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Outline of the lecture
Identification of univariate time series models, cont.:

Estimation of model parameters, Sec. 6.4 (cont.)

Model order selection, Sec. 6.5

Model validation, Sec. 6.6
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Estimation – methods (from previous lecture)
We have an appropriate model structure AR(p), MA(q),
ARMA(p, q), ARIMA(p, d, q) with p, d, and q known

Task : Based on the observations find appropriate values of
the parameters

The book describes many methods:
Moment estimates
LS-estimates
Prediction error estimates
• Conditioned
• Unconditioned
ML-estimates
• Conditioned
• Unconditioned (exact)
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Maximum likelihood estimates
ARMA(p, q)-process:

Yt + φ1Yt−1 + · · · + φpYt−p = εt + θ1εt−1 + · · · + θqεt−q

Notation:
θ

T = (φ1, . . . , φp, θ1, . . . , θq)

Y
T
t = (Yt, Yt−1, . . . , Y1)

The Likelihood function is the joint probability distribution
function for all observations for given values of θ and σ2

ε :

L(YN ;θ, σ2
ε) = f(YN |θ, σ2

ε)

Given the observations YN we estimate θ and σ2
ε as the

values for which the likelihood is maximized.
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The likelihood function for ARMA(p, q)-models
The random variable YN |YN−1 only contains εN as a random
component

εN is a white noise process at time N and does therefore not
depend on anything

We therefore know that the random variables YN |YN−1 and
YN−1 are independent, hence (see also page 3):

f(YN |θ, σ2
ε ) = f(YN |YN−1,θ, σ2

ε)f(YN−1|θ, σ2
ε)

Repeating these arguments:

L(YN ;θ, σ2
ε) =




N∏

t=p+1

f(Yt|Yt−1,θ, σ2
ε)



 f(Yp|θ, σ2
ε)
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The conditional likelihood function
Evaluation of f(Yp|θ, σ2

ε) requires special attention

It turns out that the estimates obtained using the conditional
likelihood function:

L(YN ;θ, σ2
ε) =

N∏

t=p+1

f(Yt|Yt−1,θ, σ2
ε)

results in the same estimates as the exact likelihood function
when many observations are available

For small samples there can be some difference

Software:
The S-PLUS function arima.mle calculate conditional
estimates
The R function arima calculate exact estimates
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Evaluating the conditional likelihood function
Task : Find the conditional densities given specified values of
the parameters θ and σ2

ε

The mean of the random variable Yt|Yt−1 is the the 1-step
forecast Ŷt|t−1

The prediction error εt = Yt − Ŷt|t−1 has variance σ2
ε

We assume that the process is Gaussian:

f(Yt|Yt−1,θ, σ2
ε) =

1

σε

√
2π

e−(Yt−bYt|t−1(θ))2/2σ2

ε

And therefore:

L(YN ;θ, σ2
ε) = (σ2

ε2π)−
N−p

2 exp



− 1

2σ2
ε

N∑

t=p+1

ε2
t (θ)







8Henrik Madsen

H. Madsen, Time Series Analysis, Chapmann Hall

ML-estimates

The (conditional) ML-estimate θ̂ is a prediction error estimate
since it is obtained by minimizing

S(θ) =
N∑

t=p+1

ε2
t (θ)

By differentiating w.r.t. σ2
ε it can be shown that the ML-estimate

of σ2
ε is

σ̂2
ε = S(θ̂)/(N − p)

The estimate θ̂ is asymptoticly “good” and the
variance-covariance matrix is approximately 2σ2

εH
−1 where H

contains the 2nd order partial derivatives of S(θ) at the
minimum
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Finding the ML-estimates using the PE-method
1-step predictions:

Ŷt|t−1 = −φ1Yt−1 − · · · − φpYt−p + 0 + θ1εt−1 + · · · + θqεt−q

If we use εp = εp−1 = · · · = εp+1−q = 0 we can find:

Ŷp+1|p = −φ1Yp − · · · − φpY1 + 0 + θ1εp + · · · + θqεp+1−q

Which will give us εp+1 = Yp+1 − Ŷp+1|p and we can then

calculate Ŷp+2|p+1 and εp+2 . . . and so on until we have all the
1-step prediction errors we need.

We use numerical optimization to find the parameters which
minimize the sum of squared prediction errors
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S(θ) for (1 + 0.7B)Yt = (1 − 0.4B)εt with σ2
ε = 0.252
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Moment estimates
Given the model structure: Find formulas for the theoretical
autocorrelation or autocovariance as function of the
parameters in the model

Estimate, e.g. calculate the SACF

Solve the equations by using the lowest lags necessary

Complicated!

General properties of the estimator unknown!
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Moment estimates for AR(p)-processes
In this case moment estimates are simple to find due to the
Yule-Walker equations (page 104). We simply plug in the estimated
autocorrelation function in lags 1 to p:





ρ̂(1)

ρ̂(2)
...

ρ̂(p)




=





1 ρ̂(1) · · · ρ̂(p − 1)

ρ̂(1) 1 · · · ρ̂(p − 2)
...

...
...

ρ̂(p − 1) ρ̂(p − 2) · · · 1









−φ1

−φ2
...

−φp





and solve w.r.t. the φ’s

The function ar in S-PLUS or R use this approach as default
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Model building

1. Identification

2. Estimation

(Prediction, simulation, etc.)

3. Model checking

(Specifying the model order)

(of the model parameters)

Is the model OK ?

Data

physical insight

Theory

No

Yes

Applications using the model
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Validation of the model and extensions / reductions
Residual analysis (Sec. 6.6.2): Is it possible to detect
problems with residuals? (the 1-step prediction errors using
the estimates, i.e. {εt(θ̂)}, should be white noise)

If the SACF or the SPACF of {εt(θ̂)} points towards a
particular ARMA-structure we can derive how the original
model should be extended (Sec. 6.5.1)

If the model pass the residual analysis it makes sense to test
null hypotheses about the parameters (Sec. 6.5.2)
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Residual analysis

Plot {εt(θ̂)}; do the residuals look stationary?

Tests in the autocorrelation. If {εt(θ̂)} is white noise then ρ̂ε(k)
is approximately Gaussian distributed with mean 0 and
variance 1/N .
If the model fails calculate SPACF also and see if an
ARMA-structure for the residuals can be derived (Sec. 6.5.1)

Since ρ̂ε(k1) and ρ̂ε(k2) are independent (Eq. 6.4) the test

statistic Q2 =
m∑

k=1

(√
Nρ̂

εt(bθ)
(k)

)2
is approximately distributed

as χ2(m − n), where n is the number of parameters.

S-PLUS: arima.diag(’output from arima.mle’)
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Residual analysis (continued)
Test for the number of changes in sign. In a series of length N
there is N − 1 possibilities for changes in sign. If the series is
white noise (with mean zero) the probability of change is 1/2
and the changes will be independent. Therefore the number of
changes is distributed as Bin(N − 1, 1/2)
S-PLUS: binom.test(N-1, ’No. of changes’)

Test in the scaled cumulated periodogram of the residuals is
done by plotting it and adding lines at ±Kα/

√
q, where

q = (N − 2)/2 for N even and q = (N − 1)/2 for N odd. For
1 − α confidence limits Kα can be found in Table 6.2
S-PLUS (95% confidence interval):
library(MASS)
cpgram(’residuals’)
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Sum of squared residuals depend on the model size

i = number of
parameters

1 2 3 4

^

5 6 7

x

x

x
x x x x

S(    )1θ

(It is assumed that the models are nested)
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Test is the model
The test essentially checks if the reduction in SSE (S1 − S2) is
large enough to justify the extra parameters in model 2
(n2 parameters) as compared to model 1 (n1 parameters). The
number of observations used is called N .

If vector θextra is used to denote the extra parameters in model
2 as compared to model 1, then the test is formally:

H0 : θextra = 0 vs. H0 : θextra 6= 0

If H0 is true it (approximately) hold that

(S1 − S2)/(n2 − n1)

S2/(N − n2)
∼ F(n2 − n1, N − n2)

(The likelihood ratio test is also a possibility)
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Testing one parameter for significance

H0 : θi = 0 against H1 : θi 6= 0

Can be done as described on the previous slide

Alternatively we can use a t-test based on the estimate and its

standard error: θ̂i/

√
V̂ (θ̂i)

Under H0 and for an ARMA(p, q)-model this follows a
t(N − p− q) distribution (or t(N − 1 − p− q) if we estimated an
overall mean of the series)

Often N is so large compared to the number of parameters
that we can just use the standard normal distribution
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Information criteria
Select the model which minimize some information criterion

Akaike’s Information Criterion

AIC = −2 log(L(YN ; θ̂, σ̂2
ε)) + 2npar

Bayesian Information Criterion

BIC = −2 log(L(YN ; θ̂, σ̂2
ε)) + logN npar

Except for an additive constant this can also be expressed as

AIC = N log σ̂2
ε + 2npar

BIC = N log σ̂2
ε + logN npar

BIC yields a consistent estimate of the model order
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Example
A model for CO2 ...
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