

## **Time Series Analysis**

Henrik Madsen

hm@imm.dtu.dk

Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

#### •••

## **Outline of the lecture**

Spectral Analysis (Chapter 7)

- The periodogram
- Consistent estimates of the spectrum

### **Spectrum analysis**

- Describes the variations in the frequency domain.
- Useful if the time series contains more frequencies.
- A parametric approach is obtained by estimating a model and then find the 'theoretical' spectrum for the estimated model.
- Here we shall focus on the classical non-parametric approaches.

# The periodogram

Based on the known theoretical relationship, it seems obvious to apply the following estimate for the spectrum

$$I_N(\omega) = \frac{1}{2\pi} \sum_{k=-(N-1)}^{N-1} C(k) e^{-i\omega k}$$
(1)

 $(|\omega| \le \pi)$ , where C(k) is the estimate of the autocovariance function based on *N* observations:  $Y_1, \ldots, Y_N$ .



#### 

# The periodogram

If we assume that  $\{Y_t\}$  has the mean 0, then we can write  $I_N(\omega)$  as

$$I_{N}(\omega) = \frac{1}{2\pi} \sum_{k=-(N-1)}^{N-1} C(k) e^{-i\omega k} |\omega| \leq \pi$$
  
$$= \frac{1}{2\pi} \sum_{k=-(N-1)}^{N-1} \frac{1}{N} \sum_{t=1}^{N-|k|} Y_{t} Y_{t+|k|} e^{-i\omega k}$$
  
$$= \frac{1}{2\pi N} * \sum_{t=1}^{N} Y_{t} e^{-i\omega t} * \sum_{t=1}^{N} Y_{t} e^{i\omega t}$$
  
$$= \frac{1}{2\pi N} |\sum_{t=1}^{N} Y_{t} e^{-i\omega t}|^{2}, \qquad (2)$$

which we can formulate as

 $\mathbf{O}$ 

0

5

## Periodogram

The periodogram is defined for all  $\omega$  in  $[-\pi, \pi]$ , but in order to achieve independence between  $I_N(\omega)$  at different values of  $\omega$  (more about this later) it is advisable only to calculate the periodogram at the so-called *fundamental frequencies*,

$$\omega_p = 2\pi p/N \ p = 0, 1, \dots, \lfloor N/2 \rfloor. \tag{4}$$

It is seen that the sample spectrum is proportional to the squared amplitude of the Fourier transform of the time series:  $Y_1, \ldots, Y_N$ .





## **Properties of the periodogram**

Let  $\{Y_t\}$  be normally distributed white noise having variance  $\sigma_Y^2$ . Then the following holds

1.  $\{I(\omega_p)\}\ p = 0, 1, \dots, [N/2]$  are stochastic independent

2. 
$$rac{I(\omega_p)4\pi}{\sigma_Y^2}\in\chi^2(2)$$
  $p
eq 0,N/2$  for  $N$  even.

**3.** 
$$\frac{I(\omega_p)2\pi}{\sigma_Y^2} \in \chi^2(1)$$
  $p = 0, N/2.$ 

If the assumption of normality does not hold then the theorem is only an approximation.



### **Consistent estimates of the spectrum**

The problem with the periodogram, is that it contains too many values of the estimated autocovariance function. Thus, it is obvious to apply the *truncated periodogram* 

$$\widehat{f}(\omega) = \frac{1}{2\pi} \sum_{k=-M}^{M} C(k) e^{-i\omega k} M < (N-1),$$
(5)

where M is the *truncation point*. The truncated periodogram is a linear combination of M + 1 values of C(k), and thus

$$V[\widehat{f}(\omega)] = O(M/N).$$
(6)



## **Consisteny estimates**

• A lag-window is identified with a sequence of  $\{\lambda_k\}$ , which fulfills

**1.** 
$$\lambda_0 = 1$$

2. 
$$\lambda_k = \lambda_{-k}$$

**3.**  $\lambda_k = 0 |k| > M$ ,

where M is the *truncation point*.

- Corresponding to a lag-window  $\{\lambda_k\}$  we have the *smoothed* spectrum

$$\widehat{f}(\omega) = \frac{1}{2\pi} \sum_{k=-(N-1)}^{N-1} \lambda_k C(k) e^{-i\omega k}.$$
(7)





### **Examples using S-PLUS**

## Estimates using a parametric approach

## Estimates of periodogram (raw spectrum)

## Estimates of smoothed spectrum using a Daniell windo