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Outline of the lecture
Regression based methods, 1st part:

Introduction (Sec. 3.1)

The General Linear Model, including OLS-, WLS-, and
ML-estimates (Sec. 3.2)

Prediction in the General Linear Model (Sec. 3.3)

Examples...
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General form of the regression model

Yt = f(X t, t;θ) + εt

Where:

Yt is the output we aim to model

Xt indicates the p independent variables Xt = (X1t, · · · ,Xpt)
T

t is the time index

θ indicates m unknown parameters (θ1, · · · , θm)T

εt is a sequence of random variables with mean zero, variance
σt, and Cov[εti

, εtj
] = σΣij

We restrict the discussion to the case where Xt is non-random and

we write xt
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Yt = θ1/(1 + exp(−θ2xt + θ3)) + εt
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Least squares estimates
Observations:

(y1,x1), (y2,x2), · · · , (yn,xn)

Ordinary Least Square (unweighted) estimates is found from

θ̂ = arg min
θ

S(θ)

where

S(θ) =
n∑

t=1

[yt − f(xt;θ)]2 =
n∑

t=1

ε2
t (θ)

The unweighted method assumes that the errors all have the same

variance and are mutually uncorrelated.
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Variance of error and estimates
If the model errors εt are i.i.d.

The variance of the model errors is estimated as:

σ̂2 =
S(θ̂)

n − p

The variance-covariance matrix of the estimates is

V [θ̂] = 2σ̂2

[
∂2

∂2θ
S(θ)

]
−1

∣∣∣∣∣
θ=bθ
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The General Linear Model

Yt = x
T
t θ + εt
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The General Linear Model

Yt = x
T
t θ + εt

Note that the quadratic model

Yt = θ0 + θ1zt + θ2z
2
t + εt

can be written

yt =
(

1 zt z2
t

)



θ0

θ1

θ2



 + εt

and hence it is a general linear model.
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General Linear Models
Some examples in the book

(Multiple) regression analysis, ex: Y = α + βx + ε

Analysis of variance, ex: Y = αi + ε (i indexes the treatment)

Analysis of covariance, ex: Y = αi + βx + ε

For ANOVA and ANCOVA the treatments must be coded into a num-

ber of x-variables.
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OLS – solution
Non-linear regression: Numerical optimization is required; see
the book for a simple example (Newton-Raphson)

For the general linear model a closed-form solution exists.
For all observations the model equations are written as:




Y1

...
Yn



 =




x

T
1

...
x

T
n



θ +




ε1

...
εn



 or Y = xθ + ε

i.e. we want to minimize ε
T
ε

The solution is θ̂ = (xT
x)−1

x
T
Y (if x has full rank)

σ̂2 = ε
T
ε/(n − p) and V [θ̂] = σ̂2(xT

x)−1
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Example
Data:

t y x

1 0.2 0.4
2 1.2 1.2
3 1.9 2.3
4 2.3 3.4
5 1.9 4.3

Model:

Yt = θ0 + θ1xt + θ2x
2
t + εt
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Example
Data:

t y x

1 0.2 0.4
2 1.2 1.2
3 1.9 2.3
4 2.3 3.4
5 1.9 4.3

Model:

Yt = θ0 + θ1xt + θ2x
2
t + εt

Y = xθ + ε
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Example
Data:
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θ̂ = (xT
x)−1

x
T
Y =




−0.40

1.61

−0.25
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Properties

It is a linear function of the observations Y (and Ŷ is a linear
function of the observations)

It is unbiased, i.e. E[θ̂] = θ

V [θ̂] = E
[
(θ̂ − θ)(θ̂ − θ)T

]
= σ2(xT

x)−1

θ̂ is BLUE (Best Linear Unbiased Estimator), which means that
it has the smallest variance among all estimators which are a
linear function of the observations.
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WLS-estimates
Equations for all observations: Y = xθ + ε

E[ε] = 0 and V [ε] = E[εε
T ] = σ2

Σ, where Σ is known

We want to minimize (Y − xθ)T Σ
−1(Y − xθ) (why?)

The solution is

θ̂ = (xT
Σ

−1
x)−1

x
T
Σ

−1
Y

(if x
T
Σ

−1
x is invertible)

An unbiased estimate of σ2 is

σ̂2 =
1

n − p
(Y − xθ̂)TΣ

−1(Y − xθ̂)
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Example WLS/OLS
H. Madsen & P. Thyregod (1988). Modelling the Time
Correlation in Hourly Observations of Direct Radiation in Clear
Skies. Energy and Buildings, 11, 201–211.

See the examples in the book.
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ML-estimates
We now assume that the observations are Gaussian:

Y ∼ Nn(xθ, σ2
Σ)

Σ is assumed known

The ML-estimator is the same as the WLS-estimator:

θ̂ = (xT
Σ

−1
x)−1

x
T
Σ

−1
Y

The ML-estimator for σ2 is

σ̂2 =
1

n
(Y − xθ̂)TΣ

−1(Y − xθ̂)
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Properties of the ML-estimator
It is a linear function of the observations which now implies
that it is normally distributed

It is unbiased, i.e. E[θ̂] = θ and

The variance V [θ̂] = E[(θ̂ − θ)(θ̂ − θ)T ] = (xT
Σ

−1
x)−1σ2

It is an efficient estimator
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Unknown Σ

Relaxation algorithm:

a) Select a value for Σ (e.g. Σ = I).

b) Find the estimates for this value of Σ e.g. by solving the
normal equations.

c) Consider the residuals {ε̂t} and calculate the correlation and
variance structure of the residuals. Then select a new value for
Σ which reflects that correlation and variance structure.

d) Stop if convergence - otherwise go to b).

See (Goodwin and Payne, 1977) for details.
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Prediction
If the expected value of the squared prediction error is to be
minimized, then

we must use the expected mean E[Y |X = x] as the
prediction.
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Prediction in the general linear model
Known parameters:

Ŷt+ℓ = E[Yt+ℓ|Xt+ℓ = xt+ℓ] = x
T
t+ℓθ

V [Yt+ℓ − Ŷt+ℓ] = V [εt+ℓ] = σ2

Estimated parameters:

Ŷt+ℓ = E[Yt+ℓ|Xt+ℓ = xt+ℓ] = x
T
t+ℓθ̂

V [Yt+ℓ − Ŷt+ℓ] = V [εt+ℓ] = σ2[1 + x
T
t+ℓ(x

T
x)−1

xt+ℓ]
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Prediction in the general linear model – continued
We must use an estimate of σ and therefore a 100(1 − α)%
prediction interval of a future value is calculated as:

Ŷt+ℓ ± tα/2(n − p)σ̂
√

1 + xT
t+ℓ(x

T x)−1xt+ℓ
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