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The Generalized Linear Model

The Generalized Linear Model

Definition (The generalized linear model)

Assume that Y1,Y2, . . . ,Yn are mutually independent, and the density
can be described by an exponential dispersion model with the same
variance function V (µ).
A generalized linear model for Y1,Y2, . . . ,Yn describes an affine
hypothesis for η1, η2, . . . , ηn , where

ηi = g(µi)

is a transformation of the mean values µ1, µ2, . . . , µn .
The hypothesis is of the form

H0 : η − η0 ∈ L,

where L is a linear subspace Rn of dimension k , and where η0 denotes a
vector of known off-set values.
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The Generalized Linear Model

GLM vs GLM

General linear models Generalized linear models

Normal distribution Exponential dispersion family

Mean value linear Function of mean value linear

Independent observations Independent observations

Same variance Variance function of mean

Easy to apply Almost as easy to apply

Exact results Approximate results

Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall March 18, 2012 4 / 59



The Generalized Linear Model

Dimension and design matrix

Definition (Dimension of the generalized linear model)

The dimension k of the subspace L for the generalized linear model is the
dimension of the model

Definition (Design matrix for the generalized linear model)

Consider the linear subspace L = span{x1, . . . , xk}, i.e. the subspace is spanned
by k vectors (k < n), such that the hypothesis can be written

η − η0 = Xβ with β ∈ Rk ,

where X has full rank. The n × k matrix X is called the design matrix.
The i th row of the design matrix is given by the model vector

x i =


xi1
xi2

...
xik

 ,

for the i th observation.
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The Generalized Linear Model

The link function

Definition (The link function)

The link function, g(·) describes the relation between the linear predictor
ηi and the mean value parameter µi = E[Yi ]. The relation is

ηi = g(µi)

The inverse mapping g−1(·) thus expresses the mean value µ as a function
of the linear predictor η:

µ = g−1(η)

that is

µi = g−1(x i
Tβ) = g−1

∑
j

xijβj


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The Generalized Linear Model

Link functions

The most commonly used link functions, η = g(µ), are :

Name Link function η = g(µ) µ = g−1(η)

identity µ η
log log(µ) exp(η)
logit log(µ/(1− µ)) exp(η)/[1 + exp(η)]
inverse 1/µ 1/η

power µk η1/k

sqrt
√
µ η2

probit Φ−1(µ) Φ(η)
log-log log(− log(µ)) exp(− exp(η))
cloglog log(− log(1− µ)) 1− exp(− exp(η))

Table: Commonly used link function.
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The Generalized Linear Model

Link functions
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The Generalized Linear Model

The canonical link

The canonical link is the function which transforms the mean to the
canonical location parameter of the exponential dispersion family, i.e. it is
the function for which g(µ) = θ. The canonical link function for the most
widely considered densities are

Density Link:η = g(µ) Name

Normal η = µ identity
Poisson η = log(µ) log
Binomial η = log[µ/(1− µ)] logit
Gamma η = 1/µ inverse
Inverse Gauss η = 1/µ2 1/mu^2

Table: Canonical link functions for some widely used densities.
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The Generalized Linear Model

Specification of a generalized linear model

a) Distribution / Variance function:
Specification of the distribution – or the variance function V (µ).

b) Link function:
Specification of the link function g(·), which describes a function of
the mean value which can be described linearly by the explanatory
variables.

c) Linear predictor:
Specification of the linear dependency

g(µi) = ηi = (x i)
Tβ.

d) Precision (optional):
If needed the precision is formulated as known individual weights,
λi = wi , or as a common dispersion parameter, λ = 1/σ2, or a
combination λi = wi/σ

2.
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The Generalized Linear Model

Specification of a generalized linear model in R

> mice.glm <- glm(formula = resp ~ conc,

+ family = binomial(link = logit),

+ weights = NULL,

+ data = mice

+ )

formula; as in general linear models

family

binomial( link = logit | probit | cauchit | log | cloglog)
gaussian( link = identity | log | inverse)
Gamma( link = inverse | identity | log)
inverse.gaussian( link = 1/mu^2 | inverse | identity | log)
poisson( link = log | identity | sqrt)
quasi( link = ... , variance = ... ) )
quasibinomial( link = logit | probit | cauchit | log | cloglog)
quasipoisson( link = log | identity | sqrt)
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The Generalized Linear Model

The score function w.r.t. the canonical parameter

The log likelihood function w.r.t. the canonical parameter

`θ(θ;y) =

n∑
i=1

wi(θiyi − κ(θi))

The score function w.r.t. the canonical parameter, θ:

∂

∂θi
`θ(θ;y) = wi(yi − τ(θi))

or in matrix form
∂

∂θ
`θ(θ;y) = diag(w)(y − τ (θ))

diag(w) denotes a diagonal matrix where i th element is wi , and

τ (θ) =


τ(θ1)
τ(θ2)

...
τ(θn)


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The Generalized Linear Model

The score function w.r.t. the mean value parameter

The log likelihood function w.r.t. the mean value parameter

`µ(µ;y) = −1

2

n∑
i=1

wid(yi ;µi)

The score function w.r.t. the mean value parameter is:

l ′µ(µ;y) = diag

{
wi

V (µi)

}
(y − µ)

which shows that the ML-estimate for µ is µ̂ = y .

For a single coordinate we have the log-likelihood:
`(µi ; yi) = −1

2wi2
∫ yi
µi

yi−u
V (u)du = wi

∫ µi
yi

yi−u
V (u)du

So we get the score:
∂
∂µi

`(µi ; yi) = wi

∫ µi
yi

f (u)du = wi
∂
∂µi

(F (µi)− F (yi)) = wi f (µi) =

wi
yi−µi
V (µi )

Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall March 18, 2012 13 / 59



The Generalized Linear Model

Maximum likelihood estimation

Theorem (Estimation in generalized linear models)

Consider the generalized linear model as defined on slide 3 for the observations
Y1, . . . ,Yn and assume that Y1, . . . ,Yn are mutually independent with densities,
which can be described by an exponential dispersion model with the variance
function V (·), dispersion parameter σ2, and optionally the weights wi .

Assume that the linear predictor is parameterized with β corresponding to the
design matrix X , then the maximum likelihood estimate β̂ for β is found as the
solution to

[X (β)]T iµ(µ)(y − µ) = 0 ,

where X (β) denotes the local design matrix and µ = µ(β) given by

µi(β) = g−1(x i
Tβ) ,

denotes the fitted mean values corresponding to the parameters β, and iµ(µ) is
the expected information with respect to µ.

The estimates must be found by an iterative procedure.
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The Generalized Linear Model

Proof

`′β(β,y) =

[
∂µ

∂β

]T
`′µ(µ(β),y)

=

[
∂µ

∂β

]T
diag

{
wi

V (µi)

}
(y − µ)

=

[
∂µ

∂β

]T
i(µ)(y − µ)

And ∂µ
∂β =

[
∂µ
∂η

]T
∂η
∂β is called the local design matrix.
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The Generalized Linear Model

Maximum likelihood estimation

The score function for the canonical link

For the canonical link the local design matrix X (β) is diag{V (µi)}X ,
and hence the score function becomes

XT diag{V (µi)} diag

{
wi

V (µi)

}
(y − µ(β)),

or
XT diag{wi}y = XT diag{wi}µ(β)

The equation is called the mean value equation, or the normal equation
For an unweighted model the mean value equation simply becomes

XTy = XTµ(β)
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The Generalized Linear Model

Properties of the ML estimator

Theorem (Asymptotic distribution of the ML estimator)

Under the hypothesis η = Xβ we have asymptotically

β̂ − β√
σ2
∈ Nk (0,Σ),

where the dispersion matrix Σ for β̂ is

D[β̂] = Σ = [XTW (β)X ]−1

with

W (β) = diag

{
wi

[g ′(µi)]2V (µi)

}
,
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The Generalized Linear Model

Linear prediction for the generalized linear model

Definition (Linear prediction for the generalized linear model)

The linear prediction η̂ is defined as the values

η̂ = X β̂

with the linear prediction corresponding to the i ’th observation is

η̂i =
k∑

j=1

xij β̂j = (x i)
T β̂.

The linear predictions η̂ are approximately normally distributed with

D[η̂] ≈ σ̂2XΣXT

where Σ is the dispersion matrix for β̂.
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The Generalized Linear Model

Fitted values for the generalized linear model

Definition (Fitted values for the generalized linear model)

The fitted values are defined as the values

µ̂ = µ(X β̂) ,

where the i th value is given as

µ̂i = g−1(η̂i)

with the fitted value η̂i of the linear prediction.

The fitted values µ̂ are approximately normally distributed with

D[µ̂] ≈ σ̂2
[
∂µ

∂η

]2
XΣXT

where Σ is the dispersion matrix for β̂.
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The Generalized Linear Model

Residual deviance

Definition (Residual deviance)

Consider the generalized linear model defined on slide 3. The residual
deviance corresponding to this model is

D(y ;µ(β̂)) =

n∑
i=1

wid(yi ; µ̂i)

with d(yi ; µ̂i) denoting the unit deviance corresponding the observation yi
and the fitted value µ̂i and where wi denotes the weights (if present).
If the model includes a dispersion parameter σ2, the scaled residual
deviance is

D∗(y ;µ(β̂)) =
D(y ;µ(β̂))

σ2
.
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The Generalized Linear Model

Residuals

Residuals represents the difference between the data and the model. In the
classical GLM the residuals are ri = yi − µ̂i . These are called response
residuals for GLM’s. Since the variance of the response is not constant for
most GLM’s we need some modification. We will look at:

Deviance residuals

Pearson residuals
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The Generalized Linear Model

Residuals

Definition (Deviance residual)

Consider the generalized linear model from for the observations Y1, . . .Yn .

The deviance residual for the i ’th observation is defined as

rDi = rD(yi ; µ̂i) = sign(yi − µ̂i)
√

wid(yi , µ̂i)

where sign(x ) denotes the sign function sign(x ) = 1 for x > 0 og
sign(x ) = −1 for x < 0, and with wi denoting the weight (if relevant),
d(y ;µ) denoting the unit deviance and µ̂i denoting the fitted value
corresponding to the i ’th observation.

Assessments of the deviance residuals is in good agreement with the
likelihood approach as the deviance residuals simply express differences in
log-likelihood.
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The Generalized Linear Model

Residuals

Definition (Pearson residual)

Consider again the generalized linear model from for the observations
Y1, . . .Yn .

The Pearson residuals are defined as the values

rPi = rP (yi ; µ̂i) =
yi − µ̂i√
V (µ̂i)/wi

The Pearson residual is thus obtained by scaling the response residual with√
Var[Yi ]. Hence, the Pearson residual is the response residual normalized

with the estimated standard deviation for the observation.
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Likelihood ratio tests

Likelihood ratio tests

The approximative normal distribution of the ML-estimator implies
that many distributional results from the classical GLM-theory are
carried over to generalized linear models as approximative
(asymptotic) results.

An example of this is the likelihood ratio test.

In the classical GLM case it was possible to derive the exact
distribution of the likelihood ratio test statistic (the F-distribution).

For generalized linear models, this is not possible, and hence we shall
use the asymptotic results for the logarithm of the likelihood ratio.
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Likelihood ratio tests

Likelihood ratio test

Theorem (Likelihood ratio test)

Consider the generalized linear model. Assume that the model

H1 : η ∈ L ⊂ Rk

holds with L parameterized as η = X 1β, and consider the hypotheses

H0 : η ∈ L0 ⊂ Rm

where η = X 0α and m < k , and with the alternative H1 : η ∈ L\L0.
Then the likelihood ratio test for H0 has the test statistic

−2 log λ(y) = D
(
y ;µ(α̂)

)
−D

(
y ;µ(β̂)

)
When H0 is true, the test statistic will asymptotically follow a χ2(k −m)
distribution.

If the model includes a dispersion parameter, σ2, then D
(
µ(β̂);µ(β(α̂))

)
will

asymptotically follow a σ2χ2(k −m) distribution.
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Likelihood ratio tests

Test for model ’sufficiency’

In analogy with classical GLM’s one often starts with formulating a
rather comprehensive model, and then reduces the model by
successive tests.

In contrast to classical GLM’s we may however test the goodness of
fit of the initial model.

The test is a special case of the likelihood ratio test.
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Likelihood ratio tests

Test for model ’sufficiency’

Test for model ’sufficiency’

Consider the generalized linear model, and assume that the dispersion
σ2 = 1.

Let Hfull denote the full, or saturated model, i.e. Hfull : µ ∈ Rn and
consider the hypotheses

H0 : η ∈ L ⊂ Rk

with L parameterized as η = X 0β.

Then, as the residual deviance under Hfull is 0, the test statistic is the

residual deviance D
(
µ(β̂)

)
. When H0 is true, the test statistic is

distributed as χ2(n − k). The test rejects for large values of D
(
µ(β̂)

)
.
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Likelihood ratio tests

Residual deviance measures goodness of fit

The residual deviance D
(
y ;µ(β̂)

)
is a reasonable measure of the

goodness of fit of a model H0.

When referring to a hypothesized model H0, we shall sometimes use
the symbol G2(H0) to denote the residual deviance D

(
y ;µ(β̂)

)
.

Using that convention, the partitioning of residual deviance may be
formulated as

G2(H0|H1) = G2(H0)−G2(H1)

with G2(H0|H1) interpreted as the goodness fit test statistic for H0

conditioned on H1 being true, and G2(H0) and G2(H1), denoting the
unconditional goodness of fit statistics for H0 and H1, respectively.
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Likelihood ratio tests

Analysis of deviance table

The initial test for goodness of fit of the initial model is often
represented in an analysis of deviance table in analogy with the
ANOVA table for classical GLM’s.

In the table the goodness of fit test statistic corresponding to the
initial model G2(H1) = D

(
y ;µ(β̂)

)
is shown in the line labelled

“Error”.

The statistic should be compared to percentiles in the χ2(n − k)
distribution.

The table also shows the test statistic for Hnull under the assumption
that H1 is true.

The test investigates whether the model is necessary at all, i.e.
whether at least some of the coefficients differ significantly from zero.
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Likelihood ratio tests

Analysis of deviance table

Note, that in the case of a generalized linear model, we can start the
analysis by using the residual (error) deviance to test whether the
model may be maintained, at all.

This is in contrast to the classical GLM’s where the residual sum of
squares around the initial model H1 served to estimate σ2, and
therefore we had no reference value to compare with the residual sum
of squares.

In the generalized linear models the variance is a known function of
the mean, and therefore in general there is no need to estimate a
separate variance.

Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall March 18, 2012 30 / 59



Likelihood ratio tests

Analysis of deviance table

Source f Deviance Mean deviance Goodness of fit
interpretation

Model Hnull k − 1 D
(
µ(β̂); µ̂null

) D
(
µ(β̂); µ̂null

)
k − 1

G2(Hnull |H1)

Residual (Error) n − k D
(
y ;µ(β̂)

) D
(
y ;µ(β̂)

)
n − k

G2(H1)

Corrected total n − 1 D
(
y ; µ̂null

)
G2(Hnull)

Table: Initial assessment of goodness of fit of a model H0. Hnull and µ̂null refer
to the minimal model, i.e. a model with all observations having the same mean
value.
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Overdispersion

Overdispersion

It may happen that even if one has tried to fit a rather comprehensive
model (i.e. a model with many parameters), the fit is not satisfactory,
and the residual deviance D

(
y ;µ(β̂)

)
is larger than what can be

explained by the χ2-distribution.

An explanation for such a poor model fit could be an improper choice
of linear predictor, or of link or response distribution.

If the residuals exhibit a random pattern, and there are no other
indications of misfit, then the explanation could be that the variance
is larger than indicated by V (µ).

We say that the data are overdispersed.
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Overdispersion

Overdispersion

When data are overdispersed, a more appropriate model might be
obtained by including a dispersion parameter, σ2, in the model, i.e. a
distribution model of the form with λi = wi/σ

2, and σ2 denoting the
overdispersion, Var[Yi ] = σ2V (µi)/wi .

As the dispersion parameter only would enter in the score function as
a constant factor, this does not affect the estimation of the mean
value parameters β.

However, because of the larger error variance, the distribution of the
test statistics will be influenced.

If, for some reasons, the parameter σ2 had been known beforehand,
one would include this known value in the weights, wi .

Most often, when it is found necessary to choose a model with
overdispersion, σ2 shall be estimated from the data.
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Overdispersion

The dispersion parameter

For the normal distribution family, the dispersion parameter is just the
variance σ2.

In the case of a gamma distribution family, the shape parameter α
acts as dispersion parameter.

The maximum likelihood estimation of the shape parameter is not too
complicated for the normal and the gamma distributions but for other
exponential dispersion families, ML estimation of the dispersion
parameter is more tricky.

The problem is that the dispersion parameter enters in the likelihood
function, not only as a factor to the deviance, but also in the
normalizing factor a(yi ,wi/σ

2).

It is necessary to have an explicit expression for this factor as function
of σ2 (as in the case of the normal and the gamma distribution
families) in order to perform the maximum likelihood estimation.

Henrik Madsen Poul Thyregod (IMM-DTU) Chapman & Hall March 18, 2012 34 / 59



Overdispersion

The dispersion parameter

Approximate moment estimate for the dispersion parameter

It is common practice to use the residual deviance D(y ;µ(β̂)) as basis for the

estimation of σ2 and use the result that D(y ;µ(β̂)) is approximately distributed
as σ2χ2(n − k). It then follows that

σ̂2
dev =

D(y ;µ(β̂))

n − k

is asymptotically unbiased for σ2.

Alternatively, one would utilize the corresponding Pearson goodness of fit statistic

X 2 =

n∑
i=1

wi
(yi − µ̂i)

2

V (µ̂i)

which likewise follows a σ2χ2(n − k)-distribution, and use the estimator

σ̂2
Pears =

X 2

n − k
.
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Overdispersion

Deviance table in the case of overdispersion

Source f Deviance Scaled deviance

Model Hnull k − 1 D
(
µ(β̂); µ̂null

) D(µ(β̂);µ̂null )/(k−1)
D(y ;µ(β̂))/(n−k)

Residual (Error) n − k D(y ;µ(β̂))

Corrected total n − 1 D
(
y ; µ̂null

)
Table: Example of Deviance table in the case of overdispersion. It is noted that
the scaled deviance is equal to the model deviance scaled by the error deviance.

The scaled deviance, D∗, i.e. deviance divided by σ̂2 is used in the
tests instead of the crude deviance in case of overdispersion.

For calculation of p-values etc. the asymptotic χ2-distribution of the
scaled deviance is used.
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Test for model reduction

Test for model reduction

The principles for model reduction in generalized linear models are
essentially the same as the principles for classical GLM’s.

In classical GLM’s the deviance is calculated as a (weighted) sum of
squares, and in generalized linear models the deviance is calculated
using the expression for the unit deviance.

Besides this, the major difference is that instead of the exact F -tests
used for classical GLM’s the tests in generalized linear models are only
approximate tests using the χ2-distribution.

In particular does the principles of successive testing in hypotheses
chains using a type I, or type III partition of the deviance carry over
to generalized linear models.
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Test of individual parameters βj

Test of individual parameters βj

Theorem (Test of individual parameters βj - Wald test)

A hypothesis H : βj = β0j related to specific values of the parameters is
tested by means of the test statistic

uj =
β̂j − β0j√
σ̂2σ̂jj

,

where σ̂2 indicates the estimated dispersion parameter (if relevant), and
σ̂jj denotes the j ’th diagonal element in Σ̂.

Under the hypothesis is uj approximately distributed as a standardized
normal distribution. The test statistic is compared with quantiles of a
standardized normal distribution (some software packages use a t(n − k)
distribution). The hypothesis is rejected for large values of |uj |. The
p-value is found as p = 2

(
1− Φ(|uj |)

)
.
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Test of individual parameters βj

Test of individual parameters βj

Theorem (Test of individual parameters βj - Wald test)

In particular is the test statistic for the hypothesis H : βj = 0

uj =
β̂j√
σ̂2σ̂jj

.

An equivalent test is obtained by considering the test statistic

zj = u2
j

and reject the hypothesis for for zj > χ2
1−α(1).
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Confidence intervals

Confidence intervals

Wald - interval for individual parameters

An approximate 100(1−α) % Wald-type confidence interval is obtained as

β̂j ± u1−α/2

√
σ̂2σ̂jj

Confidence intervals for fitted values

An approximate 100(1− α)% confidence interval for the linear prediction
is obtained as

η̂i ± u1−α/2

√
σ̂2σ̂ii

with σ̂ii denoting the i ’th diagonal element in XΣXT .

The corresponding interval for the fitted value µ̂i is obtained by applying
the inverse link transformation g−1(·) to the confidence limits.
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Example: Link functions for binary response regression

Example: Link functions for binary response regression

An experiment testing the insulation effect of a gas (SF6) was conducted.
In the experiment a gaseous insulation was subjected to 100 high voltage
pulses with a specified voltage, and it was recorded whether the insulation
broke down (spark), or not. After each pulse the insulation was
reestablished. The experiment was repeated at twelve voltage levels from
1065 kV to 1135 kV.

Voltage (kV) 1065 1071 1075 1083 1089 1094

Breakdowns 2 3 5 11 10 21
Trials 100 100 100 100 100 100

Voltage (kV) 1100 1107 1111 1120 1128 1135

Breakdowns 29 48 56 88 98 99
Trials 100 100 100 100 100 100

Table: The insulation effect of a gas (SF6)
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Example: Link functions for binary response regression

Example: Link functions for binary response regression

As the insulation was restored after each voltage application it seems
reasonable to assume that the trials were independent.

At each trial the response is binary (Breakdown/Not), and therefore it
seems appropriate to use a binomial distribution model for the
experiment.

We shall assume that the data are stored in an R object dat with the
variables Volt, Breakd, Trials

Let Zi denote the number of breakdowns at the i ’th trial at the
voltage xi . We shall then use the model Zi ∼ B(ni , pi) with
ni = 100, and pi = p(xi), where p(x ) is some suitable dose-response
function.
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Example: Link functions for binary response regression

Logit transformation - logistic regression

The logistic regression is of the form

g(p) = η = ln

(
p

1− p

)
= β1 + β2x

p(x ) =
exp(η)

1 + exp(η)
=

exp(β1 + β2x )

1 + exp(β1 + β2x )

We use the following commands to fit the model:

dat$Resp<-cbind(Breakd,(Trials-Breakd))

fit1<-glm(Resp~Volt,family=binomial(link=logit),data=dat)
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Example: Link functions for binary response regression

Logit link

> summary(fit1)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.7572 -0.8518 0.9359 1.2977 2.3466

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -1.277e+02 7.061e+00 -18.08 <2e-16 ***

Volt 1.155e-01 6.396e-03 18.05 <2e-16 ***

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 783.122 on 11 degrees of freedom

Residual deviance: 21.018 on 10 degrees of freedom

AIC: 70.613

Number of Fisher Scoring iterations: 4
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Example: Link functions for binary response regression

Logit link

From the output we can make a deviance table:

Source f Deviance Mean deviance

Model HM 1 762.10 762.10
Residual (Error) 10 21.018 2.102

Corrected total 11 783.12 71.193

The p-value corresponding to the goodness of fit statistic
D(y ;µ(β̂)) = 21.018
is assessed by calculating

> pval <- 1- pchisq(21.01776,10)

leading to pval = 0.02097. Thus, Hlogist is rejected at any significance
level greater than 2 %.
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Example: Link functions for binary response regression

Logit link

Also, a look at the deviance residuals:

residuals(logist.glm)

1 2 3 4 5 6

1.016293 0.8554846 1.22456 1.586976 -0.7922914 0.1608718

7 8 9 10 11 12

-1.030256 -1.083212 -1.757153 1.204659 2.346577 1.517043

They indicate underestimation in the tails, and overestimation in the
central part of the curve.
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Example: Link functions for binary response regression

The probit link

The transformation

g(p) = η = Φ−1(p) = β1 + β2x

p(x ) = Φ(η) = Φ(β1 + β2x )

with Φ(·) denoting the cumulative distribution function for the
standardized normal distribution is termed the probit-transformation.

The function tends towards 0 and 1 for x → ∓∞, respectively. The
convergence is faster than for the logistic transformation.

There is a long tradition in biomedical literature for using the probit
transformation.

We fit the model with:

fit2<-glm(Resp~Volt,family=binomial(link=probit),data=dat)
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Example: Link functions for binary response regression

The probit link

> summary(fit2)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.653 -1.252 1.250 1.421 2.395

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -71.105019 3.451897 -20.60 <2e-16 ***

Volt 0.064325 0.003129 20.56 <2e-16 ***

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 783.122 on 11 degrees of freedom

Residual deviance: 26.215 on 10 degrees of freedom

AIC: 75.81

Number of Fisher Scoring iterations: 5
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Example: Link functions for binary response regression

The probit link

From the output we can make a deviance table:

Source f Deviance Mean deviance

Model HM 1 756.907 756.907
Residual (Error) 10 26.215 2.622

Corrected total 11 783.122 71.193

The p-value corresponding to the goodness of fit statistic
D(y ;µ(β̂)) = 26.215
is assessed by calculating

> pval <- 1- pchisq(26.215,10)

leading to pval = 0.00346. Thus, Hprobit is rejected at any significance
level greater than 0.3 %. The fit is not satisfactory.
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Example: Link functions for binary response regression

The probit link

Again, a look at the deviance residuals:

residuals(prob.glm)

1 2 3 4 5 6

1.666163 1.238981 1.3965 1.26034 -1.357938 -0.5152912

7 8 9 10 11 12

-1.562847 -1.216113 -1.653013 1.492566 2.394602 1.280603

They indicate systematic underestimation in both tails, and overestimation
in the central part.
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Example: Link functions for binary response regression

Complementary log-log link

The transformation

g(p) = η = ln(− ln(1− p)) = β0 + β1x

p(x ) = 1− exp[− exp(β0 + β1x )]

is termed the complementary log-log transformation.

The response function is asymmetrical. It increases slowly away from 0,
whereas it approaches 1 in a rather steep manner.

We fit the model with:

fit3<-glm(Resp~Volt,family=binomial(link=cloglog),data=dat)
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Example: Link functions for binary response regression

Complementary log-log link

> summary(fit3)

Deviance Residuals:

Min 1Q Median 3Q Max

-1.36540 -0.37472 0.04829 0.33605 1.00952

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -91.106296 4.601803 -19.80 <2e-16 ***

Volt 0.081900 0.004147 19.75 <2e-16 ***

---

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 783.122 on 11 degrees of freedom

Residual deviance: 5.671 on 10 degrees of freedom

AIC: 55.266

Number of Fisher Scoring iterations: 4
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Example: Link functions for binary response regression

Complementary log-log link

From the output we can make a deviance table:

Source f Deviance Mean deviance

Model HM 1 777.451 777.451
Residual (Error) 10 5.671 0.567

Corrected total 11 783.122 71.193

The p-value corresponding to the goodness of fit statistic
D(y ;µ(β̂)) = 5.671
is assessed by calculating

pval <- 1- pchisq(5.671,10),

leading to pval = 0.8421. Thus, data do not provide any evidence
against the cloglog model.
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Example: Link functions for binary response regression

Complementary log-log link

This is further supported by the deviance residuals:

residuals(clog.glm)

1 2 3 4 5 6

-0.02716415 -0.1760891 0.2060522 0.8231332 -1.11485 0.2832367

7 8 9 10 11 12

-0.2986162 0.123737 -0.6030393 1.009516 0.4944959 -1.365395

There is no systematic pattern in the residuals, and all residuals are in the
interval ±2.
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Example: Link functions for binary response regression

Logit/probit/cloglog
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Figure: Probability of breakdown for an insulator as function of applied pulse
voltage. The curves correspond to different assumptions on the functional form of
the relation.
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Example: Link functions for binary response regression

Example: Poisson regression – Use of off-set

The number of accidents with personal injury during daylight hours in
January quarter during the years 1987 to 1990.

Year 1987 1988 1989 1990
Accidents, yi 57 67 54 59
Traf.index, xi 100 111 117 120

It is standard practice in road research to model accident counts Yi as
Poisson distributed random variables, Yi ∼ Pois(µi).
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Example: Link functions for binary response regression

Poisson regression (continued)

We shall assume that the accident count is proportional to the amount of
traffic,

µi = γxi (1)

Cf. Table 4.4 the canonical link for the Poisson distribution is

g(µ) = log(µ) ,

therefore, in terms of the canonical link the model is

ηi − log(xi) = β1

with β1 = log(γ), or
ηi = β1 + log(xi)

viz. a model with offset equal to log(xi), and only one term, the intercept,
β1. The accident rate γ = exp(β1).
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Example: Link functions for binary response regression

Poisson regression (continued)

Since
µi(β1) = exp

(
β1 + log(xi)

)
,

the mean value equation (4.38) becomes

1Ty = 1T


exp

(
β1 + log(x1)

)
...

exp
(
β1 + log(x4)

)


ie.
4∑

i=1

yi =

4∑
i=1

exp(β0)xi

and, hence

γ̂ = exp(β̂1) =

∑4
i=1 yi∑4
i=1 xi

=
237

448
= 0.529 (2)
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Example: Link functions for binary response regression

Poisson regression – R-implementation

Assuming that the data from the table above is in a dataset acc with the
further variable lninx calculated as the logarithm of the traffic index then
the R command

glm(formula = Acc ~ offset(lninx), family = poisson(link = log), data=acc)

results in the output

Coefficients:

(Intercept)

-0.6367

Degrees of Freedom: 3 Total (i.e. Null); 3 Residual

Null Deviance: 2.803

Residual Deviance: 2.803 AIC: 28.48

The goodness of fit statistic D(y ;µ(β̂)) = 2.80 with
P [χ(3)2 ≥ 2.80] = 0.42.
Thus, the data do not contradict the assumptions underlying the model.
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