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Germination of Orobanche

Germination of Orobanche ∗

Orobanche is a genus of parasitic plants without chlorophyll that grows on the

roots of flowering plants. An experiment was made where a bach of seeds of the

species Orobanche aegyptiaca was brushed onto a plate containing an extract

prepared from the roots of either a bean or a cucumber plant. The number of

seeds that germinated was then recorded. Two varieties of Orobanche aegyptiaca

namely O.a. 75 and O.a. 73 were used in the experiment.

∗Modelling binary data, David Collett
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Germination of Orobanche

Data

> dat<-read.table('seeds.dat',header=T)

> head(dat)

variety root y n

1 1 1 10 39

2 1 1 23 62

3 1 1 23 81

4 1 1 26 51

5 1 1 17 39

6 1 2 5 6

> str(dat)

'data.frame': 21 obs. of 4 variables:

$ variety: int 1 1 1 1 1 1 1 1 1 1 ...

$ root : int 1 1 1 1 1 2 2 2 2 2 ...

$ y : int 10 23 23 26 17 5 53 55 32 46 ...

$ n : int 39 62 81 51 39 6 74 72 51 79 ...
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Germination of Orobanche

The model

We shall assume that the number of seeds that germinated yi in each
independent experiment followers a binomial distribution:

yi ∼ Bin(ni , pi) , where

logit(pi) = µ+ α(rooti) + β(varietyi) + γ(rooti , varietyi)
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Germination of Orobanche

Model fitting

> dat$variety<-as.factor(dat$variety)

> dat$root<-as.factor(dat$root)

> dat$resp<-cbind(dat$y,(dat$n-dat$y))

> fit1<-glm(resp~variety*root,

+ family=binomial(link=logit),

+ data=dat)

> fit1

Call: glm(formula = resp ~ variety * root, family = binomial(link = logit),

data = dat)

Coefficients:

(Intercept) variety2 root2 variety2:root2

-0.5582 0.1459 1.3182 -0.7781

Degrees of Freedom: 20 Total (i.e. Null); 17 Residual

Null Deviance: 98.72

Residual Deviance: 33.28 AIC: 117.9
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Germination of Orobanche

Deviance table

From the output we can make a table:

Source f Deviance Mean deviance

Model HM 3 65.44 21.81
Residual (Error) 17 33.28 1.96

Corrected total 20 98.72 4.94

The p-value for the test for model sufficiency

> pval<-1-pchisq(33.28,17)

> pval

[1] 0.01038509
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Germination of Orobanche

Overdispersion?

The deviance is to big. Possible reasons are:

Incorrect linear predictor

Incorrect link function

Outliers

Influential observations

Incorrect choose of distribution

To check this we need to look at the residuals! If all the above looks ok
the reason might be over-dispersion.
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Germination of Orobanche

Overdispersion

In the case of over-dispersion the variance is larger than expected for
the given distribution.

When data are overdispersed, a dispersion parameter, σ2, should be
included in the model.

We use Var[Yi ] = σ2V (µi)/wi with σ2 denoting the overdispersion.

Including a dispersion parameter does not affect the estimation of the
mean value parameters β.

Including a dispersion parameter does affect the standard errors of β.

The distribution of the test statistics will be influenced.
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Germination of Orobanche

The dispersion parameter

Approximate moment estimate for the dispersion parameter

It is common practice to use the residual deviance D(y ;µ(β̂)) as basis for the

estimation of σ2 and use the result that D(y ;µ(β̂)) is approximately distributed
as σ2χ2(n − k). It then follows that

σ̂2
dev =

D(y ;µ(β̂))

n − k
is asymptotically unbiased for σ2.

Alternatively, one would utilize the corresponding Pearson goodness of fit statistic

X 2 =

n∑
i=1

wi
(yi − µ̂i)

2

V (µ̂i)

which likewise follows a σ2χ2(n − k)-distribution, and use the estimator

σ̂2
Pears =

X 2

n − k
.
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Germination of Orobanche

> resDev<-residuals(fit1,type='deviance') # Deviance residuals

> plot(resDev, ylab="Deviance residuals")
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Germination of Orobanche

> plot(predict(fit1),resDev,xlab=(expression(hat(eta))),

+ ylab="Deviance residuals")
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Germination of Orobanche

> par(mfrow=c(1,2))

> plot(jitter(as.numeric(dat$variety),amount=0.1), resDev, xlab='Variety',

+ ylab="Deviance residuals", cex=0.6, axes=FALSE)

> box()

> axis(1,label=c('O.a. 75','O.a. 73'),at=c(1,2))

> axis(2)

> plot(jitter(as.numeric(dat$root),amount=0.1), resDev, xlab='Root',

+ ylab="Deviance residuals", cex=0.6, axes=FALSE)

> box()

> axis(1,label=c('Bean','Cucumber'),at=c(1,2))

> axis(2)
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Germination of Orobanche

Possible reasons for overdispersion

Nothing in the plots is shows an indication that the model is not
reasonable. We conclude that the big residual deviance is because of
overdispersion.

In binomial models overdispersion can often be explained by variation
between the response probabilities or correlation between the binary
responses. In this case it might because of:

The batches of seeds of particular spices germinated in a particular
root extract are not homogeneous.

The batches were not germinated under similar experimental
conditions.

When a seed in a particular batch germinates a chemical is released
that promotes germination in the remaining seeds of the batch.
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Germination of Orobanche

Overdispersion - some facts

The residual deviance cannot be used as a goodness of fit in the case
of overdispersion.

In the case of overdispersion an F-test should be used in stead of the
χ2 test. The test is not exact in contrast to the Gaussian case.

When fitting a model to overdispersed data in R we use
family = quasibinomial for binomial data and
family = quasipoisson for Poisson data.

The families differ from the binomial and poisson families only in that
the dispersion parameter is not fixed at one, so they can model
over-dispersion.
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Germination of Orobanche

Fit of model with overdispersion

> fit2<-glm(resp~variety*root,family=quasibinomial,data=dat)

> summary(fit2)

Call:

glm(formula = resp ~ variety * root, family = quasibinomial,

data = dat)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.01617 -1.24398 0.05995 0.84695 2.12123

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) -0.5582 0.1720 -3.246 0.00475 **

variety2 0.1459 0.3045 0.479 0.63789

root2 1.3182 0.2422 5.444 4.38e-05 ***

variety2:root2 -0.7781 0.4181 -1.861 0.08014 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for quasibinomial family taken to be 1.861832)

Null deviance: 98.719 on 20 degrees of freedom

Residual deviance: 33.278 on 17 degrees of freedom

AIC: NA

Number of Fisher Scoring iterations: 4
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Germination of Orobanche

Compare to summary of standard model (wrong here)

> # JUST TO COMPARE THIS MODEL IS CONSIDERED WRONG HERE

> summary(fit1)

Call:

glm(formula = resp ~ variety * root, family = binomial(link = logit),

data = dat)

Deviance Residuals:

Min 1Q Median 3Q Max

-2.01617 -1.24398 0.05995 0.84695 2.12123

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -0.5582 0.1260 -4.429 9.46e-06 ***

variety2 0.1459 0.2232 0.654 0.5132

root2 1.3182 0.1775 7.428 1.10e-13 ***

variety2:root2 -0.7781 0.3064 -2.539 0.0111 *

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 98.719 on 20 degrees of freedom

Residual deviance: 33.278 on 17 degrees of freedom

AIC: 117.87

Number of Fisher Scoring iterations: 4
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Germination of Orobanche

Model reduction

Note that the standard errors shown in the summary output are bigger
than without the overdispersion - multiplied with σ =

√
1.8618

> fit2<-glm(resp~variety*root,family=quasibinomial,data=dat)

> drop1(fit2, test="F")

Single term deletions

Model:

resp ~ variety * root

Df Deviance F value Pr(>F)

<none> 33.278

variety:root 1 39.686 3.2736 0.08812 .

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Germination of Orobanche

Model reduction

> fit3<-glm(resp~variety+root,family=quasibinomial,data=dat)

> drop1(fit3, test="F")

Single term deletions

Model:

resp ~ variety + root

Df Deviance F value Pr(>F)

<none> 39.686

variety 1 42.751 1.3902 0.2537

root 1 96.175 25.6214 8.124e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Germination of Orobanche

Model reduction

> fit4<-glm(resp~root,family=quasibinomial,data=dat)

> drop1(fit4, test="F")

Single term deletions

Model:

resp ~ root

Df Deviance F value Pr(>F)

<none> 42.751

root 1 98.719 24.874 8.176e-05 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
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Germination of Orobanche

Model results

> par<-coef(fit4)

> par

(Intercept) root2

-0.5121761 1.0574031

> std<-sqrt(diag(vcov(fit4)))

> std

(Intercept) root2

0.1531186 0.2118211

> par+std%o%c(lower=-1,upper=1)*qt(0.975,19)

lower upper

(Intercept) -0.8326570 -0.1916952

root2 0.6140564 1.5007498

> confint.default(fit4) # same as above but with quantile qnorm(0.975)

2.5 % 97.5 %

(Intercept) -0.8122830 -0.2120691

root2 0.6422414 1.4725649
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Germination of Orobanche

Model results

Probability of germination is e−0.512

1+e−0.512 ≈ 37% on bean roots.

Probability of germination is e−0.512+1.0574

1+e−0.512+1.0574 ≈ 63% on cucumber roots.

The odds ratio becomes:

odds(Germination|Cucumber)

odds(Germination|Bean)
≈ 2.88

with confidence interval from 1.9 to 4.4.
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Germination of Orobanche

Consider The model

Will still assume that the number of seeds that germinated yi in each
independent experiment followers a binomial distribution:

yi ∼ Bin(ni , pi) , where

logit(pi) = µ+ α(rooti) + β(varietyi) + γ(rooti , varietyi) + Bi

Where Bi ∼ N (0, σ2)

Notice Bi is unobserved

In some sense this model does exactly what we need.

Can we even handle such a model? Yes! Wait for next chapter...
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Accident rates

Accident rates
Poisson distribution

Rate data
Use of offset
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Accident rates

Accident rates †

Events that may be assumed to follow a Poisson distribution are
sometimes recorded on units of different size. For example number of
crimes recorded in a number of cities depends on the size of the city. Data
of this type are called rate data.

If we denote the measure of size with t , we can model this type of data as:

log
(µ
t

)
= Xβ

and then
log(µ) = log(t) +Xβ

†Generalized linear models, Ulf Olsson
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Accident rates

Accident rates

The data are accidents rates for elderly drivers, subdivided by sex. For
each sex, the number of person years (in thousands) are also given.

Females Males

No. of accidents 175 320
No. of person years 17.30 21.40

We can model these data using Poisson distribution and a log link and
using number of person years as offset.
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Accident rates

Fitting the model

> fit1<-glm(y~offset(log(years))+sex,family=poisson,data=dat)

> anova(fit1,test='Chisq')

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev P(>|Chi|)

NULL 1 17.852

sex 1 17.852 0 1.155e-14 2.388e-05

We can see from the output that sex is significant.
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Accident rates

Parameter estimates - relative accident rate

> summary(fit1)

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) 2.31408 0.07559 30.612 < 2e-16

sex2 0.39085 0.09402 4.157 3.22e-05

(Dispersion parameter for poisson family taken to be 1)

Null deviance: 1.7852e+01 on 1 degrees of freedom

Residual deviance: 1.1546e-14 on 0 degrees of freedom

Using the output we can calculate the ratio as

> exp(0.3908)

[1] 1.478163

The conclusion is that the risk of having an accident is 1.478 times bigger
for males than for females.
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Some comments

Some comments
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Some comments

Residual deviance as goodness of fit - binomial/binary data

When
∑

i ni is reasonable large the χ2-approximation of the residual
deviance is usually good and the residual deviance can be used as a
goodness of fit.

The approximation is not particularly good if some of the binomial
denominators ni are very small and the fitted probabilities under the
current model are near zero or unity.

In the special case when ni , for all i , is equal to 1, that is the data is
binary, the deviance is not even approximately distributed as χ2 and
the deviance can not be used as a goodness of fit.
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Some comments

More comments...

In a binomial setup where all ni are big the standardized deviance
residuals should be closed to Gaussian. The normal probability plot
can be used to check this.

In a Poisson setup where the counts are big the standardized deviance
residuals should be closed to Gaussian. The normal probability plot
can be used to check this.

In a binomial setup where xi (number of successes) are very small in
some of the groups numerical problems sometimes occur in the
estimation. This is often seen in very large standard errors of the
parameter estimates.
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