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Classical GLM vs. GLM

General linear model - classical GLM

In the classical GLM it is assumed that:

The errors are normally distributed.

The error variances are constant and independent of the mean.

Systematic effects combine additively.

The general linear model can be summarized as:

Y ∼ Nn(Xβ, σ2I )

Often these assumptions may be justifiable but there are situations where
these assumptions are far from being satisfied.
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Classical GLM vs. GLM

Transformation of data into normality

Sometimes it is possible to transform data, such that it matches a
general linear model.

For instance if the variance is increasing with the mean
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Then we have seen that a log transformation often is appropriate

Henrik Madsen Poul Thyregod (DTU Inf.) Chapman & Hall March 4, 2012 4 / 36



Classical GLM vs. GLM

Generalized linear models - GLM

Some types of observations can never be transformed into normality

For a wide class of distributions, the so called exponential family, we

can use generalized linear models
Introduced by Nelder and Wedderburn in 1972.

Formulate linear models for a transformation of the mean value.

Do not transform the observations thereby preserving the
distributional properties of the observations.

Allows easy use for instance via the glm() function in R, similar to
lm()
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Classical GLM vs. GLM

GLM vs GLM

General linear models Generalized linear models

Normal distribution Exponential dispersion family

Mean value linear Function of mean value linear

Independent observations Independent observations

Same variance Variance function of mean

Easy to apply Almost as easy to apply
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Classical GLM vs. GLM

Types of response variables

i Count data (y1 = 57, . . ., yn = 59 accidents) - Poisson distribution.

ii Binary response variables (y1 = 0, y2 = 1, . . ., yn = 0), or proportion
of counts (y1 = 15/297, . . ., yn = 144/285) - Binomial distribution.

iii Count data, waiting times - Negative Binomial distribution.

iv Multiple ordered categories “Unsatisfied”, “Neutral”, “Satisfied” -
Multinomial distribution.

v Count data, multiple categories.

vi Continuous responses, constant variance (y1 = 2.567, . . .,
yn = 2.422) - Normal distribution.

vii Continuous positive responses with constant coefficient of variation -
Gamma distribution.

viii Continuous positive highly skewed - Inverse Gaussian.
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Motivating example

Motivating example

The generalized linear model will be introduced in the following example.
The generalized linear model will then be explained in detail in this and the
following lectures.

In toxicology it is usual practice to assess developmental effects of an agent
by administering specified doses of the agent to pregnant mice, and assess
the proportion of stillborn as a function of the concentration of the agent.

The quantity of interest is the fraction, y , of stillborn pups as a function of
the concentration x of the agent.

A natural distributional assumption is the binomial distribution

Y ∼ B(ni , pi)/ni

.
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Motivating example

Motivating example

The assumptions for the classical GLM are not satisfied in this case:

For p close to 0 or 1 the distribution of Y is highly skewed violating
the normality assumption.

The variance, Var [Yi ] = pi(1− pi)/ni depends on the mean value
pi , the quantity we want to model violating the homoscedasticity
assumption.

A linear model on the form: pi = βi + β2xi , will violate the natural
restriction 0 < pi < 1.

A model formulation of the form yi = pi + εi (mean plus noise) is not
adequate - if such a model should satisfy 0 ≤ yi ≤ 1, then the
distribution of εi would have to be dependent on pi .
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Motivating example

Motivating example

In a study of developmental toxicity of a chemical compound, a specified
amount of an ether was dosed daily to pregnant mice, and after 10 days all
fetuses were examined. The size of each litter and the number of stillborns
were recorded:

Index Number of Number of Fraction still- Concentration
stillborn, zi fetuses, ni born, yi [mg/kg/day], xi

1 15 297 0.0505 0.0
2 17 242 0.0702 62.5
3 22 312 0.0705 125.0
4 38 299 0.1271 250.0
5 144 285 0.5053 500.0

Table: Results of a dose-response experiment on pregnant mice. Number of
stillborn fetuses found for various dose levels of a toxic agent.
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Motivating example

Motivating example

Let Zi denote the number of stillborns at dose concentration xi .

We shall assume Zi ∼ B(ni , pi), that is a binomial distribution
corresponding to ni independent trials (fetuses), and the probability, pi , of
stillbirth being the same for all ni fetuses.

We want to model Yi = Zi/ni , and in particular we want a model for
E[Yi ] = pi .
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Motivating example

Motivating example

We shall use a linear model for a function of p, the link function. The
canonical link for the binomial distribution is the logit transformation

g(p) = ln
( p

1− p

)
,

and we will formulate a linear model for the transformed mean values

ηi = ln
( pi

1− pi

)
, i = 1, 2, . . . , 5.

The linear model is

ηi = β1 + β2xi , i = 1, 2, . . . , 5,

The inverse transformation, which gives the probabilities, pi , for stillbirth
is the logistic function

pi =
exp(β1 + β2xi)

1 + exp(β1 + β2xi)
, i = 1, 2, . . . , 5
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Motivating example

Motivating example - R

> mice<-data.frame(

+ stillb=c(15, 17, 22, 38, 144),

+ total=c(297, 242, 312, 299, 285),

+ conc=c(0, 62.5, 125, 250, 500)

+ )

> mice$resp <- cbind(mice$stillb,mice$total-mice$stillb)

Note the response variable is conposed by the vector of the number of
stillborns, zi , and the number of live fetuses, ni − zi .
We use the function glm to fit the model:

> mice.glm <- glm(formula = resp ~ conc,

+ family = binomial(link = logit),

+ data = mice)
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Motivating example

Motivating example - R

> anova(mice.glm)

Analysis of Deviance Table

Model: binomial, link: logit

Response: resp

Terms added sequentially (first to last)

Df Deviance Resid. Df Resid. Dev

NULL 4 259.107

conc 1 253.33 3 5.777
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Motivating example

Motivating example - R

> summary(mice.glm)

Call:

glm(formula = resp ~ conc, family = binomial(link = logit), data = mice)

Deviance Residuals:

1 2 3 4 5

1.1317 1.0174 -0.5968 -1.6464 0.6284

Coefficients:

Estimate Std. Error z value Pr(>|z|)

(Intercept) -3.2479337 0.1576602 -20.60 <2e-16 ***

conc 0.0063891 0.0004348 14.70 <2e-16 ***

---

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

(Dispersion parameter for binomial family taken to be 1)

Null deviance: 259.1073 on 4 degrees of freedom

Residual deviance: 5.7775 on 3 degrees of freedom

AIC: 35.204

Number of Fisher Scoring iterations: 4
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Motivating example

Motivating example - R

The linear predictions and their estimated standard errors:
> predict(mice.glm,type='link',se.fit=TRUE)

$fit

1 2 3 4 5

-3.24793371 -2.84861691 -2.44930011 -1.65066652 -0.05339932

$se.fit

1 2 3 4 5

0.15766019 0.13490991 0.11411114 0.08421903 0.11382640

$residual.scale

[1] 1

The fitted values and their estimated standard errors:
> predict(mice.glm,type='response',se.fit=TRUE)

$fit

1 2 3 4 5

0.03740121 0.05475285 0.07948975 0.16101889 0.48665334

$se.fit

1 2 3 4 5

0.005676138 0.006982260 0.008349641 0.011377301 0.028436323

$residual.scale

[1] 1
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Motivating example

Motivating example - R

The response residuals:
> residuals(mice.glm,type="response")

1 2 3 4 5

0.013103843 0.015495079 -0.008976925 -0.033928587 0.018609817

The deviance residuals:
> residuals(mice.glm,type="deviance")

1 2 3 4 5

1.1316578 1.0173676 -0.5967859 -1.6464253 0.6284281

The Pearson residuals:
> residuals(mice.glm,type="pearson")

1 2 3 4 5

1.1901767 1.0595596 -0.5861854 -1.5961984 0.6285637
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Motivating example

Motivating example
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Figure: Logit transformed observations and corresponding linear predictions for
dose response assay.
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Motivating example

Motivating example
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Figure: Observed fraction stillborn and corresponding fitted values under logistic
regression for dose response assay.
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Exponential families of distributions

Exponential families of distributions

Consider a univariate random variable Y with a distribution described by a
family of densities fY (y ; θ), θ ∈ Ω.

Definition (A natural exponential family)

A family of probability densities which can be written on the form

fY (y ; θ) = c(y) exp(θy − κ(θ)), θ ∈ Ω

is called a natural exponential family of distributions. The function κ(θ) is
called the cumulant generator. This representation is called the canonical
parametrization of the family, and the parameter θ is called the canonical
parameter.
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Exponential families of distributions

Exponential families of distributions

Definition (An exponential dispersion family)

A family of probability densities which can be written on the form

fY (y ; θ) = c(y , λ) exp(λ{θy − κ(θ)})

is called an exponential dispersion family of distributions. The parameter λ > 0 is
called the precision parameter.

Basic idea: separate the mean value related distributional properties
described by the cumulant generator κ(θ) from features as sample size,
common variance, or common over-dispersion.

In some cases the precision parameter represents a known number of
observations as for the binomial distribution, or a known shape parameter as
for the gamma (or χ2-) distribution.

In other cases the precision parameter represents an unknown dispersion like
for the normal distribution, or an over-dispersion that is not related to the
mean.
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Exponential families of distributions

Example: Poisson distribution

Consider Y ∼ Pois(µ). The probability function for Y is:

fY (y ;µ) =
µye−µ

y !

=
1

y !
exp{y log(µ)− µ}

Comparing with the equation for the natural exponential family it is seen
that θ = log(µ) which means that µ = exp(θ).

Thus the Poisson distribution is a special case of a natural exponential
family with canonical parameter θ = log(µ), cumulant generator
κ(θ) = exp(θ) and c(y) = 1/y !.

The natural exponential family: fY (y ; θ) = c(y) exp(θy − κ(θ))
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Exponential families of distributions

Example: Normal distribution

Consider Y ∼ N (µ, σ2). The probability function for Y is:

fY (y ;µ, σ2) =
1√
2πσ

exp

[
−(y − µ)2

2σ2

]
=

1√
2πσ

exp

{
1

σ2

(
µy − µ2

2

)
− y2

2σ2

}
Thus the normal distribution belongs to the exponential dispersion family
with θ = µ, κ(θ) = θ2/2 and λ = 1/σ2. The canonical parameter space is
Ω = R.

The exponential dispersion family: fY (y ; θ) = c(y , λ) exp(λ{θy − κ(θ)})
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Exponential families of distributions

Example: Binomial distribution

Consider Z ∼ Bin(n, p). The probability function for Z is:

fZ (n, p) =

(
n
z

)
pz (1− p)n−z

=

(
n
z

)
exp

(
z log

(
p

1− p

)
+ n log(1− p)

)
Thus the binomial distribution belongs to the natural exponential family

with θ = log
(

p
1−p

)
i.e. p = exp(θ)

1+exp(θ) , κ(θ) = n log(1 + exp(θ)) and

λ = 1.

The natural exponential family: fY (y ; θ) = c(y) exp(θy − κ(θ))
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Exponential families of distributions

Example: Binomial distribution

Consider Y = Z/n where Z ∼ Bin(n, p). The probability function for Y
is:

fY (n, p) =

(
n
yn

)
pyn(1− p)n−yn

=

(
n
yn

)
exp

(
n

{
y log

(
p

1− p

)
+ log(1− p)

})

Now we see that θ = log
(

p
1−p

)
i.e. p = exp(θ)

1+exp(θ) , κ(θ) = log(1 + exp(θ))

and λ = n.

In this case the precision parameter λ represents the (known) number of
observations.

The exponential dispersion family: fY (y ; θ) = c(y , λ) exp(λ{θy − κ(θ)})
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Exponential families of distributions

Mean and variance

The properties of the exponential dispersion family are mainly
determined by the cumulant generator κ(·).

If Y a distribution belonging to the exponential dispersion family
then:

E[Y ] = κ′(θ)

Var[Y ] =
κ′′(θ)

λ

The function
τ(θ) = κ′(θ)

defines an one to one mapping µ = τ(θ) of the parameter space, Ω,
for the canonical parameter θ on to a subset, M, of the real line,
called the mean value space.
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Exponential families of distributions

(Unit) variance function

(Unit) variance function

We have seen that the variance operator is: Var[Y ] = κ′′(θ)
λ . κ′′(θ) is

called the variance function and by using θ = τ−1(µ) we get

V (µ) = κ′′(τ−1(µ))

Variance operator and variance function

Note the distinction between the variance operator, Var[Y ], which
calculates the variance in the probability distribution of a random variable,
Y , and the variance function, which is a function, V (µ), that describes the
variance as a function of the mean value for a given family of distributions.
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Exponential families of distributions

The deviance

Definition (The unit deviance)

As a mean for comparing observations, y , with µ, according to some
model, we define the unit deviance as

d(y ;µ) = 2

∫ y

µ

y − u

V (u)
du ,

where V (·) denotes the variance function.

The density for the exponential dispersion family in terms of µ

The density for the exponential dispersion family may be expressed in
terms of the mean value parameter, µ as

gY (y ;µ, λ) = a(y , λ) exp

{
−λ

2
d(y ;µ)

}
.
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Exponential families of distributions

Example: Unit deviance for the normal distribution

2

∫ y

µ

y − u

V (u)
du

= 2

∫ y

µ
y − u du

= 2y

∫ y

µ
1 du − 2

∫ y

µ
u du

= 2y(y − µ)− 2
1

2
(y2 − µ2)

= (y − µ)2
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Exponential families of distributions

Alternative definition of the deviance

Alternative definition of the deviance

Let `(y ;µ) denote the log likelihood of the current model. Then apart
from λ, the unit deviance may be defined as

d(y ;µ) = 2 max
µ

`(µ; y)− 2`(µ; y) .

The definition corresponds to considering a normalized, or relative
likelihood for µ corresponding to the observation y :

R(µ; y) =
L(µ; y)

maxµ L(µ; y)

Then d(y ;µ) = −2 log(R(µ; y)).

For the normal distribution with Σ = I , the deviance is just the residual
sum of squares (RSS).
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Exponential families of distributions

Variance function, unit deviance and λ

Family M Var(µ) Unit devianced(y;µ) λ θ
Normal (−∞,∞) 1 (y − µ)2 1/σ2 µ

Poisson (0,∞) µ 2
[
y ln

(
y
µ

)
− (y − µ)

]
- 1 ln(µ)

Gamma (0,∞) µ2 2
[
y
µ
− ln

(
y
µ

)
− 1
]

α 2 1/µ

Bin (0,1) µ(1− µ) 2
[
y ln

(
y
µ

)
+ (1− y) ln

(
1−y
1−µ

)]
n 3 ln

(
µ

1−µ

)
Neg Bin (0,1) µ(1 + µ) 2

[
y ln

(
y(1+µ)
µ(1+y)

)
+ ln

(
1+µ
1+y

)]
r 4 ln(µ)

I Gauss (0,∞) µ3
(y−µ)2

yµ2 1/µ2

Table: Mean value space, unit variance function and unit deviance for exponential
dispersion families.

1The precision parameter λ can not be distinguished from the mean value.
2Gamma distribution with shape parameter α and scale parameter µ/α.
3Y = Z/n, where Z is the number of successes in n independent Bernoulli trials.
4Y = Z/r , where Z is the number of successes until the rth failure in independent

Bernoulli. trials.
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Exponential families of distributions

Exponential dispersion family

There are two equivalent representations for an exponential dispersion
family:

i By the cumulant generator, κ(·) and parametrized by the canonical
(or natural) parameter, θ ∈ Ω, and the precision parameter λ

ii By the variance function V (·) specifying the variance as a function of
the mean value parameter, µ ∈M, and further parametrized by the
precision parameter λ.

The two parametrizations supplement each other:

The parametrization in terms of the canonical parameter, θ has the
advantage that the parameter space is the real line and therefore well
suited for linear operations,

The parametrization in terms of the mean value parameter, µ has the
advantage that the fit of the model can be directly assessed as the
mean value is measured in the same units as the observations, Y .
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Exponential families of distributions

Exponential family densities as a statistical model

Consider n independent observations Y = (Y1,Y2, · · · ,Yn)T , and
assume that they belong to the same exponential dispersion family with
the cumulant generator, κ(·), and the precision parameter is a known
weight, λi = wi , and the density is on the form:

fY (y ; θ) = c(y , λ) exp(λ{θy − κ(θ)})

which can also be written as:

gY (y ;µ, λ) = a(y , λ) exp

{
−λ

2
d(y ;µ)

}
.
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Exponential families of distributions

Exponential family densities as a statistical model

Then the joint density, using the canonical parameter, is

f (y ;θ) = exp

[
n∑

i=1

wi(θiyi − κ(θi))

]
n∏

i=1

c(yi ,wi)

or, by introducing the mean value parameter, µ = τ(θ) we find, the
equivalent joint density

g(y ;µ) =

n∏
i=1

gY (yi ;µi ,wi) = exp

[
−1

2

n∑
i=1

wid(yi ;µi)

]
n∏

i=1

c(yi ,wi)

Henrik Madsen Poul Thyregod (DTU Inf.) Chapman & Hall March 4, 2012 34 / 36



Exponential families of distributions

Log-likelihood functions

The log likelihood function in the two cases are

`θ(θ;y) =

n∑
i=1

wi(θiyi − κ(θi))

`µ(µ;y) = −1

2

n∑
i=1

wid(yi ;µi) = −1

2
D(y ;µ)

where

D(y ;µ) =

n∑
i=1

wid(yi , µi).
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Exponential families of distributions

Appendix: Remark 4.4 on page 93

d(y , µ) = 2

∫ y

µ

y − u

V (u)
du

= 2

∫ y

µ

y − u

κ′′(τ−1(u))
du

= 2

∫ y

µ

y − u

κ′′(κ′−1(u))
du

= 2

∫ κ
′−1(y)

κ′−1(µ)
y − κ′(x ) dx

[
x = κ

′−1(u)
dx = 1

κ′′(κ′−1(u))
du

]
= 2

{
y(κ

′−1(y)− κ′−1(µ))− (κ(κ
′−1(y))− κ(κ

′−1(µ)))
}

= 2
{
−yθ + κ(θ) + yτ−1(y)− κ(τ−1(y))

}
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