Introduction to General and Generalized Linear Models General Linear Models - part I

Henrik Madsen Poul Thyregod

Informatics and Mathematical Modelling Technical University of Denmark DK-2800 Kgs. Lyngby

February 2012

Today

- The general linear model intro
- The multivariate normal distribution
- Deviance
- Likelihood, score function and information matrix
- The general linear model definition
- Estimation
- Fitted values
- Residuals
- Partitioning of variation
- Likelihood ratio tests
- The coefficient of determination

The general linear model - intro

- We will use the term *classical* GLM for the General linear model to distinguish it from GLM which is used for the Generalized linear model.
- The classical GLM leads to a unique way of describing the variations of experiments with a *continuous* variable.
- The classical GLM's include
 - Regression analysis
 - Analysis of variance ANOVA
 - Analysis of covariance ANCOVA
- The residuals are assumed to follow a multivariate normal distribution in the classical GLM.

The general linear model - intro

- Classical GLM's are naturally studied in the framework of the multivariate normal distribution.
- We will consider the set of *n* observations as a sample from a *n*-dimensional normal distribution.
- Under the normal distribution model, maximum-likelihood estimation of mean value parameters may be interpreted geometrically as *projection* on an appropriate subspace.
- The likelihood-ratio test statistics for model reduction may be expressed in terms of *norms* of these projections.

The multivariate normal distribution

Let $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^T$ be a random vector with Y_1, Y_2, \dots, Y_n independent identically distributed (iid) N(0, 1) random variables.

Note that E[Y] = 0 and the variance-covariance matrix Var[Y] = I.

Definition (Multivariate normal distribution)

Z has an k-dimensional multivariate normal distribution if Z has the same distribution as AY + b for some n, some $k \times n$ matrix A, and some k vector b. We indicate the multivariate normal distribution by writing $Z \sim N(b, AA^T)$.

Since
$$A$$
 and b are fixed, we have $E[Z] = b$ and $Var[Z] = AA^T$.

The multivariate normal distribution

Let us assume that the variance-covariance matrix is known apart from a constant factor, σ^2 , i.e. $Var[\mathbf{Z}] = \sigma^2 \Sigma$.

The density for the k-dimensional random vector Z with mean μ and covariance $\sigma^2 \Sigma$ is:

$$f_{\boldsymbol{Z}}(\boldsymbol{z}) = \frac{1}{(2\pi)^{k/2} \sigma^k \sqrt{\det \boldsymbol{\Sigma}}} \exp\left[-\frac{1}{2\sigma^2} (\boldsymbol{z} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{z} - \boldsymbol{\mu})\right]$$

where Σ is seen to be (a) symmetric and (b) positive semi-definite. We write $Z \sim N_k(\mu, \sigma^2 \Sigma)$.

The normal density as a statistical model

Consider now the n observations $\mathbf{Y} = (Y_1, Y_2, \dots, Y_n)^T$, and assume that a statistical model is

$$\boldsymbol{Y} \sim \mathrm{N}_n(\boldsymbol{\mu}, \sigma^2 \boldsymbol{\Sigma}) \ \text{for} \ \boldsymbol{y} \in \mathbb{R}^n$$

The variance-covariance matrix for the observations is called the *dispersion* matrix, denoted $D[\mathbf{Y}]$, i.e. the dispersion matrix for \mathbf{Y} is

$$\mathbf{D}[\boldsymbol{Y}] = \sigma^2 \boldsymbol{\Sigma}$$

Inner product and norm

Definition (Inner product and norm)

The bilinear form

$$\delta_{\Sigma}(\boldsymbol{y}_1, \boldsymbol{y}_2) = \boldsymbol{y}_1^T \boldsymbol{\Sigma}^{-1} \boldsymbol{y}_2$$

defines an *inner product* in \mathbb{R}^n . Corresponding to this inner product we can define *orthogonality*, which is obtained when the inner product is zero.

A norm is defined by

$$|\boldsymbol{y}||_{\Sigma} = \sqrt{\delta_{\Sigma}(\boldsymbol{y}, \boldsymbol{y})}.$$

Deviance for normal distributed variables

Definition (Deviance for normal distributed variables)

Let us introduce the notation

$$D(\boldsymbol{y};\boldsymbol{\mu}) = \delta_{\Sigma}(\boldsymbol{y}-\boldsymbol{\mu},\boldsymbol{y}-\boldsymbol{\mu}) = (\boldsymbol{y}-\boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{\mu})$$

to denote the quadratic norm of the vector $(y - \mu)$ corresponding to the inner product defined by Σ^{-1} .

For a normal distribution with $\Sigma = I$, the deviance is just the Residual Sum of Squares (RSS).

Deviance for normal distributed variables

Using this notation the normal density is expressed as a density defined on any finite dimensional vector space equipped with the inner product, δ_{Σ} :

$$f(\boldsymbol{y};\boldsymbol{\mu},\sigma^2) = \frac{1}{(\sqrt{2\pi})^n \sigma^n \sqrt{\det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2\sigma^2} \operatorname{D}(\boldsymbol{y};\boldsymbol{\mu})\right].$$

The likelihood and log-likelihood function

• The likelihood function is:

$$L(\boldsymbol{\mu}, \sigma^2; \boldsymbol{y}) = \frac{1}{(\sqrt{2\pi})^n \sigma^n \sqrt{\det(\boldsymbol{\Sigma})}} \exp\left[-\frac{1}{2\sigma^2} D(\boldsymbol{y}; \boldsymbol{\mu})\right]$$

• The log-likelihood function is (apart from an additive constant):

$$\ell_{\mu,\sigma^2}(\boldsymbol{\mu},\sigma^2;\boldsymbol{y}) = -(n/2)\log(\sigma^2) - \frac{1}{2\sigma^2} (\boldsymbol{y} - \boldsymbol{\mu})^T \boldsymbol{\Sigma}^{-1}(\boldsymbol{y} - \boldsymbol{\mu})$$
$$= -(n/2)\log(\sigma^2) - \frac{1}{2\sigma^2} D(\boldsymbol{y};\boldsymbol{\mu}).$$

The score function, observed - and expected information for μ

• The score function wrt. μ is

$$\frac{\partial}{\partial \boldsymbol{\mu}} \ell_{\boldsymbol{\mu}, \sigma^2}(\boldsymbol{\mu}, \sigma^2; \boldsymbol{y}) = \frac{1}{\sigma^2} \left[\boldsymbol{\Sigma}^{-1} \boldsymbol{y} - \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu} \right] = \frac{1}{\sigma^2} \boldsymbol{\Sigma}^{-1}(\boldsymbol{y} - \boldsymbol{\mu})$$

• The observed information (wrt. μ) is

$$\boldsymbol{j}(\mu; \boldsymbol{y}) = rac{1}{\sigma^2} \boldsymbol{\Sigma}^{-1}.$$

• It is seen that the observed information does not depend on the observations y. Hence the expected information is

$$\boldsymbol{i}(\mu) = rac{1}{\sigma^2} \boldsymbol{\Sigma}^{-1}.$$

The general linear model

In the case of a normal density the observation Y_i is most often written as

$$Y_i = \mu_i + \epsilon_i$$

which for all n observations (Y_1, Y_2, \ldots, Y_n) can be written on the matrix form

$$oldsymbol{Y} = oldsymbol{\mu} + oldsymbol{\epsilon}$$

where

$$\boldsymbol{Y} \sim \mathrm{N}_n(\boldsymbol{\mu}, \sigma^2 \boldsymbol{\Sigma}) \ ext{for} \ \boldsymbol{y} \in \mathbb{R}^n$$

General Linear Models

- In the *linear model* it is assumed that μ belongs to a linear (or affine) subspace Ω₀ of ℝⁿ.
- The *full model* is a model with $\Omega_{full} = \mathbb{R}^n$ and hence each observation fits the model perfectly, i.e. $\hat{\mu} = y$.
- The most restricted model is the *null model* with $\Omega_{null} = \mathbb{R}$. It only describes the variations of the observations by a common mean value for all observations.
- In practice, one often starts with formulating a rather comprehensive model with $\Omega = \mathbb{R}^k$, where k < n. We will call such a model a *sufficient model*.

The General Linear Model

Definition (The general linear model)

Assume that Y_1, Y_2, \ldots, Y_n is normally distributed as described before. A general linear model for Y_1, Y_2, \ldots, Y_n is a model where an affine hypothesis is formulated for μ . The hypothesis is of the form

$$\mathcal{H}_0: \boldsymbol{\mu} - \boldsymbol{\mu}_0 \in \Omega_0,$$

where Ω_0 is a linear subspace of \mathbb{R}^n of dimension k, and where μ_0 denotes a vector of *known offset values*.

Definition (Dimension of general linear model)

The dimension of the subspace Ω_0 for the linear model is the *dimension of* the model.

The design matrix

Definition (Design matrix for classical GLM)

Assume that the linear subspace $\Omega_0 = \text{span}\{x_1, \ldots, x_k\}$, i.e. the subspace is spanned by k vectors (k < n).

Consider a general linear model where the hypothesis can be written as

$$\mathcal{H}_0: oldsymbol{\mu} - oldsymbol{\mu}_0 = oldsymbol{X}oldsymbol{eta}$$
 with $oldsymbol{eta} \in \mathbb{R}^k,$

where X has full rank. The $n \times k$ matrix X of known deterministic coefficients is called the *design matrix*.

The i^{th} row of the design matrix is given by the *model vector*

$$oldsymbol{x}_i^T = \left(egin{array}{c} x_{i1}\ x_{i2}\ dots\ x_{ik}\ \end{array}
ight)^T,$$

for the i^{th} observation.

Estimation of mean value parameters

Under the hypothesis

 $\mathcal{H}_0: \boldsymbol{\mu} \in \Omega_0$,

the maximum likelihood estimate for the set μ is found as the orthogonal projection (with respect to δ_{Σ}), $p_0(\boldsymbol{y})$ of \boldsymbol{y} onto the linear subspace Ω_0 .

Theorem (ML estimates of mean value parameters)

For hypothesis of the form

$$\mathcal{H}_0: \boldsymbol{\mu}(\boldsymbol{\beta}) = \boldsymbol{X} \boldsymbol{\beta}$$

the maximum likelihood estimated for β is found as a solution to the normal equation

$$\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{y} = \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X} \widehat{\boldsymbol{\beta}}.$$

If X has full rank, the solution is uniquely given by

$$\widehat{\boldsymbol{eta}} = (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{y}$$

Properties of the ML estimator

Theorem (Properties of the ML estimator)

For the ML estimator we have

$$\widehat{\boldsymbol{\beta}} \sim N_k(\boldsymbol{\beta}, \sigma^2 (\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X})^{-1})$$

Unknown Σ

Notice that it has been assumed that Σ is known. If Σ is unknown, one possibility is to use the relaxation algorithm described in Madsen (2008)^{*a*}.

^aMadsen, H. (2008) Time Series Analysis. Chapman, Hall

Fitted values

Fitted – or predicted – values

The *fitted* values $\hat{\mu} = X\hat{\beta}$ is found as the projection of y (denoted $p_0(y)$) on to the subspace Ω_0 spanned by X, and $\hat{\beta}$ denotes the local coordinates for the projection.

Definition (Projection matrix)

A matrix H is a *projection matrix* if and only if (a) $H^T = H$ and (b) $H^2 = H$, i.e. the matrix is *idempotent*.

The hat matrix

The matrix

$$\boldsymbol{H} = \boldsymbol{X} [\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X}]^{-1} \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1}$$

is a projection matrix.

• The projection matrix provides the predicted values $\widehat{\mu}$, since

$$\widehat{\boldsymbol{\mu}} = p_0(\boldsymbol{y}) = \boldsymbol{X}\widehat{\boldsymbol{\beta}} = \boldsymbol{H}\boldsymbol{y}$$

• It follows that the predicted values are normally distributed with

$$D[\mathbf{X}\widehat{\boldsymbol{\beta}}] = \sigma^2 \boldsymbol{X} [\boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X}]^{-1} \boldsymbol{X}^T = \sigma^2 \boldsymbol{H} \boldsymbol{\Sigma}$$

The matrix *H* is often termed the *hat matrix* since it transforms the observations *y* to their predicted values symbolized by a "hat" on the μ's.

Residuals

The observed residuals are

$$r = y - X\widehat{eta} = (I - H)y$$

Orthogonality

The maximum likelihood estimate for β is found as the value of β which minimizes the *distance* $||y - X\beta||$.

The normal equations show that

$$\boldsymbol{X}^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{X}\widehat{\boldsymbol{\beta}})=\boldsymbol{0}$$

i.e. the *residuals* are orthogonal (with respect to Σ^{-1}) to the subspace Ω_0 .

The residuals are thus orthogonal to the fitted - or predicted - values.

Residuals

Residuals

Figure: Orthogonality between the residual $(m{y}-m{X}\widehat{m{eta}})$ and the vector $m{X}\widehat{m{eta}}.$

Residuals

ullet The residuals $oldsymbol{r} = (oldsymbol{I} - oldsymbol{H})oldsymbol{Y}$ are normally distributed with

$$D[\boldsymbol{r}] = \sigma^2 (\boldsymbol{I} - \boldsymbol{H})$$

- The individual residuals do not have the same variance.
- The residuals are thus belonging to a subspace of dimension n k, which is orthogonal to Ω_0 .
- It may be shown that the distribution of the residuals r is independent of the fitted values $X\widehat{eta}$.

Cochran's theorem

Theorem (Cochran's theorem)

Suppose that $\mathbf{Y} \sim N_n(\mathbf{0}, \mathbf{I}_n)$ (i.e. standard multivariate Gaussian random variable)

$$Y^T Y = Y^T H_1 Y + Y^T H_2 Y + \dots + Y^T H_k Y$$

where H_i is a symmetric $n \times n$ matrix with rank n_i , i = 1, 2, ..., k. Then any one of the following conditions implies the other two:

- i The ranks of the $oldsymbol{H}_i$ adds to n, i.e. $\sum_{i=1}^k n_i = n$
- ii Each quadratic form $\mathbf{Y}^T \mathbf{H}_i \mathbf{Y} \sim \chi^2_{n_i}$ (thus the H_i are positive semidefinite)
- iii All the quadratic forms $\mathbf{Y}^T \mathbf{H}_i \mathbf{Y}$ are independent (necessary and sufficient condition).

Partitioning of variation

Partitioning of the variation

$$\begin{split} \mathrm{D}(\boldsymbol{y};\boldsymbol{X}\boldsymbol{\beta}) &= \mathrm{D}(\boldsymbol{y};\boldsymbol{X}\widehat{\boldsymbol{\beta}}) + \mathrm{D}(\boldsymbol{X}\widehat{\boldsymbol{\beta}};\boldsymbol{X}\boldsymbol{\beta}) \\ &= (\boldsymbol{y}-\boldsymbol{X}\widehat{\boldsymbol{\beta}})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{X}\widehat{\boldsymbol{\beta}}) \\ &+ (\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta})^T\boldsymbol{X}^T\boldsymbol{\Sigma}^{-1}\boldsymbol{X}(\widehat{\boldsymbol{\beta}}-\boldsymbol{\beta}) \\ &\geq (\boldsymbol{y}-\boldsymbol{X}\widehat{\boldsymbol{\beta}})^T\boldsymbol{\Sigma}^{-1}(\boldsymbol{y}-\boldsymbol{X}\widehat{\boldsymbol{\beta}}) \end{split}$$

Partitioning of variation

$\chi^2\text{-distribution}$ of individual contributions

Under \mathcal{H}_0 it follows from the normal distribution of \boldsymbol{Y} that

$$D(\boldsymbol{y};\boldsymbol{X}\boldsymbol{\beta}) = (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{X}\boldsymbol{\beta}) \sim \sigma^2 \chi_n^2$$

Furthermore, it follows from the normal distribution of r and of $\widehat{oldsymbol{eta}}$ that

$$D(\boldsymbol{y}; \boldsymbol{X}\widehat{\boldsymbol{\beta}}) = (\boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}})^T \boldsymbol{\Sigma}^{-1} (\boldsymbol{y} - \boldsymbol{X}\widehat{\boldsymbol{\beta}}) \sim \sigma^2 \chi_{n-k}^2$$
$$D(\boldsymbol{X}\widehat{\boldsymbol{\beta}}; \boldsymbol{X}\boldsymbol{\beta}) = (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta})^T \boldsymbol{X}^T \boldsymbol{\Sigma}^{-1} \boldsymbol{X} (\widehat{\boldsymbol{\beta}} - \boldsymbol{\beta}) \sim \sigma^2 \chi_k^2$$

moreover, the independence of r and $X\widehat{\beta}$ implies that $D(y; X\widehat{\beta})$ and $D(X\widehat{\beta}; X\beta)$ are independent. Thus, the $\sigma^2 \chi_n^2$ -distribution on the left side is partitioned into two independent χ^2 distributed variables with n - k and k degrees of freedom, respectively.

Estimation of the residual variance σ^2

Theorem (Estimation of the variance)

Under the hypothesis

$$\mathcal{H}_0: \boldsymbol{\mu}(\boldsymbol{\beta}) = \boldsymbol{X} \boldsymbol{\beta}$$

the maximum marginal likelihood estimator for the variance σ^2 is

$$\widehat{\sigma}^2 = rac{\mathrm{D}(oldsymbol{y};oldsymbol{X}\widehat{oldsymbol{eta}})}{n-k} = rac{(oldsymbol{y}-oldsymbol{X}\widehat{oldsymbol{eta}})^T \mathbf{\Sigma}^{-1}(oldsymbol{y}-oldsymbol{X}\widehat{oldsymbol{eta}})}{n-k}$$

Under the hypothesis, $\hat{\sigma}^2 \sim \sigma^2 \chi_f^2 / f$ with f = n - k.

General Linear Models - Summary and Hints

Summary: General Linear Model

• A general linear model is:

$$\boldsymbol{Y} \sim N_n(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I})$$

Consider the well known two way ANOVA:

 $y_{ij} = \mu + \alpha_i + \beta_j + \varepsilon_{ij}, \quad \varepsilon_{ij} \sim \text{ i.i.d. } N(0, \sigma^2), \quad i = 1, 2, \quad j = 1, 2, 3.$

An expanded view of this model is:

The exact same in matrix notation:

$$\underbrace{\begin{pmatrix} y_{11} \\ y_{21} \\ y_{12} \\ y_{22} \\ y_{23} \\ y_{23}$$

General Linear Models - Summary and Hints

- y is the vector of all observations
- X is known as the *design matrix*
- eta is the vector of parameters
- $\pmb{\varepsilon}$ is a vector of independent $N(0,\sigma^2)$ "measurement noise"
 - The vector $\boldsymbol{\varepsilon}$ is said to follow a *multivariate normal distribution*
 - $\bullet \ \ \text{Mean vector } 0$
 - Covariance matrix $\sigma^2 \mathbf{I}$
 - Written as: $\boldsymbol{\varepsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$
- $y = X\beta + \varepsilon$ specifies the model, and everything can be calculated from y and X.

In a general linear model (with both factors and covariates), it is surprisingly easy to construct the design matrix \mathbf{X} .

- For each factor: Add one column for each level, with ones in the rows where the corresponding observation is from that level, and zeros otherwise.
- For each covariate: Add one column with the measurements of the covariate.
- Remove linear dependencies (if necessary)

Example: linear regression:

$$y_i = \alpha + \beta \cdot x_i + \varepsilon$$

In matrix notation:

$$\mathbf{y} = \begin{pmatrix} 1 & x_1 \\ 1 & x_2 \\ 1 & x_3 \\ \vdots & \vdots \\ \vdots & \vdots \\ 1 & x_n \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} + \boldsymbol{\varepsilon}$$

Likelihood ratio tests

- In the classical GLM case the exact distribution of the likelihood ratio test statistic may be derived.
- Consider the following model for the data $\boldsymbol{Y} \sim \mathrm{N}_n(\boldsymbol{\mu},\sigma^2\boldsymbol{\Sigma}).$
- Let us assume that we have the sufficient model

$$\mathcal{H}_1: \boldsymbol{\mu} \in \Omega_1 \subset \mathbb{R}^n$$

with $\dim(\Omega_1) = m_1$.

• Now we want to test whether the model may be reduced to a model where μ is restricted to some subspace of Ω_1 , and hence we introduce $\Omega_0 \subset \Omega_1$ as a linear (affine) subspace with $\dim(\Omega_0) = m_0$.

Model reduction

Figure: Model reduction. The partitioning of the deviance corresponding to a test of the hypothesis $\mathcal{H}_0: \mu \in \Omega_0$ under the assumption of $\mathcal{H}_1: \mu \in \Omega_1$.

Test for model reduction

Theorem (A test for model reduction)

The likelihood ratio test statistic for testing

 $\mathcal{H}_0: \mu \in \Omega_0$ against the alternative $\mathcal{H}_1: \mu \in \Omega_1 \setminus \Omega_0$

is a monotone function of

$$F(\boldsymbol{y}) = \frac{\mathrm{D}(p_1(\boldsymbol{y}); p_0(\boldsymbol{y}))/(m_1 - m_0)}{\mathrm{D}(\boldsymbol{y}; p_1(\boldsymbol{y}))/(n - m_1)}$$

where $p_1(\boldsymbol{y})$ and $p_0(\boldsymbol{y})$ denote the projection of \boldsymbol{y} on Ω_1 and Ω_0 , respectively. Under \mathcal{H}_0 we have

$$F \sim F(m_1 - m_0, n - m_1)$$

i.e. large values of F reflects a conflict between the data and \mathcal{H}_0 , and hence lead to rejection of \mathcal{H}_0 . The *p*-value of the test is found as $p = P[F(m_1 - m_0, n - m_1) \ge F_{obs}]$, where F_{obs} is the observed value of F given the data.

Test for model reduction

- The partitioning of the variation is presented in a Deviance table (or an *ANalysis Of VAriance table*, ANOVA).
- The table reflects the partitioning in the test for model reduction.
- The deviance between the variation of the model from the hypothesis is measured using the deviance of the observations from the model as a reference.
- Under \mathcal{H}_0 they are both χ^2 distributed, orthogonal and thus independent.
- This means that the ratio is F distributed.
- If the test quantity is large this shows evidence against the model reduction tested using \mathcal{H}_0 .

Deviance table

Source	f	Deviance	Test statistic, F
Model versus hypothesis	$m_1 - m_0$	$ p_1(oldsymbol{y}) - p_0(oldsymbol{y}) ^2$	$\frac{ p_1(\boldsymbol{y}) - p_0(\boldsymbol{y}) ^2/(m_1 - m_0)}{ \boldsymbol{y} - p_1(\boldsymbol{y}) ^2/(n - m_1)}$
Residual under model	$n-m_1$	$ oldsymbol{y}-p_1(oldsymbol{y}) ^2$	
Residual under hypothesis	$n-m_0$	$ m{y} - p_0(m{y}) ^2$	

Table: Deviance table corresponding to a test for model reduction as specified by \mathcal{H}_0 . For $\Sigma = I$ this corresponds to an analysis of variance table, and then 'Deviance' is equal to the 'Sum of Squared deviations (SS)'

Test for model reduction

The test is a conditional test

It should be noted that the test has been derived as a *conditional test*. It is a test for the hypothesis $\mathcal{H}_0: \mu \in \Omega_0$ under the assumption that $\mathcal{H}_1: \mu \in \Omega_1$ is true. The test does in no way assess whether \mathcal{H}_1 is in agreement with the data. On the contrary in the test the residual variation under \mathcal{H}_1 is used to estimate σ^2 , i.e. to assess $D(\boldsymbol{y}; p_1(\boldsymbol{y}))$.

The test does not depend on the particular parametrization of the hypotheses

Note that the test does only depend on the two sub-spaces Ω_1 and Ω_0 , but not on how the subspaces have been parametrized (the particular choice of basis, i.e. the design matrix). Therefore it is sometimes said that the test is *coordinate free*.

Initial test for model 'sufficiency'

- In practice, one often starts with formulating a rather comprehensive model, a *sufficient model*, and then tests whether the model may be reduced to the *null model* with Ω_{null} = ℝ, i.e. dim Ω_{null} = 1.
- The hypotheses are

 $\mathcal{H}_{null}: \boldsymbol{\mu} \in \mathbb{R}$ $\mathcal{H}_1: \boldsymbol{\mu} \in \Omega_1 \setminus \mathbb{R}.$

where dim $\Omega_1 = k$.

• The hypothesis is a hypothesis of "Total homogeneity", namely that all observations are satisfactorily represented by their common mean.

Deviance table

Source	f	Deviance	Test statistic, F
$Model\ \mathcal{H}_{null}$	k-1	$ p_1(\boldsymbol{y}) - p_{null}(\boldsymbol{y}) ^2$	$\frac{ p_1(\boldsymbol{y}) - p_{null}(\boldsymbol{y}) ^2/(k-1)}{ \boldsymbol{y} - p_1(\boldsymbol{y}) ^2/(n-k)}$
Residual under \mathcal{H}_1	n-k	$ oldsymbol{y}-p_1(oldsymbol{y}) ^2$	$ \boldsymbol{\vartheta} \mathbf{F}^{1}(\boldsymbol{\vartheta}) / (\cdots)$
Total	n-1	$ oldsymbol{y}-p_{null}(oldsymbol{y}) ^2$	

Table: Deviance table corresponding to the test for model reduction to the null model.

Under \mathcal{H}_{null} , $F \sim F(k-1, n-k)$, and hence large values of F would indicate rejection of the hypothesis \mathcal{H}_{null} . The *p*-value of the test is $p = P[F(k-1, n-k) \geq F_{obs}]$.

Coefficient of determination, R^2

• The coefficient of determination, R^2 , is defined as

$$R^{2} = \frac{\mathrm{D}(p_{1}(\boldsymbol{y}); p_{null}(\boldsymbol{y}))}{\mathrm{D}(\boldsymbol{y}; p_{null}(\boldsymbol{y}))} = 1 - \frac{\mathrm{D}(\boldsymbol{y}; p_{1}(\boldsymbol{y}))}{\mathrm{D}(\boldsymbol{y}; p_{null}(\boldsymbol{y}))}, \ 0 \le R^{2} \le 1.$$

- Suppose you want to predict Y. If you do not know the x's, then the best prediction is \overline{y} . The variability corresponding to this prediction is expressed by the *total variation*.
- If the model is utilized for the prediction, then the prediction error is reduced to the *residual variation*.
- R^2 expresses the fraction of the total variation that is explained by the model.
- As more variables are added to the model, $D(y; p_1(y))$ will decrease, and R^2 will increase.

Adjusted coefficient of determination, R_{adj}^2

- The adjusted coefficient of determination aims to correct that R^2 increases as more variables are added to the model.
- It is defined as:

$$R_{adj}^2 = 1 - \frac{\mathrm{D}(\boldsymbol{y}; p_1(\boldsymbol{y}))/(n-k)}{\mathrm{D}(\boldsymbol{y}; p_{null}(\boldsymbol{y}))/(n-1)}.$$

- It charges a penalty for the number of variables in the model.
- As more variables are added to the model, $D(y; p_1(y))$ decreases, but the corresponding degrees of freedom also decreases.
- The numerator in may increase if the reduction in the residual deviance caused by the additional variables does not compensate for the loss in the degrees of freedom.