4.W))

3 cntReg := cntReg + 1.U

When we want to count events, we use a condition to increment the counter.

HEATEZEEITREA AR, B EIEINTREEEL -

val cntEventsReg = Reglnit (0.U(4.W))
when(event) {

3 cntEventsReg := cntEventsReg + 1.U

)

}

8.2.1 [ _EANfE Tt EK

To count up to a value and then restart with 0, we need to compare the counter value with a maximum
constant, e.g., with a when conditional statement.

TR —ME, REHEHENED, WNFELKR BERRE RIS E, flinmw
Hwhen &I -

val cntReg = Reglnit(0.U(8.W))

3 cntReg := cntReg + 1.U

N

)

when (cntReg === N) {
cntReg := 0.U
}

We can also use a multiplexer for our counter:

FATE AT LU E B — TR s st

val cntReg = Reglnit(0.U(8.W))

3 cntReg := Mux(cntReg === N, 0.U, cntReg + 1.U)

If we are in the mood of counting down, we start (reset the counter register) with the maximum value and
reset the counter to that value when reaching 0.

WMARBAVE FERREEE, DT (BETRSGHFR) WENRKE, HFERH0RFiTEL
SEENILE.
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val cntReg = Reglnit(N)

cntReg := cntReg — 1.U
when(cntReg === 0.U) {
cntReg := N

}

As we are writing and using more counters, we can define a function with a parameter to generate a

counter for us.
BIATE NFIEFHE Z P EES R g, 10 LUE L— 1 BH S5 R ik A AT A4k
5o

def genCounter(n: Int) = {

val cntReg = Reglnit (0.U(8.W))

cntReg := Mux(cntReg === n.U, 0.U, cntReg + 1.U)
cntReg

}

// now we can easily create many counters
val countl0 = genCounter(10)

val count99 = genCounter(99)

//— end

// and one more for testing

val testCounter = genCounter(n—1)
io.tick := testCounter === (n—1).U
io.cnt := testCounter

}
class NerdCounter(n: Int) extends Counter(n) {
val N = n

//— start nerd_counter
val MAX = (N — 2).S(8.W)
val cntReg = Reglnit (MAX)
io.tick := false.B

cntReg := cntReg — 1.S
when(cntReg (7)) {
cntReg := MAX

io.tick := true.B

}

The last statement of the function genCounter is the return value of the function, in this example, the
counting register cntReg.
o W R BUE EﬁgenCounterﬂZ@T PRECEUE, TEX M, %ﬂ‘%ﬁ(%ﬁ%ﬁ%ﬁcnmeg 0

Note, that in all the examples our counter had values between 0 and N, including N. If we want to

count 10 clock cycles we need to set N to 9. Setting N to 10 would be a classic example of an off-by-one
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Figure 8.7: A waveform diagram for the generation of a slow frequency tick.

€ITor.
TR, FrEmGT R, AT EERTEoMN, SFENEEERIE - RN TEZEEN0 5
JAH, BAFEIENZ N9 - ENBNIOARER MO — MR AF] T, T Hoff-by-oneFH iR

8.2.2 fFHIIEESTENF

Besides counting events, counters are often used to generate timing. A synchronous circuit runs with a
clock with a fixed frequency. The circuit proceeds in those clock ticks. There is no notion of time in a
digital circuit other than counting clock ticks. If we know the clock frequency, we can generate circuits
that generate timed events, such as blinking a LED at some frequency as we have shown in the Chisel
“Hello World” example.

BT VTR B], PP A R A AEIR o — A [R] P R B — B B AR E RO
FEL B E X SRR A (L A A R - ERCT B ORI R A, BR TIPSR R . AR
MIELER BT, FoTAT LVAE RO BE T4 Al [P A, RAE — L5 E SRR AIARLED, 1%
FEFATHTIAH0E F)Chisel“Hello World” 5] ¥ -

A common practice is to generate single-cycle ticks with a frequency f;.x that we need in our circuit.
That tick occurs every n clock cycles, where n = fejock/ frick and the tick is precisely one clock cycle
long. This tick is not used as a derived clock, but as an enable signal for registers in the circuit that shall
logically operate at frequency f;.,. Figure 8.7 shows an example of a tick generated every 3 clock cycles.

— DL SR BRI [ BT LB R ZE ricks I T2 o B BRI DR IAR & —
ixtick, XHEn = fuock/ frick, GekEBIRN — DIBIAHCE o X PickE ~ emph /AN FEETE T
B, MRAE RN —DENEBAMERERES, 8K fua NMRE. 8TRU—1E=1FH™
A tick )15 -

In the following circuit, we describe a counter that counts from 0 to the maximum value of N - /.
When the maximum value is reached, the tick is true for a single cycle, and the counter is reset to 0. When
we count from O to N - I, we generate one logical tick every N clock cycles.

FERABRIABT, BAINE T — DI EE:, NOBEIRAEN - 1. HRB R ER
18, rickfE— BN ZE Nirue, ITEEHEEN0. HHATNOEKEIN - 1, TAVEENI BRI E
— 112 Hitick -

val tickCounterReg = Reglnit(0.U(4.W))

val tick = tickCounterReg === (N-1).U
tickCounterReg := tickCounterReg + 1.U
when (tick) {

tickCounterReg := 0.U

}
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Figure 8.8: Using the slow frequency tick.

This logical timing of one tick every n clock cycles can then be used to advance other parts of our circuit
with this slower, logical clock. In the following code, we use just another counter that increments by /
every n clock cycles.

BB B A AL — B _E Btick AT DALEE FH XSG 0 H B FL B P AR R ), i X ME HZ
L. 7R RS, BATER A — T EEs . Bl RSN A7 -

i

val lowFrequCntReg = Reglnit(0.U(4.W))
when (tick) {

lowFrequCntReg := lowFrequCntReg + 1.U
}

Figure 8.8 shows the waveform of the tick and the slow counter that increments every tick (n clock cycles).
B 8.8 TR TR AV SN, BEITHEESAE R R Sh I R I — O (n DB )

Examples of the usage of this slower logical clock are: blinking an LED, generating the baud rate
for a serial bus, generating signals for 7-segment display multiplexing, and subsampling input values for
debouncing of buttons and switches.

i FLX A B Hlogical N BRI 5 INFE—IED, T —"F4 8 AR, El7E
BRERSES, W TREMAERTLLEE TR,

Although width inference should size the registers, it is better to explicitly specify the width with the
type at register definition or with the initialization value. Explicit width definition can avoid surprises
when a reset value of 0.U results in a counter with a width of a single bit.

RE L BEHEWT ROZ AL E B A R AV, (HREEMIALSE, B HF AR E L, 808
W IRER TR, REFR . E SCHBRAALTE R LABG (EH EE N0 URIB &, A — LT
IIHIESL -

8.2.3 nerdit%is

Many of us feel like being a nerd, sometimes. For example, we want to design a highly optimized version
of our counter/tick generation. A standard counter needs following resources: one register, one adder (or
subtractor), and a comparator. We cannot do much about the register or the adder. If we count up, we
need to compare against a number, which is a bit string. The comparator can be built out of inverters for
the zeros in the bit string and a large AND gate. When counting down to zero, the comparator is a large
NOR gate, which might be a little bit cheaper than the comparator against a constant in an ASIC. In an
FPGA, where logic is built out of lookup tables, there is no difference between comparing against a 0 or 1
bit. The resource requirement is the same for the up and down counter.

HAMRZ NER @ H OB — Tnerd. Fli0, FATEZE ST —MERMICHTHEE Bk
BETHIERM) o — DINERTTEERFELU TR — D Ess, —Inkds (BUREIESS) |
— RS . BAIARERFASRECRINESRERE - RFA 7 L&, BANFZILE—TEIR
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B, XR—AFA . BT LNt R a LM — D74, RE— P RIS(1T. ZFfTm T~
HERI B, B — D RIEEEN], X NASICHI AR EINFEER - 7EFPGA, 1BHR
IRT AR, PR B SR ORI R A 4 XA T, B Al BRI R &S T B ZSK
P =R

However, there is still one more trick a clever hardware designer can pull off. Counting up or down
needed a comparison against all counting bits, so far. What if we count from N-2 down to -1? A negative
number has the most significant bit set to 1, and a positive number has this bit set to 0. We need to check
this bit only to detect that our counter reached -1. Here it is, the counter created by a nerd:

B2, XEPNE—A/INET], SO ERTLUEE . Harm B M HEESIaE
TR . HARA NEORE 2 KB A7 BN, RN MR F— D AR R R
B AL a LA -

val MAX = (N — 2).S(8.W)
val cntReg = Reglnit (MAX)
io.tick := false.B

cntReg := cntReg — 1.S
when (cntReg (7)) {
cntReg := MAX

io.tick := true.B

}

8.24 —/itHTes

Another form of timer we can create, is a one-shot timer. A one-shot timer is like a kitchen timer: you set
the number of minutes and press start. When the specified amount of time has elapsed, the alarm sounds.
The digital timer is loaded with the time in clock cycles. Then it counts down until reaching zero. At zero
the timer asserts done.

HATREB QG R A — Mt &R, B— D I — KA & o — D Rl — R I 331%
e NE BT RIERTE], FFEITIR . St T —BOWERIRT A, WE T o XN
s g AR 2GR B [A] - B MECE R E « AEER 23 Adone «

Figure 8.9 shows the block diagram of a timer. The register can be loaded with the value of din by
asserting load. When the load signal is de-asserted counting down is selected (by selecting cntReg - 1 as
the input for the register). When the counter reaches 0, the signal done is asserted and the counter stops
counting by selecting input of the multiplexer that provides O.

B A 8.9%K R TiTHIERHUMER « 7 e il LUEIE i Aload B Hidin . Hload i EZE, HEFEA Rt
0 GBIk enReg - WENHFHFRIIEA) o HITEERENA0, F5doneE—, I Hilid BH
IR0, IREHE LA T EL.

Listing 8.1 shows the Chisel code for the timer. We use an 8-bit register reg, that is reset to 0. The
boolean value done is the result of comparing reg with 0. For the input multiplexer we introduce the wire
next with a default value of 0. The when/elsewhen block introduces the other two inputs with the select
function. Signal load has priority over the decrement selection. The last line connects the multiplexer,

represented by next, to the input of the register reg.
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Figure 8.9: A one-shot timer.

RAG8.1FRIR T I 28 Wchisel {15, AT —1-8fI & Favreg, W EE NO- fi/R{HdonesEregf
TR . S TRABRZ, A5 A&next, EXIAE 0. when/elsewhenPEE LKA,
SINTHEEWDHEIA - [F51loadtla] TECEEMEN . &IE—EE T EHR, HnextR, #

T asreg RN -

val cntReg = Reglnit (0.U(8.W))
val done = cntReg === 0.U

val next = Wirelnit (0.U)
when (load) {

next := din

} .elsewhen (!done) {
next := cntReg — 1.U

}

cntReg := next

}

Listing 8.1: A one-shot timer

If we aim for a bit more concise code, we can directly assign the multiplexer values to the register reg,
instead of using the intermediate wire next. .

AR FAVEZF AL A01CRS, Bl TP IE R (E S B A 2R 10 EE 5 17 dsreg, AR EH
HH [A] Znext -

8.2.5 ki H B VA H

Pulse-width modulation (PWM) is a signal with a constant period and a modulation of the time the signal
is high within that period.

i B ] WM — N E B FMIRES, WIS A1 A B high iR ] «

Figure 8.10 shows a PWM signal. The arrows point to the start of the periods of the signal. The
percentage of time the signal is high, is also called the duty cycle. In the first two periods the duty cycle is
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Figure 8.10: fk{ 5L & i

25 %, in the next two 50 %, and in the last two cycles it is 75 %. The pulse width is modulated between
25 % and 75 %.

KA 8.10 KB T — 1 "PWMIES o Hikfam ABITFIRRIHTT o R FFE SR S Ry 5=
. (duty cycle) - TERIBNERE, HZHE 25%, EEDWAAEE 50 %, 7 AEREMA A
R T5% o BRIPFE25 %75 %2 [F] «

Adding a low-pass filter to a PWM signal results in a simple digital-to-analog converter. The low-pass
filter can be as simple as a resistor and a capacitor.

HEANRIE I 25 21— D PWMAC — R B AR BRAR L gs « (RIE IR IS T LA B 152
— A — A

The following code example will generate a waveform of 3 clock cycles high every 10 clock cycles.

LU ACH 7 2 AR R— 1 10/ e e 35 1 031 el e o 8 v Pl P RO B

def pwm(nrCycles: Int, din: Ulnt) = {

val cntReg = Reglnit(0.U(unsignedBitLength (nrCycles —1).W))
cntReg := Mux(cntReg === (nrCycles —1).U, 0.U, cntReg + 1.U)
din > cntReg

}

val din = 3.U
val dout = pwm(10, din)

We use a function for the PWM generator to provide a reusable, lightweight component. The function has
two parameters: a Scala integer configuring the PWM with the number of clock cycles (nrCycles), and a
Chisel wire (din) that gives the duty cycle (pulswidth) for the PWM output signal. We use a multiplexer
in this example to express the counter. The last line of the function compares the counter value with the
input value din to return the PWM signal. The last expression in a Chisel function is the return value, in
our case the wire connected to the compare function.
FAVEH— P RE, AEPWMBIAE RS, - EEMHEN, BERED - X1 uaﬂzﬁﬂﬁ
e ¢ g/\Scalagm BT PR EAECE  (nrCycles) FA—ChiselZ% (din) #EHE 5=

(BkiBifs) FTEPWMESHIH - FATER—PEHSS, EX T8, RFERITEE: E‘}:—
THIRREL, HEOTEESHE, A Edin AR EPWMIES - £J5 Chisel KEHIFR R, iR
B, ERMFITE, EERE R AL -

We use the function unsignedBitLength(n) to specify the number of bits for the counter cntReg needed

to represent unsigned numbers up to (and including) n.> Chisel also has a function signedBitLength to

provide the number of bits for a signed representation of a number.

>The number of bits to represent an unsigned number 7 in binary is [logz(n)] + 1.
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[SSIN )

FA 148 FH e £unsignedBitLength(n) ¥ E THEER FR R R 1T #lentReg i EFR - (FFE4E) ne- SChiseltd
H—" R %signedBitLengthfe (A HIE R, SREHAF R — D5 AL EAINLTE -

Another application is to use PWM to dim an LED. In that case the eye serves as low-pass filter. We
expand the above example to drive the PWM generation by a triangular function. The result is an LED
with continuously changing intensity.

A= EFHPWMHAI R F & R — PLED « FEARMIEOL T, FelTHIIRIE 52 — MRIE I8
#r o BARRU LT ERWEPWM, #id — = ARE . XD TRLEDA] LIRS AR -

val FREQ = 100000000 // a 100 MHz clock input
val MAX = FREQ/1000 // 1 kHz

val modulationReg = Reglnit (0.U(32.W))

val upReg = Reglnit(true.B)

when (modulationReg < FREQ.U && upReg) {

modulationReg := modulationReg + 1.U
} .elsewhen (modulationReg === FREQ.U && upReg) {
upReg := false.B

} .elsewhen (modulationReg > 0.U && !'upReg) {

3 modulationReg := modulationReg — 1.U

} .otherwise { // 0
upReg := true.B
}

// divide modReg by 1024 (about the 1 kHz)
val sig = pwm(MAX, modulationReg >> 10)

We use two registers for the modulation: (1) modulationReg for counting up and down and (2) upReg
as a flag to determine if we shall count up or down. We count up to the frequency of our clock input
(100 MHz in our example), which results in a signal of 0.5 Hz. The lengthy when/.elsewhen/.otherwise
expression handles the up- or down-counting and the switch of the direction.

BAMERP A A TS (1) modulationRegFH T [a]_E iU R 11401 (2)upRegflE
IR, ETE RN TR T ROZ A _ERE R N BATRIEBA AR B A ] EEORR (3K
TR FEZ100MHz) , SE—10.5HzH{ES - when/.elsewhen/.otherwise ) F A T FH 7] I
HeElm N, AT R -

As our PWM counts only up to the 1000th of the frequency to generate a 1 kHz signal, we need to
divide the modulation signal by 1000. As real division is very expensive in hardware, we simply shift
by 10 to the right, which equates a division by 2!° = 1024. As we have defined the PWM circuit as a
function, we can simply instantiate that circuit with a function call. Wire sig represents the modulated
PWM signal.

b E FATHIPWMEEI1000 M, 4 — N 1kHzIE 5, Tl 17 E 10X W HE 5 B
BA1000 - (Ao — P E LR BRIXAER AT LR AER & 5t A), F AR B A 100, S5 TRk
P20 = 1024 BEAEAIELZE L TPWMAB/E I — P er %, 3 TA] LIRSS R (AR A
B, FHEE B &sighRoniX MERIKPWME S -

PR R IRAEAF SRR n B I B (loga(n)] + 1.
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A shift register is a collection of flip-flops connected in a sequence. Each output of a register (flip-flop)
is connected to the input of the next register. Figure 8.11 shows a 4-stage shift register. The circuit shifts
the data from left to right on each clock tick. In this simple form the circuit implements a 4-tap delay
from din to dout.

— PR FFEE — MIUFEENMA SRS . 8105 FR (Ld) MEEER T
FHEREA . EA8.11 KR — AN HFa: . BHEBEIE NEARGH, E&8 18
PRI A o FEX DN RERE, BB T ARAIER, Mdin®dout -

The Chisel code for this simple shift register does: (1) create a 4-bit register shiftReg, (2) concatenate
the lower 3 bits of the shift register with the input din for the next input to the register, and (3) uses the
most significant bit (MSB) of the register as the output dout.

AT XA R RO FFEEM T (1) 03& — 140605 77 f5shiftReg,  (2) & H AL A7 77 &5 1Y
3N E A dinH T N — P FFSREA, HEQER T &EMLAE 74 H T Hitdout -

I val shiftReg = Reg(Ulnt(4.W))
> shiftReg := Cat(shiftReg(2, 0), din)
3 val dout = shiftReg(3)

Shift registers are often used to convert from serial data to parallel data or from parallel data to serial

data. Section 13.2 shows a serial port that uses shift registers for the receive and send functions.

ML A7 A 22 T U AR e B R B PATRUEE, SR M FATERR BB B D8 - 13.2%
T =& O%dE, EHABMAFFS, FEREEIR ML IR

8.3.1 fEMF T MBI F 4%

A serial-in parallel-out configuration of a shift register transforms a serial input stream into parallel words.
This may be used in a serial port (UART) for the receive function. Figure 8.12 shows a 4-bit shift register,
where each flip-flop output is connected to one output bit. After 4 clock cycles this circuit converts a 4-bit
serial data word to a 4-bit parallel data word that is available in g. In this example we assume that bit O
(the least significant bit) is sent first and therefore arrives in the last stage when we want to read the full
word.

— B AT R ENSE A AT — D8 O AR Tt-FFJJ HAEF o X DAL &
H(UART)FRFENINRE - B 8.12F IR T — ML 3 fras . X BB M & S A —1
AL Fda R, XA RBRIE— A R O PR — NPT EOR Y, fEqE R FEX
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M, BAMRE, ORL(ERIRAD e A%, AT EEBEED FRIN R, RN EARE—
Ko
In the following Chisel code we initialize the shift register outReg with 0. Then we shift in from the
MSB, which means a right shift. The parallel result, q, is just the reading of the register outReg

PAN ChiselfCd, A 1{EHOMIA LA F 7 dsoutReg - RIFHMN MBI IEFEAL, 2
A% FITER, q, BFFaroutRegEHI{E -

I val outReg = Reglnit(0.U(4.W))
2 outReg := Cat(serln, outReg(3, 1))
3 val q = outReg

q3 g2 ql qo0

— serln —»

A A A A
Figure 8.12: — 1 BAH HAT7HI 4R AL 7 2%

Figure 8.12 shows a 4-bit shift register with a parallel output function.

B 8.12 R T — M EAHATHIH D4R AL 4% -

8.3.2 FTIEHHIB AT
A parallel-in serial-out configuration of a shift register transforms a parallel input stream of words (bytes)

into a serial output stream. This may be used in a serial port (UART) for the transmit function.
—PMHAITRMABRITRERENB AT FS, T D ITRART (F7) A ST
o XA RURAE S I Th BER 8 1 (UART) -

peo| -

I I
d3 d2 d1 do

. . . .
L L L

JAN JAN JAN
Figure 8.13: — 1> B AT A4 L L 17 25

peo| -
peo| -
peo| -

0

Figure 8.13 shows a 4-bit shift register with a parallel load function. The Chisel description of that

function is relatively straight forward:
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BR8.13%R T — MM ALF Fay, BERFTENIIIIGE - X1 IRERIChiselifiiR 21X E
)

when (load) {
loadReg := d

3 } otherwise {

6

loadReg := Cat(0.U, loadReg(3, 1))

}
val serOut = loadReg(0)

Note that we are now shifting to the right, filling in zeros at the MSB.
ERBIBNBAERME AN, EREEAE -

8.4 TFfifzs

A memory can be built out of a collection of registers, in Chisel a Reg of a Vec. However, this is expensive
in hardware, and larger memory structures are built as SRAM. For an ASIC, a memory compiler constructs
memories. FPGAs contain on-chip memory blocks, also called block RAMs. Those on-chip memory
blocks can be combined for larger memories. Memories in an FPGA usually have one read and one write
port, or two ports where the direction can be switched.

Pt e nl LU — RII T 7285, fEchisel, —MVecHIReg. fHRZ, XATERE{: L2
Eh BT A, BEOR B A28 2 I SRAMIE /Y o AT — DASIC, 771 25 w15 & 1 2 HY 771 2%
FPGA B v P TT, AR NERILRAM - X &8 fr 776 5270 AT DAZH & R B3R ) #7 1
%% o FPGA LTS — 0 — D usm A — 15w, &3 AT AT 7 17 B0 i 1 o

FPGAs (and also ASICs) usually support synchronous memories. Synchronous memories have
registers on their inputs (read and write address, write data, and write enable). That means the read data is
available one clock cycle after setting the address.

FPGA (EiJEASIC) LH SRRV - RIS ERA LR EF S0 E L,
SR, 568 . HEWEREIREREM LG — D F R T HA .

Figure 8.14 shows the schematics of such a synchronous memory. The memory is dual-ported with
one read port and one write port. The read port has a single input, the read address (rdAddr) and one
output, the read data (rdData). The write port has three inputs: the address (wrAddr), the data to be written
(wrData), and a write enable (wrEna). Note that for all inputs, there is a register within the memory
showing the synchronous behavior.

B4R R T IXHE— P RIS ER « XD K, B —MEHaE
AN H o XS O — RN Bk (rdAddr) 0 — D HEGE (rdData) - 5 N H
B="1EiN: HhtwrAddry, B ANBEIEwrData), F15 NFEGE(WrEna) - 1FE 2N T PE B %
N, TEEERHR AR T R HITT N .

To support on-chip memory, Chisel provides the memory constructor SyncReadMem. Listing ??
shows a component Memory that implements 1 KB of memory with byte-wide input and output data and
a write enable.

FTFE A B, chiselfRfit [ BRI 23 SyncReadMem - 2?2 BA T Memory s AL 232
FRIKBRITEMERS, BT 1AL A AR AR, F1— D5 AERE -
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— rdAddr — — rdData

— wrAddr

— wrData

— wrEna —

A Memory

Figure 8.14: A synchronous memory.

I class Memory() extends Module {

2 val io = IO(new Bundle {

: val rdAddr = Input(Ulnt(10.W))
4 val rdData = Output(Ulnt(8.W))
5 val wrEna = Input(Bool())

6 val wrData = Input(Ulnt(8.W))
7 val wrAddr = Input(UInt(10.W))

8 b
10 val mem = SyncReadMem (1024, Ulnt(8.W))
12 io.rdData := mem.read(io.rdAddr)

14 when (io .wrEna) {

15 mem. write (io.wrAddr, io.wrData)

16 }

An interesting question is which value is returned from a read when in the same clock cycle a new
value is written the same address that is read out. We are interested in the read-during-write behavior of
the memory. There are three possibilities: the newly written value, the old value, or undefined (which
might be a mix of some bits from the old value and some of the newly written data). Which possibility is
available in an FPGA depends on the FPGA type and sometimes can be specified.

—MNEBREIEE, ER—REE . WIRBOR EENME TEEARE — e S A 51k A F
foHbaE - FATRE A 7F Hiread-during-writefT Jy 4K o H=FATHE: 5 ARME, [HEBCR
EX GXFREEIAEP R —EA S — e AMEIEIES) - FPGAR A H AT Rtk Bk
TFPGARIIH AR A] LIS E

Chisel documents that the read data is undefined.

Chisel 1% A BEBUEUE & R 7€ LAY -

If we want to read out the newly written value, we can build a forwarding circuit that detects that
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— rdAddr Jv — rdData
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—— wrData

—— wrEna
A Memory

LA

Figure 8.15: A synchronous memory with forwarding for a defined read-during-write behavior.

the addresses are equal and forwards the write data. Figure 8.15 shows the memory with the forwarding
circuit. Read and write addresses are compared and gated with the write enable to select between the
forwarding path of the write data or the memory read data. The write data is delayed by one clock cycle
with a register.

RPN EZ NG ARME, BT LIEE— NS R, SEWIE AR I E I
TforwardstHE NEUE - 815K BHRIFHEFMESS - NS AUt HEE IR, H%
BIGAMEREE ], £k 5ARURRIAERE, SO IR . XN EARIRRZ R —
R F AR IEIR -

Listing ?? shows the Chisel code for a synchronous memory including the forwarding circuit. We need
to store the write data into a register (wrDataReg) to be available in the next clock cycle the synchronous
memory also has a one clock cycle latency. We compare the two input addresses (wrAddr and rdAddr)
and check if wrEna is true for the forwarding condition. That condition is also delayed by one clock cycle.
A multiplexer selects between the forwarding (write) data or the read data from memory.

FI% 2? RIF— DB ERIPFEd, G AIChisel(tid . Bl FEZFMEE AR
— M EFHFER(wrDataReg), EZAE N FMZRER, FPFMER0E — D RBIAER . JA1
BT WA A (wrAddr 71 rdAddr)H B ERGE, BwrEna2 S RNE, FERIBEET « A0
FEZE PR . — N E SRR E ALIEANE H AR T

class ForwardingMemory () extends Module ({
val io = IO(new Bundle ({
val rdAddr = Input(Ulnt(10.W))
val rdData = Output(Ulnt(8.W))
val wrEna = Input(Bool())
val wrData = Input(Ulnt(8.W))
val wrAddr Input (Ulnt(10.W))

9]

val mem = SyncReadMem (1024, Ulnt(8.W))

val wrDataReg = RegNext(io.wrData)
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val doForwardReg = RegNext(io.wrAddr === io.rdAddr && io.wrEna)
val memData = mem.read (io.rdAddr)

when (io.wrEna) {

mem. write (io.wrAddr, io.wrData)

}

io.rdData := Mux(doForwardReg, wrDataReg, memData)

Chisel also provides Mem, which represents a memory with synchronous write and an asynchronous
read. As this memory type is usually not directly available in an FPGA, the synthesize tool will build it
out of flip-flops. Therefore, we recommend using SyncReadMem.

Chiselt &t T Mem, RE T — 1 BAFDEAME L E M AFERS o ERX D FiEES— K
AEFPGAT LUEH, i TEXEEZ AL . T2, BAEFZEHSyncReadMem -

8.5 %]

Use the 7-segment encoder from the last exercise and add a 4-bit counter as input to switch the display
from O to F. When you directly connect this counter to the clock of the FPGA board, you will see all 16
numbers overlapped (all 7 segments will light up). Therefore, you need to slow down the counting. Create
a second counter that can generate a single-cycle fick signal every 500 milliseconds. Use that signal as
enable signal for the 4-bit counter.

R B =7 B as i — DA EEE A, EUHER, NoFIF. SR
HEEEX MG BIFPGARR 8, RSB EIPrE M6 MTFHELEFTE TR B R —k
Foye T, IRREFEIE. O — AT, BRI Mhick, Si500ZF . F
RAMESERERERE S, T4 -

Construct a PWM waveform with a generator function and set the threshold with a function (triangular
or a sine function). A triangular function can be created by counting up and down. A sinus function with
the use of a lookup table that you can generate with a few lines of Scala code (see Section 12.3). Drive a
LED on an FPGA board with that modulated PWM function. What frequency shall your PWM signal be?
What frequency is the driver running?

E—IPWMBOL R, ERARERE, HFamBrE—1EE (SAREEZEE) -
— = AR L [ R T EELE o — N BE BRI R R ARAT LE L
FrScalaf T4 (W 12.38853) o FHFPGAMRARE)—NLED, S FAR A Hlid FIPWMBR AL -
HIPWMIE SARNIZ RN 47 BN PREh AR L /D7

Digital designs are often sketched as a circuit on paper. Not all details need to be shown. We use
block diagrams, like in the figures in this book. It is an important skill to be able to fluently translate
between a schematic representation of the circuit and a Chisel description. Sketch the block diagram for
the following circuits:

Byt HE s L - ARFTE AT EHR ZRRR - BAIEHER, BEFH LW
o XAR—NEEMNTRE, RGRHTEH BRI Chisel 1R B R 2 MEE - #4% T BRI
HEEA:
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val dout = WireDefault (0.U)

switch(sel) {
is (0.U) { dout := 0.U }

is(1.U) { dout := 11.U }
is (2.U) { dout := 22.U }
is(3.U) { dout := 33.U }

2 is (4.U) { dout := 44.U }
is (5.U) { dout := 55.U }
}

Here a little bit more complex circuit, containing a register:

XEA— IR R, B — D EF e

val regAcc = Reglnit(0.U(8.W))

switch(sel) {

is (0.U) { regAcc := regAcc}

is (1.U) { regAcc 0.U}

is (2.U) { regAcc := regAcc + din}
is (3.U) { regAcc
}

regAcc — din}
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Chapter 9

PGB

Input signals from the external world into our synchronous circuit are usually not synchronous to the clock;
they are asynchronous. An input signal may come from a source that does not have a clean transition from
Oto1or1to0. An example is a bouncing button or switch. Input signals may be noisy with spikes that
could trigger a transition in our synchronous circuit. This chapter describes circuits that deal with such
input conditions.

K BINEFHFRRES, BIFATORELZ B, LR TRERFAZFELR, MR DH -
— P ES AR E — DR, WE— T EREE, NoFIL, BEMIFEI0. — P HlFE—1
B IEHERIT R . MABSARERWRAER, BER, FTEEEREA KPR — IR .
IXEIA T ACH R A E L L -

The latter two issues, debouncing switches, and filtering noise, can also be solved with external,
analog components. However, it is more (cost-)efficient to deal with those issues in the digital domain.

BIGHAEO, BIEEhT R, FIBIERE , Wr] DMk - (B2, XPER
(THREME) AR, EMERIXEERR, 7 A .

9.1 RIPHA

Input signals that are not synchronous to the system clock are called asynchronous signals. Those signals
may violate the setup and hold time of the input of a flip-flop. This violation may result in Metastability
of the flip-flop. The Metastability may result in an output value between 0 and 1 or it may result in
oscillation. However, after some time the flip-flop will stabilize at O or 1.

BERIP R RGBSR RS ES « XG5 ATHeE S T AR 255 A\ I LA
PREFIFA] o X NERFTBES SEMASHEZRE . XPHEZRRAATRES S 20 HEE0M, BE
=HEES - BE, E-BEEE, MrasaTEEfronil.

We cannot avoid Metastability, but we can contain its effects. A classic solution is to use two flip-flops
at the input. The assumption is: when the first flip-flop becomes metastable, it will resolve to a stable state
within the clock period so that the setup and hold times of the second flip-flop will not be violated.

HATABERT ILZ TR, BT AT LA G R . — P SR A A\ BE R i 4
fr o XNEIBERE: X MMASRESTRSHN G, Mt — N EAHERSEIREE, S
i & 2 SRS (RIS 2 0E -
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Figure 9.1: [FI2PHIA

Figure 9.1 shows the border between the synchronous circuit and the external world. The input
synchronizer consists of two flip-flops. The Chisel code for the input synchronizer is a one-liner that
instantiates two registers.

B 9.157R | [FI2P FLBEFISMER R A 5 - AR GG M 2% - TR RIF 538
FChiselfCR% & — 4TI SE BRI Y 7 77 25

val btnSync = RegNext(RegNext(btn))

' We also need to synchronize an

All asynchronous external signals need an input synchronizer.
external reset signal. The reset signal shall pass through the two flip-flops before it is used as the reset
signal for other flip-flops in the circuit. Concrete the de-assertion of the reset need to be synchronous to
the clock.

AR INRE S TE - PRARD 2 RATBTFEFR S MM EERFS - X1MEE
EENZCEE WA S, BREEMASRER, (FhvHEEES . BRNEERFSET, &
E-JCibaZEdl iRz

9.2 PBhiElsh

Switches and buttons may need some time to transition between on and off. During the transition, the
switch may bounce between those two states. If we use such a signal without further processing, we
might detect more transition events than we want to. One solution is to use time to filter out this bouncing.
Assuming a maximum bouncing time of ¢4, We Will sample the input signals with a period T > tpounce-
We will only use the sampled signal further downstream.

TR AL AT RETR ZEAE TP A R B R TR B — L[] . AR R, FFRATRERTE &
ZIEEG . WRBENEAIFE-NMES, WEESRLEAE, BRI NEHRAEZNE
ZEENE . — DARRTT ORI R RIS X DB o BORR KBRS A Etpounce . FT]
SRR MANGES, AT > tounce « FMNTASERRIFE ST HEHRE -

When sampling the input with this long period, we know that on a transition from O to 1 only one
sample may fall into the bouncing region. The sample before will safely read a 0, and the sample after the

bouncing region will safely read a 1. The sample in the bouncing region will either be O or a 1. However,

I'The exception is when the input signal is dependent on a synchronous output signal, and we know the maximum propagation
delay. A classic example is the interfacing an asynchronous SRAM to a synchronous circuit, e.g., by a microprocessor.

ISR, HEAFSEBTRPHMAEES, RIAERAERER . — M EBF T2, FPSRAME|—1F
WRBRIERO, Flin, — MUt .
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this does not matter as it then belongs either to the still O samples or to the already 1 samples. The critical
point is that we have only one transition from 0 to 1.

SEHAXAIREE, BATESINOENEE, A2 —PMHEAREANEGX . X EHLH
BHAZZREAN0, EREGXEARLE, 2Z2EALEGKOEASEHL. HE, SEET
RN BB CAE] TIRALE, IXFARM, XA AR AT RNAE —RN0E 1L
Lo

Figure 9.2 shows the sampling for the debouncing in action. The top signal shows the bouncing input,
and the arrows below show the sampling points. The distance between those sampling points needs to
be longer than the maximum bouncing time. The first sample safely samples a 0, and the last sample in
the figure samples a 1. The middle sample falls into the bouncing time. It may either be O or 1. The two
possible outcomes are shown as debounce A and debounce B. Both have a single transition from O to 1.
The only difference between these two outcomes is that the transition in version B is one sample period
later. However, this is usually a non-issue.

KR9.2580R T T aIRERIEERE . & EIMESRRTEGRA, THRELERT
REER o IXEREE S AR RO B KRS I R A - SB— 2R, EHRE T —10, &
JE B AR EIREE, REET 1. REIFEREE, AT REHA A - ErRER0EGEL - 3X Al ERI4S
R #debounce AFfidebounce BRI o iX M NMH — P MO HIFLZS o ME— DX AR, X P 1% H
FEBRRA LA — N A LUS « HE, XA — 1 H .

The Chisel code for the debouncing is a little bit more evolved than the code for the synchronizer.
We generate the sample timing with a counter that delivers a single cycle tick signal, as we have done in
Section 8.2.2.

XA RBTEFIHIChisel (U5 =2 LU [F] 25 28 BEANEE ) o Bedl 10 T 2 A pll— R0
M, FIE—PRERCKE S, HURIATAES 2. 258 5T -

val FAC = 100000000/100

val btnDebReg = Reg(Bool())
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val cntReg = Reglnit(0.U(32.W))
val tick = cntReg === (FAC-1).U

cntReg := cntReg + 1.U
when (tick) {
cntReg := 0.U
btnDebReg := btnSync

First, we need to decide on the sampling frequency. The above example assumes a 100 MHz clock
and results in a sampling frequency of 100 Hz (assuming that the bouncing time is below 10 ms). The
maximum counter value is FAC, the division factor. We define a register btnDebReg for the debounced
signal, without a reset value. The register cntReg serves as counter, and the tick signal is true when the
counter has reached the maximum value. In that case, the when condition is true and (1) the counter is
reset to 0 and (2) the debounce register stores the input sample. In our example, the input signal is named
btnSync as it is the output from the input synchronizer shown in the previous section.

B, BAFHEREREIE . LAY T2 E— 1100 MHZROR 8, 1S ER R
100 Hz (BRI A/NT10 ms) o ATHEEERFAC, BRIEIET - FATE L—1F
fF#sbtnDebReg I TR EINHIE S, HERBEEENME . FiFerenReglERITEES, tick(E5H
B, YIEESENA T RRE . EIMHEN T, whenfI5& M uve, (DITEEHEER0, QP+
N e R A KR « AERATAET, BTSSR btnSync,

The debouncing circuit comes after the synchronizer circuit. First, we need to synchronize in the
asynchronous signal, then we can further process it in the digital domain.

PRSI ERSERED R B, RIEERASLREES, RERITTUESE
EAEETBL G OSER

9.3 HWAEFTIEK

Sometimes our input signal may be noisy, maybe containing spikes that we might sample unintentionally
with the input synchronizer and debouncing unit.

AR EEATEAGES2ERAER, AR S HATAEEE AR A F PR ) A IR
B «

One option to filter those input spikes is to use a majority voting circuit. In the simplest case, we
take three samples and perform the majority vote. The majority function, which is related to the median
function, results in the value of the majority. In our case, where we use sampling for the debouncing, we
perform the majority voting on the sampled signal. Majority voting ensures that the signal is stable for
longer than the sampling period.

— MEF X LR T R EA RS EAE R . AREANFEL, BIM=UCRRE, I
PUATRZEEE - The REBRELEMHPEREUHERE), MElERSEEE - ARANBIBIT
B, BAMERBHEERE, BAPRA T RZHBE, EREES . REBEREHR TESH U
EEIRAE JE T RS RE B[R] BE K

Figure 9.3 shows the circuit of the majority voter. It consists of a 3-bit shift register enabled by the
tick signal we used for the debouncing sampling. The output of the three registers is feed into the majority

voting circuit. The majority voting function filters any signal change shorter than the sample period.
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The following Chisel code shows the 3-bit shift register, enabled by the tick signal and the voting
function, resulting in the signal btnClean.

DA FChiselfCF3 R on TN B AL A 788, Htick(E 5 gtk , H AR ERE, SFHTHE
“ZbtnClean -

Note, that a majority voting is very seldom needed.

ER, XM AREZEHREEROFEL -

val shiftReg = Reglnit(0.U(3.W))

when (tick) {

// shift left and input in LSB
shiftReg := Cat(shiftReg(l, 0), btnDebReg)

}

// Majority voiting
val btnClean = (shiftReg(2) & shiftReg(1l)) | (shiftReg(2) & shiftReg(0)) | (
shiftReg (1) & shiftReg (0))

To use the output of our carefully processed input signal, we first detect the rising edge with a RegNext
delay element and then compare this signal with the current value of btnClean to enable the counter to
increment.

T AEH ﬁﬂ‘l%ﬁi;ﬁwifi WEI S RH . BATE % FRegNextiE BT R fe I 7+
W, R ME SR 4 Bl {EbtnCleantt 3%, A {FRETTELES 2300

val risingEdge = btnClean & !RegNext(btnClean)

3 // Use the rising edge of the debounced and

/] filtered button to count up
val reg = Reglnit (0.U(8.W))
when (risingEdge) {

reg := reg + 1.U

}
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9.4 fEH LS HIALHE

To summarize the input processing, we show some more Chisel code. As the presented circuits might
be tiny, but reusable building blocks, we encapsulate them in functions. Section ?? showed how we can
abstract small building blocks in lightweight Chisel functions instead of full modules. Those Chisel
functions create hardware instances, e.g., the function sync creates two flip-flops connected to the input
and to each other. The function returns the output of the second flip-flop. If useful, those functions can be
elevated to some utility class object.

N T EEER A, BATER T ELZHChisel{ U5« A TEIMAT BB ATRER /D, (H2 X R
A E AR, TN T X AR R - 2280 R T an a8 F i & 2 Chisel bR BT /N
PEEBESAR, MR MESR . IR Chisel RELOHE T HEASEH], B0, syncREAE T MW
AR ST o RECRE TR T M A AR o aRE HEE, XS R LUH
KAETERAIN R .

def sync(v: Bool) = RegNext(RegNext(v))
def rising(v: Bool) = v & !RegNext(v)

def tickGen(fac: Int) = {
val reg = Reglnit (0.U(log2Up(fac).W))

val tick = reg === (fac—-1).U
reg := Mux(tick, 0.U, reg + 1.U)
tick

}

def filter(v: Bool, t: Bool) = {

3 val reg = Reglnit(0.U(3.W))

when (t) {
reg := Cat(reg(l, 0), v)
}
(reg(2) & reg(1l)) | (reg(2) & reg(0)) | (reg(l) & reg(0))
}

val btnSync = sync(btn)

2 val tick = tickGen (fac)
3 val btnDeb = Reg(Bool())

when (tick) {
btnDeb := btnSync
}

val btnClean = filter (btnDeb, tick)
val risingEdge = rising (btnClean)

// Use the rising edge of the debounced
// and filtered button for the counter

3 val reg = Reglnit (0.U(8.W))

when (risingEdge) {
reg := reg + 1.U
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Listing 9.1: Summarizing input processing with functions

9.5 %]

Build a counter that is incremented by an input button. Display the counter value in binary with the LEDs
on an FPGA board. Build the complete input processing chain with: (1) an input synchronizer, (2) a
debouncing circuit, (3) a majority voting circuit to suppress noise, and (4) an edge detection circuit to
trigger the increment of the counter.

B MTE, B DRI I RUE . TR B M EE, H A ELEDR
REUFPGARR - EEEE N ALLIREE, . (1) WARDE, () pifshdaR, 3) —14
REBHZREEEBIESE, 1 (4) DU AEEE 5| LT EEsEER R .

As there is no guarantee that modern button will always bounce, you can simulate the bouncing and
the spikes by pressing the button manually in a fast succession and using a low sample frequency. Select,
e.g., one second as sample frequency, i.e., if the input clock runs at 100 MHz, divide it by 100,000,000.
Simulate a bouncing button by pressing several times in fast succession before settling to a stable press.
Test your circuit without and with the debouncing circuit sampling at 1 Hz.

X EARRIEMRNHH2EFES, IR DRI D RGMERN, 8 T 5%
H, DUPREFERSRA T BE, B, —F— kAR, B, anREI AR #7E100 MHz, BR
LA10OM - FEFSEF R R, @i PR R HOR, BTG HH - MR R, EHbiEshE
B, TR R FEE, SRIEIRAE]L Hz -
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Chapter 10

A FRARZSAL

A finite-state machine (FSM) is a basic building block in digital design. An FSM can be described as a set
of states and conditional (guarded) state transitions between states. An FSM has an initial state, which is
set on reset. FSMs are also called synchronous sequential circuits.

BIRRETL (FSM) & — D EUT LB A B A R 15 AR o — DFESMA] DL R 9 —

AstatesFl CEIRHIET) IRESEAMF state transitions . — FSMA — M IRIRA, IX 2 Ereset H#
FRERT . FSMsHLBEFR Ay [R] A2 Af Fe Fi i o

An implementation of an FSM consists of three parts: (1) a register that holds the current state, (2)
combinational logic that computes the next state that depends on the current state and the input, and (3)
combinational logic that computes the output of the FSM.

FSMAJSEELEFE =P8R (1) — D EBIARTHFFEE, Q) HeZHiRE ik S
AT ETMIRE, 3) HE @R T EFSMATHIH -

In principle, every digital circuit that contains a register or other memory elements to store state can
be described as a single FSM. However, this might not be practical, e.g., try to describe your laptop
as a single FSM. In the next chapter, we describe how to build larger systems out of smaller FSMs by
combining them into communicating FSMs.

JENE, SN REBES - P HFFNEREEFESR T EMEIRE, AT Ry —
NFSM. B, ERTREANSEA, BN, 1EIRE %Eu?ﬁa ARH—FSM. NAET, AR A
it A/ NIFSMIE TR (EFSM,  FE BRI ARLT -

10.1  EAFRRRE

state
Next
state |~ next_state —» ?‘;‘p‘;' out >
logic 9
—in —»|

Figure 10.1: A finite state machine (Moore type).

Figure 10.1 shows the schematics of an FSM. The register contains the current state. The next state
logic computes the next state value (next_state) from the current state and the input (in). On the next clock
tick, state becomes next_state. The output logic computes the output (out). As the output depends on the

current state only, this state machine is called a Moore machine.
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B F 10.1 ZEAFSMRE K. FF e85 B i Hstate. 1B stateF%5 A (in) T HE T IR SR
RSB MR (next_state) - £ N DB, state Z5 R next_state. B P ITEEH (our). R NEiH R
RT HEPRE, XFEAPIRESHLEFR 7 Moore machine.

A state diagram describes the behavior of such an FSM visually. In a state diagram, individual states
are depicted as circles labeled with the state names. State transitions are shown with arrows between
states. The guard (or condition) when this transition is taken is drawn as a label for the arrow.

state diagram {5 F I JEAEIAFSMAAT J9 o ZEARS AT, B AR S # i BRIk 8 4 =2 1 [
Bl RASEBEIER RS Z AT, . X MR HCRBUE R, SO AR 2 ARk L)
PR

Figure 10.2 shows the state diagram of a simple example FSM. The FSM has three states: green,
orange, and red, indicating a level of alarm. The FSM starts at the green level. When a bad event happens
the alarm level is switched to orange. On a second bad event, the alarm level is switched to red. In that
case, we want to ring a bell; ring bell it the only output of this FSM. We add the output to the red state.
The alarm can be reset with a clear signal.

102K A 1 T — & BEFSM Yl F B 5 - PMESMAE = /MIRA: green, orange, and red,
FEHM R PSS - FSMUASREE SR NI, %'ibad event X "IN, [HEHN T Eorange -
R — DI A, R S RN red . AEALFBEILT . BATEZEME : ring bellj&ME—
AIFSMAHIT Y o N T Ered IR NG INFI I - SRS MRS ] LI E B # clear(E 5 -

bad event bad event

clear

reset

Figure 10.2: The state diagram of an alarm FSM.

Although a state diagram may be visually pleasing and the function of an FSM can be grasped quickly,
a state table may be quicker to write down. Table 10.1 shows the state table for our alarm FSM. We
list the current state, the input values, the resulting next state, and the output value for the current state.
In principle, we would need to specify all possible inputs for all possible states. This table would have
3 x 4 = 12 rows. We simplify the table by indicating that the clear input is a don’t care when a bad event
happens. That means bad event has priority over clear. The output column has some repetition. If we
have a larger FSM and/or more outputs, we can split the table into two, one for the next state logic and
one for the output logic.

RERESEEERRIREF IR, — PFSMATLUBCHREESR, B 2IRER AT U RIS R
10.1 B PRR A FATTH R ESFSMEIRAS SR - BATIIH T HERRAE, BAE, %ﬂ?ﬁ%?ﬂ%ﬁ’ﬂﬁj‘
ALY EPRS AR HE - R B, RATHRZE S E AT RIS NI E R AE - XD FRAEAT L
H3#4=1251 o AN FAEHATEAN,  Zibad event & R, ’ﬁau)\cleamzx B PR
Ebad eventXf Tclear HILY - FithdIE —LEHE . WRIAE — P ERKHIFSMEE B £ K
., BATTLEESIER D AW AD, — PHETITE N REZE, — AT ERELHEE .

Finally, after all the design of our warning level FSM, we shall code it in Chisel. Listing ?? shows the
Chisel code for the alarm FSM. Note, that we use the Chisel type Bool for the inputs and the output of the
FSM. To use Enum and the switch control instruction, we need to import chisel3.util._

g, BEIENERERFSMOT, A6 Hchisel 5 MUS . 228 T lﬁﬂ FRFSMH]Chisel{t.
. EEF], BAEH ChiselIBool/E R HI TR REL o T 8 FHEnumswirch 218 <
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"

Table 10.1: State table for the alarm FSM.

Input
State  Bad event Clear Nextstate Ring bell
green 0 0 green 0
green 1 - orange 0
orange 0 0 orange 0
orange 1 - red 0
orange 0 1 green 0
red 0 0 red 1
red 0 1 green 1

FAMTFTEG| N chisel3.util._ -

import chisel3._
import chisel3 . util . _

class SimpleFsm extends Module {
val io = IO (new Bundle{
val badEvent = Input(Bool())
val clear = Input(Bool())
val ringBell = Output(Bool())
P

// The three states

val green :: orange :: red

// The state register

val stateReg = Reglnit(green)

// Next state logic
switch (stateReg) {
is (green) {
when(io.badEvent) {

stateReg := orange

}
is (orange) {
when(io.badEvent) {

stateReg := red
} .elsewhen(io.clear) {
stateReg := green
}
}
is (red) {

when (io.clear) {

stateReg := green

Nil = Enum(3)
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// Output logic
io.ringBell := stateReg === red

The complete Chisel code for this simple FSM fits into one page. Let us step through the individual
parts. The FSM has two input and a single output signal, captured in a Chisel Bundle:

X A 1] H FIFSMIYIChisel 72 B (U5 AT USRS N — TU4L A BATAIRSL B3R 50 JF 4 - 3X
PNESMAE R M A —HIH{E S, #EChiselBundlef] £l

val io = IO(new Bundle{

val badEvent = Input(Bool())
val clear = Input(Bool())

val ringBell = Output(Bool())

9]

Quite some work has been spent in optimal state encoding. Two common options are binary or one-hot
encoding. However, we leave those low-level decisions to the synthesize tool and aim for readable code.!
Therefore, we use an enumeration type with symbolic names for the states:

RUE B A BRI AS Lt ATl — 22050 - PIARR AR B iy - (R, ]
EXEREREL R E TR, LA . 2 T2, BAER T EnumB 51045 H
TR

val green :: orange :: red :: Nil = Enum(3)

The individual state values are described as a list where the individual elements are concatenated with
the :: operator; Nil represents the end of the list. An Enum instance is assigned to the list of states. The
register holding the state is defined with the green state as the reset value:
BMAPIRSZ B A I — D FS, X BRI RE LT A NIREFIINEERE -
Enum=E ) 2 Wassigned (B —FPIRE . & BFIREHIF 788 green’ K SHUE LEEE(E -

val stateReg = Reglnit(green)

The meat of the FSM is in the next state logic. We use a Chisel switch on the state register to cover all
states. Within each is branch we code the next state logic, which depends on the inputs, by assigning a
new value for our state register:

FSMAIRZDTE N —MMREB R E L - ol 108 F Chiselfswitch B B, FEARASFF A4, EIIHET
BIRE . B8 s, FARE T HIREZE, BT, TS HATARES S 748
THT O ELE -

switch (stateReg) {
is (green) {
when(io.badEvent) {

'In the current version of Chisel the Enum type represents states in binary encoding. If we want a different encoding, e.g.,
one-hot encoding, we can define Chisel constants for the state names.
EEBIRIRA, EnumfFE HHIRE RS . WRBEATEES —Fhgmis, Flin, MG, BATPIRESEIE

M chisel H & -
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stateReg := orange

1
is (orange) {
when(io.badEvent) {

stateReg := red
} .elsewhen(io.clear) {
stateReg := green
}
}
is (red) {

when (io.clear) {
stateReg := green

}

Last, but not least, we code our ringing bell output to be true when the state is red.

IEEZEN, BARE T ringing bell PRI AE, RS Zred -

io.ringBell := stateReg === red

Note that we did not introduce a next_state signal for the register input, as it is common practice
in Verilog or VHDL. Registers in Verilog and VHDL are described in a special syntax and cannot be
assigned (and reassigned) within a combinational block. Therefore, the additional signal, computed in a
combinational block, is introduced and connected to the register input. In Chisel a register is a base type
and can be freely used within a combinational block.

ILERATEE 5| Anext_statelE T Fanii N, RE X TEverilogBi &vhdliE H AT - ver-
ilogFIVHDLI & s R ik — MR ERIE L, HFEARMESNEEEME, £— 1 HGE
Re TR, FOMNOIES, EHSERPOTELR, HERATHEHOMA . fEChisel, FFH
e MEARAL, AT LUEIT A ESR R R -

10.2 f#fMealy FSM/™ A= H 3 i

On a Moore FSM, the output depends only on the current state. That means that a change of an input can
be seen as a change of the output earliest in the next clock cycle. If we want to observe an immediate
change, we need a combinational path from the input to the output. Let us consider a minimal example,
an edge detection circuit. We have seen this Chisel one-liner before:

f£—"Moore FSM, Hii i (H HBURT S PR o BRRARCE B A 22s T AR 5 B0 L 1Y
AR R o RN EIE RS, BIFE-MEHEREE, WEAZ
Bt o AEBATE—DEPIT, DR EE . FATRHELIETE 13X — 1T Chisel U3

val risingEdge = din & !RegNext(din)

Figure 10.3 shows the schematic of the rising edge detector. The output becomes 1 for one clock cycle
when the current input is 1 and the input in the last clock cycle was 0. The state register is just a single D
flip-flop where the next state is just the input. We can also consider this as a delay element of one clock

cycle. The output logic compares the current input with the current state.
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Figure 10.3: A rising edge detector (Mealy type FSM).

A 103580 7 EFinte g s« SX 0 FIE A IR, 20— EY, Kt
AR, HF B EA AR A, X IR EF s AR — PRI ADARAZ S, T HIRERZ A
{H o BATEATLHEXANE R — P RFEIR T E Kt HL B B AR = RS -

When the output depends also on the input, i.e., there is a combinational path between the input of the
FSM and the output, this is called a Mealy machine.

LW BURTRIA, B, B EHE BB R AEFSMA Fy A\ N B 22 8], X AR

Mealy machine -

state

Next
state [— next_state —»| >
logic Ouput

—in logic
r /\

Figure 10.4: A Mealy type finite state machine.

I out

Figure 10.4 shows the schematic of a Mealy type FSM. Similar to the Moore FSM, the register
contains the current state, and the next state logic computes the next state value (next_state) from the
current state and the input (in). On the next clock tick, state becomes next_state. The output logic
computes the output (out) from the current state and the input to the FSM.

Figure 10.4 & T Mealy R A FFSMAIEE] - KLl TMoore FSM, ZFE28 L& T 2 Filstate,

A B = Histare M () I TAT B (next_state) FPIREIZHE « AR — DB, stateZ Hnext_state -
i 5 S BPIR S (our) T B S H -

0/0 1/0
11

reset

0/0

Figure 10.5: The state diagram of the rising edge detector as Mealy FSM.

Figure 10.5 shows the state diagram of the Mealy FSM for the edge detector. As the state register
consists just of a single D flip-flop, only two states are possible, which we name zero and one in this
example.

@ﬁuﬁ%%Mwmemﬁul HT e /EREFFS, a7 21D
Kw, SEWMIRESEGER, EX 15, ZEzeroffone -
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As the output of a Mealy FSM does not only depend on the state, but also on the input, we cannot
describe the output as part of the state circle. Instead, the transitions between the states are labeled with
the input value (condition) and the output (after the slash). Note also that we draw self transitions, e.g.,
in state zero when the input is 0 the FSM stays in state zero, and the output is 0. The rising edge FSM
generates the / output only on the transition from state zero to state one. In state one, which represents
that the input is now /, the output is 0. We only want a single (cycle) puls for each rising edge of the input.

YENMealy FSMAUHIH , FEAURMKITIRS, AT R, BATARERAR R H A EIRE
[BIA—HB5> - MR, IRASIEIHAL RS o BSOS A (EANR HE 2 — R H s e . EEEIRNTEAS
FPREER, Biltn, ERToLHEAZ0, FSMEEE0, HithZ0. FSMA_ LT 4 11E K
., AEIMRTOERREEN - EIRET, ERBANAER], BilZo. BRIMWEBLE—PXT
MR ETHE, PER—FHRBE .

I import chisel3 . _
2 import chisel3 . util._

4 class RisingFsm extends Module {

5 val io = IO (new Bundle{

6 val din = Input(Bool())

val risingEdge = Output(Bool())

2

s 1)

10 // The two states

11 val zero :: one :: Nil = Enum(2)

13 // The state register

14 val stateReg = Reglnit(zero)
15

16 // default value for output

17 io.risingEdge := false.B

18

19 // Next state and output logic

20 switch (stateReg) {

21 is (zero) {

22 when(io.din) {

23 stateReg := one
24 io.risingEdge := true.B
25 }

26 }

27 is(one) {

28 when (!io.din) {

29 stateReg := zero
30 }

3] }

Listing 10.1: Rising edge detection with a Mealy FSM

Listing 10.1 shows the Chisel code for the rising edge detection with a Mealy machine. As in the

previous example, we use the Chisel type Bool for the single-bit input and output. The output logic is now
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part of the next state logic; on the transition from zero to one, the output is set to true.B. Otherwise, the
default assignment to the output (false.B) counts.

10.15R 8 T FMealy#L25 F T L AW RS A chisel (S o GURFTAAIFIF, FA 1 Hchisel
R Bool FI T B ILFF B AR Y - B2 N MBI —8 5, A MzeroBlone M LT R,
Bt WOE Htrue. B BMENE, BOARIEZ % i (false.B) -

One can ask if a full-blown FSM is the best solution for the edge detection circuit, especially, as we
have seen a Chisel one-liner for the same functionality. The hardware consumptions is similar. Both
solutions need a single D flip-flop for the state. The combinational logic for the FSM is probably a bit
more complicated, as the state change depends on the current state and the input value. For this function,
the one-liner is easier to write and easier to read, which is more important. Therefore, the one-liner is the
preferred solution.

QSRR A0 R — D AENVAIRSMAE AN — D R IF A BTG T A B A e 0 7 i, R, 1R
11E 2 chisel AT BRR T FIFER AR . B (RETHFER FIRERT o DI ARR T R — D DAl
KEEATHRRARES . FSMIVAE P ATRERE A8, MERSHE, FEMHT I RS
MNE- MNTFRXEE, BTREESEMEEN, XTMEAEZE. T&, BTREEEFIRE
RITHC

We have used this example to show one of the smallest possible Mealy FSMs. FSMs shall be used for
more complex circuits with three and more states.

HATELMEA T M7 KR T — DN R T L% 5 Mealy FSM - FSMB 75y
HORE) = a0 2 IR R BB -

10.3 MooreX} [t Mealy

To show the difference between a Moore and Mealy FSM, we redo the edge detection with a Moore FSM.
7T FAAMooreFiMealy FSMI X A, FA TE M 1 — 1% FiMoore FSMu#AT A1 16 -

1 1

= @ @ @

Figure 10.6: The state diagram of the rising edge detector as Moore FSM.

Figure 10.6 shows the state diagram for the rising edge detection with a Moore FSM. The first thing
to notice is that the Moore FSM needs three states, compared to two states in the Mealy version. The state
puls is needed to produce the single-cycle puls. The FSM stays in state puls just one clock cycle and then
proceeds either back to the start state zero or to the one state, waiting for the input to become 0 again. We
show the input condition on the state transition arrows and the FSM output within the state representing
circles.

KR 10.6 M T FiMoore FSMAPIRAS I T LA « 3B — P15 & L TEEEIMoore
ESMAE =R, M TMealy MURTRE N IR« puls RESTH 274 8 — I B -
FSMAE TR puls L E— 1, R IREIEITT A RS zerosiE K Eone, S RHIAFIREZEHO -
FATTRI T AERGS AR T L N R AGRE, AIAER B CRAIRAS T FSMAH H! -
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I import chisel3._

2 import chisel3 . util._

4 class RisingMooreFsm extends Module {

5 val io = IO(new Bundle({

6 val din = Input(Bool())

7 val risingEdge = Output(Bool())
8 b

10 // The three states

11 val zero :: puls :: one :: Nil = Enum(3)

13 // The state register
14 val stateReg = Reglnit(zero)

16 // Next state logic
17 switch (stateReg) {

18 is(zero) f{

19 when(io.din) {

20 stateReg := puls
21 }

22 }

23 is(puls) {

24 when(io.din) {

25 stateReg := one
26 } .otherwise {

27 stateReg := zero
28 }

29 }

30 is(one) {

31 when (!io.din) {

32 stateReg := zero
3 )

34 }

37 // Output logic
38 io.risingEdge := stateReg === puls
39 }

Listing 10.2: Rising edge detection with a Moore FSM

10.2 shows the Moore version of the rising edge detection circuit. Is uses double the number of D
flip-flops than the Mealy or direct coded version. The resulting next state logic is therefore also larger
than the Mealy or direct coded version.

10.252 B 1 MooreilUA B EFH TG I L B% - B O RUERIDMAR A &5 . HMealy 502 B AR
K. AL BT R Meal y BUEFERR AR A BE K -

Figure 10.7 shows the waveform of a Mealy and a Moore version of the rising edge detection FSM.
We can see that the Mealy output closely follows the input rising edge, while the Moore output rises after
the clock tick. We can also see that the Moore output is one clock cycle wide, where the Mealy output is

usually less than a clock cycle.
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Figure 10.7: Mealy and a Moore FSM waveform for rising edge detection.

Bl A 107380 T Mealy FiMoore it A 1_E AT RMIFSM - /7 7] LIE E|Mealy i H & K EREE - A
AW, ZHMoorefi AR Bitick/s BT - T TR LLE BMoorek & — 1> I B JE B 1 B8 2
T Mealy i tH — B/ NF— B4 -

From the above example, one is tempted to find Mealy FSMs the better FSMs as they need less state
(and therefore logic) and react faster than a Moore FSM. However, the combinational path within a Mealy
machine can cause trouble in larger designs. First, with a chain of communicating FSM (see next chapter),
this combinational path can become lengthy. Second, if the communicating FSMs build a circle, the result
is a combinational loop, which is an error in synchronous design. Due to a cut in the combinational path
with the state register in a Moore FSM, all the above issues do not exist for communicating Moore FSMs.

MELERIFIT, ARFT LA Mealy FSMAZ B IFR), RN EREEDHPRE (FIZH) | I
EtMoore FSM M BEER « {HJE, #E— 1 "MealyfLastf, 255 FLIE AT BEAE BERHUB AR E L & iR
M- B, BE—#EFEFSM (BT —%) , XPHGERHATLIRK . Hik, WWRFSMPEE
M —DERE, 2EMRAEER B, ERPBOHERER . BT EERESEFFIRIE S EBT—
M TEIE HiMoore FSM, iR [R[#I#EMoore FSMiB {5 N FAAE -

In summary, Moore FSMs combine better for communicating state machines; they are more robust
than Mealy FSMs. Use Mealy FSMs only when the reaction within the same cycle is of utmost importance.
Small circuits such as the rising edge detection, which are practically Mealy machines, are fine as well.

JEEEAAL, Moore FSMAEIRASHLIANE (FHIH G A1), ] HEMealy FSMESNESRE - (&
FiMealy FSM AU 2 SeiE A AR R R SO, N B BB . R, o IR, 1REK
Fr b Mealy#L, iR LAY -

10.4 %:>]

In this chapter, you have seen many examples of very small FSMs. Now it is time to write some real FSM
code. Pick a little bit more complex example and implement the FSM and write a test bench for it.

EXNET, FRERIRE/NHIFSME T o« AR RS —LHELHFSMIUE T o B — A
MR T, HEFNFTE—PFSM, F—

A classic example for a FSM is a traffic light controller. A traffic light controller has to ensure that on
a switch from red to green there is a phase in between where both roads in the intersection have a no-go
light (red and orange). To make this example a little bit more interesting, consider a priority road. The
minor road has two car detectors (on both entries into the intersection). Switch to green for the minor
road only when a car is detected and then switch back to green for the priority road.

— PNEIFSMPIHI T ASEITEHIZTR (R 14.35) o — D ACBAT EEH 25 5 2 L1 € M ZLEILk Y
D, H—PRERMFZHBAPERERFEST (LABEFR) o R T X725 E
—& BRI ETE. BIBEFEENDERRNES EXXBHDIAL) « HREDERHN
e, FERIBSIHBIERIT, IR UIH A 3 T E I [EI4RAT -
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Chapter 11

REVLEE

A problem is often too complex to describe it with a single FSM. In that case, the problem can be divided
into two or more smaller and simpler FSMs. Those FSMs then communicate with signals. One FSMs
output is another FSMs input, and the FSM watches the output of the other FSM. When we split a large
FSM into simpler ones, this is called factoring FSMs. However, often communicating FSMs are directly
designed from the specification, as often a single FSM would be infeasible large.
— AR, BHRER, EFHBE-FSMEMAR—DEE . EIRFMEL T, X4 E >
A LA S AP B BN R AFSM - X SSRSMAR S (A5 5 215 - — 1" FSMM %I &
H—AFSMAIEIN , SRJEIXMFSMMER T 5 — A FSMAIH - 4 ?ﬂ‘am%ﬁ~/\jﬁ”FSMﬂvﬁﬁ$
FIFSM, X DR N EFSM o (B, Z8HRUL, BEEMRIEESREFSMZ BITER, 1Eh—
NME R HIFSM 2 2 3EH KA .

111 — DTN ERES BB+

To discuss communicating FSMs, we use an example from [?, Chapter 17], the light flasher. The light

flasher has one input start and one output light. The specification of the light flasher is as follows:
e when start is high for one clock cycle, the flashing sequence starts;
e the sequence is to flash three times;

e where the light goes on for six clock cycles, and the light goes off for four clock cycles between

flashes;

o after the sequence, the FSM switches the light off and waits for the next start.

79T VHEFSMIIE TS, FATERA +LER—D01F, KIOCRSRES TN RS E — 1
AstartFl— i Hilight - KT EARRERR R0

o Hstart 7E— BN, NHRFIIHF 1A

o —MFIIAFEZIR

o HlightZ Non H6 AR, lightZE Noff PU A, ZE—IRINERH -
o HEFHE, FSMZENlight off, 215 F— 1 IF1E -
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The FSM for a direct implementation' has 27 states: one initial state that is waiting for the input,
3 x 6 states for the three on states and 2 x 4 states for the off states. We do not show the code for this
simple-minded implementation of the light flasher.

FSMA T EZEN T2 RS — DIFREREFRA, 3 x 6 IR, XMFH = Pon kIR
A&, FH2 x 4aRE, W TFoffRAS . BATARHIX AR 8BRS EIN MR Ee B CRS -

The problem can be solved more elegantly by factoring this large FSM into two smaller FSMs: the
master FSM implements the flashing logic, and the timer FSM implements the waiting. Figure 11.1 shows
the composition of the two FSMs.

XA R R AT LAE i B U 23 % R TUFSME M 1/ NHIFSM: EFSMANTE T I FRiZ 3, At i
FRESMHNIE T %45 . B 11L.1RE] TP FSMAJAE A -

start light
—— > Master FSM

»

A

timerLoad
timerSelect
timerDone

<
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<
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@

Figure 11.1: The light flasher split into a Master FSM and a Timer FSM.

The timer FSM counts down for 6 or 4 clock cycles to produce the desired timing. The timer
specification is as follows:

THIN ZSFSM M 6E4 A TR AR ERIER, I FPAE LA T

e when timerLoad is asserted, the timer loads a value into the down counter, independent of the state;
o timerSelect selects between 5 or 3 for the load;

o timerDone is asserted when the counter completed the countdown and remains asserted;

e otherwise, the timer counts down.

o Y timerLoad®iifi N, THIFBRLAZUER M N iHEkes, WAL TIRE -
o timerSelect JEFESE3, T L

e timerDone [ 5N, HITEERZEAL T M ML HARFFHEA -
o W, THIFE M TEL

Following code shows the timer FSM of the light flasher:
PUN BRI T FSMASI 52 FH T 52 AT B A

!"The state diagram is shown in [?, p. 376].
>The state diagram is shown in [?, p. 376].
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val timerReg = Reglnit (0.U)
timerDone := timerReg === 0.U

// Timer FSM (down counter)
when (! timerDone) {
timerReg := timerReg — 1.U
}

when (timerLoad) {

when (timerSelect) {

timerReg := 5.U
} .otherwise {
timerReg := 3.U
}
Listing 11.1: flasher timer
Listing 11.2 shows the master FSM.
11.2 B T EFSM.
val off :: flashl :: spacel :: flash2 :: space2 :: flash3 :: Nil = Enum(6)

val stateReg = Reglnit(off)

val light = WireDefault(false.B) // ESM output

// Timer connection

val timerLoad = WireDefault(false.B) // start timer with a load
val timerSelect = WireDefault(true.B) // select 6 or 4 cycles
val timerDone = Wire(Bool())

timerLoad := timerDone

// Master FSM
switch (stateReg) {

is (off) {

timerLoad := true.B

timerSelect := true.B

when (start) { stateReg := flashl }
}
is (flashl) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := spacel }
}
is (spacel) {

when (timerDone) { stateReg := flash2 }
}
is (flash2) {

timerSelect := false.B

light := true.B

when (timerDone) { stateReg := space2 }
}
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Figure 11.2: The light flasher split into a Master FSM, a Timer FSM, and a Counter FSM.

is (space2) {
when (timerDone) { stateReg := flash3 }
}
is (flash3) {
timerSelect := false.B
light := true.B
when (timerDone) { stateReg :

}

off }

Listing 11.2: flasher fsm

This solution with a master FSM and a timer has still redundancy in the code of the master FSM.
States flash1, flash2, and flash3 are performing the same function, states spacel and space2 as well. We
can factor out the number of remaining flashes into a second counter. Then the master FSM is reduced to
three states: off, flash, and space.

B~ EFSMAI— T Bgs R T RIGLAEEFSMA BRI TUAR - R3S fashl,  flash2,
Fflash35EACE [FIFERI R EL,  18H IR Sspacel Flcodespace2 - T A 1A LA B flash$E# 55 — 1M1k
5o IRE EFSMBEAEIRE] = MRS off, flash, 1 space -

Figure 11.2 shows the design with a master FSM and two FSMs that count: one FSM to count clock
cycles for the interval length of on and off; the second FSM to count the remaining flashes.

Bl 11.2 R T EFSMAIEIT RIS EUFSM - — "FSMA T i1 £onflloff Z [A] IR &
BKE, B AFSMZETTHETE R AIALE -

Following code shows the down counter FSM:

DU RS BHFSM I 1] it 508

val cntReg = Reglnit (0.U)
cntDone := cntReg === 0.U

// Down counter ESM

when(cntLoad) { cntReg := 2.U }
when(cntDecr) { cntReg := cntReg — 1.U }
//— end

val timerReg = Reglnit (0.U)
timerDone := timerReg === 0.U
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// Timer FSM (down counter)
when (! timerDone) {
timerReg := timerReg — 1.U
}
when (timerLoad) {
when (timerSelect) {
timerReg := 5.U
} .otherwise {
timerReg := 3.U

io.light := light

Listing 11.3: flasher2 counter

Note, that the counter is loaded with 2 for 3 flashes, as it counts the remaining flashes and is decremented
in state space when the timer is done. Listing 11.4 shows the master FSM for the double refactored flasher.
EEE, ITEEpa R, ZAM=IRE, FOVETHEC TRIANE, =TT 8545 R B gD
WEE - 114ARFEFSMA T IXUE AR -

val off :: flash :: space :: Nil = Enum(3)

val stateReg = Reglnit(off)

val light = WireDefault(false.B) // ESM output

// Timer connection

val timerLoad = WireDefault(false.B) // start timer with a load
val timerSelect = WireDefault(true .B) // select 6 or 4 cycles
val timerDone = Wire(Bool())

// Counter connection

val cntLoad = WireDefault(false .B)

val cntDecr = WireDefault(false .B)

val cntDone = Wire(Bool())

timerLoad := timerDone

switch (stateReg) {

is (off) {
timerLoad := true.B
timerSelect := true.B
cntLoad := true.B
when (start) { stateReg := flash }

}

is (flash) {
timerSelect := false.B
light := true.B
when (timerDone & !cntDone) { stateReg := space }
when (timerDone & cntDone) { stateReg := off }

}

is (space) {
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cntDecr := timerDone
when (timerDone) { stateReg := flash }

}

Listing 11.4: Master FSM of the double refactored light flasher

Besides having a master FSM that is reduced to just three states, our current solution is also better
configurable. No FSM needs to be changed if we want to change the length of the on or off intervals or
the number of flashes.

PR T H— I HEEE = IRASHIERSM, BATTH ATRIRR T R E— R R E TR - W
RENMEZE L onBEoff HIINFFECEIFRIRG,  IXEFSMFRZAEE -

In this section, we have explored communicating circuits, especially FSM, that only exchange control
signals. However, circuits can also exchange data. For the coordinated exchange of data, we use
handshake signals. The next section describes the ready-valid interface for flow control of unidirectional
data exchange.

FEIXNER Sy, BATELIRR T AR ENERE, FAlEFSM, A HRERIES - HE, B
AR - T REEIRRICH, BAEREBEFES - TR HEA T TR AR
Hi 1Y B[] ready-valid 7 ]

11.2 BEEHIEEB PRSI

One typical example of communicating state machines is a state machine combined with a datapath. This
combination is often called a finite state machine with datapath (FSMD). The state machine controls the
datapath, and the datapath performs the computation. The FSM input is the input from the environment
and the input from the datapath. The data from the environment is fed into the datapath, and the data
output comes from the datapath. Figure 11.3 shows an example of the combination of the FSM with the
datapath.

HATH)— RS FE’W T B B E B RS L - J_/l\fﬂ/\%}ﬂ‘i%jj,ﬁﬁiﬂ}% i
AR BRARASHLESMD) « X MRS LIZHIE B B, Bm@Es 2iar 8 - X P PSMEUE &R
H RS 1) Fg A AR B ;&TELE%E’JEEU)\ K B TEME R BRI A S B Es ok B EuEE
% - Figure 11.35% M —PEA HEEH (IFSMA & (5] 7 -

dinValid popCntValid
EEEE— >
dinReady FSM popCntReady
————————

A A
\ A
din opCnt

EEEE—— Datapath Lb

Figure 11.3: A state machine with a datapath.
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Figure 11.4: State diagram for the popcount FSM.

11.2.1  pi—itEes+

The FSMD shown in Figure 11.3 serves as an example that computes the popcount, also called the
Hamming weight. The Hamming weight is the number of symbols different from the zero symbol. For a
binary string, this is the number of ‘1’s.

FSMDPEE T 1131E— 05, EHEMITHEL A EE . NHEERE R
SHETAHASHIE . T ARTRF, 2IEE .

The popcount unit contains the data input din and the result output popCount, both connected to the
datapath. For the input and the output we use a ready-valid handshake. When data is available, valid is
asserted. When a receiver can accept data it asserts ready. When both signals are asserted the transfer
takes place. The handshake signals are connected to the FSM. The FSM is connected with the datapath
with control signals towards the datapath and with status signals from the datapath.

AL 1T R T & BUR i A\ dinFN 45 S5 HpopCount, FEFEBVEIR B ES - X Ty A Fnf |
HATHE Fready-validiE T(5 5 - HEIEZATHAY, i Hlvalid. = BEWCES AT DU BURE, M
Mready . HfF5HHI, FIAKREGES - BFESHEFSM . fsmflf HERIE 5 & AKEHE
B, E R HEGEER RIS E S ERIES -

As a next step, we can design the FSM, starting with a state diagram, shown in Figure 11.4. We start
in state Idle, where the FSM waits for input. When data arrives, signaled with a valid signal, the FSM
advances to state Load to load a shift register. The FSM proceeds to the next state Count, there the number
of ‘1’s is counted sequentially. We use a shift register, an adder, an accumulator register, and a down
counter to perform the computation. When the down counter reaches zero, we are finished and the FSM
moves to state Done. There the FSM signals with a valid signal that the popcount value is ready to be
consumed. On a ready signal from the receiver, the FSM moves back to the /dle state, ready to compute
the next popcount.

TERN—4, FATATLLATESM, MIRASEITTG . BEFigure 11LARTAREE . AT MIdIRETT
in, XEPSMERHIA - DEEREDRAVEHE, BRHEEERES . FSMEARILoad R, T

IR AL BT 7 88 - FSMIFFATEI R — RS Count, 33X B UHZFR I FLEL - FA 1A — R fir
Fhrgs, —DINESS, — D RMEFFR. MmN TS EESRTE . Hn T RER RIS
T0, BAVER T, FSMBENEPIRESDone - X B BB validHF5HIFSM, 'ERIAL T EOT e L
o BB es Mready 5 5 LUE, FSMIR[EE|1dleRA, FFIEITE N — M 114
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The top level component, shown in Listing 11.5 instantiates the FSM and the datapath components

and connects them with bulk connections.

DUZ#RTy, BRE1L5UIA1L T FSMANREE I ARR 7, I HLAE B AGE L 0 5 sU T 4 -

class PopCount extends Module {
val io = IO(new Bundle ({

val dinValid = Input(Bool())
val dinReady = Output(Bool())
val din = Input(Ulnt(8.W))
val popCntValid = Output(Bool())
val popCntReady = Input(Bool())
val popCnt = Output(Ulnt(4.W))

val fsm = Module(new PopCountFSM)
val data = Module(new PopCountDataPath)

fsm.io.dinValid := io.dinValid
io.dinReady := fsm.io.dinReady
io.popCntValid := fsm.io.popCntValid
fsm.io.popCntReady := io.popCntReady

data.io.din := io.din
io.popCnt := data.io.popCnt
data.io.load := fsm.io.load

fsm.io.done := data.io.done

Listing 11.5: The top level of the popcount circuit

Figure 11.5: Datapath for the popcount circuit.

Figure 11.5 shows the datapath for the popcount circuit. The data is loaded into the shf register. On
the load also the cnt register is reset to 0. To count the number of ‘1’s, the shf register is shifted right,
and the least significant bit is added to cnt each clock cycle. A counter, not shown in the figure, counts
down until all bits have been shifted through the least significant bit. When the counter reaches zero, the
popcount has finished. The FSM switches to state Done and signals the result by asserting popCntReady.
When the result is read, signaled by asserting popCntValid the FSW switches back to Idle.

VLS T AL T ECR B BRI B - BUR L Ashf o fids - EI3B0R, cnrti B N0 H T3t
FIANEE, shMEHD), BN FABRRALAME cnr . TWEEHE HIMAEX M ERE, [@TF
. BRIFTER AR NE &AL . ZTEESEIAT RN &, ITEEREE R T o FSMUIHLE]
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KRB0, ALITEGGERL T - FSMUI#EPIR A Done, I HiBidpopCntReady S BAfE 54558 - MR
B 25 SRR, B B & popCntValid, FSMY)# Al Idle -

On a load signal, the regData register is loaded with the input, the regPopCount register reset to 0, and
the counter register regCount set to the number of shifts to be performed.

X TloadfE 5, regData®F 7785 E I AHILEL, regPopCount?y 775 HE N0, THEEZRTFF
#aregCountiX N N E A HIEE -

I class PopCountDataPath extends Module {
2 val io = IO(new Bundle ({

3 val din = Input(Ulnt(8.W))

4 val load = Input(Bool())

5 val popCnt = Output(Ulnt(4.W))
6 val done = Output(Bool())
7))

9 val dataReg = Reglnit (0.U(8.W))
10 val popCntReg = Reglnit (0.U(8.W))
11 val counterReg= Reglnit (0.U(4.W))

13 dataReg := 0.U ## dataReg(7, 1)
14 popCntReg := popCntReg + dataReg(0)

16 val done = counterReg === 0.U

17 when (!done) {
18 counterReg := counterReg — 1.U

21 when(io.load) {

22 dataReg := io.din
23 popCntReg := 0.U
24 counterReg := 8.U

27 // debug output
28 printf ("%x %d\n", dataReg, popCntReg)

30 io.popCnt := popCntReg
31 io.done := done

Listing 11.6: Datapath of the popcount circuit

I val cntReg = Reglnit (0.U(8.W))
val done = cntReg === 0.U

[S)

4 val next = Wirelnit (0.U)
when (load) {

next := din

W

6

7 } .elsewhen (!done) {
8 next := cntReg — 1.U
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()}

10 cntReg := next

11

}
Listing 11.7: The FSM of the popcount circuit

Otherwise, the regData register is shifted to the right, the least significant bit of the regData register
added to the regPopCount register, and the counter decremented until it is 0. When the counter is 0, the
output contains the popcount. Listing 11.6 shows the Chisel code for the datapath of the popcount circuit.

F—JH, regData[l G 5, AN ZFEHIALiE 1T regData?F 17 %5 s I ElregPopCount 7 17
gr, IEER I NHEERIDN0 . SHEEREEN0, W E SR 11.6 BT AT
R B Hchisel RS -

The FSM starts in state idle. On a valid signal for the input data (dinValid) it switches to the count
state and waits till the datapath has finished counting. When the popcount is valid, the FSM switches to
state done and waits till the popcount is read (signaled by popCntReady). ListingDatapath of the popcount
circuit shows the code of the FSM.

FSMMCIR BidleF 87 - — HL iy A(dinValidyF 5%, € Y130 E14K Bcount, 55 B X5 8 1 B 52
BT VAL B AT BN S BRSO, FSMY)#: EIR Bdone, B ALITEOF 1 (A
i¥popCntReady) - The FSM of the popcount circuit 7B T FSMAJCHE o

11.3 Ready-Valid A

Communication of subsystems can be generalized to the movement of data and handshaking for flow
control. In the popcount example, we have seen a handshaking interface for the input and the output data
using valid and ready signals.

FET AGLANEE AT OB SR SR AR T E 570390 . A LT RT3l
CE S| 1 HF | valid-ready 5 5 HH A H 20 42 T 5L -

—— valid —p»|

€— ready —
Sender y Receiver

data —p»|

Figure 11.6: The ready-valid flow control.

The ready-valid interface is a simple flow control interface consisting of data and a valid signal at the
sender side and a ready signal at the receiver side (see Figure 11.6). The sender asserts valid when data is
available, and the receiver asserts ready when it is ready to receive one word of data. The transmission
of the data happens when both signals, valid and ready, are asserted. If either of the two signals is not
asserted, no transfer takes place.

ready-valid 7t [ & — 1 B B PSR A1, B8 1 datafvalid, 75X 3£, readyfE % W

(B 11.6) o Kik¥E Mvalid, HdaraZ G HHEBORTTIRR— > FRKOEERE, EF
B T ready - HWIA(E S validflready &304 BIIRHRE, BUEGEITIG - WARMIANESHE —
WREHEY, BERmALE .
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Figure 11.7: Data transfer with a ready-valid interface, early ready
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Figure 11.8: Data transfer with a ready-valid interface, late ready

ok T LT LI LT LT LTLT L
ready _I_\—./—\_
valid _]m
data

Figure 11.9: Single cycle ready/valid and back-to-back transfers

Figure 11.7 shows a timing diagram of the ready-valid transaction where the receiver signals ready
(from clock cycle 1 on) before the sender has data. The data transfer happens in clock cycle 3. From clock
cycle 4 on neither the sender has data nor the receiver is ready for the next transfer. When the receiver can
receive data in every clock cycle, it is called an “always ready” interface and ready can be hardcoded to
true.

Bl A 11,78 7R — P ready-valid 8 5 FUR (A B, X B ER 15 Sready (NI BHEBHIFIR) 7E
K3k BAAEAERT . BORER PR3 A . NI B R4 IR, LB REETE, 2R
e BRI N — ek . SRICEER A R R ETE, Xy RER g 1 5t
M, readyA] DAHAE % M true -

Figure 11.8 shows a timing diagram of the ready-valid transaction where the sender signals valid
(from clock cycle 1 on) before the receiver is ready. The data transfer happens in clock cycle 3. From
clock cycle 4 on neither the sender has data nor the receiver is ready for the next transfer. Similar to the
“always ready” interface we can envision and always valid interface. However, in that case the data will
probably not change on signaling ready and we would simply drop the handshake signals.

Bl A 11.8FR— P ready-valid®Z 5y, iXHB & XEFSvalid NN BEEIFIR) RN E ST
ZH o BOREHEIER B EI3ITE . W BEB4TT G, A BERAERES . SRR A S
N %H . KT RZIE A E, FATT LR — I ZIESR - (52, EARF
BT, RS R Eready Z E20, PrUABATAIRESBIHETES -

Figure 11.9 shows further variations of the ready-valid interface. In clock cycle 1 both signals (ready
and valid become asserted just for a single clock cycle and the data transfer of D1 happens. Data can be
transferred back-to-back (in every clock cycle) as shown in clock cycles 4 and 5 with the transfer of D2
and D3

B 11.987R T B Zready-validfZ 1 - ZERHEEAL, PIAMES  (ready M valid#l& mifr, 7E—

111



W N

MR, REEBIEERMDIL A . BURFT LI BEERE (EEDEE) BGERBhEHAFS5H
EHID2FID3 -

To make this interface composable neither ready not valid is allowed to depend combinational on
the other signal. As this interface is so common, Chisel defines the DecoupledIO bundle, similar to the
following:

Tk XA A LR, readyElivalid# A R AHEH S VERE - ROX N A EUECH
Fi, Chisel & 3. T DecoupledlOZE 5, KLLTFLIT:

class DecoupledlO[T <: Data](gen: T) extends Bundle {
val ready = Input(Bool())
val valid = Output(Bool())

val bits

Output(gen)
}

The DecoupledIO bundle is parameterized with the type for the data. The interface defined by Chisel uses
the field bits for the data.
DecoupledlO% H & ] Z UL, AL E dataf) R 7Y . Chisel E L HUEE O, 5 FHEUE Mbitsaf -
One question remains if the ready or valid may be de-asserted after being active and no data transfer
has happened. For example a receiver might be ready for some time and not receiving data, but due to
some other events may become not ready. The same can be envisioned with the sender, having data valid
only some clock clock cycles and becoming non-valid without a data transfer. If this behavior is allowed
or not is not part of the ready-valid interface, but needs to be defined by the concrete usage of the interface.
—/ A Eready B validfE £ EH UG R B ATRER BETH], XS EEEE L ELHE.
fln, % LI&%T?E%FJE%—%ET A, FECEWRIEEE, EEETHEER—LmE, ATaeia
2. HEME E’JJEEEZ{E?“ Rk, EREEIRER, REEIRET, AR - TR M
NREGUALE, XA zEready vahd%ﬁ HEHE), EREREREOMER A LEAKE S -

Chisel places no requirements on the signaling of ready and valid when using the class DecoupledIO.

However, the class IrrevocablelO places following restrictions on the sender:

28 FDecoupledlOZE AR %,  Chiseli%H fEready M valid(E 5K B A B 5% - {H ZIrrevocablelOZE

BCE T BUR B, RIS

A concrete subclass of ReadyValidIO that promises to not change the value of bits after a
cycle where valid is high and ready is low. Additionally, once valid is raised it will never be

lowered until after ready has also been raised.

— B A FIReady ValidlIOR) T3, Hvalids =L, ready@fff, RIEA 2 1EbitsEl
HRZR—ABRESRZ - WEii, —Hvalidfm, EMAS2K, BRI T—
ready th 5 -

Note that this is a convention that cannot be enforced by using the class IrrevocablelO.
FEEXDE— 3, HABEH IrevocablelO S HIHILIE -

AXI uses one ready-valid interface for each of the following parts of the bus: read address, read data,
write address, and write data. AXI restricts the interface that once ready or valid is asserted it is not

allowed to get de-asserted until the data transfer happened.

112



AXIE X T T 55 %/ & F Fready-valid 7L - BEdbhl, BEUE, Shk, F5E%
W&o AXBRE T 1, — HreadyBiZvalidm L, ©ARVFZRRAL, BEIT — &R S A
=

113






()

Chapter 12

REAF A ey

The strength of Chisel is that it allows us to write so-called hardware generators. With older hardware
description languages, such as VHDL and Verilog, we usually use another language, e.g., Java or Python,
to generate hardware. The author has often written small Java programs to generate VHDL tables. In
Chisel, the full power of Scala (and Java libraries) is available at hardware construction. Therefore, we
can write our hardware generators in the same language and execute them as part of the Chisel circuit
generation.

chisel§ T — A E AT RN ESHEREGERLS - B 7T IHOEF#ERIES, £
{UVHDLE & Verilog, FAT—MBEMETEES, FEJavadiEPython X AERMBEN: - (EELH RS
/NiljavatefF 2 AEAivhdl M 3% «  FEchisel, scala (Fljava libraries) HYJ5E3E 7] & AEME (448 2]
Ty T, BRI MERHEFE S M E R ERES, HFEPITEN, 1Echisel B AIA AL -

12.1 — S Scalaf A%

This subsection gives a very brief introduction into Scala. It should be enough to write hardware generators
for Chisel. For an in-depth introduction into Scala I recommend the textbook by Odersky et al. [?].

X 5 AR 6] Bt 4143 — T Scala - X T 5 Chiseli# 44 B2 RLZ & BB - X F—MEEE
HIScalaf 47, FHEFEOdersky H [21F5 -

Scala has two types of variables: vals and vars. A val gives an expression a name and cannot be
reassigned a value. This following snippet shows the definition of of an integer value called zero. If we
try to reassign a value to zero, we get a compile error.

Scala§ W RZEE: val Fl vare valfeflt T — D2 ARIAR, BPARWEENIE . K
DEIR T — DR N zeroVEBERIEUE - I RFA T L EHMR(E A zero, AN 2152w IFEE

il
—‘l/%

// A value is a constant

val zero = 0

3 // No new assignment is possible

// The following will not compile

zero = 3

In Chisel we use vals only to name hardware components. Note that the := operator is a Chisel operator

and not a Scala operator.
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w

TEChisel, FAEH val o an ZREAEER S o EE R =1RERF &2 — M ChiseU#IERF, T As&Scalati
TEFT -
Scala also provides the more classic version of a variable as var. Following code defines an integer

variable and reassigns it a new value:

ScalatB JR A" WA EvarhiA - DUNUHEAE 7 — M EBREE, FEHRE:

// We can change the value of a var variable

var x = 2

x =3

We will need Scala vars to write hardware generators, but never need it to use it to name a hardware
component.

AT EHE var ERG M AR, ERMRAFTEMHE L2 — P H -

You may have wandered what type those variables have. As we assigned an integer constant in the
above example, the type of the variable is inferred; it is a Scala Int type. In most cases the Scala compiler
is able to infer the type. However, if we are in the mood of being more explicit, we can explicitly state the
type as follows:

TRATRE XA S THX AR B At 2 R BIRY « BRI Lk i) 7 BT R T BT (E, ZEM
RIEPIEWTH), B — 1 ScalafIIntRE o AEREZERTY, ScalafiiFSREWHENT— P REL . B
&, WARBAVEEFIEEAER, BT LU BLX KRN T

val number: Int = 42

Simple loops are written as follows: & HFIEIA I N 9RE :

/! Loops from 0 to 9
// Automatically creates loop value i
for (i <= 0 until 10) {

println (i)

We use a loop for circuit generators. The following loop connects individual bits of a shift register.
HATERH — MEEA R AE RS - U IEINERE T B F 78— -

val shiftReg = Reglnit (0.U(8.W))

shiftReg (0) := inVal

for (i <— 1 until 8) {
shiftReg (i) := shiftReg(i—1)

Conditions are expressed with if and else. Note that this condition is evaluated at Scala runtime during
circuit generation. This construct does not create a multiplexer.

F At Hiffflelse o TERFX A5 1 Scalaffruntime 7E LB A2 BUIIHEROTAN o IX A EEAG I
ANER— B -
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for (i <— 0 until 10) {
if (i%2 == 0) {
println(i + " is even")
} else {
println(i + " is odd")

}

122 HHSHECE

Chisel components and functions can be configured with parameters. Parameters can be as simple as an
integer constant, but can also be a Chisel hardware type.

chiselZHL S > IR BT LUB IS ZH O B . SEATUVRRBAE E—HEH, ERHAT
PR HFchisel {87 .

12.2.1 fHESE

The basic way to parameterize a circuit is to define a bit width as a parameter. Parameters can be passed
as arguments to the constructor of the Chisel module. Following example is a toy example of a module
that implements an adder with a configurable bit width. The bit width 7 is a parameter (of Scala type Inf)
of the component passed into the constructor that can be used in the 10 bundle.

RERFZ AR BER TR L E LD RITREEASE . ZHOT IS AE A chisel 1Y)
ey o UGBTI MR EG T, KL US B RITTRERMEDSS - X2
B B E A RER 3 B2 (scalaRTUH Inn) (e AFIEERS, AT LAFEIONN A A -

class ParamAdder(n: Int) extends Module {
val io = IO(new Bundle{
val a = Input(Ulnt(n.W))

val b = Input(Ulnt(n.W))
val ¢ = Output(Ulnt(n.W))
)
io.c := io.a + io.b

}

Parameterized versions of the adder can be created as follows:

INESR IS EURARAT LUR A N e BlE -

val add8 = Module(new ParamAdder(8))
val addl6 = Module(new ParamAdder(16))

12.2.2 FHRBSEHHIRKEL

Having the bit width as a configuration parameter is just the starting point for hardware generators. A
very flexible configuration is the usage of types. That feature allows for Chisel to provide a multiplexer
(Mux) that can accept any types for the multiplexing. To show how to use types for the configuration, we

build a multiplexer that accepts arbitrary types. Following function defines the multiplexer:
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ATHRIEASE, XREEERGIIT AR . — PN IEFERINXERFERRE . XD
e VPR F chisel fE AT R B B AME N E R E(Mux) - o8 T RIS H KT, &
THERE T — AT LURZ MR ME ML - UM RECE LT EME:

def myMux[T <: Data](sel: Bool, tPath: T, fPath: T): T = {

val ret = WireDefault(fPath)
when (sel) {
ret := tPath

}

ret

Chisel allows parameterizing functions with types, in our case with Chisel types. The expression in
the square brackets /T <: Data] defines a type parameter T set is Data or a subclass of Data. Data is the
root of the Chisel type system.

chisel o VF i F SR T 2 AL R AL, T&M%W?EE%ﬁ%mmm%” Eﬁ%%%%L
[T <: Data] € X T — " ZEEZETEE EDatatiZData®)— 1F% o Datasg:chisel 51 R4 A
R

Our multiplexer function has three parameters: the boolean condition, one parameter for the true path,
and one parameter for the false path. Both path parameters are of type 7, an information that is provided
at function call. The function itself is straight forward: we define a wire with the default value of fPath
and change the value is the condition is true to the ¢tPath. This condition is a classic multiplexer function.
At the end of the function, we return the multiplexer hardware.

AT E R REE =28, A/RFEE, — I SEATREMER, fM— 280 TERIE
B PZEUBTRET, —*AEETXﬁWW%N@W%ﬁo@ﬁﬁ%%ﬁ%%:ﬁm%X
—Pwire, BEEBOANERSParh, FEBZLZXME . ZPFER—DHE LIS IR ERE
MR, BADREISHISE -

We can use our multiplexer function with simple types such as Ulnt:

FATRTLIE S M Eem i, BARBRRERLT Ulnr:

val resA = myMux(selA, 5.U, 10.U)

The types of the two multiplexer paths need to be the same. Following wrong usage of the multiplexer

results in a runtime error:

WA B RAFE -8 DT ERSER A 2R E — 2T E R

val resErr = myMux(selA, 5.U, 10.S)
We define our type as a Bundle with two fields: T 1€ X T A1 IBundle 22, T 613 B 5
class ComplexIO extends Bundle {

val d Ulnt (10.W)
val b Bool ()
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We can define Bundle constants by first creating a Wire and then setting the subfields. Then we can use

our parameterized multiplexer with this complex type.
BATAT LUE X BundleH &, Bt & 0E— 1 Wire, REEEFE . REHATALUETXME
WRT RMEHEATER NS M-

val tVal = Wire(new ComplexIO)
tVal.b := true.B

tVal.d := 42.U

val fVal = Wire(new ComplexIO)
fval.b := false.B

fvVal.d := 13.U

// The mulitplexer with a complex type
val resB = myMux(selB, tVal, fVal)

In our initial design of the function, we used Wirelnit to create a wire with the type T with a
default value. If we need to create a wire just of the Chisel type without using a default value, we can
use fPath.cloneType to get the Chisel type. Following function shows the alternative way to code the
multiplexer.

AR IR R BT, FAEH Wirelnit H T 01 — > BETHIBOIARE Hiwire . 208
HATEZ B — > A B chisel 2 E fiweire, H SMBONME, FATAT LUEHfPath.cloneType %1%
[FlchiselfIRTE o LUNHIBRECRI T A — 1P EREG B -

def myMuxAlt[T <: Data]J(sel: Bool, tPath: T, fPath: T): T = {

val ret = Wire(fPath.cloneType)

ret := fPath

when (sel) {
ret := tPath

}

ret

12.2.3 HERBSLHPER

We can also parameterize modules with Chisel types. Let us assume we want to design a network-on-chip
to move data between different processing cores. However, we do not want to hardcode the data format in
the router interface; we want to parametrize it. Similar to the type parameter for a function, we add a type
parameter T to the Module constructor. Furthermore, we need to have one constructor parameter of that
type. Additionally, in this example, we also make the number of router ports configurable.

FATH AT AS U, {5 FchiselZR A - ibFABRE, FAEE T — T nocith i, 724D
HZOMEE Z s - (H2, FATAEEAER BT DR EERT, FATEE Hat
trparametrize - R T REIZEL, FTATNEROFESRIINSHT . ELH, HNFEEH
PNRBWIESE . BOME, FEX BT, Bl T 68 s O BR8] LUSE

class NocRouter[T <: Data](dt: T, n: Int) extends Module {
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val io =I0(new Bundle {

val inPort = Input(Vec(n, dt))

val address = Input(Vec(n, Ulnt(8.W)))
Output(Vec(n, dt))

val outPort

9]

To use our router, we first need to define the data type we want to route, e.g., as a Chisel Bundle:

T ERBATRIBR T, Bl TE o2 2@ AT pEdEREL, 4N, 1R EchisellJBundle

class Payload extends Bundle {
val data = Ulnt(16.W)
val flag = Bool()

}

We create a router by passing an instance of the user-defined Bundle and the number of ports to the
constructor of the router:

FAOE T — D E&H, B A— B E L HbundleSE B H H.25 B H RO 25 1% A 14K

=
H:

val router = Module(new NocRouter(new Payload, 2))

12.2.4 ZHEALHI R

In the router example, we used two different vectors of fields for the input of the router: one for the
address and one for the data, which was parameterized. A more elegant solution would be to have a
Bundle that itself is parametrized. Something like:

fﬁ%EEE’WU? HAERE AR R ES O E A, —METHE, A— 1T
¥, X PRZEUCH . — D EICHERIAREE (EH B 28U Bundle, LT

class Port[T <: Data](dt: T) extends Bundle {
val address = Ulnt(8.W)
val data = dt.cloneType

The Bundle has a parameter of type 7, which is a subtype of Chisel’s Data type. Within the bundle,
we define a field data by invoking cloneType on the parameter. However, when we use a constructor
parameter, this parameter becomes a public field of the class. When Chisel needs to clone the type of the
Bundle, e.g., when it is used in a Vec, this public field is in the way. A solution (workaround) to this issue
is to make the parameter field private:

Bundle BHRET, ZchiseltDataB1 T2 - Febundle, FA1E L T —"Pdatals, 1@ETHE
RIIEY cloneType - {HFE, A EHMESSSEL, J\_/I\ﬁiﬁ WSES YA élchlsel FEE
HX D Bundlef)REL,  FIEN, HAEVecNEREABIEI T, X DAEEATAE - XA HIFRRTT
HEESEE NAE -

class Port[T <: Data](private val dt: T) extends Bundle {
val address = Ulnt(8.W)
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val data = dt.cloneType
}

With that new Bundle, we can define our router ports Jf 13 387 FIBundle, FA TR LLE SCHEATHO B H %5

class NocRouter2 [T <: Data](dt: T, n: Int) extends Module ({
val io =IO(new Bundle {
val inPort = Input(Vec(n, dt))
val outPort = Output(Vec(n, dt))
D)

and instantiate that router with a Port that takes a Payload as a parameter:

i Port ESFIMLERATTHIBE HH, SR Payload E 1 —"1544:

val router = Module(new NocRouter2(new Port(new Payload), 2))

12.3 A HEZPH

In Chisel, we can easily generate logic by creating a logic table with a Chisel Vec from a Scala Array.
We might have data in a file, that we can read in during hardware generation time for the logic table.
Listingfile reader shows how to use the Scala Source class form the Scala standard library to read the file
“data.txt”, which contains integer constants in a textual representation.

TEChisel, FATAT DAT B AR BGZ 5, 3 L 1 B R B 48K H scalaArrayBchisel Vec Bl 2 (132
o BTSN EEE, BT HATEE LR BRI ESETE - file readerRM T
AT 1 F scalafIscalabmifElibrary HISourceZ, B HI S “data.txt” « X MEE T AT X FRRE

BHE.

val table = Veclnit(array.map(_.U(8.W)))

A Scala Array can be implicitly converted to a sequence (Seq), which supports the mapping function map.
map invokes a function on each element of the sequence and returns a sequence of the return value of the
function. Our function _.U(8.W) represents each Int value from the Scala array as a _ and performs the
conversion from a Scala Int value to a Chisel Ulnt literal, with a size of 8-bits. The Chisel object Veclnit
creates a Chisel Vec from a sequence Seq of Chisel types.

scalafJArray Pl LIRS R #2751 (Seq), XA X FFmapiki#imap - map 77E T — 1 EEL, JF5
E—PILFRIRE T —FHI R R BORE(E - AERANTHIREL U8 W)FIR K Hscala P3| H1EE—
MNnt, VEN_, SEMT Mscalalnt®|chiselUIntfFiA =, BEHSHM IR /IN. chisel B G Veclnittil]
BT —"chiselVec, £ HJF5SeqfIchisel KA -

import chisel3._

import scala.io.Source

class FileReader extends Module {
val io = IO(new Bundle ({
val address = Input(Ulnt(8.W))
val data = Output(Ulnt(8.W))
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val array new Array[Int](256)

var idx = 0

// read the data into a Scala array
val source = Source.fromFile("data.txt")
for (line <— source.getLines()) {

array (idx) = line.tolnt

idx += 1

}

// convert the Scala integer array into the Chisel type Vec
val table = Veclnit(array.map(_.U(8.W)))

// use the table
io.data := table(io.address)

Listing 12.1: BHOUR S H A BB R

We can use the full power of Scala to generate our logic (tables). E.g., generate a table of fixpoint
constants to represent a trigonometric function, compute constants for digital filters, or writing a small
assembler in Scala to generate code for a microprocessor written in Chisel. All those functions are in the
same code base (same language) and can be executed during hardware generation.

HATAT AGE Fscalaf) 2 #RBE ST, EAEMBATHIEHE . Flan, Ef— 1P RBHERRE
HE, R IPZARYE, TEEFIEBRGNTE, SERE — 1/ MiscalailJias H kA
lichiseldm 5 WAL EERS - BT X LLR B R — MU (Rl—MEF) BT UEREF A A%
AR P BT -

A classic example is the conversion of a binary number into a binary-coded decimal (BCD) represen-
tation. BCD is used to represent a number in a decimal format using 4 bits fo each decimal digit. For
example, decimal /3 is in binary //01 and BCD encoded as 1 and 3 in binary: 00010011. BCD allows
displaying numbers in decimal, a more user-friendly number representation than hexadecimal.

— /N2 ) F & o3 ) AU # Abinary-coded decimal (BCD)% 1A 77 = - BCDHI 2K 4 ik
THEFIRE R, B TR A BT 4 TR - Fan, Tkl 3E Tt dl 1101 . AEBCDEAE
M3 100010011 - BCDARVFRoR TR, =HE AP IRy R, MK
Tt -

We can write a Java program that computes the table to convert binary to BCD. That Java program
prints out VHDL code that can be included in a project. The Java program is about 100 lines of code;
most of the code generating VHDL strings. The key part of the conversion is just two lines.

HATAT LG & — D avals Fr R T B R R 53—t Hl 2IBCD - AR M Javafe 57 1T B H
FVHDLAAS /] LLE — AT H 851 F - Java®® 57 R HE 210077 18, K2 H RS2 &
FCVHDLFAF & o S DR & MAT -

With Chisel, we can compute this table directly as part of the hardware generation. Listing 12.2 shows
the table generation for the binary to BCD conversion.

A Tchisel, FATAT LEET EIX AN FASMEABE AR —E 5 - 1228 TiX D REHE
A, BN i 2 BCD L #E -
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import chisel3._

class BcdTable extends Module {
val io = IO(new Bundle {
val address = Input(Ulnt(8.W))
val data = Output(Ulnt(8.W))
D)

val array = new Array[Int](256)

// Convert binary to BCD
for (i <— 0 to 99) {
array (i) = ((i/10)<<4) + 1%10

val table = Veclnit(array .map(_.U(8.W)))
io.data := table(io.address)

Listing 12.2: BcdTable

12.4 fHEHH4E%K

Chisel is an object-oriented language. A hardware component, the Chisel Module is a Scala class.
Therefore, we can use inheritance to factor a common behavior out into a parent class. We explore how to
use inheritance with an example.

Chisel /& —MHANKNRIES - —MEMERS, chiselfIModulesz—Tscalafik - TH&, FATA
PAEFGRR, FIE—PIHERT AR « FlTTH LR 7R IFZR anf (5 AR -

In Section 8.2 we have explored different forms of counters, which may be used for a low-frequency
tick generation. Let us assume we want to explore those different versions, e.g., to compare their resource
requirement. We start with an abstract class to define the ticking interface:

8.2 AR T AFREERITTEES, XAl I AURAR T ek« Fefi 1Bz, FATEERR
ARIRA, Bilan, RHBHEERRFER . BOTFREERH— 5 %8 Xtick i FH -

abstract class Ticker(n: Int) extends Module {
val io = IO(new Bundle {
val tick = Output(Bool())

b
}

Listing 12.3 shows a first implementation of that abstract class with a counter, counting up, for the tick

generation.
23RN EE, BA—DIHEES, m L P Adck SR — M RE =
class UpTicker(n: Int) extends Ticker(n) {

val N = (n—1).U
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val cntReg = Reglnit (0.U(8.W))

cntReg := cntReg + 1.U

when(cntReg === N) {
cntReg := 0.U

}

io.tick := cntReg ===

Listing 12.3: i FH 114088 4 Altick

We can test all different versions of our ticker logic with a single test bench. We just need to define the
test bench to accept subtypes of Ticker. ticker test shows the Chisel code for the tester. The TickerTester
has several parameters: (1) the type parameter [T <: Ticker] to accept a Ticker or any class that inherits
from Ticker, (2) the design under test, being of type T or a subtype thereof, and (3) the number of clock
cycles we expect for each tick. The tester waits for the first occurrence of a tick (the start might be
different for different implementations) and then checks that fick repeats every n clock cycles.

BATAT LA BT AR rickeriZ 8, (EH— A BEANHFG . Bl lemph ARFEEE X
MF & W Ticker)FRBL o ticker testz2 B T T MR8 FchiselfXA o TickerTester’§ —L&
ZH: (OWRISEYT <: Ticker] 33— Ticker BUE R — PRI LYK Ticker - (2) FZ M
Tt MERRBTEREFRA . Q) X T M tick, FAVARFHORPEH . WSS RE—
ick K AE RIS TR (FFE RIS B AT BERIE AR ML BT AR | RIEREtickEn i 5 H 1 #H
=1

import chisel3 .iotesters.PeekPokeTester

import org.scalatest._
class TickerTester [T <: Ticker](dut: T, n: Int) extends PeekPokeTester(dut: T) ({

// —1 is the notion that we have not yet seen the first tick
var count = —1
for (i <— 0 to n % 3) {
if (count > 0) {
expect(dut.io.tick, 0)
}
if (count == 0) {
expect(dut.io.tick, 1)
}
val t = peek(dut.io.tick)
// On a tick we reset the tester counter to N—1,
// otherwise we decrement the tester counter
if (t ==1) {
count = n—1
} else {

count —= 1

step (1)
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Listing 12.4: FTMA FI A ticker it 2%

With a first, easy implementation of the ticker, we can test the tester itself, probably with some printin
debugging. When we are confident that the simple ticker and the tester are correct, we can proceed and
explore two more versions of the ticker. Listing 12.5 shows the tick generation with a counter counting
down to 0. Listing 12.6 shows the nerd version of counting down to -1 to use less hardware by avoiding
the comparator.

A, B BOtickerPI B, FAT AT DL ) 2R AR &, A] B8 & 1 B — eprintlnfE
HdebugF B HFATX T iX A1 Pticker B H F0, F HMHAEE ERMBH T, &
AT AR SRR P A ticker FORRAS - 12.5F Mltickples . Bk Fit4, #Flo. 5I%R12.6%H]
T nerdUAR R RELE-1, A EEADRORESE, GBS ALEE RS -

I class DownTicker(n: Int) extends Ticker(n) {

SN S}

val N = (n—1).U

5 val cntReg = Reglnit(N)

7 cntReg := cntReg — 1.U

8 when (cntReg === 0.U) {
9 cntReg := N

10 }

11

12 io.tick := cntReg ===

Listing 12.5: f# FH [m] T 1S4 Altick

class NerdTicker(n: Int) extends Ticker(n) {
val N = n

5 val MAX = (N — 2).S(8.W)
6 val cntReg = Reglnit (MAX)
7 io.tick := false.B

9 cntReg := cntReg — 1.5
10 when(cntReg (7)) {
1 cntReg := MAX

12 io.tick := true.B

Listing 12.6: /] N EEI-1 893 £ ml

We can test all three versions of the ticker by using ScalaTest specifications, creating instances of
the different versions of the ticker and passing them to the generic test bench. Listing 12.7 shows the

specification. We run only the ticker tests with:
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FATRT LA 93 M ticker FURRCAS , 31 {3 FH ScalaTestFIZESK, BN [FIRCAS fticker, Ff
EENTfE Atestbench A 5 o 12.7FRBFESK «  FA1H P tickerill iz, 181

sbt "testOnly TickerSpec"

class TickerSpec extends FlatSpec with Matchers {

"UpTicker 5" should "pass" in {
chisel3 .iotesters.Driver (() => new UpTicker(5)) { ¢ =>
new TickerTester(c, 5)
} should be (true)
}

"DownTicker 7" should "pass" in ({
chisel3 .iotesters .Driver (() => new DownTicker(7)) { ¢ =>
new TickerTester(c, 7)
} should be (true)

"NerdTicker 11" should "pass" in {
chisel3 .iotesters .Driver (() => new NerdTicker(11)) { ¢ =>
new TickerTester(c, 11)
} should be (true)

Listing 12.7: ScalaTest specifications for the ticker tests

12.5 {5 R R Y 2 AHORE 40 A B

Scala supports functional programming, so does Chisel then. We can use functions to represent hardware
and combine those hardware components with functional programming (by using a so-called “higher-order
function”). Let us start with a simple example, the sum of a vector:

Scala 7 B GRAE, T LAChiseltt 3CHF o BATAT LAGEH BB L FORBEM:, FR45 6 X Letsif:
whor, SEHREEmE CEdEHmER mMEEr) « BADHRER— R RRET, [mE
SOpI/IGIE

def add(a: Ulnt, b:Ulnt) = a + b
val sum = vec.reduce (add)

First we define the hardware for the adder in function add. The vector is located in vec. The Scala reduce()
method combines all elements of a collection with a binary operation, producing a single value. The
reduce() method reduces the sequence starting from the left. It takes the first two elements and performs
the operation. The result is then combined with the next element, until a single result is left.

B RN A, (K% add . FMEATvec. Scalafreduce() /7 IEEAMEHERIEEIH T
XTREHICR, TE—TH—(H . reduce()JTIEMNE I threduce » 3X T ZHII P 1 ICR R ST
BAE . BUEREFI T — a3, BRI N — B4R
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The function to combine to elements is provided as parameter to reduce, in our case add, which returns

an adder. The resulting hardware is a chain of adders computing the sum of the elements of vector vec.

B R B E N S H A SBreduce, EBATHIF T FEadd, SRE] T —MIES: - X DFEER
B e — i R I RS, PR — A E vecAUINFA -
Instead of defining the (simple) add function, we can provide the addition as anonymous function and

use the Scala wildcard “_" to represent the two operands.

BR T E SUX lﬂ$Wmm?ﬁ FATAT LSRN, 1EEZ AL, F H{EHScalaf)idE AL
7« BRI WA%Wﬂ

val sum = vec.reduce(_ + _)

With this one liner we have generated the chain of adders. For the sum function a chain is not the ideal
configuration, a tree will have a shorter combinational delay. If we do not trust the synthesize tool to
rearrange our adder chain, we can use Chisel’s reduceTree method to generated a tree of adders:

BT X7, TATER T —BINES - NTImERE, — M EERFAZHANEE,
W%ﬁ-ﬁ%ﬁ%ﬁ%ﬁ@ﬁoW%ﬁmxﬁﬁ%élﬁfmﬁﬁmmm&%,&MTuﬁ
F ChiselfIreduce Tree J7 1% £ fli— 1 VA 3 O -

val sum = vec.reduceTree(_ + _)
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Chapter 13

R

In this section, we explore some small size digital designs, such as a FIFO buffer, which are used as
building blocks for a larger design. As another example, we design a serial interface (also called UART),
which itself may use the FIFO buffer.

X DERTY, BATHRR — L&A/, BITIFIFOZd, XA H T RBRT H He
7 AER—ABIT, BAIEE— P #BTHEO (WIRUART) |, ERE & AFIFOZ% M -

13.1 FIFO %3

We can decouple a write (sender) and a reader (receiver) by a buffer between the writer and reader. A
common buffer is a first-in, first-out (FIFO) buffer. Figure 13.1 shows a writer, the FIFO, and a reader.
Data is put into the FIFO by the writer on din with an active write signal. Data is read from the the FIFO
by the reader on dout with an active read signal.

NTHE—PEN (FiEE) M—DEm (EIECE) | A5 MR AmA— 2B 0%
e —PHEIL E@?ﬁﬁlﬂm—Aﬁ‘aﬁﬁ‘aﬁ (FIFO) %&itids . BT8R T — %)\ —FIFO, I
— MEH . FIRETdinE A, F—MEiEwrite)EFS - [F5 NFIFORGE 38 dout, Fl1—1>
BiEreadE S -

A FIFO is initially empty, singled by the empty signal. Reading from an empty FIFO is usually
undefined. When data is written and never read a FIFO will become full. Writing to a full FIFO is usually
ignored and the data lost. In other words, the signals empty and full serve as handshake signals

FIFOWI G2 = 1Y, HidemptyF 5 EKMTE - N—DEHIFIFOBRLE — M 1% H # € LAY -
LEARS N, FEIKREE WFIFOIRE, 248 full. 5 A—Mull FIFIFO%Z H#t Z28%, $iRkEZ
ER . WANE, emptyFlfull R4 IBFEE .

Several different implementations of a FIFO are possible: E.g., using on-chip memory and read and

— write —p»| l¢— read —
la— full — — empty —p»]

Writer FIFO Py Reader
F— din —p»| — dout —»]

Figure 13.1: A writer, a FIFO buffer, and a reader.
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write pointers or simply a chain of registers with a tiny state machine. For small buffers (up to tens
of elements) a FIFO organized with individual registers connected into a chain of buffers is a simple
implementation with a low resource requirement. The code of the bubble FIFO is available in the
chisel-examples repository.!

FRE—TFIFOR Z M RIFE R flan, EHF LEEMEE R, s —E8FF
&, B BEPREYL . NTAR%RE (&EZ10TTTE) , — PFIFOM B M #F 77 25 A
ik, XLEHFFMERY —B%F, IPTE-IRE, REFRZER. §IEFIFOMME
FEchisel-examples 3G « 2

We start by defining the 1O signals for the writer and the reader side. The size of the data is configurable
with size. The write data are din and a write is signaled by write. The signal full performs the flow control
at the writer side.

HAFia 2 IOFE S HTE AL MG . BRI K/ INET sizeiX E . 5AKGEZdin, 5A
fE 5 &write- full/EAflow control 75 A -

class WriterIO(size: Int) extends Bundle ({
val write = Input(Bool())
val full = Output(Bool())
val din = Input(Ulnt(size .W))

Listing 13.1: bubble fifo writer io

The reader side provides data with dout and the read is initiated with read. The empty signal is
responsible for the flow control at the reader side.

IR T dout! E NS, B2 I 6 Fread W16 1L - empty (55 01 53 #2582 3 15 5 7
il -

Listing 13.2 shows a single buffer. The buffer has a enqueueing port enq of type WriterIO and a
dequeueing port deq of type ReaderlO. The state elements of the buffer is one register that holds the data
(dataReg and one state register for the simple FSM (stateReg). The FSM has only two states: either the
buffer is empty or full. If the buffer is empty, a write will register the input data and change to the full
state. If the buffer is full, a read will consume the data and change to the empty state. The IO ports full
and empty represent the buffer state for the writer and the reader.

132K T — 1M BANRF - ZFH 1AM Henq, BB WriterlOBIRAL,  Fl—1 i tH 4
Mdeq, EHReaderlOfIEA . ZEFEAPRESTTE R — M FFer, FHEUE (dataRegfl— MIRE
AT — 1 B FIFSM(stateReg) - FSMAE BB MIRE: Z RS BemptysiZfull - Q1REAF
fiFempty, EAZHFHFRALGE, H BRIl FPIRAS . WRG AL Tull, 350 H 28 1
P, I HEEE Nempty IR - 103 M full flempty {C R & 77 005 AFIRERUAPIRA)

class FifoRegister(size: Int) extends Module ({
val io = IO(new Bundle ({
val enq = new WriterlO(size)
val deq = new ReaderIO(size)

9]

"For completeness, the Chisel book repository contains a copy of the FIFO code as well.

AT FEEENE, XA Chisel BRI G EH A E T —{HFIFORIRS -
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val empty :: full :: Nil = Enum(2)
val stateReg = Reglnit(empty)
val dataReg = Reglnit(0.U(size .W))

when(stateReg === empty) {
when(io.enq. write) {
stateReg := full
dataReg := io.enq.din
}
}.elsewhen (stateReg === full) ({
when(io.deq.read) {
stateReg := empty
dataReg := 0.U // just to better see empty slots in the waveform

}
}.otherwise {
// There should not be an otherwise state

io.enq. full := (stateReg === full)
io.deq.empty := (stateReg === empty)
io.deq.dout := dataReg

Listing 13.2: BRZ5 H'E VFIFO

Listing13.3 shows the complete FIFO. The complete FIFO has the same 10 interface as the individual
FIFO buffers. BubbleFifo has as parameters the size of the data word and depth for the number of buffer
stages. We can build an depth stages bubble FIFO out of depth FifoRegisters. We crate the stages by
filling them into a Scala Array. The Scala array has no hardware meaning, it just provides us with a
container to have references to the created buffers. In a Scala for loop we connect the individual buffers.
The first buffers enqueueing side is connected to the enqueueing IO of the complete FIFO and the last
buffer’s dequeueing side to the dequeueing side of the complete FIFO.

133% T — 2B HFIFO - 588 WFIFOE H —H KI0% 0, 1§ 2 8 iIFIFO% 77 -
BubbleFifo Bl H #HE 7K Asize 250, MEFRIFE depth - FATA] LIFEEE— N depth KN BT
ZZIPFIFO, >£ HFifoRegister R Edepth - FA LT LB T3EH Ascalaft) Array - scalafarray{%
BEMEFREL, ERARRBARIN—12ES, EROEERFKTE . fscalafJforfEEr, FAl
HEE T BMAVEAE o £ — Dbuffer, AR FEEHKFIFON O, &5 — T8 7 A%k Hi i %
BEEISEEEFIFO /B Hi i -

class BubbleFifo(size: Int, depth: Int) extends Module ({
val io = IO(new Bundle {
val enq = new WriterlO(size)

val deq = new ReaderIO(size)

9]

val buffers = Array.fill (depth) { Module(new FifoRegister(size)) }
for (i <— 0 until depth — 1) {

buffers(i + 1).io.enq.din := buffers(i).io.deq.dout

buffers(i + 1).io.enq.write := ~buffers(i).io.deq.empty
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buffers(i).io.deq.read := ~buffers(i + 1).io.enq.full
}

io.enq <> buffers (0).io.enq

io.deq <> buffers(depth — 1).1i0.deq
}

Listing 13.3: —>FH— # B JHIFIFO & 241 A HFIFO

The presented idea of connecting individual buffers to implement a FIFO queue is called a bubble
FIFO, as the data bubbles through the queue. This is simple, and a good solution when the data rate is
considerable slower than the clock rate, e.g., as a decouple buffer for a serial port, which is presented in
the next section.

XA RIR AV E R L AR i, £ FE— D FIFOBASI, #1°8 BEMFIFO, B & MEAS | 'E
o XIS, ERER RS A0TR L TR, B, TSR 0B RS
R —EB R -

However, when the data rate approaches the clock frequency, the bubble FIFO has two limitations: (1)
As each buffer’s state has to toggle between empty and full, which means the maximum throughput of
the FIFO is 2 clock cycles per word. (2) The data needs to bubble through the complete FIFO, therefore,
the latency from the input to the output is at least the number of buffers. I will present other possible
implementations of FIFOs in Section 13.3.

H2, SEIRSOAFIRN B, BIWFIFORM M RE:  (DENE N T B L empry ful i%
B, XEWERAEHEEE TR EEL . QIR ZEd B OFIFOTBIE, T
&, EIAZE i H RSER 2 > e buffer URUE - B2 R 73 SN HIFIFORY AT BEffiiX Section 13.3 -

13.2 — 1 EOiwmd

A serial port (also called UART or RS-232) is one of the easiest options to communicate between your
laptop and an FPGA board. As the name implies, data is transmitted serially. An 8-bit byte is transmitted
as follows: one start bit (0), the 8-bit data, least significant bit first, and then one or two stop bits (1). When
no data is transmitted, the output is 1. Figure 13.2 shows the timing diagram of one byte transmitted.
— B (2 F PR I UART BERS-232)52 5 A — il BT A RS AR UK AIFPGAR
T o BAFHRRHIE, HUESIT G — DS TF I H BT 5. AJT 6 oz If
B, MM, WEIKALALG, REEBRIZRA R . S EEIREREE, Wl
B 132388 T — 5 1 (R R P A -

1 (oo [ bn b2 [ b3 b [ b ) ee [ w7 )

Figure 13.2: #{UART{& i —NFT7

We design our UART in a modular way with minimal functionality per module. We present a
transmitter (TX), a receiver (RX), a buffer, and then usage of those base components.

HADAT FATHIUART A — MEER I 73, B P RREIME /NI EE . RIOTER—D KA
#(TX), FHOmRX), — &, e X AR T .

First, we need an interface, a port definition. For the UART design, we use a ready/valid handshake

interface, with the direction as seen from the transmitter.
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B, BATRE—"AE, — MO E L - MUARTHIE X, FA 1 Fready/validig 5 5

T, AR -

class Channel extends Bundle ({
val data = Input(Bits (8.W))
val ready = Output(Bool())

val valid = Input(Bool())

Listing 13.4: vart channel

The convention of a ready/valid interface is that the data is transferred when both ready and valid are

asserted.

ready/valid 55 18] Fr) &5 DLIOE 2 2038 2 readyFlivalid s (AL FIRSH5EFT % 4 -

class Tx(frequency: Int, baudRate: Int) extends Module {

val io = IO(new Bundle ({

val txd = Output(Bits (1.W))
val channel = new Channel ()

9]

val BIT_CNT = ((frequency + baudRate / 2) / baudRate

val shiftReg = Reglnit(0x7ff.U)
val cntReg = Reglnit(0.U(20.W))
val bitsReg = Reglnit (0.U(4.W))

io.channel.ready := (cntReg === 0.U) && (bitsReg ===

io.txd := shiftReg (0)

when(cntReg === 0.U) {

cntReg := BIT_CNT
when(bitsReg =/= 0.U) {

val shift = shiftReg >> 1
shift (9, 0))
bitsReg := bitsReg — 1.U

shiftReg := Cat(1.U,

}.otherwise {

when(io.channel. valid) {
/! two stop bits, data,
shiftReg := Cat(Cat(3.U,

bitsReg := 11.U

}.otherwise {

shiftReg := O0x7ff.U

}.otherwise {

cntReg := cntReg — 1.U

one start bit
io.channel.data), 0.U)

— 1).asUInt ()
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36 }

Listing 13.5: vart tx

Listing ?? shows a bare-bone serial transmitter (Tx). The 10 ports are the txd port, where the serial
data is sent and a Channel where the transmitter can receive the characters to serialize and send. To
generate the correct timing, we compute a constant for by computing the time in clock cycles for one
serial bit.

2? R MERGRITLAER(Tx) . 10% H Ztxdim H, X B ERITHIEIHTT A%, Channel&
RIETS AR BATFIA A ESE . H T PEERNNF, BITTE—1® &, EditE—"1
AT kAL AR B A

We use three registers: (1) register to shift the data (serialize them) (shiftReg), (2) a counter to generate
the correct baud rate (cntReg), and (3) a counter for the number of bits that still need to be shifted out. No
additional state register of FSM is needed, all state is encoded in those three registers.

BEAVER=AFEES: ) BEUERNF FSRE T shifReg) - (2) — MITEEREAAKIE
BRI & (entReg), 1 (3) — DT EEH TIT EFEZRR oE I HIEE - AT EH
FSMIR S 7. FTE PR SIEX =D FF a8 -

Counter cntReg is continuously running (counting down to 0 and reset to the start value when 0). All
action is only done when cntReg is 0. As we build a minimal transmitter, we have only the shift register to
store the data. Therefore, the channel is only ready when cntReg is 0 and no bits are left to shift out.

T ES entRegFFEEAEIZTT( FELEN0, ZFIOLUEEER|IHFIGE) . BTN A HentReg20/
IPELE TR . AEANER— D RADRIAES, BINTAEBRUFFEREREFERE . T2, XA
AH ZentRegfEready i,  BOETRI T A A HIN F7 B E -

The IO port txd is directly connected to the least significant bit of the shift register.

103 H txd B R B R AL 3 A as /ML -

When there are more bits to shift out (bitsReg =/= 0.U), we shift the bits to the right and fill with 1
from the top (the idle level of a transmitter). If no more bits need to be shifted out, we check if the channel
contains data (signaled with the valid port). If so, the bit string to be shifted out is constructed with one
start bit (0), the 8-bit data, and two stop bits (1). Therefore, the bit count is set to 11.

HIFER 2 I L Z B Bl (bitsReg =/= 0.U),  Ff TR MM B, FHEE NIGHE
Tl (RESONE) - MEREEZH HERMFERBA, TIRE-TEERTEEE
P& GBI validifs IAREES) o WASEIXEER), B S E I — b 747 Bl (2(0), AU,
B AL e T, IR e S5O 1T -

This very minimal transmitter has no additional buffer and can accept a new character only when the
shift register is empty and at the clock cycle when cntReg is 0. Accepting new data only when cntReg is 0
also means that the ready flag is also de-asserted when there would be space in the shift register. However,
we do not want to add this “complexity” to the transmitter but delegate it to a buffer.

RN IEE/RIL S, WEBUMNIGR, TR — DA, S BB H A
S, I BB R EentReg HORITELL T o 24 B fEentReg HORIIE L T HUET ARG
BRE AR FFERIE S MARAR, readyfF S HEHHGH - EE, FATEIEXDHE M
AINEN & SER, MRIEEE g -

I class Buffer extends Module {
2 val io = IO(new Bundle {
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val in = new Channel ()

val out = Flipped(new Channel())
)

val empty :: full :: Nil = Enum(2)
val stateReg = Reglnit(empty)
val dataReg = Reglnit (0.U(8.W))

io.in.ready := stateReg === empty
io.out.valid := stateReg === full
when(stateReg === empty) {
when(io.in.valid) {
dataReg := io.in.data
stateReg := full

}
}.otherwise { // full
when(io.out.ready) {
stateReg := empty

}
io.out.data := dataReg

Listing 13.6: —/1>EHready/valid i [H] {55777 2% i

Listing 13.6 shows a single byte buffer, similar to the FIFO register for the bubble FIFO. The input

port is a Channel interface, and the output is the Channel interface with flipped directions. The buffer

contains the minimal state machine to indicate empty or full. The buffer driven handshake signals (in.ready

and out.valid depend on the state register.

136 T — M RF SR MEE, KU TFIFOR Fes, HAT B FIFO. iYL & Channel &

1, R PIChannel A - RIPE S R/ MRSHL, £RAE Bemptyi S full - BEIXENHIHE
F15F (in.readyFflout.valid BUR TR ST 755 ) -

When the state is empty, and data on the input is valid, we register the data and switch to state full.

When the state is full, and the downstream receiver is ready, the downstream data transfer happens, and

we switch back to state empty.

RS Nempty FIRHEE, R A B valid, HIFATFAEIE, RS EPRS . SR8

DIfEfull, NUTRIER N AR ready, A NEHEZ TR, FATUIHENR Sempty -

I class BufferedTx (frequency: Int, baudRate: Int) extends Module ({

val io = IO(new Bundle ({
val txd = Output(Bits (1.W))
val channel = new Channel ()
P
val tx = Module(new Tx(frequency , baudRate))
val buf = Module(new Buffer())

buf.io.in <> io.channel
tx .io.channel <> buf.io.out
io.txd <> tx.io.txd
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Listing 13.7: — M EHEIMNEFI A %A

With that buffer we can extend our bare-bone transmitter. Listing 13.7 shows the combination of the
transmitter Tx with a single-buffer in front. This buffer now relaxes the issue that Tx was ready only for
single clock cycles. We delegated the solution of this issue to the buffer module. An extension of the
single word buffer to a real FIFO can easily be done and needs no change in the transmitter or the single
byte buffer.

B TR, HATTLIERRAT A ST EA . 1378 T & S 81940 A Txf— 4> B Y
RAMESFERIIN o X DGRAPSFINAE AL XA — DA, Tx G 7E B ol i e ready ) - BATTER
FEIEIX AR R aF BRI . BRI MER e, X T — 1 ELFIFO, Al LR B 5E
R, I EANTR BAE A A B BT G i A A AR

class Rx(frequency: Int, baudRate: Int) extends Module {
val io = IO(new Bundle {
val rxd = Input(Bits (1.W))
val channel = Flipped(new Channel())
1)

val BIT_CNT = ((frequency + baudRate / 2) / baudRate — 1).U
val START CNT = ((3 * frequency / 2 + baudRate / 2) / baudRate — 1).U

// Sync in the asynchronous RX data
// Reset to 1 to not start reading after a reset
val rxReg = RegNext(RegNext(io.rxd, 1.U), 1.U)

val shiftReg = Reglnit( A’ .U(8.W))
val cntReg = Reglnit (0.U(20.W))
val bitsReg = Reglnit (0.U(4.W))
val valReg = Reglnit(false .B)

when (cntReg =/= 0.U) {
cntReg := cntReg — 1.U
}.elsewhen (bitsReg =/= 0.U) {
cntReg := BIT_CNT
shiftReg := Cat(rxReg, shiftReg >> 1)
bitsReg := bitsReg — 1.U
// the last shifted in
when(bitsReg === 1.U) {
valReg := true.B
}
// wait 1.5 bits after falling edge of start
}.elsewhen (rxReg === 0.U) {
cntReg := START_CNT
bitsReg := 8.U

when(valReg && io.channel.ready) {
valReg := false.B

136



38
39
40
41

1

"

io.channel.data := shiftReg
io.channel.valid := valReg

)
Listing 13.8: FT & H gy sy

Listing 13.8 shows the code for the receiver (Rx). A receiver is a little bit tricky, as it needs to
reconstruct the timing of the serial data. The receiver waits for the falling edge of the start bit. From that
event, the receiver waits 1.5 bit times to position itself into the middle of bit 0. Then it shifts in the bits
every bit time. You can observe these two waiting times as START_CNT and BIT_CNT. For both times,
the same counter (cntReg) is used. After 8 bits are shifted in, valReg signals an available byte

13.8 R T HRASEROMIMNE . RS EARFELT, DACTKEEZHEIWESITE
PEHIRS o BMOm SE R T IR LAY NI o AARDBY 2, B lirem LLEE IR1.5 — f il A A 3 5
Sh, BEARGMME. RN EBRBA— ML« IRAT DILERX N A S5 A, JE
1 START_CNTHIBIT_CNT - X TH5X PN [A], {5 B AR R 11 448 (entReg) - 7ESHL & ERFE B3
N, valReghR & F TTHRL -

class Sender(frequency: Int, baudRate: Int) extends Module {
val io = IO(new Bundle ({
val txd = Output(Bits (1.W))
)

val tx = Module(new BufferedTx (frequency , baudRate))

io.txd := tx.io.txd

"Hello World!"
val text = Veclnit(msg.map(_.U))

val msg
val len = msg.length.U
val cntReg = Reglnit (0.U(8.W))

tx .10 .channel.data := text(cntReg)

tx .io0.channel.valid := cntReg =/= len

when(tx .io.channel.ready && cntReg =/= len) ({
cntReg := cntReg + 1.U

Listing 13.9: i@ & [ 4 1% “Hello World!"

Listing 13.9 shows the usage of the serial port transmitter by sending a friendly message out. We
define the message in a Scala string (msg) and converting it to a Chisel Vec of Ulnt. A Scala string is a
sequence that supports the map method. The map method takes as argument a function literal, applies this
function to each element, and builds a sequence of the functions return values. If the function literal shall
have only one argument, as it is in this case, the argument can be represented by _. Our function literal
calls the Chisel method .U to convert the Scala Char to a Chisel Ulnt. The sequence is then passed to

Veclnint to construct a Chisel Vec. We index into the vector text with the counter cntReg to provide the
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individual characters to the buffered transmitter. With each ready signal we increase the counter until the
full string is sent out. The sender keeps valid asserted until the last character has been sent out.

139K T T ORMEH, BERE—-PRENREER . B FEscala¥ 1 & 2 LH
B(msg) B FE i Hchisel i) — M VecHIUInt - scalaFF # & — HJF5], L Fimap/71% - mapJi
FEEATHRRETEENZH, EXPTRBNHTEN TR, HFEEE R, REEE -
WRRETHENIZE S8, ERXDET, XADZET LU SRR - BT R %L
5F T & PP Y chisel /7 £.U 2% & MiscalafJChar 22 HchiselUInt - X7 518K J5 1% 126 2 VecInint 2 14
#chiselfTVec . A 1A T ZrcntReg R G| [7 Etext, EIRMA—MFHEIBHRFHILIES -
B R ready 55, FANEEINITEGS, BRISEENTFAHERLE . LT Rffvalidh B, HE
BRJE TR IE -

class Echo(frequency: Int, baudRate: Int) extends Module {
val io = IO(new Bundle {
val txd = Output(Bits (1.W))
val rxd = Input(Bits (1.W))
9]

val tx = Module(new BufferedTx (frequency , baudRate))
val rx = Module(new Rx(frequency , baudRate))

io.txd := tx.io.txd

rx.io.rxd := io.rxd

tx .10 .channel <> rx.io.channel

Listing 13.10: £ & M R

Listing 13.10 shows the usage of the receiver and the transmitter by connecting them together. This
connection generates an Echo circuit where each received character is sent back (echoed).

13.10 R T HAMUm A LA R, B eI THEE . X4 T Echol i, X HE
MEZ B TFAFEBORE (FTEecho)

13.3 &ifFIFOF &

In this section we will implement different variations of a FIFO queue. To make these implementations

interchangeable we will use inheritance, as introduced in Section 12.4.
XN, HATEHNIE—FIFOF AR R - T sEixEn] B, HfTaEM
WA, ARRAE12.40 BT -
13.3.1 ZHLFIFO
We define an abstract FIFO class:
Bl 1€ L —"abstractJFIFORZY.

abstract class Fifo[T <: Data](gen: T, depth: Int) extends Module {

2 val io = IO(new FifolO(gen))
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S}

assert(depth > 0, "Number of buffer elements needs to be larger than 0")

}
Listing 13.11: fifo abstract

In Section 13.1 we defined our own types for the interface with common names for signals, such as
write, full, din, read, empty, and dout. The input and the output of such a buffer consists of data and two
signals for handshaking (e.g., we write into the FIFO when it is not full. However, we can generalize this
handshaking to the so called ready-valid interface. E.g, we can enqueue an element (write into the FIFO)
when the FIFO is ready. We signal this at the writer side with valid. As this ready-valid interface is so
common, Chisel provides a definition of this interface in DecoupledIO as follows:?

£ 1BABNTEXL TEANEEE WA AR IEER,  Fl40write, full, din, read, emptyFfldout - X
FERZ AR AN A& TEIR MM ERFE S, S AElfB %, i lwrite AFIFO- )
B, BATATUEZXMEFES, 1ERTEKready-valid5 i - 140, FATATA=E—1TC
% (B AFIFO) , ¥FIFO#ready - HA1#MvalidE NG NimfES « K HiX Pready-valid 7 1A
FARF LAY, chisel#&ft T — " DecoupledlOF |, EXIATF: *

class DecoupledlO[T <: Data](gen: T) {
val ready = Input(Bool())
val valid = Output(Bool())
val bits = Output(gen)

Listing 13.12: fifo decoupled

With the DecoupledlIO interface we define the interface for our FIFOs: a FifolO with an enq enqueue and
a deq dequeue port consisting of ready-valid interfaces.

bt & B T LA T 3A TRIFIFOR I DecoupledlOF [ :  — 1 FifolO, HH—"~enq& £\ FIF1—
MdeqiEWPAF], 4HAL T ready-valid 55T -

The DecoupledlO interface is defined from the writer’s (producer’s) view point. Therefore, enqueue port
of the FIFO needs to flip the signal directions.

DecoupledlOF HIE 1 5 AdwHI AR (B Eim) KM . T2, FIFORH AT 2 X HH
EEHITIA -

class FifolO[T <: Data](private val gen: T) extends Bundle {
val enq = Flipped (new DecoupledIO(gen))
val deq = new DecoupledIO (gen)

With the abstract base class and an interface we can specialize for different FIFO implementations
optimized for different parameters (speed, area, power, or just simplicity).

T R EM— A, AT LUE SCRFEMFIFO, AT AFMENR GEE, mHH, I
e, BERA) -

3This is a simplification, as DecoupledIO actually extends an abstract class.
HX R, RN DecoupledlOSEFr FHRE T — M MG KA
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13.3.2 HEFXiT§IEFIFO

We can redefine our bubble FIFO from Section 13.1 using standard ready-valid interfaces and being

parametrizable with a Chisel data type.

FATAT LLAI3.1E B € L H AT B WEFIFO, 3 FH B ifE fready-valid 5 1 . 7 B 7] DLi&E

15 ChiselZ#E KT SHUL, -

I class BubbleFifo[T <: Data](gen: T, depth: Int) extends Fifo(gen: T, depth:

"

3 private class Buffer() extends Module ({

4 val io = IO(new FifolO(gen))

6 val fullReg = Reglnit(false.B)
7 val dataReg = Reg(gen)

8

9 when (fullReg) {

10 when (io.deq.ready) {
11 fullReg := false.B

12 }

13 } .otherwise {

14 when (io.enq.valid) {

15 fullReg := true.B

16 dataReg := io.enq. bits
17 }

18 }

19

20 io.enq.ready := !fullReg
21 io.deq.valid := fullReg

22 io.deq.bits := dataReg

23 }

24

25 private val buffers = Array. fill (depth) { Module(new Buffer()) }

26 for (i <= 0 until depth — 1) {
27 buffers(i + 1).io.enq <> buffers(i).io.deq

30 io.enq <> buffers (0).io.enq

31 io.deq <> buffers(depth — 1).1i0.deq

Listing 13.13: —~EHready-valid % 1 {1 '§ JEFIFO

Listing 13.13 shows the refactored bubble FIFO with ready-valid interface. Note what we put the
Buffer component inside from BubbleFifo as private class. This helper class is only needed for this
component and therefore we hide it and avoid polluting the name space. The buffer class has also been
simplified. Instead of an FSM we use only a single bit, fullReg, to note the state of the buffer: full or
empty.

13.13% 7R T 21 EHSEUL B A ready-valid 7 18 A0 B JIFIFO - & 2|8 A 1(E Buffer 35T
71 & BubbleFifolF 2 — MFVE REIAERAT « X DA BIR R X P2 FHER, TR
e, R A S E o SRR R T o BR T EAHT B AR, fullReg, FIRER

140



1

)

ZAFHPIRGS: WERZ -

The bubble FIFO is simply, easy to understand, and uses minimal resources. However, as each buffer
stage has to toggle between empty and full, the maximum bandwidth of this FIFO is two clock cycles per
word.

BVOFIFOZ R 1), 5 THME, HHRDTED. B2, A8 MEFRFEEZMBHL
[A]3%%, BAHIFIFOH T8/ A8 — 1 -

One could consider to look at both interface sides in the buffer to be able to accept a new word when
the producer valid and the consumer is ready. However, this introduces a combinational path from the
consumer handshake to the producer handshake, which violates the semantics of the ready-valid protocol.

IRAT AT BAE A P, 3 A7 & validFHH 28 2 Bready & = A A8, 2 UCHT
5. BE, XIPIIATHSMRE, NHRENETFIEFENET, XDER T ready-
valid ) RE SL o

13.3.3 Double Buffer FIFO

One solution is stay ready even when the buffer register if full. To be able to accept a data word from
the producer, when the consumer is not ready we need a second buffer, we call it the shadow register.
When the the buffer is full, new data is stored in the shadow register and ready is de-asserted. When the
consumer becomes ready again, data is transferred from the data register to the consumer and from the
shadow register into the data register.

— ER T AR R fready, BEEZFFFEREBHEILT - T NEFH BRI
U&7, HHTE Aready IR %, BAFESE “NEAF - RO NETHES - SRAZHIE
LN, MBIRR R 75788, T HreadyBEF . HIHTHEHEEN L Nready, Bl NBIEFF
EEEERE, FHNETH SRR SR Ao -

class DoubleBufferFifo[T <: Data](gen: T, depth: Int) extends Fifo(gen: T, depth:
Int) {

private class DoubleBuffer[T <: Data](gen: T) extends Module {
val io = IO(new FifolO (gen))

val empty :: one :: two :: Nil = Enum(3)
val stateReg = Reglnit(empty)

val dataReg = Reg(gen)

val shadowReg = Reg(gen)

switch (stateReg) {
is (empty) {
when (io.enq.valid) {
stateReg := one
dataReg := io.enq.bits
1
}
is (one) {
when (io.deq.ready && !io.enq.valid) {
stateReg := empty
}
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when (io.deq.ready && io.enq.valid) ({
stateReg := one
dataReg := io.enq. bits

}

when (!io.deq.ready && io.enq.valid) {
stateReg := two

shadowReg := io.enq.bits

}
is (two) {
when (io.deq.ready) {
dataReg := shadowReg

stateReg := one
}
}
}
io.enq.ready := (stateReg === empty || stateReg === one)
io.deq.valid := (stateReg === one || stateReg === two)
io.deq.bits := dataReg

private val buffers = Array. fill ((depth+1)/2) { Module(new DoubleBuffer(gen)) }

for (i <= 0 until (depth+1)/2 — 1) {
buffers(i + 1).io.enq <> buffers(i).io.deq
}

io.enq <> buffers (0).io.enq
io.deq <> buffers ((depth+1)/2 — 1).io.deq

Listing 13.14: — P E L 7 HIFIFO

Listing 13.14 shows the double buffer. As each buffer element can store two entries we need only half
of the buffer elements (depth/2). The DoubleBuffer contains two registers, dataReg and shadowReg. The
consumer is served always from shadowReg. The double buffer has three states: empty, one, and two,
which signal the fill level of the double buffer. The buffer is ready to accept new data when is it in state

empty or one. The has valid data when it is in state one or two.

131487~ T WEEAF - BIREARENNTE, TNAFE LR FICE (depth/2) - DoubleBufferfy,
W es, dataRegflishadowReg - VM %7 MshadowReg#iiRSS - WELHFH = MRA: empty, one,

Miwo, XEEFEFRR T WELFRIBEWAPRE o ZF Bready £ YU IR, HEHER
Bempty B Eone - EHHEIE RS ZoneE Ztwo -

If we run the FIFO at full speed and the consumer is always ready the steady state of the double
buffers are one. Only when the consumer de-asserts ready, the queue fills up and the buffers enter state
two. However, compared to a single bubble FIFO, a restart of the queue takes only half the number fo
clock cycles for the same buffer capacity. Similar the fall through latency is half of the bubble FIFO.

RN HEZITFIFO, #H{% T E—Hieready, WEEFIEER S Eone. A HIH P
FreadyBUE LS, A T, &GEHENRStwo - (B2, HILTHE—EEFIFO, —1FAFIiE
J AR R, S(ﬂ%ﬁﬂﬂ%ﬁﬁ* . RRH, FEREEbubble FIFOH— .
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13.3.4 EBEEHFGFEHMHESTIFIFO

When you come with a software engineering background you may have been wondering that we built
hardware queues out of many small individual small buffer elements, all executing in parallel and
handshaking with upstream and downstream elements. For small buffers this is probably the most efficient
implementation.

MRV BPTREE R, RATRERERTRABREE TIRZ MBEMRIETF TR, FrEH
EWHATeT, FHMERTRICEET - ST/ IREE, XA REREE RN -

A queue in software is usually used by a sequential code in a single thread. Or as a queue to decouple a
producer and consumer thread. In this setting a fixed size FIFO queue is usually implemented as a circular
buffer. Two pointers point into read and write positions in a memory set aside for the queue. When
the pointers reach the end of the memory, the are set back to the begin of that memory. The difference
between the two pointers is the number of elements in the queue. When the two pointers point to the same
address, the queue is either empty or full. To distinguish between empty and full we need another flag.

— NI A HE— N SERE N — IR, B A—1 A, e —1
EFEETHRE LR . X DRE, — P EE R NHFIFOINY, ZHWE NG ERF . W
NIRRT, A PPSIRFEERS — B SRR T F R R, TRET R R i
TR - AR XA IR, S IREHER TR AL, XA AT RER:
W, BRER . T XBISERER, FFEAIS—MaglFT

We can implement such a memory based FIFO queue in hardware as well. For small queues, we can
use a register file (i.e., a Reg(Vec())). Listing 13.15 shows a FIFO queue implemented with memory and
read and write pointers.

AT AT UKD 783X 4 5 T A 28 HOFIFOROBE A4 o X F/NABRSY, FATTAT DLE R — D& 778
SCHE (B, —Reg(Vec())) - 1315 T —/Nllit 77 %885 FEE b 7T AUFIFORAS) -

class RegFifo[T <: Data]J(gen: T, depth: Int) extends Fifo(gen: T, depth: Int) {

def counter(depth: Int, incr: Bool): (Ulnt, Ulnt) = {
val cntReg = Reglnit(0.U(log2Ceil (depth).W))
val nextVal = Mux(cntReg === (depth—1).U, 0.U, cntReg + 1.U)
when (incr) {
cntReg := nextVal
}
(cntReg, nextVal)

}

// the register based memory

val memReg = Reg(Vec(depth, gen))

val incrRead = WireDefault(false .B)
val incrWrite = WireDefault(false .B)
val (readPtr, nextRead) = counter(depth, incrRead)

val (writePtr, nextWrite) = counter (depth, incrWrite)

val emptyReg = Reglnit(true .B)
val fullReg = Reglnit(false .B)
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when (io.enq.valid && !fullReg) {

memReg( writePtr) := io.enq.bits
emptyReg := false.B
fullReg := nextWrite === readPtr
incrWrite := true.B

when (io.deq.ready && !emptyReg) {

fullReg := false.B
emptyReg := nextRead === writePtr
incrRead := true.B

io.deq.bits := memReg(readPtr)
io.enq.ready := !fullReg
io.deq.valid := !emptyReg

Listing 13.15: — & T3 7 f7- {28 FIFIFO

As there are two pointers that behave the same, being incremented on an action and wrap around
at the end of the buffer, we define a function counter that implements those wrapping counters. With
log2Ceil(depth).W we compute the bit length of the counter. The next value is either an increment by 1 or
a wrap around to 0. The counter is incremented only when the input incr is true.B.

ROE AR T N —FER), [ EEWEN, HEENERFREREIRE, BI1EX
— ¥ counter, FIRHNFEX LLEREE BTTELES o 1Hid log2Ceil(depth) WA [T BT £ B FIA K -
T MMERWEIN—, BUEERD0. FAes R AincrEtrue BB I NG -

Furthermore, as we need also the possible next value (increment or O on wrap around), we return
this value from the counter function as well. In Scala we can return a so called tuple, which is simply a
container to hold more than one value. The syntax to create such a duple is simply wrapping the comma

separated values in parentheses:

HEa, FARNMETFET — A ferE (ibﬂi@ﬂ) FA1EE 1 counter PR ER [E] 4L
B - fFScalaF I TAT LUR B — MG FR Nruple BRI HE—NFEs, EOERIE—PEUE -
FA SR A B — P tuple FEVE R R AR ﬁiﬁﬁxyﬁﬁbbﬂ?ﬁ?:

val (x1, x2) =t

For the memory we us a register of a vector (Reg(Vec(depth, gen)) of Chisel data type gen. We define
two signal to increment the read and write pointer and create the read and write pointers with the function
counter. When both pointer are equal, the buffer is either empty or full. We define two flags to for the
notion of empty and full.

ST Gy, FRATOIE— D FFE A0 = (Reg(Vec(depth, gen)), A FZ ChiselZRHgen - FA/]
EXWNMETEEGRE, QEEMEMIEE, MR counter. AP NREEMFER, %7

FIRERZSEHR . BANTE X MaglF S, HTICRESMI -

When the producer asserts valid and the FIFO is not full we: (1) write into the buffer, (2) ensure
emptyReg is de-asserted, (3) mark the buffer full if the write pointer will catch up with the read pointer
in the next clock cycle (compare the current read pointer with the next write pointer), and (4) signal the

write counter to increment.
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fRemptyRegBE X,  (3) PRICERAEHNA, WRGIIEHAEBR LB, £ -1 HAHE
T (HBONAERIRIEE, M5 . 4) KHES. ILEEHEMm.

When the consumer is ready and the FIFO is not empty we: (1) ensure that the fullReg is de-asserted,
(2) mark the buffer empty if the read pointer will catch up with the write pointer in the next clock cycle,
and (3) signal the read counter to increment.

L{H PR E Zready RS, FIFONZZH), AT (1) BifRfullRegBEE, (2) WHRTANH
B, EEUEREIR EE1RE, PROEM%EF.  3) RES. EBEEREHEN.

The output of the FIFO is the memory element at the read pointer address. The ready and valid flags
are simply derived from the full and empty flags.

FIFOR i H & SR e I AU RS T E - readyMvalidiflagls 5 H A& & B M full Flempty A flaglE
SR .

13.3.5 HAF EHFH#ERIFIFO

The last version of the FIFO used a register files to represent the memory, which is a good solution for a
small FIFO. For larger FIFOs it is better to use on-chip memory. Listing 13.16 shows a FIFO using a
synchronous memory for storage.

B FIFIFORUAN i Fl 27 A7 de U MF R F0R il X0 T/ NFIFOZ IF RIRRAR ik - W T
FORHIFIFO, H&IFEH A 7. 13168 Rn— MERAFD IS, AT REEE -

class MemFifo[T <: Data](gen: T, depth: Int) extends Fifo(gen: T, depth: Int) {

I
3 def counter(depth: Int, incr: Bool): (Ulnt, Ulnt) = {
4 val cntReg = Reglnit(0.U(log2Ceil (depth).W))

5 val nextVal = Mux(cntReg === (depth—1).U, 0.U, cntReg + 1.U)
6 when (incr) {

7 cntReg := nextVal

8 }

9 (cntReg, nextVal)

12 val mem = SyncReadMem (depth, gen)

14 val incrRead = WireDefault(false .B)

15 val incrWrite = WireDefault(false .B)

16 val (readPtr, nextRead) = counter(depth, incrRead)

17 val (writePtr, nextWrite) = counter (depth, incrWrite)

19 val emptyReg = Reglnit(true .B)

20 val fullReg = Reglnit(false .B)

21

22 val idle :: wvalid :: full :: Nil = Enum(3)
23 val stateReg = Reglnit(idle)

24 val shadowReg = Reg(gen)

26 when (io.enq.valid && !fullReg) {
27 mem. write (writePtr , io.enq. bits)

145



59
60
61
62
63

64

66
67
68
69
70
71

73
74

76
77
78
79

emptyReg := false.B
fullReg := nextWrite === readPtr
incrWrite := true.B

val data = mem.read(readPtr)

// Handling of the one cycle memory latency
// with an additional output register
switch (stateReg) {
is (idle) {
when (! emptyReg) {

stateReg := valid
fullReg := false.B
emptyReg := nextRead === writePtr
incrRead := true.B

}
is(valid) {
when (io .deq.ready) {
when (! emptyReg) {

stateReg := valid
fullReg := false.B
emptyReg := nextRead === writePtr
incrRead := true.B

} otherwise {
stateReg := idle
}
} otherwise {
shadowReg := data
stateReg := full

}
is(full) {
when(io.deq.ready) {
when (! emptyReg) {
stateReg := valid
fullReg := false.B
emptyReg := nextRead === writePtr

incrRead := true.B

} otherwise

—~

stateReg := idle

io.deq.bits := Mux(stateReg === valid, data, shadowReg)
io.enq.ready := !fullReg
io.deq.valid := stateReg === valid ||l stateReg === full
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Listing 13.16: 1/ i E A& HIFIFO

The handling of read and write pointer is identical to the register memory FIFO. However, a syn-
chronous on-chip memory delivers the result of a read in the next clock cycle, where the read of the
register file was available in the same clock cycle.

SEHRSEBUCR B AR A H F A EFIFOZ R IR - B, — PRSP ERFE#ESE T —1
I BRI TR IR, A A7 A SUIF BT 0 RAE [ R SE A -

Therefore, we need some additional FSM and a shadow register to handle this latency. We read the
memory out and provide the value of the top of the queue to the output port. If that value is not consumed,
we need to store it in the shadow register shadowReg while reading the next value from the memory. The
state machine consists of three states to represent: (1) an empty FIFO, (2) a valid data read out from the
memory, and (3) head of the queue in the shadow register and valid data (the next element) from the
memory.

TR, BAFE—BHPINESMM — 1 T F 17 85 £ BX D IEIR « FATT A7 1 2 132
. HIREASI TR EES G o WRBNEEREFRIER, HINTELEECFEAR TS
f#2¢shadowRegI[FI, MAFREZHEAN T —ME . IWENNBH=FREEFRKE: (1) ==
fIFIFO, (2) —MHAMEUENFM#EZIRL,  (3) BT aFaenkalAg B 7 e 3dE

(F—PH) -

The memory based FIFO can efficiently hold larger amounts of data in the queue and has a short fall
through latency. In the last design, the output of the FIFO may come directly from the memory read. If
this data path is in the critical path of the design, we can easily pipeline our design by combining two
FIFOs. Listing 13.17 shows such a combination. On the output of the memory based FIFO we add a
single stage double buffer FIFO to decouple the memory read path from the output.

T 2% 0 2 AKFIFO ] LU SO AE A S A OR 355 BE 2 O, AR R RORERT « fE R it
i FOFIFO ] REEL IR H A AR o 0 R DR B B AR 50T B R B e A2, BT mT LATHT #
b3 A B AFIFO, WK & A& 13178 R T XHE—NHE X THEER £
fUFIFO, Ff Mg —PRERIN, WELFHIFIFO, MM i E: Wit L %12 -
class CombFifo[T <: Data](gen: T, depth: Int) extends Fifo(gen: T, depth: Int) {

val memFifo = Module (new MemFifo(gen, depth))
val bufferFIFO = Module(new DoubleBufferFifo(gen, 2))
io.enq <> memkFifo.io.enq

memFifo.io.deq <> bufferFIFO .io.enq
bufferFIFO .io.deq <> io.deq

Listing 13.17: W E LA & H — D78 9 ZRRIFIFO

13.4 %3]

This exercise section is a little bit longer as it contains two exercises: (1) exploring the bubble FIFO and
implement a different FIFO design; and (2) exploring the UART and extending it. Source code for both

exercises is included in the chisel-examples repository.
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GO E ALK, BRSNS (DFEREBIEFIFO, H#h i — M ARMFIFORIT; Q)%
RUARTH EFAREE - WA BIRIS Echisel-examples & JF -

13.4.1 HEZREWFIFO

The FIFO source also includes a tester that provokes different read and write behavior and generates a
waveform in the value change dump (VCD) format. The VCD file can be viewed with a waveform viewer,
such as GTKWave. Explore the FifoTester in the repository. The repository contains a Makefile to run the
examples, for the FIFO example just type:

S make fifo

This make command will compile the FIFO, run the test, and starts GTKWave for waveform viewing.
Explore the tester and the generated waveform.

FIFOt B — Mgy, MR B LS HAE, FHAERIEIE UM value change dump (VCD)
. VCDHW AT DIFERE IS % EBE . Bl GTKWave . #F FifoTester FI3CHR. i X MUY
FEMEE T Makefile FRZITHF, FIAAFIFOR]+ H&kiA:

S make fifo

XA A S YREFEFIFO, 217N, H ENGTKWave F I EFEIKIY - 155 H M 85 R4 A AU
iz

In the first cycles, the tester writes a single word. We can observe in the waveform how that word
bubbles through the FIFO, therefore the name bubble FIFO. This bubbling also means that the latency of
a data word through the FIFO is equal to the depth of the FIFO.

ERE-DRAYF, WASHEE D8I BATR LIRS BT s FIFO R I,
bt ZFRbubble FIFO - XM B MR IRE XU 71813 FIFO R 51 [ 55 T FIFOH)IR

The next test fills the FIFO until it is full. A single read follows. Notice how the empty word bubbles
from the reader side of the FIFO to the writer side. When a bubble FIFO is full, it takes a latency of the
buffer depth for a read to affect the writer side.

=", EMEETFIFOREN, BEZ & — A FAYE . EREIZ word i N 5 g §
1. H—PEVEFIFO&HN, EFRZE—bufferlREFIIEIR ML, £ 5 i -

The end of the test contains a loop that tries to write and read at maximum speed. We can see the
bubble FIFO running at maximum bandwidth, which is two clock cycles per word. A buffer stage has
always to toggle between empty and full for a single word transfer.

AR RBE & —ME, EEE A, ERcKrEE - JATALUE 2] B IFIFOE
BEWE N atT, X EE A Sword e — RN BUE AT 5HD AT DUAE 2 AR T 55
B word -

A bubble FIFO is simple and for small buffers has a low resource requirement. The main drawbacks
of an n stage bubble FIFO are: (1) maximum throughput is one word every two clock cycles, (2) a data
word has to travel n clock cycles from the writer end to the reader end, and (3) a full FIFO needs n clock
cycles for the restart.

— /B IEFIFOZ R # 1), X T/NHUEAFRRIRERE - EZABUT En B IBFIFORE -
(WERKFE BT FAPN DR ERHER T, @Q— M FRFEIRITob #H NG A2
B,  (3)— M TEEERFIFOTR Zni # F A S # 1A
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These drawbacks can be solved by a FIFO implementation with a circular buffer. The circular buffer
can be implemented with a memory and read and write pointers.

X LR SR LUR I IR G2 i 8 AR R o PRE SRR R] LUR S fE i BEHURI G A TEET R A%
R o

Implement a FIFO as a circular buffer with four elements, using the same interface, and explore the
different behavior with the tester. For an initial implementation of the circular buffer use, as a shortcut, a
vector of registers (Reg(Vec(4, Ulnt(size.W)))).

N FE—PFIFOfE N — M EAE i i UM oT R, ERAMERMFE, HFERRMHAESE T A
FIHATIC . X F =&AL R PSR ME, (FRh—PREFRX, B—IPRENFF
2%(Reg(Vec(4, Ulnt(size.W)))) «

13.4.2 The UART

For the UART example, you need an FPGA board with a serial port and a serial port for your laptop
(usually with a USB connection). Connect the serial cable between the FPGA board and the serial port on

your laptop. Start a terminal program, e.g., Hyperterm on Windows or gtkterm on Linux:
$ gtkterm &

Configure your port to use the correct device, with a USB UART this is often something like /dev/ttyUSBO.
Set the baud rate to 115200 and no parity or flow control (handshake). With the following command you
can create the Verilog code for the UART:

S make uart

Then use your synthesize tool to synthesize the design. The repository contains a Quartus project for the
DE2-115 FPGA board. With Quartus use the play button to synthesize the design and then configure the
FPGA. After configuration, you should see a greeting message in the terminal.

K TFUARTHIFI T, (RFHZE—A B & O IFPGANR T RIH A & 1 ) B (3 8 &l 1T USBIE
). FEFPGAMFIFLARIERE B O%% - FFIA— terminal 2/, 41, windows I fihyperterm, &f
#linux N Hgtkterm

$ gtkterm &

RE VRN O FE 5 ER% &, (F/H—USB UART, X/MEH 2l dev/ttyUSBO - JEIRAFR
WH114200, FHFBRREALEEEFIRAETFES) . BB N4 T, 7RA] L& verilogft
i T UART:

S make uart

NEERRINGE S TRERGEBOT . BEAS T — 1 Quartus H Fl TDE2-115HIFPGAIRK ¥ -
BT Quartus 5. IZITHEL R LR AT, RGN EFPGA . W E, RN % Eterminal & | — 1
MO I B, -

Extend the blinking LED example with a UART and write 0 and 1 to the serial line when the LED is
off and on. Use the BufferedTx, as in the Sender example.

HREINDELEDII ¥, fEFH—UART, JEE4H 0450/, HLEDE MG EHIn
{5 o fif FBufferedTx, {EHSenderf |+ -
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With the slow output of characters (two per second), you can write the data to the UART transmit
register and can ignore the read/valid handshake. Extend the example by writing repeated numbers 0-9 as
fast as the baud rate allows. In this case, you have to extend your state machine to poll the UART status to
check if the transmit buffer is free.

B TP EmE (B0et) | IRATLUAUARTR Biar /e 5 AR, I BT A
Bread/validE T155 - Hid EEEATF0-9, REFMBERRRATFERE, HEXDMFF. 7
XMERT, RFHERRINSHLERIBUARTIRE, FXREERRRFEETE W -

The example code contains only a single buffer for the Tx. Feel free to add the FIFO that you have
implemented to add buffering to the transmitter and receiver.

XTI EE T RAE - N RMHTTx . YOEIRINR S HFIFO, T AR IR %
i

13.4.3 HZEFIFO

Write a simple FIFO with 4 buffer elements in dedicated registers. Use 2-bit read and write counters,
which can just just overflow. As a further simplification consider the situation when the read and write
pointers are equal as empty FIFO. This means you can maximally store 3 elements. This simplification
avoids the counter function from the example in Listing 13.15 and the handling of the empty or full with
the same pointer values. We do not need empty or full flags, as this can be derived form the pointer values
alone. How much simpler is this design?

5 —/ME L HJFIFO, ,EJEM\%‘/EPJT:? TR E A fras - AL EEAN S TS,
AIREZ MM - 1EN LR, % B =5 IR % T SFIFOMTEIL - 1XE %EM\T o\
REFMITICE o X DR BT TR 13158067 T £ as R 202 H B A HE 25 B IR
A, FERR—EE . BATATRES S lag, EX A OB FEEHER R XM
LR Z i

The presented different FIFO designs have different design tradeoffs relative to following properties:
(1) maximum throughput, (2) fall through latency, (3) resource requirement, and (4) maximum clock
frequency. Explore all FIFO variations in different sizes by synthesizing them for an FPGA; the source is
available at chisel-examples. Where are the sweet spots for FIFOs of 4 words, 16 words, and 256 words?

H Fil [/ FIFIFO % 11 5 AN [F] E@?ﬁ% MRFLURER: (1) RAFLE 2) FHEER

(3) BHRFTERF (4) HARRBHIZ . FRERIVEMFIFOZL, 8 7EFPGAF L& ML Z H A
A VRAASTEX B chisel-examples - S(TJ‘T4%, 16, 25615, XEEf)f A AEMPE?
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Chapter 14

it — A Es

As one of the last chapters in this book, we present a medium size project: the design, simulation,
and testing of a microprocessor. To keep this project manageable, we design a simple accumulator
machine. The processor is called Leros and is available in open source at https://github.com/
leros—dev/leros.

ERARBH— e —F, TR T — &R NITE: &, TR — R
gro N THEXNIERERE, TAISBOT— MR RKRMESIE . XD LE BRI Leros,
FEFR nttps://github.com/leros-dev/leros A] LA#H .

We would like to mention that this is an advanced example and some computer architecture knowledge
is needed to follow the presented code examples.

A TEE DGR — D& R, — it B TR 28 ST Fros R 6] 7 -

Leros is designed to be simple, but still a good target for a C compiler. The description of the
instructions fits on one page, see Table 14.1. In that table A represents the accumulator, PC is the program
counter, i is an immediate value (0 to 255), Rn a register n (0 to 255), o a branch offset relative to the PC,
and AR an address register for memory access.

Leros#isiT H—MEHAY, HRECAE—DCHhFER - XIS HIA H—01, #1401
TEARADEAG, ARFEREINE, OCHREFFHERE, iff — 1 3LE1% (0%]255) . RnZ— a7
gan (02255) | o — MEXNTPCHIZ WE, HHARZ—PHHLFFERH T MR -

14.1 MALUFIE

A central component of a processor is the arithmetic logic unit, or ALU for short. Therefore, we start with
the coding of the ALU and a test bench. First, we define an Enum to represent the different operations of
the ALU:

MR — DA OHRER R R AT, SEEALU. T, FATAALUMtestbench /45
W5 . B, TATE L —1TEnumRRALURA[EH#EIE:

I object Types {
2 val nop :: add :: sub :: and :: or :: xor :: Id :: shr :: Nil = Enum(8)
3}
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Opcode Function Description

add A=A+Rn Add register Rn to A

addi A=A+i Add immediate value i to A

sub A=A-Rn Subtract register Rn from A

subi A=A-i Subtract immediate value i from A
shr A=A>>>1 Shift A logically right

load A =Rn Load register Rn into A

loadi A=i Load immediate value i into A
and A=A and Rn And register Rn with A

andi A=Aandi And immediate value i with A

or A=AorRn Or register Rn with A

ori A=Aori Or immediate value i with A

XOr A = A xor Rn Xor register Rn with A

xori A =AZXxori Xor immediate value i with A
loadhi As_g=1 Load immediate into second byte
loadh2i Agz_16=1 Load immediate into third byte
loadh3i Agzi_9g =1 Load immediate into fourth byte
store Rn=A Store A into register Rn

jal PC=A,Rn=PC+2 Jump to A and store return address in Rn
Idaddr AR=A Load address register AR with A
loadind A =mem[AR+(1 << 2)] Load a word from memory into A
loadindbu A = mem[AR+i]7_g Load a byte unsigned from memory into A
storeind mem[AR+(1 << 2)]=A Store A into memory

storeindb mem[AR+i]7_g = A Store a byte into memory

br PC=PC+o Branch

brz ifA==0PC=PC+o0 Branch if A is zero

brnz ifA!=0PC=PC+o0 Branch if A is not zero

brp if A>=0PC=PC+0 Branchif A is positive

brn ifA<OPC=PC+o Branch if A is negative

scall scall A System call (simulation hook)

Table 14.1: Leros instruction set.

An ALU usually has two operand inputs (call them a and b), an operation op (or opcode) input to select
the function and an output y. Listing 14.1 shows the ALU.

ALU—BE P REEGR A (FRvafib) . — P #{Fop (HiZopfS) 1EJuEIAF AIEFE K
., F—"Hitly. 14.1KBJALU.

We first define shorter names for the three inputs. The switch statement defines the logic for the
computation of res. Therefore, it gets a default assignment of 0. The switch statement enumerates all
operations and assigns the expression accordingly. All operations map directly to a Chisel expression.

HATE S E LRI S T - resHZHE T switch= RS . T2, ©HE—1EIME
0. switchf= BAF12 T ETR#AE, H0RIR(E - P RERIEE R B E]— P Chisel AR .

In the end, we assign the result res to the ALU output y

LhR, B Arest RIHEALUSI Hy -

I class Alu(size: Int) extends Module {
2 val io = IO(new Bundle {
val op = Input(Ulnt(3.W))
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6

val a = Input(SInt(size.W))

val b = Input(SInt(size.W))
val y = Output(SInt(size .W))
1)
val op = io.op
val a = io.a
val b = io.b

val res = WireDefault (0.S(size.W))

switch (op) {

is(add) {
res :=a+ b
}
is (sub) {
res :=a—>b
}
is (and) {
res := a &b
}
is (or) f{
res :=a | b
}
is (xor) {
res :=a b
}
is (shr) {
/! the following does NOT result in an unsigned shift
// res := (a.asUlnt >> 1).asSInt
// work around
res := (a >> 1) & Ox7fffffff.S
}
is(ld) {
res := b
}
}
io.y := res

Listing 14.1: The Leros ALU

For the testing, we write the ALU function in plain Scala, as shown in Listing 14.2.

T, BAER Y EScalalki RS | ALUKEL, 1 FA7R14.2-

def alu(a: Int, b: Int, op: Int): Int = {

op match {

case 1 => a + b
case 2 =>a — b
case 3 => a & b
case 4 => a | b
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8 case 5 =>a " b

9 case 6 => Db

10 case 7 => a >>> 1

11 case => —123 // This shall not happen

Listing 14.2: Leros ALUMScalaZ 7~

While this duplication of hardware written in Chisel by a Scala implementation does not detect errors in
the specification; it is at least some sanity check. We use some corner case values as the test vector:

¥ FScalaff®iX ™ Chiselif {4 B 5 —iE A2 1M HispecHIEE 1R ; B Hg — AR - FA16F
F—2230 F 1 A i &

We test all functions with those values on both inputs: FA HEXELAE TR A, M T PE iR EL:

def test(values: Seq[Int]) = {

2 for (fun <— add to shr) {

3 for (a <— values) {

4 for (b <— values) {

5 poke (dut.io.op, fun)

6 poke(dut.io.a, a)

7 poke (dut.io.b, b)

8 step (1)

9 expect(dut.io.y, alu(a, b, fun.tolnt))

Full, exhaustive testing for 32-bit arguments is not possible, which was the reason we selected some
corner cases as input values. Beside testing against corner cases, it is also useful to test against random
inputs:

HP, RATHEM 255320 KIS HOR A AT RERY, X0 AT 4 Bl T B — 2o f R O/ E g A\
B BRTINA—ZAm i, Wik —LEEhlES R A

1 val randArgs = Seq.fill (100)(scala.util.Random.nextInt)
test (randArgs)

]

You can run the tests within the Leros project with

YR AT DAZE LerosTil H A2 17
S sbt "test:runMain leros.AluTester"

and shall produce a success message similar to:

RIZ 2 SR — A T BOTE B BRI R

[info] [0.001] SEED 1544507337402

test Alu Success: 70567 tests passed in 70572 cycles taking
3.845715 seconds

[info] [3.825] RAN 70567 CYCLES PASSED
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14.2

EILEEES

From the ALU, we work backward and implement the instruction decoder. However, first, we define

the instruction encoding in its own Scala class and a shared package. We want to share the encoding

constants between the hardware implementation of Leros, an assembler for Leros, and an instruction set

simulator of Leros.

MALU, FAlmER—2, i< mEiEes . HE, B, HNEEARS BscalaR E I8
L F— " sharedPIHREE - AT ZE ElerosIRELE, lerosHILIMES, FllerosHITE L BRI ZRZ
[F] 5 gAY &

I package leros.shared ({

2

3 object Constants {
4 val NOP = 0x00

5 val ADD = 0x08

6 val ADDI = 0x09
7 val SUB = 0xO0c

8 val SUBI = 0x0d
9 val SHR = 0x10
10 val LD = 0x20

11 val LDI = 0x21
12 val AND = 0x22
13 val ANDI = 0x23
14 val OR = 0x24

15 val ORI = 0x25
16 val XOR = 0x26
17 val XORI = 0x27
18 val LDHI = 0x29
19 val LDH2I = 0x2a
20 val LDH3I = 0x2b
21 val ST = 0x30

22 /]

For the decode component, we define a Bundle for the output, which is later fed partially into the ALU.
T FEBEBTT, FA1E LT — P Bundle A THil, X4LUSHTERLALU-

I class DecodeOut extends Bundle {
2 val ena = Bool ()

val func = Ulnt()
4 val exit = Bool()

5}

Decode takes as input an 8-bit opcode and delivers the decoded signals as output. Those driving signals

are assigned a default value with Wirelnit.

B R ITURBGA RIS A, FEEEENESIE L - XL ESHEET — 3

INME, 1853 Wirelnit -

1 class Decode() extends Module ({
2 val io = IO(new Bundle {



2

val din = Input(Ulnt(8.W))
val dout = Output(new DecodeOut)
P

val f = WireDefault(nop)
val imm = WireDefault(false .B)

val ena = WireDefault(false .B)

io.dout.exit := false.B

The decoding itself is just a large switch statement on the part of the instruction that represents the opcode

(in Leros for most instructions the upper 8 bits.)

BHALGZ— DRI E I, IRIETE XN AIERIERS (FELeros, T84 KEZRIERISLL) -

switch (io.din) {

is (ADD.U) {
f := add
ena := true.B
}
is (ADDI.U) {
f := add
imm := true.B
ena := true.B
}
is (SUB.U) {
f := sub
ena := true.B
}
is (SUBI.U) {
f := sub
imm := true.B
ena := true.B
}
is (SHR.U) {
f := shr
ena := true.B

14.3 L%m$5%

To write programs for Leros we need an assembler. However, for the very first test, we can hard code a

few instructions, and put them into a Scala array, which we use to initialize the instruction memory.
FhNLerosH 51EFF, FATHKE—NMLEwEF - HE, B Wk, FATA LI — L3543
BESREY, SRIERFENTAScalaiZH T, AT TFDRWIIBILTE & fEhfes -

val prog = Array[Int](
0x0903, // addi 0x3
0x09ff, // —I
0x0d02, // subi 2
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0x2lab, // 1di Oxab
0x230f, // and OxOf
0x25¢3, // or 0xc3
0x0000

def getProgramFix () = prog
//— end

//— start leros_asm_call
def getProgram (prog: String) = {
assemble (prog)

/Il collect destination addresses in first pass

val symbols = collection.mutable.Map[ String , Int]()

def assemble (prog: String): Array[Int] = {
assemble (prog, false)
assemble (prog, true)

}

However, this is a very inefficient approach to test a processor. Writing an assembler with an expressive
language like Scala is not a big project. Therefore, we write a simple assembler for Leros, which is
possible within about 100 lines of code. We define a function getProgram that calls the assembler. For
branch destinations, we need a symbol table, which we collect in a Map. A classic assembler runs in
two passes: (1) collect the values for the symbol table and (2) assemble the program with the symbols
collected in the first pass. Therefore, we call assemble twice with a parameter to indicate which pass it is.
B2, XD MREREA AR B S o (DN RIAMERES . BEscalafm G — ML
Gdw, AR—DRITHE. T, TG —DEBALIESH Tleros, A T AF10017 T
. FATE L —1 R %lgetProgram, FFIYICGRES - X TR H M, BATFE—IMFSHER
B, XD AEMap TP HUE - — PEIEANLRESEN DR (DITEITERBHIE QNS
— SRR SILRET - T&, FfIFFEMassemblePiik, HHEH— S ERAZHH

def getProgram(prog: String) = {
assemble (prog)

// collect destination addresses in first pass
val symbols = collection.mutable.Map[ String , Int]()
def assemble (prog: String): Array[Int] = {

assemble (prog, false)

assemble (prog, true)

The assemble function starts with reading in the source file' and defining two helper functions to

I'This function does not actually read the source file, but for this discussion we can consider it as the reading function.
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parse the two possible operands: (1) an integer constant (allowing decimal or hexadecimal notation) and
(2) to read a register number.

assemble PREIRBUR S IFTTR2,  HE LM MBI R B L R AP D ATRERD#RIER . (1) —
PEIEE (TR SHEERR) () BATFEEL.

I def assemble(prog: String, pass2: Boolean): Array[Int] = {

[S)

3 val source = Source.fromFile (prog)

4 var program = List[Int]()

5 var pc = 0

6

7 def tolnt(s: String): Int = {

8 if (s.startsWith("0x")) {

9 Integer. parselnt(s.substring (2), 16)
10 } else {

11 Integer . parselnt(s)

12 }

13 }

14

15 def regNumber(s: String): Int = {

16 assert(s.startsWith("r"), "Register numbers shall start with \'r\’")
17 s.substring (1) .tolnt

18 }

Listing 14.3 shows the core of the assembler for Leros. A Scala match expression covers the core of

the assembly function.

14.3 R TICHREFIF LTS o scalalImatchRIATE 3 | MEAZOE S -

1 for (line <— source.getLines()) {

2 if (!pass2) println(line)

3 val tokens = line.trim.split(" ")

4 val Pattern = "(.*x:)".r

5 val instr = tokens(0) match {

6 case "//" => // comment

7 case Pattern(1l) => if (!pass2) symbols += (l.substring (0, 1.length — 1) —
pc)

8 case "add" => (ADD << 8) + regNumber(tokens (1))

9 case "sub" => (SUB << 8) + regNumber(tokens (1))

10 case "and" => (AND << 8) + regNumber(tokens (1))
11 case "or" => (OR << 8) + regNumber(tokens (1))

12 case "xor" => (XOR << 8) + regNumber(tokens (1))
13 case "load" => (LD << 8) + regNumber(tokens (1))
14 case "addi" => (ADDI << 8) + tolnt(tokens (1))
15 case "subi" => (SUBI << 8) + tolnt(tokens (1))
16 case "andi" => (ANDI << 8) + tolnt(tokens (1))
17 case "ori" => (ORI << 8) + tolnt(tokens (1))

18 case "xori" => (XORI << 8) + tolnt(tokens (1))
19 case "shr" => (SHR << 8)

20 /]

PIXA R BRSO, (ER AR e R BT AT LU B B e £
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case "" => // println ("Empty line")
case t: String => throw new Exception("Assembler error: unknown instruction:
"+ t)

case _ => throw new Exception("Assembler error")

Listing 14.3: Lerosi_Zm#y £ 23405

14.4 %5°]

This exercise assignment in one of the last Chapters is in a very free form. You are at the end of your
learning tour through Chisel and ready to tackle design problems that you find interesting.

RGBT IELRIER BHE) . R7EF>] ChiselIRIEATRE, I BMESARRA BT
R -

One option is to reread the chapter and read along with all the source code in the Leros repository, run
the test cases, fiddle with the code by breaking it and see that tests fail.

HA— g HOEARZET, HH HifLeros repository FIURLHY , 21T ZRF], BIRA
e, SRR AR -

Another option is to write your implementation of Leros. The implementation in the repository is just
one possible organization of a pipeline. You could write a Chisel simulation version of Leros with just a
single pipeline stage, or go crazy and superpipeline Leros for the highest possible clocking frequency.

A — MR B E — MER LerosH) M AFNE o 1X 46 BIRRAS & — Rk e A BEFE
o RATAS — A Chisel (i ERA FIKeros ff F§ H&— Bk S, B ERPE, ZaiRER
IR Leros, PAIAE & m BIR MR A AT REME: -

A third option is to design your processor from scratch. Maybe the demonstration of how to build the
Leros processor and the needed tools has convinced you that processor design and implementation is no
magic art, but the engineering that can be very joyful.

B MR FRNT BT IRAVE LS - AT HEX DR T U 15 3 Leros A B 2% WO TR AT 75 22 1Y
TREEURREEIER: XSO AN ER R, ] LU Bt LEE .
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Chapter 15

T fikchisel

Chisel is an open-source project under constant development and improvement. Therefore, you can also
contribute to the project. Here we describe how to set up your environment for Chisel library development
and how to contribute to Chisel.

Chiseli& — MTRIUE . FEAWHIT Z MG - BT, VR AT LA I E Mok - X BB 1
IR T AN R B AR Chisel library FF 2 AR, DUZUNRI G Chisel {5 BTk -

15.1 ZEFKINE

Chisel consists of several different repositories; all hosted at the freechips organization at GitHub.

Chisel 145 T Z ARG HE; BE 7E R freechips organization at GitHubiX & -

Fork the repository, which you like to contribute, into your personal GitHub account. You can fork
the repository by pressing the Fork button in the GitHub web interface. Then from that fork, clone your
fork of the repository. In our example, we change chisel3, and the clone command for my local fork is:

5> AR BT 2, BRI AGithubllk 7 b, R DA SOGXA B, 8 Forki#
Hl, 7EGitHubM DI m £ - SRIFE NI 532, clonefkBrepofiifork - ZEFATAIGIF, FATHIHE
| chisel3, clonefii 4 S| T A 53 3= -

$ git clone git@github.com:schoeberl/chisel3.git

To compile Chisel 3 and publish as a local library execute:

N T YiEChisel3, FAAMIEN A Hlibrary, 4T

$ cd chisel3
$ sbt compile
$ sbt publishLocal

Watch out during the publish local command for the version string of the published library, which
contains the string SNAPSHOT. If you use the tester and the published version is not compatible with the
Chisel SNAPSHOT, fork and clone the chisel-tester repo as well and publish it locally.

FERBIEAM & Alibrary KIS B 94T, EL5 T SNAPSHOT «  ASRAREFIES . 4 AR Y
LA FAChisel SNAPSHOTNARZS,  ZHE Echisel-tester 1 FEME T, F HAM A A7 .
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To test your changes in Chisel, you probably also want to set up a Chisel project, e.g., by forking/-
cloning an empty Chisel project, renaming it, and removing the .git folder from it.

79 1 AR chiselUH FIERAE , AR T BEABZLE S — Pehiseldf 5, FIEH, 3@d 57 0w
[EZSchisel T H, Eand, I HBERR B HAR it

Change the build.sbt to reference the locally published version of Chisel. Furthermore, at the time
of this writing, the head of Chisel source uses Scala 2.12, but Scala 2.12 has troubles with anonymous
bundles. Therefore, you need to add the following Scala option: "-Xsource:2.11". The build.sbt should
look similar to:

Zbuild.sbtZ 5| FHA M A Kchisel . FE M, EHGIERIITZ], chiseldf #)K#E % Hscala

2.12, {HfEscala 21276 (] EA MRS ML . T, IRFEEAI LR Hscalaf i & : -
Xsource:2.11" - build.sbth/ IZH ARG Z T

scalaVersion := "2.12.6"
scalacOptions := Seq("—-Xsource:2.11")

resolvers ++= Seq(
Resolver.sonatypeRepo ("snapshots"),

Resolver.sonatypeRepo ("releases")

libraryDependencies +=

"edu.berkeley.cs" %% "chisel3" % "3.2-SNAPSHOT"
libraryDependencies +=

"edu.berkeley.cs" %% "chisel-iotesters" % "1.3-SNAPSHOT"

Compile your Chisel test application and take a close look if it picks up the local published version of
the Chisel library (there is also a SNAPSHOT version published, so if, e.g., the Scala version is different
between your Chisel library and your application code, it picks up the SNAPSHOT version from the
server instead of your local published library.)

IR chiselR A, JEHAFHE—T, ER&GRHARK A M Fchisel library (L E—1
KATHISNAPSHOTHR A, FrLLAnER, #Ia0, scalaht R7EAR Bchisel library FAV/R B N FHARE 275 P
ANEE), B MRS 2 KESNAPSHOTHUAS, AN /R A1 & 7 Blibrary) -

See also some notes at the Chisel repo.

HF— N —Lchisel £ iL.

15.2 i

When you change the Chisel library, you should run the Chisel tests. In an sbt based project, this is usually

run with:

I ChiselZER, RIZ1TChiselllia - ZEFET st H A, EHEHEH LN i49alT

S sbt test
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Furthermore, if you add functionality to Chisel, you should also provide tests for the new features.

BEoh, AR Chisel ZNINTIRE, L NIZ IR BT X E T RERIMIA -

In the Chisel project, no developer commits directly to the main repository. A contribution is
organized via a pull request from a branch in a forked version of the library. For further information, see
the documentation at GitHub on collaboration with pull requests. The Chisel group started to document
contribution guidelines.

TEchisell HH, W EBEHAAXEBEEN EOEHITESR - —IKFEH, &l Fpull request
Mlibrary )53 L & S BEFE K - M THEEMEE, 2% githubf) 3 Hicollaboration with pull
requests - chisel’NAFF G 7Econtribution guidelinesiZE1T 3 -

15.3 %>

Invent a new operator for the Ulnt type, implement it in the Chisel library, and write some usage/test
code to explore the operator. It does not need to be a useful operator; just anything will be good, e.g., a ?
operator that delivers the lefthand side if it is different from O otherwise the righthand side. Sounds like a
multiplexer, right? How many lines of code did you need to add?"

OE— AT UGB FFHRERF, 8E S Achisel library, F5 N —L4 AN A
FERBFRER . EA—ER— A HRRIER, AR SERMIRLG, flin, 2WIER
FORBRERAEFMRET AT, SNRLREAFM . WERREEME, XE? RFZRNZ
DATACES? 2.

As simple as this was, please be not tempted to fork the Chisel project and add your little extensions.
Changes and extension shall be coordinated with the main developers. This exercise was just a simple
exercise to get you started.

RETR#, BEAZERE D L ChiseH , HIFMER/ N R ZEMT RS EEIFARE -
XI55k ] R RN TR TR 4R > -

If you are getting bold, you could pick one of the open issues and try to solve it. Then contribute with
a pull request to Chisel. However, probably first watch the style of development in Chisel by watching the
GitHub repositories. See how changes and pull requests are handled in the Chisel open-source project.

MRS EEL, KA LLEEBCL H—open issues T BB EMHRE - REETFEFNEK
M oIk o (B2, FTREVRELSE 2 K EchiseIF Z BN, JEIE A digithubAwatch o SXFRREE &
WLEEFINT T prit b ¥R 77 =, Echisel FFIRMI H H -

'A quick and dirty implementation needs just two lines of Scala code.

P AMREAE RN TR T E M Tscalaftil
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Chapter 16

24 ok

V]l A\

This book presented an introduction to digital design using the hardware construction language Chisel.
We have seen several simple to medium-sized digital circuits described in Chisel. Chisel is embedded in
Scala and therefore inherits the powerful abstraction of Scala. As this book is intended as an introduction,
we have restricted our examples to simple uses of Scala. A next logical step is to learn a few basics of
Scala and apply them to your Chisel project.

ARBAET EH BEFFE TG S Chisel . FATELFEE] T JLA R 8 2 o 2 150 A B
TEChisel T ##3A - Chiselfik A7EScalam, F L4k T 38 KA EE ScalalI % - HT AR E
IR R, BB EATIRE T BT R BT B 28 T Scalaf I Hi% - T — D HIEH P RE Y
] Scalaf)— LA AR FF G H N H 2 EEAIChisel X H A

I would be happy to receive feedback on the book, as I will further improve it and will publish
new editions. You can contact me at mailto:masca@dtu.dk, or with an issue request on the

GitHub repository. I am also happily accepting pull requests for the book repository for any fixes and

improvements.
AR R, ReIEFEHN, HFEESHE PR, FT’EEH%TH)}’(ZIK R AT LAIE
Fmailto:masca@dtu.dkik R, ﬂm?glthubfmﬁlssueo IR w2 P H X Hpull

request, FH T AR BE IE AN

I would be happy to receive feedback on the book, as I will further improve it and will publish
new editions. You can contact me at mailto:masca@dtu.dk, or with an issue request on the
GitHub repository. I am also happily accepting pull requests for the book repository for any fixes and
improvements.

REMC B /it B IEE S XA, HHEBEHE PR, HMEEFBRA . RATLLE
¥mailto:masca@dtu.dkBk RFK, j@mfglthub% HHissue. SRR XNTEZ P HE HIpull
request, FH T AT B TE AN

U 1] BE R

This book is available in open source. The repository also contains slides for a Chisel course and all
Chisel examples: https ://github.com/schoeberl/chisel-book

XA SRR - XD ERMEE T EE R chiselRREBIRNZ, LU Fchisel ]+
https://github.com/schoeberl/chisel-book
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A collection of medium-sized examples, which most are referenced in the book, is also available
in open source. This collection also contains projects for various popular FPGA boards: https:
//github.com/schoeberl/chisel-examples

XA B Z BN R EZ K5I — RN FERNIFF, BEFER . XPTRIMWEETHT
ARG IFPGA 7RI H: https://github.com/schoeberl/chisel-examples
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Appendix A

chisel¥i H

Chisel is not (yet) used in many projects. Therefore, open-source Chisel code to learn the language and
the coding style is rare. Here we list several projects we are aware of that use Chisel and are in open

source.
M ARV Z T H #H FChisel - F, FFRRIChiselfCHS 24 >)1E S Fgmisd XS B AR 2L
XEFAFNE T LT H FA1%07E 15 FH Chiseli IR -

Rocket Chip is a RISC-V [?] processor-complex generator that comprises the Rocket microarchitecture
and TileLink interconnect generators. Originally developed at UC Berkeley as the first chip-scale
Chisel project [?], Rocket Chip is now commercially supported by SiFive.

Rocket Chip 5ZRISC-V [?] B0 RLES, Bl FErocket AL HE#8 F TileLink £ 32 42 Fi 2%
FAEUC Berkeley# & 28, 1EREH K/NMAChiselWi B [?], Rocket:ts i BIAE# SiFive
A SCHF

Sodor is a collection of RISC-V implementations intended for educational use. It contains 1, 2, 3, and
5 stages pipeline implementations. All processors use a simple scratchpad memory shared by
instruction fetch, data access, and program loading via a debug port. Sodor is mainly intended to be

used in simulation.

Sodor £—ZERISC-VHIERE, HELTH . B, 2, 3FMSRIM/KEIERE . FTE L EEE#
F— a2 %BZ?E/%&EX BIEILE, Fldebugii DFEFFATHEE o SodorF %
EHRIBE -

Patmos is an implementation of a processor optimized for real-time systems [?]. The Patmos reposi-
tory includes several multicore communication architectures, such as a time-predictable memory
arbiter [?], a network-on-chip [?] a shared scratchpad memory with an ownership [?]. At the time

of this writing, Patmos is still described in Chisel 2.

Patmos J&— 1> NEEHT R M HN AT FEES [?]. Patmos G FEALE ZAZE G BOZEK I Gnbst (8] a] i
M)A agarbiter [2], — R B4 [2] — ME MBI L2 RLE I F S (2] ERE XK
FHIEE, Patmosf/h9A 5 FH Chisel2 i 17 #fiiA

FlexPRET is an implementation of a precision timed architecture [?]. FlexPRET implements the RISC-V

instruction set and has been updated to Chisel 3.1.

167


https://github.com/chipsalliance/rocket-chip
https://en.wikipedia.org/wiki/RISC-V
https://www.sifive.com/
https://github.com/chipsalliance/rocket-chip
https://en.wikipedia.org/wiki/RISC-V
https://www.sifive.com/
https://github.com/ucb-bar/riscv-sodor
https://github.com/ucb-bar/riscv-sodor
https://github.com/t-crest/patmos
https://github.com/t-crest/patmos
https://github.com/pretis/flexpret

FlexPRET 2 —SCRT RGEZEFI AN FE [?]. FlexPRET#M 7 T RISC-VIEA 288y, 3 H 2 %)
T Chisel3.1 »

Lipsi is a tiny processor intended for utility functions on a system-on-chip [?]. As the code base of
Lipsi is very small, it can serve as an easy starting point for processor design in Chisel. Lipsi also
showcases the productivity of Chisel/Scala. It took me 14 hours to describe the hardware in Chisel
and run it on an FPGA, write an assembler in Scala, write a Lipsi instruction set simulator in Scala

for co-simulation, and write a few test cases in Lipsi assembler.

Lipsi & — /NG TRES, T L EMKEL, FEsystem-on-chip [?]. 1EMLipsifIH5EZR /N
. ERLME (8 Fchisel ST AL B A8 AL A &« Lipsith AT LIE Hychisel £/ T HUSE - '€
T T 144/ LA H chisel i i 44, Efpga LiZ1TE, HHscala 5 L%, 5 | —
LipsitE S BN ENIGE, J15 T —L 6+ H T Lipsil % -

OpenSoC Fabric is an open-source NoC generator written in Chisel [?]. It is intended to provide a
system-on-chip for large-scale design exploration. The NoC itself is a state-of-the-art design with
wormhole routing, credits for flow control, and virtual channels. OpenSoC Fabric is still using
Chisel 2.

OpenSoC Fabric /& — T JANoCA s, ifidchisel [21HTHRE - TRANREME—IH LR
BRI FITHER - NoCAR G 2 H RFLES R S Rikit, HiEsIm, FERGEE f1)3E 5T
#k - OpenSoC Fabric{/5%%4# Fchisel2 -

DANA is a neural network accelerator that integrates with the RISC-V Rocket processor using the Rocket

Custom Coprocessor (RoCC) interface [?]. DANA supports inference and learning.

DANA J&— M M4 NS, BE& TRISCV Rocketfb ¥ 2%, i FHRocket Custom Coproces-
sor(RoCC)#% H [?]- DANASCFFEBRFIAS] «

Chiselwatt is an implementation of the POWER Open ISA. It includes instruction to run Micropython.

Chiselwatt & —"POWER Open ISAfIRAS - ‘B E$EIZ1TMicropython ¥ -

If you know an open-source project that uses Chisel, please drop me a note so I can include it in a

future edition of the book.

AR AEHIE (] Chisel TR H , IG2A B T BILBR] LLRH AL S AP AR AR A -
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Appendix B

Chisel 2

This book covers version 3 of Chisel. Moreover, Chisel 3 is recommended for new designs. However, there
is still Chisel 2 code out in the wild, which has not yet been converted to Chisel 3. There is documentation
available on how to convert a Chisel 2 project to Chisel 3:

AR T Chisel (U530 - #LAL, Chisel3EWHTH%IH. HZ, IR H KERChisel2ft
i, MAREHE FChiseld - H7H KU HFFChisel2 0 H ¥5#t 7 Chisel2 1301 - Chisel3:

e Chisel2 vs. Chisel3 and

e Towards Chisel 3

However, you might get involved in a project that still uses Chisel 2, e.g., the Patmos [?] processor.
Therefore, we provide here some information on Chisel 2 coding for those who have started with Chisel 3.

B, IRATREMA—IIHE M chise2f0TE ,  F140, Patmos [?210F2% - T2, AEX
B At—Lchise2F R, JIXELE Llchisel3 JTiE Y -

First, all documentation on Chisel 2 has been removed from the web sites belonging to Chisel. We have
rescued those PDF documents and put them on GitHub at https://github.com/schoeberl/
chisel2-doc. You can use the Chisel 2 tutorial by switching to the Chisel 2 branch:

EOL, FTHchise 2B SCRE W _EBEBR T - FATRE THXLE0H, HIEE i github L,
fEhttps://github.com/schoeberl/chisel2-doc- KA LLH Hchise2#(FE, BT PI#
#l|chisel2 {73 3 :

$ git clone https:// github.com/ucb—bar/chisel —tutorial . git
$ cd chisel—tutorial
$ git checkout chisel2

The main visible difference between Chisel 3 and 2 are the definitions of constants, bundles for IO,
wires, memories, and probably older forms of register definitions.

Chise3F2Z A EZ /] WX AIZ HE, HTIONIER, MLk, Fildsl a2 sIAER
e fF e €L -

Chisel 2 constructs can be used, to some extent, in a Chisel 3 project by using the compatibility layer
using as package Chisel instead of chisel3. However, using this compatibility layer should only be used in

a transition phase. Therefore, we do not cover it here.
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chisel2F8 7 H FORE R, ZESEFREEE | FEchisel3M B A {# FH 3% & )2 15 1 1% 2 Chisel#h B 1.,
MAZChisel3fAEE - LW, HHAFBREZNZRREEHRNSE . T2, BIEXEAT

e
Here are two examples of basic components, the same that have been presented for Chisel 3. A module

containing combinational logic:

AP ERA P 7, FEChisel3RIMAS BRSO - — & H S B HERIRIR,

import Chisel._

class Logic extends Module {
val io = new Bundle {
val a = Ulnt(INPUT, 1)
val b = Ulnt(INPUT, 1)
val ¢ = Ulnt (INPUT, 1)
val out = Ulnt(OUTPUT, 1)

io.out := io.a & io.b | io.c

Note that the Bundle for the 1O definition is not wrapped into an 10() class. Furthermore, the direction
of the different IO ports is defined as part of the type definition, in this example as INPUT and OUTPUT
as part of Ulnt. The width is given as the second parameter.

[ERE X Bundle 2R E LIOR MR BZHIONE - LM, AEMIO%H H HJ7 [{E R KT
FIRE S, FEX AT EAENINPUTAIOUTPUT, {ENUIntH)—#05 - BEAEN S8 S48t -

import Chisel._

class Register extends Module ({
val io = new Bundle {
val in = Ulnt (INPUT, 8)
val out = Ulnt (OUTPUT, 8)

val reg = Reg(init = Ulnt(0, 8))

reg := io.in

io.out := reg

Listing B.1: Chisel2 {81 & 17 237+

Here you see a typical register definition with a reset value passed in as a Ulnt to the named parameter
init. This form is still valid in Chisel 3, but the usage of Reglnit and RegNext is recommended for new
Chisel 3 designs. Note also here the constant definition of an 8-bit wide 0 as Ulnt(0, 8).

XBRE RS SN ER MR FFEEE L, /E UG it | « X PMERFEChisel 352
BIEERH, (B2 FHRegnitFIRegNextE# HEERT, ZEHTIChisel3 %1t - EEEXE, 8fi
B AJOHE L HUInYO, 8) -
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Chisel based testing C++ code and Verilog code are generated by calling chiselMainTest and chisel-

Main. Both “main” functions take a String array for further parameters.
PLChisel A ZE A AIC++F Verilog Y, f&i81d chiselMainTestFIchiselMain 4 A - 1 1>“main” bR
ek HStringENEZIZEL

1 import Chisel. _

2

3 class LogicTester(c: Logic) extends Tester(c) {
4

5 poke(c.io.a, 1)

6 poke(c.io.b, 0)

7 poke(c.io.c, 1)

8 step (1)

9 expect(c.io.out, 1)

12 object LogicTester {
13 def main(args: Array[String]): Unit = {

14 chiselMainTest (Array ("—genHarness", "—test",
15 "—backend", "c",

16 "—compile", "—targetDir", "generated"),

17 () => Module(new Logic())) {

18 ¢ => new LogicTester(c)

19 }

20 }

I import Chisel._

3 object LogicHardware {
4 def main(args: Array[String]): Unit = {
5 chiselMain (Array ("—backend", "v"), () => Module(new Logic()))

A memory with sequential registered read and write ports is defined in Chisel 2 as:

— MAENFEF AR Festn [, ZEChisel2f & L H:

1 val mem = Mem(UlInt(width = 8), 256, seqRead = true)
2 val rdData = mem(Reg(next = rdAddr))

3 when (wrEna) {

4 mem(wrAddr) := wrData
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Appendix C

TR AR

Hardware designers and computer engineers like to use acronyms. However, it needs time to get used to

them. Here is a list of common terms related to digital design and computer architecture.
PRSI E AT EAL TR SRR - (B, FZ—Shf R EER - X AR T
AT EALZRA IR TES 5L -

ADC analog-to-digital converter TR fl-EUF 5 H#i2%

ALU arithmetic and logic unit ;2 & FZHHIT

ASIC application-specific integrated circuit & F & i FL %
CFG control flow graph % il it &

Chisel constructing hardware in a Scala embedded language £ Scalaffk A\ FJIE 5 EAL IF {4
CISC complex instruction set computer £ 752511 HA
CPI clock cycles per instruction BrEh I EE S

CRC cyclic redundancy check JEIA = RIGE

DAC digital-to-analog converter Z{=F- 1AL 2%

DFF D flip-flop, data flip-flop Dt & 2%, (¥ & 23

DMA direct memory access BV A iz

DRAM dynamic random access memory B FEHL 1 [ 77 if 2
EMC electromagnetic compatibility FLALFE 2

ESD electrostatic discharge LAl Bl

FF flip-flop fill & 2%

FIFO first-in, first-out 55335 H

FPGA field-programmable gate array 7] JfEi% 5[ ]
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HDL hardware description language fif {44818 5
HLS high-level synthesis FifHE S 454
IC instruction count ¥§4 114\
IDE integrated development environment 5 i\ A 2155
ILP instruction level parallelism 842547
10 input/output % A /i
ISA instruction set architecture 5% FEZ4E44)
JDK Java development kit JavaFt & T 5
JIT just-In-time JZHf
JVM Java virtual machine Java&#I#1,
LC logic cell ;JZ##.7T
LRU least-recently used 5T/~ F#Y
MMIO memory-mapped 10 77 i 23 BRET 150 A\ H
MUX multiplexer £ 2%
0O object oriented [H [7] % 52 K]
00O out-of order fL/F
OS operating system #1/E RS
RISC reduced instruction set computer 1% & f§ 24 1T E A
SDRAM synchronous DRAM [A]2’DRAM
SRAM static random access memory A SPBEL UG A 77 25
TOS top-of stack 1 THHD
UART universal asynchronous receiver/transmitter 5 5\ 5P I &
VHDL VHSIC hardware description language 8 % i (iR E 5
VHSIC very high speed integrated circuit #REE AY FE #%

WCET Worst-Case Execution Time FIRFAITHT [A]
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