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Outline of the lecture
Stochastic processes, 1st part:

Stochastic processes in general: Sec 5.1, 5.2, 5.3 [except
5.3.2], 5.4.

MA, AR, and ARMA-processes, Sec. 5.5
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Stochastic Processes – in general
Function: X(t, ω)

Time: t ∈ T

Realization: ω ∈ Ω

Index set: T

Sample Space: Ω (sometimes called ensemble)

X(t = t0, ·) is a random variable

X(·, ω) is a time series (i.e. one realization)

In this course we consider the case where time is discrete and
and measurements are continuous
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Complete Characterization
n-dimensional probability distribution:

fX(t1),...,X(tn)(x1, . . . , xn)

Family of probability distribution functions, i.e.:

For all n = 1, 2, 3, . . .

and all t

is called the family of finite-dimensional probability distribution
functions for the process. This family completely characterize the
stochastic process.
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2’nd order moment representation
Mean function:

µ(t) = E[X(t)] =

∫ ∞

−∞

xfX(t)(x) dx,

Autocovariance function:

γXX(t1, t2) = γ(t1, t2) = Cov
[

X(t1),X(t2)
]

= E
[

(X(t1) − µ(t1))(X(t2) − µ(t2))
]

The variance function is obtained from γ(t1, t2) when t1 = t2 = t:

σ2(t) = V [X(t)] = E
[

(X(t) − µ(t))2
]
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Stationarity
A process {X(t)} is said to be strongly stationary if all
finite-dimensional distributions are invariant for changes in
time, i.e. for every n, and for any set (t1, t2, . . . , tn) and for any
h it holds

fX(t1),··· ,X(tn)(x1, · · · , xn) = fX(t1+h),··· ,X(tn+h)(x1, · · · , xn)

A process {X(t)} is said to be weakly stationary of order k if
all the first k moments are invariant to changes in time

A weakly stationary process of order 2 is simply called weakly
stationary or just stationary :

µ(t) = µ σ2(t) = σ2 γ(t1, t2) = γ(t1 − t2)
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Ergodicity
In time series analysis we normally assume that we have
access to one realization only

We therefore need to be able to determine characteristics of
the random variable Xt from one realization xt

It is often enough to require the process to be mean-ergodic:

E[X(t)] =

∫

Ω
x(t, ω)f(ω) dω = lim

T→∞

1

2T

∫ T

−T

x(t, ω) dt

i.e. if the mean of the ensemble equals the mean over time

Some intuitive examples, not directly related to time series:
http://news.softpedia.com/news/What-is-ergodicity-15686.shtml

http://news.softpedia.com/news/What-is-ergodicity-15686.shtml
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Special processes
Normal processes (also called Gaussian processes): All finite
dimensional distribution functions are (multivariate) normal
distributions

Markov processes: The conditional distribution depends only
of the latest state of the process:

P{X(tn) ≤ x|X(tn−1), · · · ,X(t1)} = P{X(tn) ≤ x|X(tn−1)}

Deterministic processes: Can be predicted without uncertainty
from past observations

Pure stochastic processes: Can be written as a (infinite) linear
combination of uncorrelated random variables

Decomposition: Xt = St +Dt



10Henrik Madsen

H. Madsen, Time Series Analysis, Chapmann Hall

Autocovariance and autocorrelation
For stationary processes: Only dependent of the time
difference τ = t2 − t1

Autocovariance:

γ(τ) = γXX(τ) = Cov[X(t),X(t + τ)] = E[X(t)X(t+ τ)]

Autocorrelation:

ρ(τ) = ρXX(τ) = γXX(τ)/γXX(0) = γXX(τ)/σ2
X

Some properties of the autocovariance function:
γ(τ) = γ(−τ)

|γ(τ)| = γ(0)
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Linear processes
A linear process {Yt} is a process that can be written on the
form

Yt − µ =

∞
∑

i=0

ψiεt−i

where µ is the mean value of the process and

{εt} is white noise, i.e. a sequence of i.i.d. random variables.

{εt} can be scaled so that ψ0 = 1

Without loss of generality we assume µ = 0
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ψ- and π-weights
Transfer function and linear process:

ψ(B) = 1 +

∞
∑

i=1

ψiBi Yt = ψ(B)εt

Inverse operator (if it exists) and the linear process:

π(B) = 1 +
∞

∑

i=1

πiBi π(B)Yt = εt,

Autocovariance using ψ-weights:

γ(k) = Cov
[

∞
∑

i=0

ψiεt−i,

∞
∑

i=0

ψiεt+k−i

]

= σ2
ε

∞
∑

i=0

ψiψi+k
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Autocovariance Generating Function
Let us define autocovariance generating function:

Γ(z) =

∞
∑

k=−∞

γ(k)z−k, (1)

which is the z–transformation of the autocovariance function.
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Autocovariance Generating Function
We obtain (since ψi = 0 for i < 0)

Γ(z) = σ2
ε

∞
∑

k=−∞

∞
∑

i=0

ψiψi+kz
−k

= σ2
ε

∞
∑

i=0

ψiz
i

∞
∑

j=0

ψjz
−j

= σ2
εψ(z−1)ψ(z).

Γ(z) = σ2
εψ(z−1)ψ(z) = σ2

επ
−1(z−1)π−1(z). (2)



15Henrik Madsen

H. Madsen, Time Series Analysis, Chapmann Hall

Stationarity and invertibility
The linear process Yt = ψ(B)εt is stationary if

ψ(z) =
∞

∑

i=0

ψiz
−i

converges for |z| ≥ 1 (i.e. old values of εt is weighted down)

The linear process π(B)Yt = εt is said to be invertible if

π(z) =

∞
∑

i=0

πiz
−i

converges for |z| ≥ 1 (i.e. εt can be calculated from recent
values of Yt)
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Stationary processes in the frequency domain
It has been shown that the autocovariance function is
non-negative definite.

Following a theorem of Bochner such a non-negative definite
function can be written as a Stieltjes integral

γ(τ) =

∫ ∞

−∞

eiωτ dF (ω) (3)

for a process in continuous time, or

γ(τ) =

∫ π

−π

eiωτ dF (ω) (4)

for a process in discrete time.
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Processes in the frequency domain
For a purely stochastic process we have the following relations
between the spectrum and the autocovariance function

f(ω) = 1
2π

∫ ∞

−∞
e−iωτγ(τ) dτ

(continuous time)
γ(τ) =

∫ ∞

−∞
eiωτf(ω) dω

(5)

f(ω) = 1
2π

∑∞
k=−∞ γ(k)e−iωk

(discrete time)
γ(k) =

∫ π

−π
eikωf(ω) dω

(6)
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Processes in the frequency domain
We have seen that any stationary process can be formulated
as a sum of a purely stochastic process and a purely
deterministic process.

Similar, the spectral density can be written

F (ω) = FS(ω) + FD(ω), (7)

where FS(ω) is an even continuous function and FD(ω) is a
step function.
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Processes in the frequency domain
For a pure deterministic process

Yt =

k
∑

i=1

Ai cos(ωit+ φi), (8)

FS will become 0, and thus F (ω) will become a step function
with steps at the frequencies ±ωi, i = 1, . . . , k.

In this case F can be written as

F (ω) = FD(ω) =
∑

ωi≤ω

f(ωi) (9)

and {f(ωi); i = 1, . . . , k} is often called the line spectrum.
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Linear process as a statistical model?

Yt = εt + ψ1εt−1 + ψ2εt−2 + +ψ3εt−3 + . . .

Observations: Y1, Y2, Y3, . . . , YN

Task: Find an infinite number of parameters from N
observations!

Solution: Restrict the sequence 1, ψ1, ψ2, ψ3, . . .
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MA(q), AR(p), and ARMA(p, q) processes

Yt = εt + θ1εt−1 + · · · + θqεt−q

Yt + φ1Yt−1 + · · · + φpYt−p = εt

Yt + φ1Yt−1 + · · · + φpYt−p = εt + θ1εt−1 + · · · + θqεt−q

{εt} is white noise

Yt = θ(B)εt

φ(B)Yt = εt

φ(B)Yt = θ(B)εt

φ(B) and θ(B) are polynomials in the backward shift operator B,
(BXt = Xt−1, B2Xt = Xt−2)
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Stationarity and invertibility
MA(q)

Always stationary

Invertible if the roots in θ(z−1) = 0 with respect to z all are
within the unit circle

AR(p)

Always invertible

Stationary if the roots of φ(z−1) = 0 with respect to z all lie
within the unit circle

ARMA(p, q)

Stationary if the roots of φ(z−1) = 0 with respect to z all lie
within the unit circle
Invertible if the roots in θ(z−1) = 0 with respect to z all are
within the unit circle
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Autocorrelations

MA(2):
Yt = (1 + 0.9B + 0.8B2)εt
zero after lag 2

AR(1):
(1 − 0.8B)Yt = εt
exponential decay (damped sine in case of com-
plex roots)

ARMA(1,2):
(1 − 0.8B)Yt = (1 + 0.9B + 0.8B2)εt
exponential decay from lag q+1−p = 2+1−1 =
2 (damped sine in case of complex roots)
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Partial autocorrelations

MA(2):
Yt = (1 + 0.9B + 0.8B2)εt

AR(1):
(1 − 0.8B)Yt = εt
zero after lag 1

ARMA(1,2):
(1 − 0.8B)Yt = (1 + 0.9B + 0.8B2)εt
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Inverse autocorrelation
The process: φ(B)Yt = θ(B)εt

The dual process: θ(B)Zt = φ(B)εt

The inverse autocorrelation is the autocorrelation for the dual
process

Thus, the IACF can be used i a similar way as the PACF
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