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What have we been doing?

Likelihood principle

General linear models

Generalized linear models

General mixed effects models

Repeated measurements

Random effects models

Hierarchical models

Crossed and nested models

Heteroscedasticity and correlation structures

Points on using R

The book covers a lot more than its title, and we went beyond that.
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Likelihood inference

Likelihood function L(θ) = Pθ(Y = y)

Log likelihood function `(θ) = log(L(θ))

Score function `′(θ)

Maximum likelihood estimate θ̂ = argmax
θ∈Θ

`(θ)

Observed information matrix −`′′(θ̂)
Distribution of the ML estimator θ̂ ∼ N(θ, (−`′′(θ̂))−1)

Likelihood ratio test 2(`A(θ̂A,Y )− `B (θ̂B ,Y )) ∼ χ2
dim(A)−dim(B)

Invariance property

Dealing with nuisance parameters
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Likelihood inference - When we use it

Indirectly all the time

Directly when no prepackaged tool is available
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Likelihood inference - How we do it

State the model

Write the (negative log) likelihood contribution

Optimize the likelihood for data w.r.t. model parameters

Optimum gives the parameter estimate

Curvature quantifies uncertainty

Likelihood value can be used to compare models

Example (from last time):

Yi ∼ NB(α, 1/(1 + β))
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General Linear Model

A general linear model is:

Y ∼ Nn(Xβ, σ2I )
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Consider the well known two way ANOVA:

yij = µ+ αi + βj + εij , εij ∼ i.i.d. N (0, σ2), i = 1, 2, j = 1, 2, 3.

An expanded view of this model is:

y11 = µ + α1 + β1 + ε11
y21 = µ + α2 + β1 + ε21
y12 = µ + α1 + β2 + ε12
y22 = µ + α2 + β2 + ε22
y13 = µ + α1 + β3 + ε13
y23 = µ + α2 + β3 + ε23

(1)

The exact same in matrix notation:
y11
y21
y12
y22
y13
y23


︸ ︷︷ ︸

y

=


1 1 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1


︸ ︷︷ ︸

X


µ
α1
α2
β1
β2
β3


︸ ︷︷ ︸

β

+


ε11
ε21
ε12
ε22
ε13
ε23


︸ ︷︷ ︸

ε

(2)
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y11
y21
y12
y22
y13
y23


︸ ︷︷ ︸

y

=


1 1 0 1 0 0
1 0 1 1 0 0
1 1 0 0 1 0
1 0 1 0 1 0
1 1 0 0 0 1
1 0 1 0 0 1


︸ ︷︷ ︸

X


µ
α1
α2
β1
β2
β3


︸ ︷︷ ︸

β

+


ε11
ε21
ε12
ε22
ε13
ε23


︸ ︷︷ ︸

ε

y is the vector of all observations

X is known as the design matrix

β is the vector of parameters

ε is a vector of independent N (0, σ2) “measurement noise”

The vector ε is said to follow a multivariate normal distribution
Mean vector 0
Covariance matrix σ2I
Written as: ε ∼ N (0, σ2I)

y = Xβ + ε specifies the model, and everything can be calculated
from y and X.
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General Linear Model - when we use it

When our observations are normally distributed

When a simple transformation (e.g. logarithm) can make our
observations normally distributed

When our model prediction is a linear function of our model
parameters
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General Linear Model - how we use it

Consider this dataset:
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Remember our talks about model formulation

How a statement like this

> fit0<-lm(y~sex*tmt+sex*tmt*alt)

Is really the model

yi = µ+α(Si)+β(Ti)+γ(Si ,Ti)+δ(Si)·ai+φ(Ti)·ai+ψ(Si ,Ti)·ai+εi

Which is over-parametrized, and really the same as:

yi = γ(Si ,Ti) + ψ(Si ,Ti) · ai + εi

But we use the long form to be able to test for model reductions
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R example

> fit0<-lm(y~sex*tmt+sex*tmt*alt)

> drop1(fit0,test='F')

Single term deletions

Model:

y ~ sex * tmt + sex * tmt * alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 42.983 -68.437

sex:tmt:alt 1 0.077585 43.060 -70.257 0.1661 0.6846
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> fit1<-lm(y~sex*tmt+(sex+tmt)*alt)

> drop1(fit1,test='F')

Single term deletions

Model:

y ~ sex * tmt + (sex + tmt) * alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 43.060 -70.257

sex:tmt 1 0.245 43.305 -71.690 0.5287 0.4690

sex:alt 1 0.848 43.909 -70.306 1.8324 0.1791

tmt:alt 1 143.386 186.446 74.297 309.6786 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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> fit2<-lm(y~sex+tmt+(sex+tmt)*alt)

> drop1(fit2,test='F')

Single term deletions

Model:

y ~ sex + tmt + (sex + tmt) * alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 43.305 -71.690

sex:alt 1 0.694 43.999 -72.101 1.5054 0.2229

tmt:alt 1 143.628 186.933 72.558 311.7645 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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> fit3<-lm(y~sex+tmt*alt)

> fit4<-lm(y~sex+tmt:alt)

> drop1(fit3,test='F')

Single term deletions

Model:

y ~ sex + tmt * alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 43.999 -72.101

sex 1 150.34 194.338 74.443 324.61 < 2.2e-16 ***

tmt:alt 1 143.95 187.946 71.099 310.80 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

> anova(fit4,fit3)

Analysis of Variance Table

Model 1: y ~ sex + tmt:alt

Model 2: y ~ sex + tmt * alt

Res.Df RSS Df Sum of Sq F Pr(>F)

1 96 44.005

2 95 43.999 1 0.0061976 0.0134 0.9082
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> fit4<-lm(y~sex+tmt:alt)

> drop1(fit4,test='F')

Single term deletions

Model:

y ~ sex + tmt:alt

Df Sum of Sq RSS AIC F value Pr(F)

<none> 44.00 -74.087

sex 1 151.90 195.90 73.245 331.38 < 2.2e-16 ***

tmt:alt 2 950.58 994.59 233.716 1036.88 < 2.2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Results
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Exponential families of distributions

Exponential families of distributions

Consider a univariate random variable Y with a distribution described by a
family of densities fY (y ; θ), θ ∈ Ω.

Definition (A natural exponential family)

A family of probability densities which can be written on the form

fY (y ; θ) = c(y) exp(θy − κ(θ)), θ ∈ Ω

is called a natural exponential family of distributions. The function κ(θ) is
called the cumulant generator. This representation is called the canonical
parametrization of the family, and the parameter θ is called the canonical
parameter.
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Exponential families of distributions

Exponential families of distributions

Definition (An exponential dispersion family)

A family of probability densities which can be written on the form

fY (y ; θ) = c(y , λ) exp(λ{θy − κ(θ)})

is called an exponential dispersion family of distributions. The parameter λ > 0 is
called the precision parameter.

Basic idea: separate the mean value related distributional properties
described by the cumulant generator κ(θ) from features as sample size,
common variance, or common over-dispersion.

In some cases the precision parameter represents a known number of
observations as for the binomial distribution, or a known shape parameter as
for the gamma (or χ2-) distribution.

In other cases the precision parameter represents an unknown dispersion like
for the normal distribution, or an over-dispersion that is not related to the
mean.
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Exponential families of distributions

Example: Poisson distribution

Consider Y ∼ Pois(µ). The probability function for Y is:

fY (y ;µ) =
µye−µ

y !

=
1

y !
exp{y log(µ)− µ}

Comparing with the equation for the natural exponential family it is seen
that θ = log(µ) which means that µ = exp(θ).

Thus the Poisson distribution is a special case of a natural exponential
family with canonical parameter θ = log(µ), cumulant generator
κ(θ) = exp(θ) and c(y) = 1/y !.

The natural exponential family: fY (y ; θ) = c(y) exp(θy − κ(θ))
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The Generalized Linear Model

The Generalized Linear Model

Definition (The generalized linear model)

Assume that Y1,Y2, . . . ,Yn are mutually independent, and the density
can be described by an exponential dispersion model with the same
variance function V (µ).
A generalized linear model for Y1,Y2, . . . ,Yn describes an affine
hypothesis for η1, η2, . . . , ηn , where

ηi = g(µi)

is a transformation of the mean values µ1, µ2, . . . , µn .
The hypothesis is of the form

H0 : η − η0 ∈ L,

where L is a linear subspace Rn of dimension k , and where η0 denotes a
vector of known off-set values.
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The Generalized Linear Model

GLM vs GLM

General linear models Generalized linear models

Normal distribution Exponential dispersion family

Mean value linear Function of mean value linear

Independent observations Independent observations

Same variance Variance function of mean

Easy to apply Almost as easy to apply

Exact results Approximate results
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The Generalized Linear Model

Generalized Linear Model - when we use it

When observations are not following a normal distribution, but an
exponential (dispersion) family

When a link function of then mean can be expressed as a linear
function of the model parameters
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The Generalized Linear Model

Specification of a generalized linear model in R

> mice.glm <- glm(formula = resp ~ conc,

+ family = binomial(link = logit),

+ weights = NULL,

+ data = mice

+ )

formula; as in general linear models

family

binomial( link = logit | probit | cauchit | log | cloglog)
gaussian( link = identity | log | inverse)
Gamma( link = inverse | identity | log)
inverse.gaussian( link = 1/mu^2 | inverse | identity | log)
poisson( link = log | identity | sqrt)
quasi( link = ... , variance = ... ) )
quasibinomial( link = logit | probit | cauchit | log | cloglog)
quasipoisson( link = log | identity | sqrt)
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The Generalized Linear Model

Overdispersion

It may happen that even if one has tried to fit a rather comprehensive
model (i.e. a model with many parameters), the fit is not satisfactory,
and the residual deviance D

(
y ;µ(β̂)

)
is larger than what can be

explained by the χ2-distribution.

An explanation for such a poor model fit could be an improper choice
of linear predictor, or of link or response distribution.

If the residuals exhibit a random pattern, and there are no other
indications of misfit, then the explanation could be that the variance
is larger than indicated by V (µ).

We say that the data are overdispersed.
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The Generalized Linear Model

Overdispersion

When data are overdispersed, a more appropriate model might be
obtained by including a dispersion parameter, σ2, in the model, i.e. a
distribution model of the form with λi = wi/σ

2, and σ2 denoting the
overdispersion, Var[Yi ] = σ2V (µi)/wi .

As the dispersion parameter only would enter in the score function as
a constant factor, this does not affect the estimation of the mean
value parameters β.

However, because of the larger error variance, the distribution of the
test statistics will be influenced.

If, for some reasons, the parameter σ2 had been known beforehand,
one would include this known value in the weights, wi .

Most often, when it is found necessary to choose a model with
overdispersion, σ2 shall be estimated from the data.
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The Generalized Linear Model

The mixed linear model

Consider now the one way ANOVA with random block effect:

Yij = µ+αi+Bj+εij , Bj ∼ N (0, σ2
B ), εij ∼ N (0, σ2), i = 1, 2, j = 1, 2, 3

The matrix notation is:
Y11
Y21
Y12
Y22
Y13
Y23


︸ ︷︷ ︸

Y

=


1 1 0
1 0 1
1 1 0
1 0 1
1 1 0
1 0 1


︸ ︷︷ ︸

X

( µ
α1
α2

)
︸ ︷︷ ︸

β

+


1 0 0
1 0 0
0 1 0
0 1 0
0 0 1
0 0 1


︸ ︷︷ ︸

Z

(
B1
B2
B3

)
︸ ︷︷ ︸

U

+


ε11
ε21
ε12
ε22
ε13
ε23


︸ ︷︷ ︸

ε

Notice how this matrix representation is constructed in exactly the same
way as for the fixed effects model — but separately for fixed and random
effects.
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The Generalized Linear Model

A general linear mixed effects model

A general linear mixed model can be presented in matrix notation by:

Y = Xβ + ZU + ε, where U ∼ N (0,G) and ε ∼ N (0,R).

Y is the observation vector

X is the design matrix for the fixed effects

β is the vector containing the fixed effect parameters

Z is the design matrix for the random effects
U is the vector of random effects

It is assumed that U ∼ N (0,G)
cov(Ui ,Uj ) = Gi,j (typically G has a very simple structure (for
instance diagonal))

ε is the vector of residual errors
It is assumed that ε ∼ N (0,R)
cov(εi , εj ) = Ri,j (typically R is diagonal, but we shall later see some
useful exceptions for repeated measurements)
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The Generalized Linear Model

Motivating example: Paired observations

Two methods A and B to measure blood cell count (to check for the
use of doping).

Paired study.
Person ID Method A Method B

1 5.5 5.4
2 4.4 4.9
3 4.6 4.5
4 5.4 4.9
5 7.6 7.2
6 5.9 5.5
7 6.1 6.1
8 7.8 7.5
9 6.7 6.3
10 4.7 4.2

It must be expected that two measurements from the same person are
correlated, so a paired t-test is the correct analysis

The t-test gives a p-value of 5.1%, which is a borderline result...

But more data is available
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The Generalized Linear Model

In addition to the planned study 10 persons were measured with only
one method

Want to use all data, which is possible
with random effects

Assume these 20 are ramdomly selected
from a population where the blod cell
count is normally distributed

Consider the following model:
Ci = α(Mi) + B(Pi) + εi , i = 1 . . . 30
α(Mi) the 2 fixed method effects
B(Pi) ∼ N (0, σ2

P ) the 20 rand. eff.
εi ∼ N (0, σ2

R) measurement noise
All B(Pi) and εi are independent

This model uses all data

Allows us to test method difference

ID Meth. A Meth. B
1 5.5 5.4
2 4.4 4.9
3 4.6 4.5
4 5.4 4.9
5 7.6 7.2
6 5.9 5.5
7 6.1 6.1
8 7.8 7.5
9 6.7 6.3
10 4.7 4.2
11 3.4
12 4.7
13 3.9
14 2.5
15 4.1
16 4.0
17 6.3
18 6.0
19 6.4
20 3.5
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The Generalized Linear Model

General Linear Mixed Model - when we use it

When our observations are normally distributed

When a simple transformation (e.g. logarithm) can make our
observations normally distributed

When our model prediction is a linear function of our model
parameters

When observational units are themselves sampled from a larger
population (where normal assumption is OK)

When it is helpful in expressing a needed covariance structure

When we have repeated measurements
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The Generalized Linear Model

General (non-linear and/or non-normal) Mixed Models

The general mixed effects model can be represented by its likelihood
function:

LM (θ;y) =

∫
Rq

L(θ;u ,y)du

– y is the observed random variables

– u is the q unobserved random variables

– θ is the model parameters to be estimated

The likelihood function L is the joint likelihood of both the observed and
the unobserved random variables.

The likelihood function for estimating θ is the marginal likelihood LM

obtained by integrating out the unobserved random variables.
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The Generalized Linear Model

The Laplace approximation

`M (θ,y) ≈ `(θ, ûθ,y)− 1

2
log(|

(
−`′′uu(θ,u ,y)|u=ûθ

)
|)+q

2
log(2π)
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The Generalized Linear Model

Formulation of hierarchical model

Theorem (Compound Poisson Gamma model)

Consider a hierarchical model for Y specified by

Y |µ ∼ Pois(µ),

µ ∼ G(α, β),

i.e. a two stage model.

In the first stage a random mean value µ is selected according to a Gamma
distribution. The Y is generated according to a Poisson distribution with
that value as mean value. Then the the marginal distribution of Y is a
negative binomial distribution, Y ∼ NB(α, 1/(1 + β))
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The Generalized Linear Model

Hierarchical Binomial-Beta distribution model

The natural conjugate distribution to the binomial is a Beta-distribution.

Theorem

Consider the generalized one-way random effects model for Z1,Z2, . . . ,Zk given
by

Zi |pi ∼ B(n, pi)

pi ∼ Beta(α, β)

i.e. the conditional distribution of Zi given pi is a Binomial distribution, and the
distribution of the mean value pi is a Beta distribution. Then the marginal
distribution of Zi is a Polya distribution
with probability function

P [Z = z ] = gZ (z ) =

(
n

z

)
Γ(α+ x )

Γ(α)

Γ(β + n − z )

Γ(β)

Γ(α+ β)

Γ(α+ β + n)

for z = 0, 1, 2, . . . ,n.
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The Generalized Linear Model

Density for Sufficient statistic Density for E[T |θ] V[T |θ]
Yi T (Y1, . . . ,Yn) T

Bern(θ)
∑

Yi B(n, θ) nθ nθ(1− θ)
B(r , θ)

∑
Yi B(rn, θ) rnθ rnθ(1− θ)

Geo(θ)
∑

Yi NB(n, θ) n 1−θ
θ

n 1−θ
θ

2

NB(r , θ)
∑

Yi NB(rn, θ) rn 1−θ
θ

rn 1−θ
θ

2

P(θ)
∑

Yi P(nθ) nθ nθ

P(rθ)
∑

Yi P(rnθ) rnθ rnθ

Ex(θ)
∑

Yi G(n, θ) nθ nθ2

G(α, θ)
∑

Yi G(nα, θ) αnθ αnθ2

U(0, θ) maxYi Inv-Par(θ,n) nθ
n+1

nθ2

(n+1)2(n+2)

N(θ, σ2)
∑

Yi N(nθ,nσ2) nθ nσ2

N(µ, θ)
∑

(Yi − µ)2 G(n/2, 2θ) nθ 2nσ2

Nk (θ,Σ)
∑

Y i Nk (nθ,nΣ) nθ nΣ

Nk (µ, θΣ)
∑

(Y i − µ)TΣ−1(Y i − µ) G(n/2, 2θ) nθ 2nσ2

Nk (µ,θ)
∑

(Y i − µ)(Y i − µ)T Wis(k ,n,θ) nθ

Table: Sufficient statistic T (Y1, . . . ,Yn) (see p. 16 in the book) given a sample
of n iid random variables Y1,Y2, . . . ,Yn . Notice that in some cases the
observation is a k dimensional random vector, and here a bold notation Y i is
used.

Henrik Madsen Jan Kloppenborg Møller Anders Nielsen () Chapman & Hall May 5, 2012 37 / 40



The Generalized Linear Model

Conditional density Conjugate prior Posterior density for Marginal density of
of T given θ for θ θ after the T = t(Y1, . . . ,Yn)

obs. T = t(y1, . . . , yn)

B(n, θ) Beta(α, β) Beta(t + α,n + β − t) Pl(n, α, α+ β)

NB(n, θ) Beta(α, β) Beta(n + α, β + t) NPl(n, β, α+ β)

P(nθ) G(α, 1/β) G(t + α, 1/(β + n) NB(α, β/(β + n))

G(n, θ) Inv-G(α, β) Inv-G(n + α, β + t) Inv-Beta(α,n, β)

Inv-Par(θ,n) Par(β, µ) Par(max(t , β),n + µ) BParβ, µ,n)

N(nθ,nσ2) N(µ, σ2
0) N(µ1, σ

2
1) N(nµ,nσ2 + n2σ2

0)
µ1 = (µ/σ2

0 + t/σ2)
1/σ2

1 = 1/σ2
0 + n/σ2

Nk (nθ,nΣ) Nk (µ,Σ0) Nk (µ1,Σ1) Nk (nµ,nΣ+Σ0)
µ1 = Σ1(Σ

−1
0 µ+Σ−1t)

Σ−1
1 = Σ−1

0 + nΣ−1

Table: Conditional densities of the statistic T given the parameter θ, conjugate
prior densities for θ, posterior densities for θ after having observed the statistic
T = t(y1, . . . , yn), and the marginal densities for T = t(Y1, . . . ,Yn) – cf. also
the discussion on page 16 and 17 in the book.(Notice that in some cases the
observation is a random vector)
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The Generalized Linear Model

What else is out there

Time series

Multivariate analysis

Non-parametric models

Integrated analysis

...

But you are now well prepared to tackle those also.
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The Generalized Linear Model

Integrated analysis

One nice thing about being able to write your own likelihood is
flexibility

Remember how we set up the log likelihood as the sum of the
contributions from each independent observation:

`(θ,X ) = `(θ, x1) + `(θ, x2) + · · ·+ `(θ, xn)

We did not say that our observations should come from the same
distribution

It is no problem to have some that are say normally distributed and
others that are Poisson distributed inform us about the same model
parameters

That is only problematic when we are confined to a formula interface.
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