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General mixed effect models

Remember that the likelihood of a general mixed effect model can be
written as

LM (θ;y) =

∫

Rq

L(θ;u,y)du (1)

where θ = (β, ψ) and

L(θ;y) = fY |u(y;u,β)fU (u;ψ) (2)

is the joint likelihood.
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General mixed effect models - one level of grouping

If only one level of grouping is present

L(θ;y) =
M
∏

i=1

∫

Rqi

fY |ui (y;ui ,β)fUi
(ui ;ψ)dui (3)

Which simplify the integration greatly, but might stille be impossible to
solve, even when qi = 1.
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Laplace approximation

Approximate the joint log-likelihood by the second order Taylor
approximation

lLA(θ;u,y) ≈ l(θ; ũ,y)−
1

2
(u− ũ)TH(ũ)(u− ũ) (4)

with

ũ = argmax
u

l(u,θ,y) (5)

and

H (ũ) = −l
′′

uu(u,θ,y)|u=ũ (6)

The log likelihood is approximated by

lM ,LA(θ,y) = log fY |u(y; ũ,β) + log fU (ũ;ψ)−
1

2
log |H (ũ)| (7)
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Laplace approximation

As usual the maximum likelihood estimate θ̂ is given by

θ̂ = argmax
θ

(lM ,LA(θ,y)) (8)

In general we need to solve (8) by numerical methods.

Each step in the numerical procedure require the numerical solution of the
second stage model and the (an approximation of) the hessian at the
estimated random effects.

In general numerical optimisation wil speed up significantly if we can
supply gradients of the objective function.
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Laplace approximation work flow

0. Initialize θ to some arbitrary value θ0

1. With current value for θ optimize joint likelihood w.r.t. u to
get ũθ and corresponding Hessian H (ũθ).

2. Use ũθ and H (ũθ) to approximate ℓM (θ)

3. Compute value and gradient of ℓM (θ)

4. If the gradient is ”>ǫ”set θ to a different value and go to 1.

Notice the huge number of — possibly high dimensional — optimizations
that are required.

JK. Møller, H. Madsen, and A. Nielsen () Chapman & Hall May 7, 2012 7 / 22



Automatic Differentiation

Automatic differentiation is based on

Derivatives of simple functions (like ’+’, ’-’, ’*’, ’/’, ’exp’,
’sin’, ...)

The chain rule ((f ◦ g)(x ) = f ′(g(x ))g ′(x ))

Applying the chain rule to complicated functions is intractable to do with
pen and paper, but well suited for computer programs.
Tools

ADMB (http://admb-project.org/)

deriv and D in R (Partly automatic differentiation)
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Automatic differentiation

Automatic differentiation is a technique where the chain rule is used
by the computer program itself.

When the program evaluates the log-likelihood it keeps track of all
the operations used along the way, and then runs the program
backwards (reverse mode automatic differentiation) and uses the
chain rule to update the derivatives one simple operation at a time.

Automatic differentiation is accurate, and the computational cost of
evaluating the gradient is surprisingly low.
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Automatic differentiation

Theorem

The computational cost of evaluating the gradient of the log-likelihood ∇ℓ
with reverse mode automatic differentiation is less than four times the

computational cost of evaluating the log-likelihood function ℓ itself. This
holds no matter how many parameters the model contain.

It is surprising that computational cost does not depend on how many
parameters the model contain.

There is however a practical concern. The computational cost
mentioned above is measured in the number of operations, but
reverse mode automatic differentiation requires all the intermediate
variables in the calculation of the negative log-likelihood to be stored
in the computer’s memory, so if the calculation is lengthy, for instance
consisting of a long iterative procedure, then the memory
requirements can be enormous.
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Automatic differentiation combined with the Laplace
approximation

Finding the gradient of the Laplace approximation of the marginal
log-likelihood is challenging, because the approximation itself includes
the result of a function minimization, and not just a straightforward
sequence of simple operations.

It is however possible, but requires up to third order derivatives to be
computed internally by clever successive application of automatic
differentiation.
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AD Model Builder

AD Model Builder is a programming language that builds on C++.

It includes helper functions for reading in data, defining model
parameters, and implementing and optimizing the negative
log-likelihood function.

The central feature is automatic differentiation (AD), which is
implemented in such a way that the user rarely has to think about it
at all.

AD Model Builder can be used for fixed effects models, but in
addition it includes Laplace approximation and importance sampling
for dealing with general mixed effects models.

AD Model Builder is developed by Dr. Dave Fournier and was a
commercial product for many years. Recently AD Model Builder has
been placed in the public domain (see
http://www.admb-project.org).
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Automatic Differentiation in R

deriv Takes an expression as input and return an expression or a
function

D Takes an expression as input and return an expression and is well
suited for recursive differentiation

Example of use

> Ex<-expression(log((sin(phi*x+a))^2+x^2))

> D(Ex,"x")

(2 * (cos(phi * x + a) * phi * (sin(phi * x + a))) + 2 * x)/

((sin(phi * x + a))^2 + x^2)
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Automatic Differentiation in R

Example of use

> Ex<-expression(log((sin(phi*x+a))^2+x^2))

> deriv(Ex,"x",func=function(x,a,phi,sigma){})

function (x, a, phi, sigma)

{

.expr2 <- phi * x + a

.expr3 <- sin(.expr2)

.expr6 <- .expr3^2 + x^2

.value <- log(.expr6)

.grad <- array(0, c(length(.value), 1L), list(NULL, c("x")))

.grad[, "x"] <- (2 * (cos(.expr2) * phi * .expr3) + 2 * x)/

.expr6

attr(.value, "gradient") <- .grad

.value

}
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Example (Example 5.7 in the book)

The book show the implementation i ADMB, here we will use R

Proportion (ri/ni) of germinated seeds on N=21 plates
Classified by seed (0=bean, 1=cucumber) and type of extract (0 or 1)
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Example: Model

Logistic regression with overdispersion

ri ∼Bin(ni , pi) (9)

pi =
eXβ+Bi

1 + eXβ+Bi
=

eµ+β1ei+β2si+β3si :ei+Bi

1 + eµ+β1ei+β2si+β3si :ei+Bi
(10)

Bi ∼N (0, σ2) (11)

Random effects do seperate so

LM =
21
∏

i=1

∫

R

fY |Bi
(·)fBi

(·)dBi (12)

but the integral still does not allow an anlytical solution.

JK. Møller, H. Madsen, and A. Nielsen () Chapman & Hall May 7, 2012 16 / 22



Example: Model

Log likelihood of B

l(θ,B, r,n) = log fY |u(r,n;β,B) + log fU (B;σ2) (13)

=
21
∑

i=1

log

(

ni

ri

)

+ ri log(pi) + (ni − ri) log(1− pi)−

1

2

(

log(2π) + log(σ2) +
Bi

σ2

)

(14)

and

lM ,LA =l(θ, B̃, r,n)−
1

2

21
∑

i=1

log lBi ,Bi
(θ, B̃i , ri ,ni) (15)

We have used that B ∼ (0, σ2I).
It is straight forward to find lBi

and lBiBi
by D and deriv in R.
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Example: Results

Variable θ̂ S.E 95%C.I.

µ -0.548 0.166 (-0.881,-0.216)
β1 0.097 0.277 (-0.457,0.652)
β2 1.337 0.236 (0.864,1.809)
β3 -0.810 0.384 (-1.578,-0.042)
σ 0.235 0.110 (0.016,0.454)
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Example: Plots results
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Example: Profile likelihood (Fixed effects)
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Example: Profile likelihood (Random effects)
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Conclusion

We have obtained significant speed up using automatic differentiation
in R

More complicated structures might be difficult to implement in R

The full use of autoamtic differentiation require ∂ũ
∂θ

to be calculated,
which is difficult to implement, but is an integreated part of ADMB
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