# Introduction to General and Generalized Linear Models Generalized Linear Models - part II 

Henrik Madsen<br>Poul Thyregod Jan Kloppenborg Møller<br>Informatics and Mathematical Modelling<br>Technical University of Denmark<br>DK-2800 Kgs. Lyngby

March 9, 2012

## Today

- The generalized linear model
- Link function
- Estimation
- Fitted values
- Residuals
- Likelihood ratio test


## The Generalized Linear Model

Definition (The generalized linear model)
Assume that $Y_{1}, Y_{2}, \ldots, Y_{n}$ are mutually independent, and the density can be described by an exponential dispersion model with the same variance function $V(\mu)$.
A generalized linear model for $Y_{1}, Y_{2}, \ldots, Y_{n}$ describes an affine hypothesis for $\eta_{1}, \eta_{2}, \ldots, \eta_{n}$, where

$$
\eta_{i}=g\left(\mu_{i}\right)
$$

is a transformation of the mean values $\mu_{1}, \mu_{2}, \ldots, \mu_{n}$.
The hypothesis is of the form

$$
\mathcal{H}_{0}: \boldsymbol{\eta}-\boldsymbol{\eta}_{0} \in L
$$

where $L$ is a linear subspace $\mathbb{R}^{n}$ of dimension $k$, and where $\boldsymbol{\eta}_{0}$ denotes a vector of known off-set values.

## GLM vs GLM

General linear models

Normal distribution

Mean value linear

Independent observations

Same variance

Easy to apply

Exact results

## Generalized linear models

Exponential dispersion family

Function of mean value linear

Independent observations

Variance function of mean

Almost as easy to apply

Approximate results

## Dimension and design matrix

## Definition (Dimension of the generalized linear model)

The dimension $k$ of the subspace $L$ for the generalized linear model is the dimension of the model

Definition (Design matrix for the generalized linear model)
Consider the linear subspace $L=\operatorname{span}\left\{x_{1}, \ldots, x_{k}\right\}$, i.e. the subspace is spanned by $k$ vectors $(k<n)$, such that the hypothesis can be written

$$
\boldsymbol{\eta}-\boldsymbol{\eta}_{0}=\boldsymbol{X} \boldsymbol{\beta} \text { with } \boldsymbol{\beta} \in \mathbb{R}^{k},
$$

where $\boldsymbol{X}$ has full rank. The $n \times k$ matrix $\boldsymbol{X}$ is called the design matrix. The $i^{t h}$ row of the design matrix is given by the model vector

$$
\boldsymbol{x}_{i}=\left(\begin{array}{c}
x_{i 1} \\
x_{i 2} \\
\vdots \\
x_{i k}
\end{array}\right)
$$

for the $i^{\text {th }}$ observation.

## The link function

## Definition (The link function)

The link function, $g(\cdot)$ describes the relation between the linear predictor $\eta_{i}$ and the mean value parameter $\mu_{i}=\mathrm{E}\left[Y_{i}\right]$. The relation is

$$
\eta_{i}=g\left(\mu_{i}\right)
$$

The inverse mapping $g^{-1}(\cdot)$ thus expresses the mean value $\mu$ as a function of the linear predictor $\eta$ :

$$
\mu=g^{-1}(\eta)
$$

that is

$$
\mu_{i}=g^{-1}\left(\boldsymbol{x}_{i}{ }^{T} \boldsymbol{\beta}\right)=g^{-1}\left(\sum_{j} x_{i j} \beta_{j}\right)
$$

## Link functions

The most commonly used link functions, $\eta=g(\mu)$, are :

| Name | Link function $\eta=g(\mu)$ | $\mu=g^{-1}(\eta)$ |
| :--- | :--- | :--- |
| identity | $\mu$ | $\eta$ |
| log | $\log (\mu)$ | $\exp (\eta)$ |
| logit | $\log (\mu /(1-\mu))$ | $\exp (\eta) /[1+\exp (\eta)]$ |
| inverse | $1 / \mu$ | $1 / \eta$ |
| power | $\mu^{k}$ | $\eta^{1 / k}$ |
| sqrt | $\sqrt{\mu}$ | $\eta^{2}$ |
| probit | $\Phi^{-1}(\mu)$ | $\Phi(\eta)$ |
| $\operatorname{log-log}$ | $\log (-\log (\mu))$ | $\exp (-\exp (\eta))$ |
| $\log \log$ | $\log (-\log (1-\mu))$ | $1-\exp (-\exp (\eta))$ |

Table: Commonly used link function.

## Link functions







$\log -\log$
cloglog




## The canonical link

The canonical link is the function which transforms the mean to the canonical location parameter of the exponential dispersion family, i.e. it is the function for which $g(\mu)=\theta$. The canonical link function for the most widely considered densities are

| Density | Link: $\eta=g(\mu)$ | Name |
| :--- | :--- | :--- |
| Normal | $\eta=\mu$ | identity |
| Poisson | $\eta=\log (\mu)$ | log |
| Binomial | $\eta=\log [\mu /(1-\mu)]$ | logit |
| Gamma | $\eta=1 / \mu$ | inverse |
| Inverse Gauss | $\eta=1 / \mu^{2}$ | $1 / \mathrm{mu}^{\wedge} 2$ |

Table: Canonical link functions for some widely used densities.

## Specification of a generalized linear model

a) Distribution / Variance function: Specification of the distribution - or the variance function $V(\mu)$.
b) Link function:

Specification of the link function $g(\cdot)$, which describes a function of the mean value which can be described linearly by the explanatory variables.
c) Linear predictor:

Specification of the linear dependency

$$
g\left(\mu_{i}\right)=\eta_{i}=\left(\boldsymbol{x}_{i}\right)^{T} \boldsymbol{\beta} .
$$

d) Precision (optional):

If needed the precision is formulated as known individual weights, $\lambda_{i}=w_{i}$, or as a common dispersion parameter, $\lambda=1 / \sigma^{2}$, or a combination $\lambda_{i}=w_{i} / \sigma^{2}$.

## Specification of a generalized linear model in $R$

```
> mice.glm <- glm(formula = resp ~ conc,
    family = binomial(link = logit),
    weights = NULL,
    data = mice
)
```

- formula; as in general linear models
- family
- binomial( link = logit | probit | cauchit | log | cloglog)
- gaussian( link = identity | log | inverse)
- Gamma( link = inverse | identity | log)
- inverse.gaussian( link = $1 / \mathrm{mu}^{\wedge} 2 \mid$ inverse $\mid$ identity $\left.\mid \log \right)$
- poisson( link $=\log \mid$ identity $\mid$ sqrt)
- quasi( link = ... , variance = ... ) )
- quasibinomial( link = logit| probit | cauchit|log|cloglog)
- quasipoisson( link $=\log \mid$ identity $\mid$ sqrt)


## Log-likelihood function

The log likelihood function w.r.t. the canonical parameter

$$
\ell_{\theta}(\boldsymbol{\theta} ; \boldsymbol{y})=\sum_{i=1}^{n} w_{i}\left(\theta_{i} y_{i}-\kappa\left(\theta_{i}\right)\right)
$$

The score function w.r.t. the canonical parameter, $\theta$ :

$$
\frac{\partial}{\partial \theta_{i}} \ell_{\theta}(\boldsymbol{\theta} ; \boldsymbol{y})=w_{i}\left(y_{i}-\tau\left(\theta_{i}\right)\right)
$$

or in matrix form

$$
\frac{\partial}{\partial \boldsymbol{\theta}} \ell_{\theta}(\boldsymbol{\theta} ; \boldsymbol{y})=\operatorname{diag}(\boldsymbol{w})(\boldsymbol{y}-\boldsymbol{\tau}(\boldsymbol{\theta}))
$$

$\operatorname{diag}(\boldsymbol{w})$ denotes a diagonal matrix where $i^{\text {th }}$ element is $w_{i}$, and

$$
\boldsymbol{\tau}(\boldsymbol{\theta})=\left\{\begin{array}{c}
\tau\left(\theta_{1}\right) \\
\tau\left(\theta_{2}\right) \\
\vdots \\
\tau\left(\theta_{n}\right)
\end{array}\right\}
$$

## The observed information w.r.t. the canonical parameter

The observed information wrt. to $\boldsymbol{\theta}$ is

$$
\begin{aligned}
\boldsymbol{j}(\boldsymbol{\theta} ; \boldsymbol{y}) & =\operatorname{diag}\{\boldsymbol{w}\} \frac{\partial}{\partial \boldsymbol{\theta}} \boldsymbol{\tau}(\boldsymbol{\theta}) \\
& =\operatorname{diag}\left\{w_{i} \kappa^{\prime \prime}\left(\theta_{i}\right)\right\} \\
& =\operatorname{diag}\left\{w_{i} V\left(\tau\left(\theta_{i}\right)\right)\right\}
\end{aligned}
$$

where $V(\tau(\theta))$ denotes the value of the variance function for $\mu=\tau(\theta)$.
Note that, since the observed information wrt. the canocical parameter $\theta$ does not depend on the observation $\boldsymbol{y}$, the expected information is the same as the observed information.

Note that the Hessian of the likelihood function depends on $\theta$. In the normal case the Hessian was constant.

## The score function w.r.t. the mean value parameter

The log likelihood function w.r.t. the mean value parameter

$$
\ell_{\mu}(\boldsymbol{\mu} ; \boldsymbol{y})=-\frac{1}{2} \sum_{i=1}^{n} w_{i} d\left(y_{i} ; \mu_{i}\right)
$$

The score function w.r.t. the mean value parameter is:

$$
l_{\mu}^{\prime}(\boldsymbol{\mu} ; \boldsymbol{y})=\operatorname{diag}\left\{\frac{w_{i}}{V\left(\mu_{i}\right)}\right\}(\boldsymbol{y}-\boldsymbol{\mu})
$$

which shows that the ML-estimate for $\boldsymbol{\mu}$ is $\widehat{\boldsymbol{\mu}}=\boldsymbol{y}$.
For a single coordinate we have the log-likelihood:
$\ell\left(\mu_{i} ; y_{i}\right)=-\frac{1}{2} w_{i} 2 \int_{\mu_{i}}^{y_{i}} \frac{y_{i}-u}{V(u)} d u=w_{i} \int_{y_{i}}^{\mu_{i}} \frac{y_{i}-u}{V(u)} d u$
So we get the score:
$\frac{\partial}{\partial \mu_{i}} \ell\left(\mu_{i} ; y_{i}\right)=w_{i} \int_{y_{i}}^{\mu_{i}} f(u) d u=w_{i} \frac{\partial}{\partial \mu_{i}}\left(F\left(\mu_{i}\right)-F\left(y_{i}\right)\right)=w_{i} f\left(\mu_{i}\right)=$ $w_{i} \frac{y_{i}-\mu_{i}}{V\left(\mu_{i}\right)}$

## The observed information w.r.t. the mean value parameter

The observed information is

$$
\boldsymbol{j}(\boldsymbol{\mu} ; \boldsymbol{y})=\operatorname{diag}\left\{w_{i}\left[\frac{1}{V\left(\mu_{i}\right)}+\left(y_{i}-\mu_{i}\right) \frac{V^{\prime}\left(\mu_{i}\right)}{V\left(\mu_{i}\right)^{2}}\right]\right\}
$$

and then the expected information corresponding to the set $\boldsymbol{\mu}$ is

$$
\boldsymbol{i}(\boldsymbol{\mu})=\operatorname{diag}\left\{\frac{w_{i}}{V\left(\mu_{i}\right)}\right\},
$$

Note that the observed information w.r.t. the mean value parameter $\boldsymbol{\mu}$ depends on the observation, $\boldsymbol{y}$.

For a single coordinate we get:
$-\frac{\partial}{\partial \mu_{i}} w_{i}\left(y_{i}-\mu_{i}\right) \frac{1}{V\left(\mu_{i}\right)}=-w_{i}\left(-\frac{1}{V\left(\mu_{i}\right)}+\left(y_{i}-\mu_{i}\right) \frac{-1}{\left(V\left(\mu_{i}\right)\right)^{2}} V^{\prime}\left(\mu_{i}\right)\right)$

## Maximum likelihood estimation

## Theorem (Estimation in generalized linear models)

Consider the generalized linear model as defined on slide 3 for the observations $Y_{1}, \ldots Y_{n}$ and assume that $Y_{1}, \ldots Y_{n}$ are mutually independent with densities, which can be described by an exponential dispersion model with the variance function $V(\cdot)$, dispersion parameter $\sigma^{2}$, and optionally the weights $w_{i}$.

Assume that the linear predictor is parameterized with $\boldsymbol{\beta}$ corresponding to the design matrix $\boldsymbol{X}$, then the maximum likelihood estimate $\widehat{\boldsymbol{\beta}}$ for $\boldsymbol{\beta}$ is found as the solution to

$$
[\boldsymbol{X}(\boldsymbol{\beta})]^{T} \boldsymbol{i}_{\mu}(\boldsymbol{\mu})(\boldsymbol{y}-\boldsymbol{\mu})=\mathbf{0},
$$

where $\boldsymbol{X}(\boldsymbol{\beta})$ denotes the local design matrix and $\boldsymbol{\mu}=\boldsymbol{\mu}(\boldsymbol{\beta})$ given by

$$
\mu_{i}(\boldsymbol{\beta})=g^{-1}\left(\boldsymbol{x}_{i}^{T} \boldsymbol{\beta}\right),
$$

denotes the fitted mean values corresponding to the parameters $\boldsymbol{\beta}$, and $\boldsymbol{i}_{\mu}(\boldsymbol{\mu})$ is the expected information with respect to $\mu$.

The estimates must be found by an iterative procedure.

## Proof

$$
\begin{aligned}
\ell_{\beta}^{\prime}(\boldsymbol{\beta}, \boldsymbol{y}) & =\left[\frac{\partial \mu}{\partial \beta}\right]^{T} \ell_{\mu}^{\prime}(\boldsymbol{\mu}(\boldsymbol{\beta}), \boldsymbol{y}) \\
& =\left[\frac{\partial \mu}{\partial \beta}\right]^{T} \operatorname{diag}\left\{\frac{w_{i}}{V\left(\mu_{i}\right)}\right\}(\boldsymbol{y}-\boldsymbol{\mu}) \\
& =\left[\frac{\partial \mu}{\partial \beta}\right]^{T} \boldsymbol{i ( \mu ) ( \boldsymbol { \mu } - \boldsymbol { \mu } )}
\end{aligned}
$$

And $\frac{\partial \mu}{\partial \beta}=\left[\frac{\partial \mu}{\partial \eta}\right]^{T} \frac{\partial \eta}{\partial \beta}$ is called the local design matrix.

## Properties of the ML estimator

Theorem (Asymptotic distribution of the ML estimator)
Under the hypothesis $\boldsymbol{\eta}=\boldsymbol{X} \boldsymbol{\beta}$ we have asymptotically

$$
\frac{\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}}{\sqrt{\sigma^{2}}} \in N_{k}(\mathbf{0}, \boldsymbol{\Sigma}),
$$

where the dispersion matrix $\boldsymbol{\Sigma}$ for $\widehat{\boldsymbol{\beta}}$ is

$$
\mathrm{D}[\widehat{\boldsymbol{\beta}}]=\boldsymbol{\Sigma}=\left[\boldsymbol{X}^{T} \boldsymbol{W}(\boldsymbol{\beta}) \boldsymbol{X}\right]^{-1}
$$

with

$$
\boldsymbol{W}(\boldsymbol{\beta})=\operatorname{diag}\left\{\frac{w_{i}}{\left[g^{\prime}\left(\mu_{i}\right)\right]^{2} V\left(\mu_{i}\right)}\right\},
$$

## Linear prediction for the generalized linear model

Definition (Linear prediction for the generalized linear model)
The linear prediction $\widehat{\boldsymbol{\eta}}$ is defined as the values

$$
\widehat{\boldsymbol{\eta}}=\boldsymbol{X} \widehat{\boldsymbol{\beta}}
$$

with the linear prediction corresponding to the $i$ 'th observation is

$$
\widehat{\eta}_{i}=\sum_{j=1}^{k} x_{i j} \widehat{\beta}_{j}=\left(\boldsymbol{x}_{i}\right)^{T} \widehat{\boldsymbol{\beta}} .
$$

The linear predictions $\widehat{\boldsymbol{\eta}}$ are approximately normally distributed with

$$
\mathrm{D}[\widehat{\boldsymbol{\eta}}] \approx \widehat{\sigma}^{2} \boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^{T}
$$

where $\boldsymbol{\Sigma}$ is the dispersion matrix for $\widehat{\boldsymbol{\beta}}$.

## Fitted values for the generalized linear model

Definition (Fitted values for the generalized linear model)
The fitted values are defined as the values

$$
\widehat{\boldsymbol{\mu}}=\boldsymbol{\mu}(\boldsymbol{X} \widehat{\boldsymbol{\beta}}),
$$

where the $i^{\text {th }}$ value is given as

$$
\widehat{\mu}_{i}=g^{-1}\left(\widehat{\eta}_{i}\right)
$$

with the fitted value $\widehat{\eta}_{i}$ of the linear prediction.
The fitted values $\widehat{\boldsymbol{\mu}}$ are approximately normally distributed with

$$
\mathrm{D}[\widehat{\boldsymbol{\mu}}] \approx \widehat{\sigma}^{2}\left[\frac{\partial \boldsymbol{\mu}}{\partial \boldsymbol{\eta}}\right]^{2} \boldsymbol{X} \boldsymbol{\Sigma} \boldsymbol{X}^{T}
$$

where $\boldsymbol{\Sigma}$ is the dispersion matrix for $\widehat{\boldsymbol{\beta}}$.

## Residual deviance

## Definition (Residual deviance)

Consider the generalized linear model defined on slide 3. The residual deviance corresponding to this model is

$$
\mathrm{D}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))=\sum_{i=1}^{n} w_{i} d\left(y_{i} ; \widehat{\mu}_{i}\right)
$$

with $d\left(y_{i} ; \widehat{\mu}_{i}\right)$ denoting the unit deviance corresponding the observation $y_{i}$ and the fitted value $\widehat{\mu}_{i}$ and where $w_{i}$ denotes the weights (if present). If the model includes a dispersion parameter $\sigma^{2}$, the scaled residual deviance is

$$
\mathrm{D}^{*}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))=\frac{\mathrm{D}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))}{\sigma^{2}}
$$

## Residuals

Residuals represents the difference between the data and the model. In the classical GLM the residuals are $r_{i}=y_{i}-\widehat{\mu}_{i}$. These are called response residuals for GLM's. Since the variance of the response is not constant for most GLM's we need some modification. We will look at:

- Deviance residuals
- Pearson residuals


## Residuals

## Definition (Deviance residual)

Consider the generalized linear model from for the observations $Y_{1}, \ldots Y_{n}$. The deviance residual for the $i$ 'th observation is defined as

$$
r_{i}^{D}=r_{D}\left(y_{i} ; \widehat{\mu}_{i}\right)=\operatorname{sign}\left(y_{i}-\widehat{\mu}_{i}\right) \sqrt{w_{i} d\left(y_{i}, \widehat{\mu}_{i}\right)}
$$

where $\operatorname{sign}(x)$ denotes the sign function $\operatorname{sign}(x)=1$ for $x>0$ og $\operatorname{sign}(x)=-1$ for $x<0$, and with $w_{i}$ denoting the weight (if relevant), $d(y ; \mu)$ denoting the unit deviance and $\widehat{\mu}_{i}$ denoting the fitted value corresponding to the $i$ 'th observation.

Assessments of the deviance residuals is in good agreement with the likelihood approach as the deviance residuals simply express differences in log-likelihood.

## Residuals

## Definition (Pearson residual)

Consider again the generalized linear model from for the observations $Y_{1}, \ldots Y_{n}$.

The Pearson residuals are defined as the values

$$
r_{i}^{P}=r_{P}\left(y_{i} ; \widehat{\mu}_{i}\right)=\frac{y_{i}-\widehat{\mu}_{i}}{\sqrt{V\left(\widehat{\mu}_{i}\right) / w_{i}}}
$$

The Pearson residual is thus obtained by scaling the response residual with $\sqrt{\operatorname{Var}\left[Y_{i}\right]}$. Hence, the Pearson residual is the response residual normalized with the estimated standard deviation for the observation.

## Likelihood ratio tests

- The approximative normal distribution of the ML-estimator implies that many distributional results from the classical GLM-theory are carried over to generalized linear models as approximative (asymptotic) results.
- An example of this is the likelihood ratio test.
- In the classical GLM case it was possible to derive the exact distribution of the likelihood ratio test statistic (the F-distribution).
- For generalized linear models, this is not possible, and hence we shall use the asymptotic results for the logarithm of the likelihood ratio.


## Likelihood ratio test

Theorem (Likelihood ratio test)
Consider the generalized linear model. Assume that the model

$$
\mathcal{H}_{1}: \boldsymbol{\eta} \in L \subset \mathbb{R}^{k}
$$

holds with $L$ parameterized as $\boldsymbol{\eta}=\boldsymbol{X}_{1} \boldsymbol{\beta}$, and consider the hypotheses

$$
\mathcal{H}_{0}: \boldsymbol{\eta} \in L_{0} \subset \mathbb{R}^{m}
$$

where $\boldsymbol{\eta}=\boldsymbol{X}_{0} \boldsymbol{\alpha}$ and $m<k$, and with the alternative $\mathcal{H}_{1}: \boldsymbol{\eta} \in L \backslash L_{0}$. Then the likelihood ratio test for $\mathcal{H}_{0}$ has the test statistic

$$
-2 \log \lambda(\boldsymbol{y})=\mathrm{D}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\alpha}}))-\mathrm{D}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))
$$

When $\mathcal{H}_{0}$ is true, the test statistic will asymptotically follow a $\chi^{2}(k-m)$ distribution.

If the model includes a dispersion parameter, $\sigma^{2}$, then $\mathrm{D}(\boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}) ; \boldsymbol{\mu}(\widehat{\boldsymbol{\alpha}}))$ will asymptotically follow a $\sigma^{2} \chi^{2}(k-m)$ distribution.

## Test for model 'sufficiency'

- In analogy with classical GLM's one often starts with formulating a rather comprehensive model, and then reduces the model by successive tests.
- In contrast to classical GLM's we may however test the goodness of fit of the initial model.
- The test is a special case of the likelihood ratio test.


## Test for model 'sufficiency'

Test for model 'sufficiency'
Consider the generalized linear model, and assume that the dispersion $\sigma^{2}=1$.

Let $\mathcal{H}_{\text {full }}$ denote the full, or saturated model, i.e. $\mathcal{H}_{\text {full }}: \boldsymbol{\mu} \in \mathbb{R}^{n}$ and consider the hypotheses

$$
\mathcal{H}_{0}: \boldsymbol{\eta} \in L \subset \mathbb{R}^{k}
$$

with $L$ parameterized as $\boldsymbol{\eta}=\boldsymbol{X}_{0} \boldsymbol{\beta}$.
Then, as the residual deviance under $\mathcal{H}_{\text {full }}$ is 0 , the test statistic is the residual deviance $\mathrm{D}(\boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))$. When $\mathcal{H}_{0}$ is true, the test statistic is distributed as $\chi^{2}(n-k)$. The test rejects for large values of $\mathrm{D}(\boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))$.

## Residual deviance measures goodness of fit

- The residual deviance $\mathrm{D}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))$ is a reasonable measure of the goodness of fit of a model $\mathcal{H}_{0}$.
- When referring to a hypothesized model $\mathcal{H}_{0}$, we shall sometimes use the symbol $G^{2}\left(\mathcal{H}_{0}\right)$ to denote the residual deviance $\mathrm{D}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))$.
- Using that convention, the partitioning of residual deviance may be formulated as

$$
G^{2}\left(\mathcal{H}_{0} \mid \mathcal{H}_{1}\right)=G^{2}\left(\mathcal{H}_{0}\right)-G^{2}\left(\mathcal{H}_{1}\right)
$$

with $G^{2}\left(\mathcal{H}_{0} \mid \mathcal{H}_{1}\right)$ interpreted as the goodness fit test statistic for $\mathcal{H}_{0}$ conditioned on $\mathcal{H}_{1}$ being true, and $G^{2}\left(\mathcal{H}_{0}\right)$ and $G^{2}\left(\mathcal{H}_{1}\right)$, denoting the unconditional goodness of fit statistics for $\mathcal{H}_{0}$ and $\mathcal{H}_{1}$, respectively.

## Analysis of deviance table

- The initial test for goodness of fit of the initial model is often represented in an analysis of deviance table in analogy with the ANOVA table for classical GLM's.
- In the table the goodness of fit test statistic corresponding to the initial model $G^{2}\left(\mathcal{H}_{1}\right)=\mathrm{D}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))$ is shown in the line labelled "Error".
- The statistic should be compared to percentiles in the $\chi^{2}(n-k)$ distribution.
- The table also shows the test statistic for $\mathcal{H}_{\text {null }}$ under the assumption that $\mathcal{H}_{1}$ is true.
- The test investigates whether the model is necessary at all, i.e. whether at least some of the coefficients differ significantly from zero.


## Analysis of deviance table

- Note, that in the case of a generalized linear model, we can start the analysis by using the residual (error) deviance to test whether the model may be maintained, at all.
- This is in contrast to the classical GLM's where the residual sum of squares around the initial model $\mathcal{H}_{1}$ served to estimate $\sigma^{2}$, and therefore we had no reference value to compare with the residual sum of squares.
- In the generalized linear models the variance is a known function of the mean, and therefore in general there is no need to estimate a separate variance.


## Analysis of deviance table

| Source | $f$ | Deviance | Mean deviance | Goodness of fit <br> interpretation |
| :--- | :--- | :--- | :--- | :--- |
| Model $\mathcal{H}_{\text {null }}$ | $k-1$ | $\mathrm{D}\left(\boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}) ; \widehat{\boldsymbol{\mu}}_{\text {null }}\right)$ | $\frac{\mathrm{D}\left(\boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}) ; \widehat{\boldsymbol{\mu}}_{\text {null }}\right)}{k-1}$ | $G^{2}\left(\mathcal{H}_{\text {null }} \mid \mathcal{H}_{1}\right)$ |
| Residual (Error) | $n-k$ | $\mathrm{D}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))$ | $\frac{\mathrm{D}(\boldsymbol{y} ; \boldsymbol{\mu}(\widehat{\boldsymbol{\beta}}))}{n-k}$ | $G^{2}\left(\mathcal{H}_{1}\right)$ |
| Corrected total | $n-1$ | $\mathrm{D}\left(\boldsymbol{y} ; \widehat{\boldsymbol{\mu}}_{\text {null }}\right)$ |  | $G^{2}\left(\mathcal{H}_{\text {null }}\right)$ |

Table: Initial assessment of goodness of fit of a model $\mathcal{H}_{0} . \mathcal{H}_{\text {null }}$ and $\widehat{\boldsymbol{\mu}}_{\text {null }}$ refer to the minimal model, i.e. a model with all observations having the same mean value.

## Odds Ratio

If an event occurs with probability $p$, then the odds in favor of the event is

$$
\text { Odds }=\frac{p}{1-p}
$$

A comparison between two events can be made by computing the odds ratio:

$$
\mathrm{OR}=\frac{p_{1} /\left(1-p_{1}\right)}{p_{2} /\left(1-p_{2}\right)}
$$

An odds ratio larger than 1 is an indication the event is more likely in the first group than in the second group.

