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Introduction to the book

The book

The book provides an introduction to methods for statistical modeling
using essentially all kind of data.

The principles for modeling are based on likelihood techniques.

Each chapter of the book contains examples and guidelines for solving
the problems using the statistical software package R.

The focus is on establishing models that explain the variation in data
in such a way that the obtained models are well suited for predicting
the outcome for given values of some explanatory variables.

Focus on formulating, estimating, validating and testing models for
predicting the mean value of the random variables.

Consider the complete stochastic model for the data which includes an
appropriate choice of the density describing the variation of the data.
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Introduction to the book

The book

Methods for modelling Gaussian distributed data, regression analysis,
analysis of variance and the analysis of covariance, are established so
that extension to similar methods applied in the case of, e.g. Poisson,
Gamma and Binomial distributed data is easy using the likelihood
approach in both cases.

General linear models are relevant for Gaussian distributed samples
whereas the generalized linear models facilitate a modeling of data
originating from the so-called exponential family of densities including
Poisson, Binomial, Exponential, Gaussian, and Gamma distributions.

The presentation of the general and generalized linear models is
provided using essentially the same methods related to the likelihood
principles, but described in two separate chapters.

The book also contains a first introduction to both mixed effects
models (also called mixed models) and hierarchical models.
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Introduction to the book

Notation

All vectors are column vectors.

Vectors and matrices are emphasized using a bold font.

Lowercase letters are used for vectors and uppercase letters are used
for matrices.

Transposing is denoted with the upper index T .

Random variables are always written using uppercase letters.

Variables and random variables are assigned to letters from the last
part of the alphabet (X, Y, Z, U, V, . . . ), while constants are assigned
to letters from the first part of the alphabet (A, B, C, D, . . . ).

From the context it should be possible to distinguish between a
matrix and a random vector.
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Examples of types of data

Types of data

1 Continuous data (e.g. y1 = 2.3, y2 = −0.2, y3 = 1.8, . . . , yn = 0.8).
Normal (Gaussian) distributed. Used, e.g. for air temperatures in
degrees Celsius.

2 Continuous positive data (e.g. y1 = 0.0238, y2 = 1.0322,
y3 = 0.0012, . . . , yn = 0.8993). Log-normally distributed. Often used
for concentrations.

3 Count data(e.g. y1 = 57, y2 = 67, y3 = 54, . . . , yn = 59). Poisson
distributed. Used, e.g. for number of accidents.

4 Binary (or quantal) data (e.g. y1 = 0, y2 = 0, y3 = 1, . . . , yn = 0),
or proportion of counts (e.g. y1 = 15/297, y2 = 17/242, y3 = 2/312,
. . . , yn = 144/285). Binomial distribution.

5 Nominal data (e.g. “Very unsatisfied”, “Unsatisfied”, “Neutral”,
“Satisfied”, “Very satisfied”). Multinomial distribution.
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Motivating examples

The Challenger disaster

On January 28, 1986, Space Shuttle Challenger broke apart 73 seconds
into its flight and the seven crew members died. The disaster was due to a
disintegration of an O-ring seal in the right rocket booster. The forecast
for January 28, 1986 indicated an unusually cold morning with air
temperatures around 28 degrees F (−1 degrees C).

The planned launch on January 28, 1986 was launch number 25. During
the previous 24 launches problems with the O-ring were observed in 6
cases. A model of the probability for O-ring failure as a function of the air
temperature would clearly have shown that given the forecasted air
temperature, problems with the O-rings were very likely to occur.
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Motivating examples

The Challenger disaster
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Figure: Observed failure of O-rings in 6 out of 24 launches along with predicted
probability for O-ring failure.
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Motivating examples

QT prolongation for drugs

In the process of drug development it is required to perform a study of
potential prolongation of a particular interval of the electrocardiogram
(ECG), the QT interval. The QT interval is defined as the time required
for completion of both ventricular depolarization and repolarization. The
interval has gained clinical importance since a prolongation has been
shown to induce potentially fatal ventricular arrhythmia such as Torsade
de Pointes (TdP).

A number of drugs have been reported to prolong the QT interval, both
cardiac and non-cardiac drugs. Recently, both previously approved as well
as newly developed drugs have been withdrawn from the market or have
had their labeling restricted because of indication of QT prolongation.
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Motivating examples

QT prolongation for drugs

Below are the results from a clinical trial where a QT prolonging drug was
given to high risk patients. The patients were given the drug in six
different doses and the number of incidents of Torsade de Points counted.

Index Daily dose Number of Number Fraction showing
[mg] subjects showing TdP TdP

i xi ni zi pi
1 80 69 0 0
2 160 832 4 0.5
3 320 835 13 1.6
4 480 459 20 4.4
5 640 324 12 3.7
6 800 103 6 5.8

Table: Incidence of Torsade de Pointes by dose for high risk patients.
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Motivating examples

QT prolongation for drugs

It is reasonable to consider the fraction, Yi =
Zi

ni
, of incidences of

Torsade de Points as the interesting variable.

A natural distributional assumption is the binomial distribution,
Yi ∼ B(ni, pi)/ni, where ni is the number of subjects given the
actual dosage and pi is the fraction showing Torsade de Pointes.
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Motivating examples

QT prolongation for drugs - bad model

The fraction, pi is higher for a higher daily dosage of the drug.

A linear model of the form Yi = pi + ǫi where pi = β0 + β1xi does
not reflect that pi is between zero and one and the model for the
fraction, Yi (as “mean plus noise”) is clearly not adequate, since the
observations are between zero and one.

It is clear that the distribution of ǫi and then the variance of
observations must be dependent on pi.

Also, the problem with the homogeneity of the variance indicates that
a traditional (“mean plus noise”) model is not adequate here.
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Motivating examples

QT prolongation for drugs - correct model

Instead we will now formulate a model for transformed values of the
observed fractions pi.

Given that Yi ∼ B(ni, pi)/ni we have that

E[Yi] = pi

V ar[Yi] =
pi(1− pi)

ni

i.e. the variance is now a function of the mean value. Later on the
so-called mean value function V (E[Yi]) will be introduced which relates
the variance to the mean value.
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Motivating examples

QT prolongation for drugs - correct model

We will consider a function, the so-called link function of the mean value
E[Y ]. In this case we will use the logit-transformation

g(pi) = log

(
pi

1− pi

)

and we will formulate a linear model for the transformed values.
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Motivating examples

QT prolongation for drugs - correct model

A plot of the observed logits, g(pi) as a function of the concentration
indicates a linear relation of the form

g(pi) = β0 + β1xi

After having estimated the parameters, it is now possible to use the
inverse transformation, which gives the predicted fraction p̂ of subjects
showing Torsade de Pointes as a function of a daily dose, x using the
logistic function:

p̂ =
exp (β̂0 + β̂1x)

1 + exp(β̂0 + β̂1x)
.

This approach is called logistic regression.
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A first view on the models

A first view on the models

We will focus on statistical methods to formulate models for
predicting the expected value of the outcome, dependent, or response
variable, Yi as a function of the known independent variables,
xi1, xi2, . . . , xik.

These k variables are also called explanatory, or predictor variables or
covariates.

This means that we shall focus on models for the expectation E[Yi].
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A first view on the models

A first view on the models

Examples of types of response variables was shown on slide 6.

Also the explanatory variables might be labeled as continuous,
discrete, categorical, binary, nominal, or ordinal.

To predict the response, a typical model often includes a combination
of such types of variables.

Since we are going to use a likelihood approach, a specification of the
probability distribution of Yi is a very important part when specifying
the model.
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A first view on the models

General linear models

In general linear models, the expected value of the response variable Y is
linked linearly to the explanatory variables by an equation of the form

E[Yi] = β1xi1 + · · ·+ βkxik .

It will be shown that for Gaussian data it is reasonable to build a model
directly for the expectation. This relates to the fact that for Gaussian
distributed random variables, all conditional expectations are linear.
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A first view on the models

Generalized linear models

It is often more reasonable to build a linear model for a transformation of
the expected value of the response. This approach is more formally
described in connection with the generalized linear models where a link
between the expected value of response and the explanatory variables is of
the form

g(E[Yi]) = β1xi1 + . . .+ βkxik .

The function g(.) is called the link function and the right hand side of the
equation is called the linear component of the model.
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A first view on the models

Generalized linear models

A full specification of the model contains a specification of

1 The probability density of Y . In the general linear model this will be
the Gaussian density, i.e. Y ∼ N(µ, σ2), whereas in the generalized
linear model the probability density will belong to the exponential
family of densities, which includes the Gaussian, Poisson, Binomial,
Gamma, and other distributions.

2 The smooth monotonic link function g(.). Here we have some
freedom, but the so-called canonical link function is directly linked to
the used density. No link function is needed for Gaussian data – or
the link is the identity.

3 The linear component.
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A first view on the models

Hierarchical models

In Chapters 5 and 6 of the book the important concept of hierarchical
models is introduced.

The Gaussian case is introduced in Chapter 5, and this includes the
so-called linear mixed effects models.

This Gaussian and linear case is a natural extension of the general
linear models.

An extension of the generalized linear models are found in Chapter 6
which briefly introduces the generalized hierarchical models.
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A first view on the models

Hierarchical models - Gaussian case

Consider for instance the test of ready made concrete. The concrete are
delivered by large trucks. From a number of randomly picked trucks a
small sample is taken, and these samples are analyzed with respect to the
strength of concrete. A reasonable model for the variation of the strength
is

Yij = µ+ Ui + ǫij

where µ is the overall strength of the concrete and Ui is the deviation of
the average for the strength of concrete delivered by the i’th truck, and
ǫij ∼ N(0, σ2) the deviation between concrete samples from the same
truck.
Here we are typically not interested in the individual values of Ui but
rather in the variation of Ui, and we will assume that Ui ∼ N(0, σ2

u).
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A first view on the models

Hierarchical models - Gaussian case

The model on slide 22 is a one-way random effects model. The parameters
are now µ, σ2

u and σ2.
Putting µi = µ+ Ui we may formulate the model as a hierarchical model,
where we shall assume that

Yij |µi ∼ N(µi, σ
2) ,

and in contrast to the fixed effects model, the level µi is modeled as a
realization of a random variable,

µi ∼ N(µ, σ2

u),

where the µi’s are assumed to be mutually independent, and Yij are
conditionally independent, i.e. Yij are mutually independent in the
conditional distribution of Yij for given µi.
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A first view on the models

Hierarchical models - Gaussian case

Let us again consider a model for all n observations and let us further
extend the discussion to the vector case of the random effects. The
discussion above can now be generalized to the linear mixed effects model
where

E[Y |U ] = Xβ +ZU

with X and Z denoting known matrices. Note how the mixed effect linear
model in is a linear combination of fixed effects, Xβ and random effects,
ZU . These types of models will be described in Chapter 5.
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A first view on the models

Hierarchical models - non-Gaussian case

The non-Gaussian case of the hierarchical models, where

g(E[Y |U ]) = Xβ +ZU

and where g(.) is an appropriate link function will be treated in Chapter 6.
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