Time Series Analysis

Henrik Madsen

hm@imm.dtu.dk

Informatics and Mathematical Modelling
Technical University of Denmark
DK-2800 Kgs. Lyngby

Outline of the lecture

State space models, 2nd part:

- The Kalman filter when some observations are missing
- ARMA-models on state space form, Sec. 10.4 (not 10.4.1)
- ML-estimates of state space models, Sec. 10.6

Cursory material:

- Signal extraction, Sec. 10.4.1
- Time series with missing observations, Sec. 10.5

The linear stochastic state space model

> System equation: $\boldsymbol{X}_{t}=\boldsymbol{A} \boldsymbol{X}_{t-1}+\boldsymbol{B} \boldsymbol{u}_{t-1}+\boldsymbol{e}_{1, t}$ Observation equation: $\boldsymbol{Y}_{t}=\boldsymbol{C} \boldsymbol{X}_{t}+\boldsymbol{e}_{2, t}$

- \boldsymbol{X} : State vector
- \boldsymbol{Y} : Observation vector
- \boldsymbol{u} : Input vector
- e_{1} : System noise
- e_{2} : Observation noise
- $\operatorname{dim}\left(X_{t}\right)=m$ is called the order of the system
- $\left\{\boldsymbol{e}_{1, t}\right\}$ and $\left\{\boldsymbol{e}_{2, t}\right\}$ mutually independent white noise
- $V\left[e_{1}\right]=\boldsymbol{\Sigma}_{1}, V\left[e_{2}\right]=\boldsymbol{\Sigma}_{2}$
- $\boldsymbol{A}, \boldsymbol{B}, \boldsymbol{C}, \boldsymbol{\Sigma}_{1}$, and Σ_{2} are known matrices

The Kalman filter

Initialization: $\widehat{\boldsymbol{X}}_{1 \mid 0}=\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{1 \mid 0}^{x x}=\boldsymbol{V}_{0} \Rightarrow \boldsymbol{\Sigma}_{1 \mid 0}^{y y}=\boldsymbol{C} \boldsymbol{\Sigma}_{1 \mid 0}^{x x} \boldsymbol{C}^{T}+\boldsymbol{\Sigma}_{2}$
For: $t=1,2,3, \ldots$

Reconstruction:

$$
\begin{aligned}
\boldsymbol{K}_{t} & =\boldsymbol{\Sigma}_{t \mid t-1}^{x x} \boldsymbol{C}^{T}\left(\boldsymbol{\Sigma}_{t \mid t-1}^{y y}\right)^{-1} \\
\widehat{\boldsymbol{X}}_{t \mid t} & =\widehat{\boldsymbol{X}}_{t \mid t-1}+\boldsymbol{K}_{t}\left(\boldsymbol{Y}_{t}-\boldsymbol{C} \widehat{\boldsymbol{X}}_{t \mid t-1}\right) \\
\boldsymbol{\Sigma}_{t \mid t}^{x x} & =\boldsymbol{\Sigma}_{t \mid t-1}^{x x}-\boldsymbol{K}_{t} \boldsymbol{\Sigma}_{t \mid t-1}^{y y} \boldsymbol{K}_{t}^{T}
\end{aligned}
$$

$$
\begin{aligned}
\widehat{\boldsymbol{X}}_{t+1 \mid t} & =\boldsymbol{A} \widehat{\boldsymbol{X}}_{t \mid t}+\boldsymbol{B} \boldsymbol{u}_{t} \\
\boldsymbol{\Sigma}_{t+1 \mid t}^{x x} & =\boldsymbol{A} \boldsymbol{\Sigma}_{t| |}^{x x} \boldsymbol{A}^{T}+\boldsymbol{\Sigma}_{1} \\
\boldsymbol{\Sigma}_{t+1 \mid t}^{y y} & =\boldsymbol{C} \boldsymbol{\Sigma}_{t+1 \mid t}^{x x} \boldsymbol{C}^{T}+\boldsymbol{\Sigma}_{2}
\end{aligned}
$$

The Kalman filter

Initialization: $\widehat{\boldsymbol{X}}_{1 \mid 0}=\boldsymbol{\mu}_{0}, \boldsymbol{\Sigma}_{1 \mid 0}^{x x}=\boldsymbol{V}_{0} \Rightarrow \boldsymbol{\Sigma}_{1 \mid 0}^{y y}=\boldsymbol{C} \boldsymbol{\Sigma}_{1 \mid 0}^{x x} \boldsymbol{C}^{T}+\boldsymbol{\Sigma}_{2}$
For: $t=1,2,3, \ldots$

$$
\begin{aligned}
\boldsymbol{K}_{t} & =\boldsymbol{\Sigma}_{t \mid t-1}^{x x} \boldsymbol{C}^{T}\left(\boldsymbol{\Sigma}_{t \mid t-1}^{y y}\right)^{-1} \\
\widehat{\boldsymbol{X}}_{t \mid t} & =\widehat{\boldsymbol{X}}_{t \mid t-1}+\boldsymbol{K}_{t}\left(\boldsymbol{Y}_{t}-\boldsymbol{C} \widehat{\boldsymbol{X}}_{t \mid t-1}\right) \\
\boldsymbol{\Sigma}_{t \mid t}^{x x} & =\boldsymbol{\Sigma}_{t \mid t-1}^{x x}-\boldsymbol{K}_{t} \boldsymbol{\Sigma}_{t \mid t-1}^{y y} \boldsymbol{K}_{t}^{T}
\end{aligned}
$$

Reconstruction:

$$
\begin{aligned}
\widehat{\boldsymbol{X}}_{t+1 \mid t} & =\boldsymbol{A} \widehat{\boldsymbol{X}}_{t \mid t}+\boldsymbol{B} \boldsymbol{u}_{t} \\
\boldsymbol{\Sigma}_{t+1 \mid t}^{x x} & =\boldsymbol{A} \boldsymbol{\Sigma}_{t| |}^{x x} \boldsymbol{A}^{T}+\boldsymbol{\Sigma}_{1} \\
\boldsymbol{\Sigma}_{t+1 \mid t}^{y y} & =\boldsymbol{C} \boldsymbol{\Sigma}_{t+1 \mid t}^{x x} \boldsymbol{C}^{T}+\boldsymbol{\Sigma}_{2}
\end{aligned}
$$

Prediction:

What happens if the observation Y_{t} is missing for some t ?

Estimation in $A R M A(p, q)$-models using the KF

- Using the Kalman filter we can get the mean and variance of the one-step predictions of the observations:

$$
\begin{aligned}
\widehat{\boldsymbol{Y}}_{t+1 \mid t} & =\boldsymbol{C} \widehat{\boldsymbol{X}}_{t+1 \mid t} \\
\boldsymbol{\Sigma}_{t+1 \mid t}^{y y} & =\boldsymbol{C} \boldsymbol{\Sigma}_{t+1 \mid t}^{x x} \boldsymbol{C}^{T}+\boldsymbol{\Sigma}_{2}
\end{aligned}
$$

- The Kalman filter can handle missing observations
- An $A R M A(p, q)$-model can be written as a state space model
- This gives us a way of calculating ML-estimates in the $A R M A(p, q)$-model even when some observations are missing.

$A R M A(p, q)$-models on state space form

$$
Y_{t}+\phi_{1} Y_{t-1}+\cdots+\phi_{p} Y_{t-p}=\varepsilon_{t}+\theta_{t} \varepsilon_{t-1}+\cdots+\theta_{q} \varepsilon_{t-q}
$$

$$
\begin{aligned}
& \text { State space form: } \left.\begin{array}{rl}
\boldsymbol{X}_{t} & =\boldsymbol{A} \boldsymbol{X}_{t-1}+\boldsymbol{e}_{1, t} \\
\boldsymbol{Y}_{t} & =\boldsymbol{C} \boldsymbol{X}_{t} \\
\boldsymbol{X}=\left(X_{1, t},\right. & X_{2, t}
\end{array}, \ldots, X_{d, t}\right)^{T}, \quad d=\max (p, q+1) \\
& \boldsymbol{A}=\left[\begin{array}{ccccc}
-\phi_{1} & 1 & 0 & \cdots & 0 \\
-\phi_{2} & 0 & 1 & \cdots & 0 \\
\vdots & \vdots & \vdots & & \vdots \\
-\phi_{d-1} & 0 & 0 & & 1 \\
-\phi_{d} & 0 & 0 & & 0
\end{array}\right] \quad \boldsymbol{e}_{1, t}=\boldsymbol{G} \varepsilon_{t}=\left[\begin{array}{c}
1 \\
\theta_{1} \\
\vdots \\
\theta_{d-1}
\end{array}\right] \varepsilon_{t} \\
& C=\left[\begin{array}{llll}
1 & 0 & \cdots & 0
\end{array}\right]
\end{aligned}
$$

ML-estimates in state space models

$$
\begin{aligned}
\boldsymbol{X}_{t} & =\boldsymbol{A} \boldsymbol{X}_{t-1}+\boldsymbol{G} \boldsymbol{e}_{1, t} \\
\boldsymbol{Y}_{t} & =\boldsymbol{C} \boldsymbol{X}_{t}+\boldsymbol{e}_{2, t}
\end{aligned}
$$

- $\left\{\boldsymbol{e}_{1, t}\right\}$ and $\left\{\boldsymbol{e}_{2, t}\right\}$ are mutually uncorrelated normally distributed white noise
- $V\left(\boldsymbol{e}_{1, t}\right)=\Sigma_{1}$ and $V\left(e_{2, t}\right)=\Sigma_{2}$
- For $A R M A(p, q)$-models we have $\boldsymbol{A}, \boldsymbol{C}$, and \boldsymbol{G} as stated on the previous slide. Furthermore, $\boldsymbol{e}_{1, t}=\varepsilon_{t}, \boldsymbol{\Sigma}_{1}=\sigma_{\varepsilon}^{2}$, and $\boldsymbol{\Sigma}_{2}=0$

Maximum Likelihood Estimates

- Let $\mathcal{Y}_{N^{*}}$ contain the available observations and let θ contain the parameters of the model
- The likelihood function is the density of the random vector corresponding to the observations and given the set of parameters:

$$
L\left(\boldsymbol{\theta} ; \mathcal{Y}_{N^{*}}\right)=f\left(\mathcal{Y}_{N^{*}} \mid \boldsymbol{\theta}\right)
$$

- The ML-estimates is found by selecting θ so that the density function is as large as possible at the actual observations
- The random variables $\boldsymbol{Y}_{N^{*}} \mid \mathcal{Y}_{N^{*}-1}$ and $\mathcal{Y}_{N^{*}-1}$ are independent:

$$
\begin{aligned}
L\left(\boldsymbol{\theta} ; \mathcal{Y}_{N^{*}}\right) & =f\left(\mathcal{Y}_{N^{*}} \mid \boldsymbol{\theta}\right)=f\left(\boldsymbol{Y}_{N^{*}} \mid \mathcal{Y}_{N^{*}-1}, \boldsymbol{\theta}\right) f\left(\mathcal{Y}_{N^{*}-1} \mid \boldsymbol{\theta}\right) \\
& =f\left(\boldsymbol{Y}_{N^{*}} \mid \mathcal{Y}_{N^{*}-1}, \boldsymbol{\theta}\right) f\left(\boldsymbol{Y}_{N^{*}-1} \mid \mathcal{Y}_{N^{*}-2}, \boldsymbol{\theta}\right) \cdots f\left(\boldsymbol{Y}_{1} \mid \boldsymbol{\theta}\right)
\end{aligned}
$$

The conditional densities can be found using the Kalman filter

MLE / KF

- Assume that at time t we have:

$$
\widehat{\boldsymbol{X}}_{t \mid t}=E\left[\boldsymbol{X}_{t} \mid \mathcal{Y}_{t}\right] \text { and } \boldsymbol{\Sigma}_{t \mid t}^{x x}=V\left[\boldsymbol{X}_{t} \mid \mathcal{Y}_{t}\right]
$$

- Using the model we obtain predictions for time $t+1$:

$$
\begin{aligned}
\widehat{\boldsymbol{X}}_{t+1 \mid t} & =\boldsymbol{A} \widehat{\boldsymbol{X}}_{t \mid t} \\
\boldsymbol{\Sigma}_{t+1 \mid t}^{x x} & =\boldsymbol{A} \boldsymbol{\Sigma}_{t \mid t}^{x x} \boldsymbol{A}^{T}+\boldsymbol{G} \boldsymbol{\Sigma}_{1} \boldsymbol{G}^{T} \\
\widehat{\boldsymbol{Y}}_{t+1 \mid t} & =\boldsymbol{C} \widehat{\boldsymbol{X}}_{t+1 \mid t} \\
\boldsymbol{\Sigma}_{t+1 \mid t}^{y y} & =\boldsymbol{C} \boldsymbol{\Sigma}_{t+1 \mid t}^{x x} \boldsymbol{C}^{T}+\boldsymbol{\Sigma}_{2}
\end{aligned}
$$

- Due to the normality of the white noise process $f\left(\boldsymbol{Y}_{t+1} \mid \mathcal{Y}_{t}, \boldsymbol{\theta}\right)$ is then the (multivariate) normal density (see Chapter 2) with mean $\widehat{\boldsymbol{Y}}_{t+1 \mid t}$ and variance-covariance $\boldsymbol{\Sigma}_{t+1 \mid t}^{y y}\left(=\boldsymbol{R}_{t+1}\right)$

MLE / KF (cont'nd)

At time $t+1$ there is two possibilities:
The observation \boldsymbol{Y}_{t+1} is available: We update the state estimate using the reconstruction step of the Kalman Filter:

$$
\begin{aligned}
\boldsymbol{K}_{t+1} & =\boldsymbol{\Sigma}_{t+1 \mid t}^{x x} \boldsymbol{C}^{T}\left(\boldsymbol{\Sigma}_{t+1 \mid t}^{y y}\right)^{-1} \\
\widehat{\boldsymbol{X}}_{t+1 \mid t+1} & =\widehat{\boldsymbol{X}}_{t+1 \mid t}+\boldsymbol{K}_{t+1}\left(\boldsymbol{Y}_{t+1}-\widehat{\boldsymbol{Y}}_{t+1 \mid t}\right) \\
\boldsymbol{\Sigma}_{t+1 \mid t+1}^{x x} & =\boldsymbol{\Sigma}_{t+1 \mid t}^{x x}-\boldsymbol{K}_{t+1} \boldsymbol{\Sigma}_{t+1 \mid t}^{y y} \boldsymbol{K}_{t+1}^{T}
\end{aligned}
$$

The observation \boldsymbol{Y}_{t+1} is missing: We got no new information and we use:

$$
\begin{aligned}
\widehat{\boldsymbol{X}}_{t+1 \mid t+1} & =\widehat{\boldsymbol{X}}_{t+1 \mid t} \\
\boldsymbol{\Sigma}_{t+1 \mid t+1}^{x x} & =\boldsymbol{\Sigma}_{t+1 \mid t}^{x x}
\end{aligned}
$$

And then we predict for time $t+2$

MLE / KF (cont'nd)

- Using the prediction errors and variances

$$
\begin{aligned}
\tilde{\boldsymbol{Y}}_{i} & =\boldsymbol{Y}_{i}-\widehat{\boldsymbol{Y}}_{i \mid i-1} \\
\boldsymbol{R}_{i} & =\boldsymbol{\Sigma}_{i \mid i-1}^{y y}
\end{aligned}
$$

- The likelihood function can be expressed as

$$
L\left(\boldsymbol{\theta} ; \mathcal{Y}_{N^{*}}\right)=\prod_{i=1}^{N^{*}}\left[(2 \pi)^{m} \operatorname{det} \boldsymbol{R}_{i}\right]^{-\frac{1}{2}} \exp \left[-\frac{1}{2} \widetilde{\boldsymbol{Y}}_{i}^{T} \boldsymbol{R}_{i}^{-1} \widetilde{\boldsymbol{Y}}_{i}\right]
$$

- In practice optimization is based on $\log L\left(\boldsymbol{\theta} ; \mathcal{Y}_{N^{*}}\right)$ and the variance of the estimates can be approximated by the 2'nd order derivatives of log-likelihood.

MLE / KF (cont'nd)

- The only outstanding issue is "prediction" of \boldsymbol{Y}_{1}, i.e. calculation of $\widehat{\boldsymbol{Y}}_{1 \mid 0}$
- This can be done by setting $\widehat{\boldsymbol{X}}_{0 \mid 0}=\mathbf{0}$ and $\boldsymbol{\Sigma}_{0 \mid 0}^{x x}=\alpha \boldsymbol{I}$, where \boldsymbol{I} is the identity matrix and α is a 'large' constant (we don't know what it is)
- Alternatively, we can estimate the initial state $\widehat{\boldsymbol{X}}_{0 \mid 0}$ and set $\boldsymbol{\Sigma}_{0 \mid 0}^{x x}=\mathbf{0}$, whereby $\boldsymbol{\Sigma}_{1 \mid 0}^{x x}=\boldsymbol{G} \boldsymbol{\Sigma}_{1} \boldsymbol{G}^{T}$

