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Outline of the lecture

State space models, 2nd part:
The Kalman filter when some observations are missing
ARMA-models on state space form, Sec. 10.4 (not 10.4.1)
ML-estimates of state space models, Sec. 10.6

Cursory material:
Signal extraction, Sec. 10.4.1
Time series with missing observations, Sec. 10.5
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| Ed

The linear stochastic state space model

System equation:
Observation equation:

X : State vector
Y : Observation vector
u. Input vector

ei. System noise
e,. Observation noise

Henrik Madsen

X
Y,

AX; 1+ Bui—1+ery
CXt —+ €21

dim(X;) = m is called
the order of the system

{e1+} and {e2+} mutually
Independent white noise

V[el] = 21, V[BQ] = 22

A, B, C, X, and X, are
known matrices
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The Kalman filter

Initialization: X0 = o, 2715 = Vo = il = CXf5CT + %,

For: t=1,2,3,...

K, = cr(sw )
t tlt 1 tlt—1
Reconstruction: X, = Xt\t—l 4K, (Yt _ CXt\t—1>
T
ﬁf — t|t 1 Ktz?\?i Ly
X1 = AXy + Buy
Prediction: ﬁllt = A2t|tAT + 3
Yy _ T
Et+1|t = C t+1\tC + 202
DTU
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The Kalman filter

Initialization: X0 = o, 2715 = Vo = il = CXf5CT + %,

For: t=1,2,3,...

K, = cT (s )
t tlt 1 tlt—1
Reconstruction: X, = Xt\t—l 4K, (Yt _ CXt\t—1>
TT T
tlt  — t|t 1 Ktz?\?i Ly
X1 = AXy + Buy
Prediction: ﬁllt = A2t|tAT + 3
vy _ T
Et+1|t = C t+1\tC + 202

What happens if the observation Y; is missing for some ¢?
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Estimation in  ARM A(p, ¢)-models using the KF

Using the Kalman filter we can get the mean and variance of
the one-step predictions of the observations:

Yt+1|t — CXt+1|t

T
Eﬁl\t = C ﬁutc + 20

The Kalman filter can handle missing observations
An ARM A(p, q)-model can be written as a state space model

This gives us a way of calculating ML-estimates in the
ARM A(p, q)-model even when some observations are
missing.
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ARM A(p, q)-models on state space form

Yi+oYia+ -+ oY p =1 +0igi1 + - + 0451

State space form: X, = AX;  +eyy

Y, = CX;

X, = (X1, Xy, ... Xar)', d=max(p,qg+1)

!

1 0 --- 0 - -
¢y 0 1 0 ;
1

A= : L : e = Gep = =

—¢g—1 0 0 1 p '

—dy 0 0 0 Hra-1

C = [1 0o -.. 0]
DTU
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ML-estimates In state space models

Xt = AXt_1+Gel,t
Y, = CX;+eqy

{e1+} and {ea;} are mutually uncorrelated normally distributed
white noise

V<el,t) = > and V(eg,t) = D9

For ARM A(p, q)-models we have A, C, and G as stated on
the previous slide. Furthermore, e ; = ¢;, 1 = 02, and Xy = 0
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Maximum Likelihood Estimates

Let Yy~ contain the available observations and let @ contain
the parameters of the model

The likelinood function is the density of the random vector
corresponding to the observations and given the set of
parameters:

L(0;Yn-) = f(Yn-]0)

The ML-estimates is found by selecting @ so that the density
function is as large as possible at the actual observations

The random variables Y - |Yn+-_1 and Yn~_; are independent:

L(0;Yn-) = f(In-0)=f(Y N+ |YN--1,0) f (YN--1]0)
= f(YN|YN-—1,0) f (Y N~—1|YN-—2,0) -+ [ (Y 1]|0)

The conditional densities can be found using the Kalman filter
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MLE / KF

Assume that/gt time ¢ we have:
Xy = E|Xy[)] and Xy = V[ X[V

Using the model we obtain predictions for time ¢ + 1:

Xt+1|t —

T -

t+1lt

Yt+1|t —

Yy _
Et—|—1|t -

Due to the normality of the white noise process f(Y ++1|)t, 0)

AXt‘t

ATHAT + GG
CXt+1|t
CEHWCT + 20

IS then the (multivariate) normal density (see Chapter 2) with
mean Y., and variance-covariance Eyyl| . (= Ry41)

Henrik Madsen
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MLE / KF (cont’'nd)

At time ¢ + 1 there is two possibilities:

The observation Y, is available: We update the state estimate
using the reconstruction step of the Kalman Filter:

—1
_ T (syy
K1 = t+1|tC (Et-H\t)
Xipi|t41 = Xt—l—l\t + K41 (Yt+1 - Yt—|—1|t)
TT L
fiper = St~ Ken Xl Ky

The observation Y, is missing: We got no new information and
we use: ¥ v

Xt+1\t+1 — Xt+1\t
rx _ rx
t+1jt+1 t+1|t

And then we predict for time ¢ 4 2
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MLE / KF (cont'nd)

Using the prediction errors and variances

Y, = Y'L’_i}ﬂz’—l
R, = XV

ili—1
The likelihood function can be expressed as

N
L(0;Yn-) = | [[(2m)™ det R;] % exp

l~T ~
-5Y, Rz.le-]
1=1

In practice optimization is based on log L (6; Yn-~) and the
variance of the estimates can be approximated by the 2’'nd
order derivatives of log-likelihood.
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MLE / KF (cont’'nd)

The only outstanding issue is “prediction” of Y4, I.e.
calculation of ?HO

This can be done by setting Xom = 0 and 3, = o, where I

IS the identity matrix and « is a ’'large’ constant (we don’t know
what it Is)

Alternatively, we can estimate the initial state X, oo @and set
351 = 0, whereby X7 = G G!
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