

Time Series Analysis

Henrik Madsen

hm@imm.dtu.dk

Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

Outline of the lecture

Regression based methods, 2nd part:

Regression and exponential smoothing (Sec. 3.4)

Time series with seasonal variations (Sec. 3.5)

Regression without explanatory variables

- During Lecture 2 we saw that assuming known independent variables x we can forecast the dependent variable Y
- To be able to do so we estimated θ in

$$Y_t = f(\boldsymbol{x}_t, t; \boldsymbol{\theta}) + \varepsilon_t$$

If we do not have access to x we may use:

$$Y_t = f(t; \boldsymbol{\theta}) + \varepsilon_t$$

- During this lecture we shall consider models of this (last) form and we shall consider how $\hat{\theta}$ can be updated as more information becomes available
- Only models linear in θ will be considered

Model: Constant mean

- $Y_t = \mu + \varepsilon_t$, ε_t i.i.d. with mean zero and constant variance σ^2 (white noise).
- In vector form ($t = 1, \dots, N$): $\boldsymbol{Y} = \boldsymbol{1} \mu + \boldsymbol{\varepsilon}$
- Estimate: $\hat{\mu} = (\mathbf{1}^T \mathbf{1})^{-1} \mathbf{1}^T \mathbf{Y} = N^{-1} \sum_{t=1}^{N} Y_t = \bar{y}.$
- Prediction (the conditional mean): $\widehat{Y}_{N+\ell|N} = \widehat{\mu} = \frac{1}{N} \sum_{t=1} Y_t$

• Variance of the prediction error: $V[Y_{N+\ell} - \hat{Y}_{N+\ell|N}] = \sigma^2(1 + \frac{1}{N})$

Updating the estimate

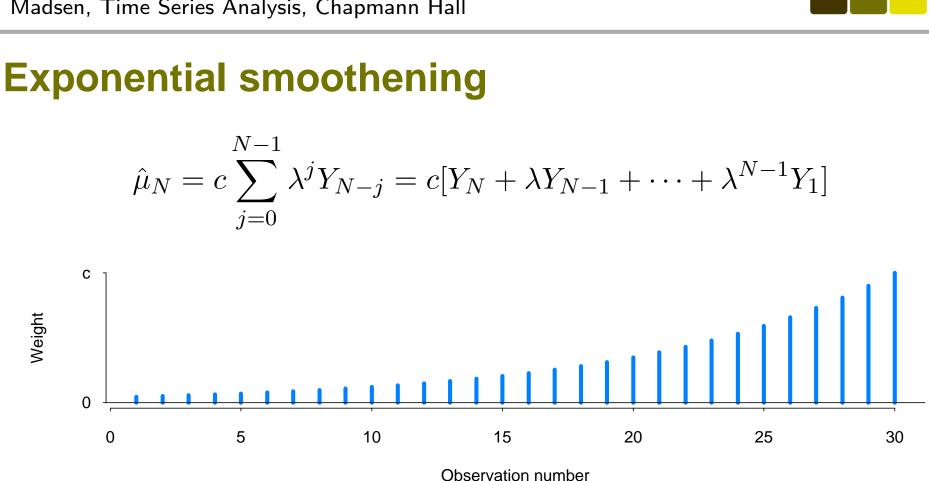
- Based on Y_1, Y_2, \ldots, Y_N we have $\hat{\mu}_N = \frac{1}{N} \sum_{t=1}^N Y_t$
- When we get one more observation Y_{N+1} the best estimate is $\hat{\mu}_{N+1} = \frac{1}{N+1} \sum_{t=1}^{N+1} Y_t$

Recursive update:

$$\hat{\mu}_{N+1} = \frac{1}{N+1} \sum_{t=1}^{N+1} Y_t = \frac{1}{N+1} Y_{N+1} + \frac{N}{N+1} \hat{\mu}_N$$

Model: Local constant mean

- In the constant mean model the variance of the forecast error decrease towards σ^2 as 1/N
- Therefore, if N is sufficiently high (say 100) there is not much gained by increasing the number of observations
- If there is indications that the true (underlying) mean is actually changing slowly it can even be advantageous to "forget" old observations.
- One way of doing this is to base the estimate on a rolling window containing e.g. the 100 most recent observations
- An alternative is exponential smoothening



The constant c is chosen so that the weights sum to one, which implies that $c = (1 - \lambda)/(1 - \lambda^N)$. For large N:

$$\hat{\mu}_{N+1} = (1-\lambda)Y_{N+1} + \lambda\hat{\mu}_N \text{ or } \widehat{Y}_{N+\ell+1|N+1} = (1-\lambda)Y_{N+1} + \lambda\widehat{Y}_{N+\ell|N}$$

Weight

Choice of smoothing constant $\alpha = 1 - \lambda$

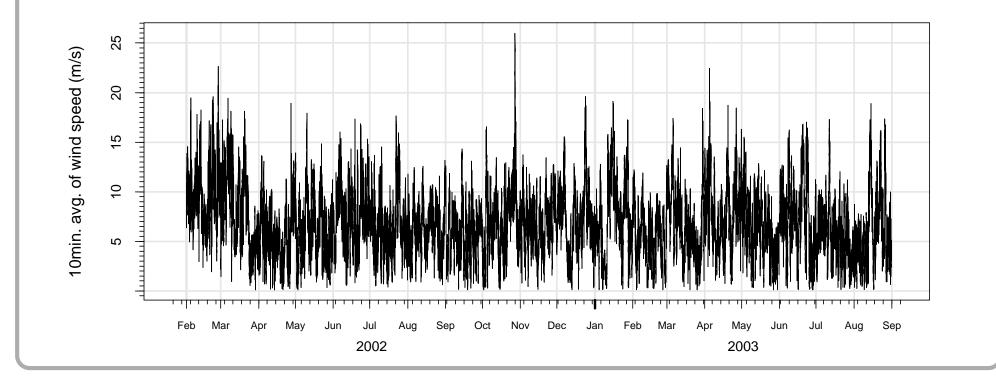
- The smoothing constant $\alpha = 1 \lambda$ determines how much the latest observation influence the prediction
- Given a data set $t = 1, \ldots, N$ we can try different values before implementing the method on-line

$$S(\alpha) = \sum_{t=1}^{N} (Y_t - \hat{Y}_{t|t-1}(\alpha))^2$$

 If the data set is large we eliminate the influence of the initial estimate by dropping the first part of the errors when evaluating S(α)

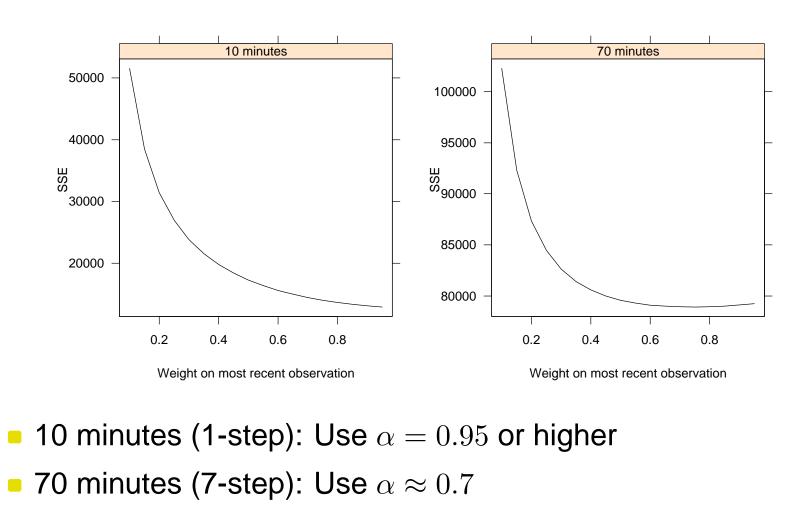
Example – wind speed 76 m a.g.l. at Risø

- Measurements of wind speed every 10th minute
- Task: Forecast up to approximately 3 hours ahead using exponential smoothing

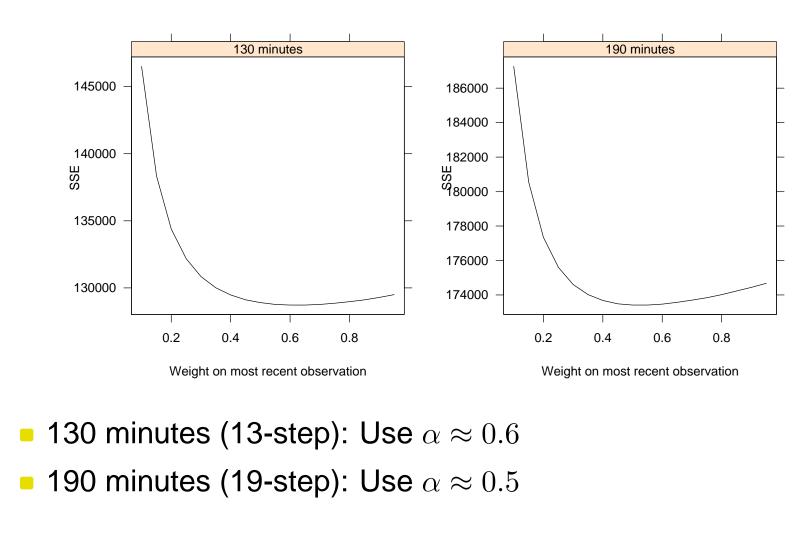


Henrik Madsen

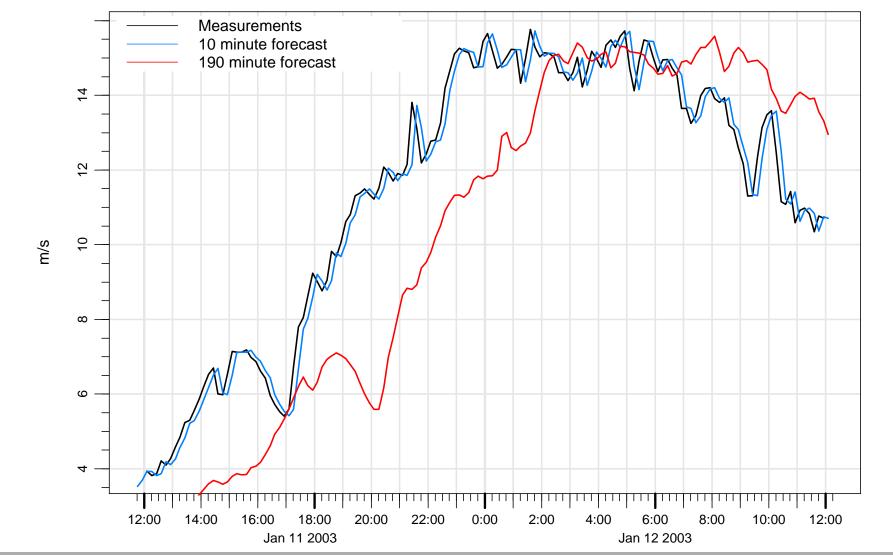
$S(\alpha)$ for horizons 10 and 70 minutes



$S(\alpha)$ for horizons 130 and 190 minutes



Example of forecasts with optimal $\boldsymbol{\alpha}$



12

Henrik Madsen

Trend models

- Linear regression model
- Functions of time are taken as the independent variables

Linear trend

- Observations for $t = 1, \ldots, N$
- Naive formulation of the model: $Y_t = \phi_0 + \phi_1 t + \varepsilon_t$
- If we want to forecast Y_{N+j} given information up to N we use $\widehat{Y}_{N+j|N} = \widehat{\phi}_0 + \widehat{\phi}_1 (N+j)$
- However, for on-line applications N + j can be arbitrary large
- The problem arise because ϕ_0 and ϕ_1 is defined w.r.t. the origin 0
- Defining the parameters w.r.t. the origin n we obtain the model: $Y_t = \theta_0 + \theta_1 (t - N) + \varepsilon_t$
- Using this formulation we get: $\hat{Y}_{N+j|N} = \hat{\theta}_0 + \hat{\theta}_1 j$

Linear trend in a general setting

The general trend model:

$$Y_{N+j} = \boldsymbol{f}^T(j)\boldsymbol{\theta} + \varepsilon_{N+j}$$

• The linear trend model is obtained when: $f(j) = \begin{pmatrix} 1 \\ j \end{pmatrix}$

• It follows that for N + 1 + j:

$$Y_{N+1+j} = \begin{pmatrix} 1 \\ j+1 \end{pmatrix}^T \boldsymbol{\theta} + \varepsilon_{N+1+j} = \left(\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} \begin{pmatrix} 1 \\ j \end{pmatrix} \right)^T \boldsymbol{\theta} + \varepsilon_{N+1+j}$$

- The 2×2 matrix \boldsymbol{L} defines the transition from $\boldsymbol{f}(j)$ to $\boldsymbol{f}(j+1)$

Trend models in general

• Model:
$$Y_{N+j} = \boldsymbol{f}^T(j)\boldsymbol{\theta} + \varepsilon_{N+j}$$

- Requirement: f(j+1) = Lf(j)
- Initial value: f(0)
- In Section 3.4 some trend models which fulfill the requirement above are listed.
 - ► Constant mean: $Y_{N+j} = \theta_0 + \varepsilon_{N+j}$
 - ► Linear trend: $Y_{N+j} = \theta_0 + \theta_1 j + \varepsilon_{N+j}$
 - ► Quadratic trend: $Y_{N+j} = \theta_0 + \theta_1 j + \theta_2 \frac{j^2}{2} + \varepsilon_{n+j}$
 - k'th order polynomial trend:

$$Y_{n+j} = \theta_0 + \theta_1 j + \theta_2 \frac{j^2}{2} + \dots + \theta_k \frac{j^k}{k!} + \varepsilon_{N+j}$$

• Harmonic model with the period *p*: $Y_{N+j} = \theta_0 + \theta_1 \sin \frac{2\pi}{n} j + \theta_2 \cos \frac{2\pi}{n} j + \varepsilon_{N+j}$

Estimation

• Model equations written for all observations Y_1, \ldots, Y_N

$$Y = x_N \theta + \varepsilon$$

$$\begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_N \end{bmatrix} = \begin{bmatrix} f^T(-N+1) \\ f^T(-N+2) \\ \vdots \\ f^T(0) \end{bmatrix} \theta + \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \varepsilon_N \end{bmatrix}$$
• OLS-estimates: $\hat{\theta}_N = (x_N^T x_N)^{-1} x_N^T Y$ or
$$\hat{\theta}_N = F_N^{-1} h_N \quad F_N = \sum_{j=0}^{N-1} f(-j) f^T(-j) \quad h_N = \sum_{j=0}^{N-1} f(-j) Y_{N-j}$$

-8-

ℓ -step prediction

Prediction:

$$\widehat{Y}_{N+\ell|N} = \boldsymbol{f}^T(\ell)\widehat{\boldsymbol{\theta}}_N$$

Variance of the prediction error:

$$V[Y_{N+\ell} - \widehat{Y}_{N+\ell|N}] = \sigma^2 \left[1 + \boldsymbol{f}^T(\ell) \boldsymbol{F}_N^{-1} \boldsymbol{f}(\ell)\right]$$

• $100(1-\alpha)\%$ prediction interval:

$$\begin{split} \widehat{Y}_{N+\ell|N} \pm \mathsf{t}_{\alpha/2}(N-p)\sqrt{V[e_N(\ell)]} &= \\ \widehat{Y}_{N+\ell|N} \pm \mathsf{t}_{\alpha/2}(N-p)\widehat{\sigma}\sqrt{1+\boldsymbol{f}^T(\ell)\boldsymbol{F}_N^{-1}\boldsymbol{f}(\ell)} \end{split}$$

where $\hat{\sigma}^2 = \epsilon^T \epsilon / (N - p)$ (*p* is the number of estimated parameters)

Updating the estimates when Y_{N+1} is available

Task:

- Going from estimates based on $t = 1, \ldots, N$, i.e. $\widehat{\theta}_N$ to
- ▶ estimates based on t = 1, ..., N, N + 1, i.e. $\widehat{\theta}_{N+1}$
- without redoing everything...

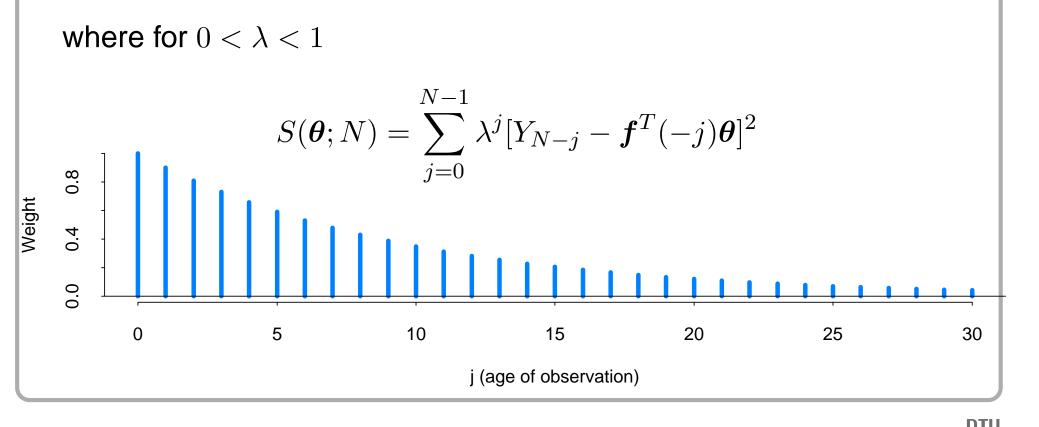
Solution:

$$\widehat{\boldsymbol{\theta}}_{N+1} = \boldsymbol{F}_{N+1}^{-1} \boldsymbol{h}_{N+1}$$
$$\boldsymbol{F}_{N+1} = \boldsymbol{F}_N + \boldsymbol{f}(-N) \boldsymbol{f}^T(-N)$$
$$\boldsymbol{h}_{N+1} = \boldsymbol{L}^{-1} \boldsymbol{h}_N + \boldsymbol{f}(0) Y_{N+1}$$

Local trend models

We forget old observations in an exponential manner:

$$\widehat{\boldsymbol{\theta}}_N = \arg\min_{\boldsymbol{\theta}} S(\boldsymbol{\theta}; N)$$



WLS formulation

The criterion:

$$S(\boldsymbol{\theta}; N) = \sum_{j=0}^{N-1} \lambda^j [Y_{N-j} - \boldsymbol{f}^T(-j)\boldsymbol{\theta}]^2$$

can be written as:

$$\begin{bmatrix} Y_1 - \boldsymbol{f}^T (N-1)\boldsymbol{\theta} \\ Y_2 - \boldsymbol{f}^T (N-2)\boldsymbol{\theta} \\ \vdots \\ Y_N - \boldsymbol{f}^T (0)\boldsymbol{\theta} \end{bmatrix}^T \begin{bmatrix} \lambda^{N-1} & 0 & \cdots & 0 \\ 0 & \lambda^{N-2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} Y_1 - \boldsymbol{f}^T (N-1)\boldsymbol{\theta} \\ Y_2 - \boldsymbol{f}^T (N-2)\boldsymbol{\theta} \\ \vdots \\ Y_N - \boldsymbol{f}^T (0)\boldsymbol{\theta} \end{bmatrix}^T$$

which is a WLS criterion with $\Sigma = diag[1/\lambda^{N-1}, \dots, 1/\lambda, 1]$

DTU

WLS solution

or

$$\widehat{\boldsymbol{\theta}}_N = (\boldsymbol{x}_N^T \boldsymbol{\Sigma}^{-1} \boldsymbol{x}_N)^{-1} \boldsymbol{x}_N^T \boldsymbol{\Sigma}^{-1} \boldsymbol{Y}$$

$$egin{array}{rcl} \widehat{oldsymbol{ heta}}_N &=& oldsymbol{F}_N^{-1}oldsymbol{h}_N \ oldsymbol{F}_N &=& \sum_{j=0}^{N-1}\lambda^joldsymbol{f}(-j)oldsymbol{f}^T(-j) \ oldsymbol{h}_N &=& \sum_{j=0}^{N-1}\lambda^joldsymbol{f}(-j)Y_{N-j} \end{array}$$

 $\cdot \geq 1$

Henrik Madsen

Updating the estimates when Y_{N+1} is available

$$\widehat{\boldsymbol{\theta}}_{N+1} = \boldsymbol{F}_{N+1}^{-1} \boldsymbol{h}_{N+1}$$
$$\boldsymbol{F}_{N+1} = \boldsymbol{F}_N + \lambda^N \boldsymbol{f}(-N) \boldsymbol{f}^T(-N)$$
$$\boldsymbol{h}_{N+1} = \lambda \boldsymbol{L}^{-1} \boldsymbol{h}_N + \boldsymbol{f}(0) Y_{N+1}$$

When no data is available we can use $h_0 = 0$ and $F_0 = 0$

For many functions $\lambda^N f(-N) f^T(-N) \to 0$ for $N \to \infty$ and we get the stationary result $F_{N+1} = F_N = F$. Hence:

$$\widehat{\boldsymbol{\theta}}_{N+1} = \boldsymbol{L}^T \widehat{\boldsymbol{\theta}}_N + \boldsymbol{F}^{-1} \boldsymbol{f}(0) [Y_{N+1} - \widehat{Y}_{N+1|N}]$$

