Towards a Theory of Domain Descriptions
— Bergen 8 May Mini-course Notes —

Dines Bjgrner
DTU Informatics, Techn.Univ.of Denmark, DK-2800 Kgs.Lyngby

Fredsvej 11, DK-2840 Holte, Denmark
bjorner@gmail.com, www.imm.dtu.dk/~db

May 1, 2012: 16:34

Contents

1 Introduction
1.1 Rdles of Domain Engineering
1.1.1 Software Development
Requirements Construction.
Software Design
1.1.2 Domain Studies “In Isolation”
1.2 Additional Preliminary Notions.
121 Typesand Values
122 Algebras
Abstract Algebras
Heterogeneous Algebras
Behavioral Algebras
1.3 On ‘Method’ and ‘Methodology’
1.4 An Ontology of Descriptions
1.4.1 Entities and Properties
1.42 Categories of Entitieso
1.5 Structure of Paper

2 Domains

2.1 Informal Characterisation
2.2 Mereology
2.3 Rough Sketch Hints of Domains
2.4 What are Domains 7 L
2.4.1 An Informal Characterisation of Domains
2.42 A Formal Characterisation of Domains
25 Six Examples
251 Air Traffic.
252 Buildings
2.5.3 Financial Service Industry
2.5.4 Machine Assemblies

Towards a Theory of Domain Descriptions

255 QOilIndustry 21
“The” Overall Assembly 21

A Concretised Composite parts, . 22

25.6 Railway Nets 23

3 Entities 25
Examples 25

3.1 Parts. . . . 26
Examples 26

3.1.1 Atomic Parts 26
Examples 26

3.1.2 Composite Parts 27
Examples 27

3.1.3 Part Attributes L 27
Atomic Part Attributes 28

Examples 28

Composite Part Attributes 28

Examples 28

Static Part Attributes 29

Examples 29

Dynamic Part Attributes 29

Examples 29

Indivisibility of Attributes 30

Examples 30

3.1.4 Subparts Are Parts 32
Examples 32

3.1.5 Subpart Types Are Not Subtypes 32
Examples 32

3.1.6 Mereology of Composite Parts. 32
Examples e 32

3.1.7 Part Descriptions 33
Examples e 34

3.1.8 States 34
Examples 34

3.2 Actions 35
Examples 35

33 Events 36
Example 36

3.4 Behaviours 37
Example 37

3.5 Discussion. 38
4 Describing Domain Entities 39
4.1 On Describing 39
4.1.1 Informal Descriptions 39
Domain Instances Versus Domains 39
Non-uniqueness of Domain Descriptions 39

A Criterion for Description 39

Reason for ‘Description’ Failure oL 40

Failure of Description Language 40

Guidance 40

4.1.2 Formal Descriptions 40

May 1, 2012: 16:34 (© Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark DTU Informatics. Bergen 8 May 2012 Mini-course Notes

Research Notes

4.2 A Formal Description Language 41
4.2.1 Observing and Describing Entities 41
4.2.2 Observing and Describing Parts 41

Abstract Types e 41
Concrete Types e 42

Type Definitions 42

Type Properties 44
Subpart Type Observers 45
Unique ldentifier Functions L 45
Mereologies and Their Functions 46
General Attributes and Their Functions 47

4.2.3 Describing Actions. L 49
Function Names 49
Informal Function Descriptions 49
Formal Function Descriptions 50
Agents L 52

424 Describing Events 52
Deliberate and Inadvertent (Internal and External) Events 52

Event Predicates 52

4.25 Describing Behaviours oL L 54
Behaviour Description Languages 54
Simple Sequential Behaviours 0L 54

— Snapshot Description of a Simple Sequential Behaviour: 54

Simple Concurrent Behaviours o000 55
Communicating Behaviours L 55

External Non-deterministic Behaviours 55

Internal Non-deterministic Behaviours 56

General Communicating Behaviours 56

43 Temporal Issues L 61
4.3.1 Three Abstract Time Concepts 61
432 Concrete Time Concepts 61
4.3.3 Some Interval Relations 62
434 Time Phenomena 62

Parts and Time 62

Actions and Time 63

Events and Time 63

Behaviours and Time 64

4.3.5 Temporal Descriptions 67

5 Discovering Domain Entities 68

5.1 Preliminaries 68
5.1.1 Part Signatures 68
5.1.2 Domain Indices 68
5.1.3 Inherited Domain Signatures 69
5.1.4 Domain and Sub-domain Categories 69
5.1.5 Simple and Compound Indexes 69
5.1.6 Simple and Compound Domain Categories 70
5.1.7 Examples e 70
5.1.8 Discussion 74

5.2 Proposed Type and Signature ‘Discoverers’ 75
5.2.1 Analysing Domain Parts 76

May 1, 2012: 16:34

(© Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark

4 Towards a Theory of Domain Descriptions

Domain Part Sorts and Their Observers 76

A Domain Sort Discoverer 76

Domain Part Types and Their Observers 77

Do a Sort Have a Concrete Type 7 7

A Domain Part Type Observer 78

Concrete Part Types. 79

Part Type Analysers 79

Unique ldentity Analysers 79

Mereology Analysers 79

General Attribute Analysers 80

— Attribute Sort Exploration 82

5.2.2 Discovering Action Signatures oo 82

General 82

Function Signatures Usually Depend on Compound Domains 82

The ACTION_SIGNATURES Discoverer 82

5.2.3 Discovering Event Signature Lo 83

5.2.4 Discovering Behaviour Signatures oo 83

5.3 What Does Application Mean ? 85

5.3.1 PART_SORTS e 86

5.3.2 HAS_A_CONCRETE_TYPE e 86

5.3.3 PART_TYPES e 86

534 UNIQUE_ID e 87

54 Discussion 87

6 Conclusion 89

6.1 General 89

6.2 What Have We Achieved 7 89

6.3 Other Formal Models 89

6.4 Research Issues 89

6.5 Engineering Issues L 89

6.6 Comparable Work 89

6.7 Acknowledgements L 89

7 Bibliographical Notes 90

7.1 The Notes e 90

7.2 References L 90

8 Indexes 93

8.1 Index of Concepts 93

8.2 Index of Examples 95

8.3 Index of Formulas 96

8.4 Index of Inquieries 101
Abstract

We seek foundations for a possible theory of domain descriptions. Sect. 2 infor-
mally outlines what we mean by a domain. Sect. 3 informally outlines the entities
whose description form a description of a domain. Sect. 4 then suggests one way
of formalising such description parts!. There are other ways of formally describing

!The exemplified description approach is model-oriented, specifically the RAISE [23] cum RSL [22] ap-
proach.

May 1, 2012: 16:34 (© Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark DTU Informatics. Bergen 8 May 2012 Mini-course Notes

Research Notes 5

domains?, but the one exemplified can be taken as generic for other description ap-
proaches. Sect. ?? outlines a theory of domain mereology. Sect. 5 suggests some
‘domain discoverers’.

These research notes reflect our current thinking. Through seminar presentations,
their preparation and post-seminar revisions it is expected that they will be altered
and honed.

20ther model-oriented approaches are those of Alloy [28], Event B [1], VDM [7, 8, 17] and Z [42].
Property-oriented description approaches include Cafe0BJ [19], Casl [13] and Maude [32, 12]

May 1, 2012: 16:34 © Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark

6 Towards a Theory of Domain Descriptions

1 Introduction 4

In this section we shall cover a number of concepts (“Preliminary Notions” and “An On-
tology of Descriptions”, Sects. 1.2-1.4) that lie at the foundation of the theory and practice
of domain science and engineering. These are general issues such as (i) software engineering
as consisting of domain engineering, requirements engineering, and software design, (ii) types
and values, and (iii) algebras. But first we shall put the concept of domain engineering in a
proper perspective.

1.1 Roles of Domain Engineering 5

By domain engineering we shall understand the engineering® of domain descriptions, their
study, use and maintenance. In this section (Sect. 1.1) we shall focus on the use of domain
descriptions (i) in the construction of requirements and, from these, in the design of soft-
ware, and (ii) more generally, and independent of requirements engineering and software
design, in the study of man-made domains in a search for possible laws.

1.1.1 Software Development 6

We see domain engineering as a first in a triptych phased software engineering: (I) domain
engineering, (II) requirements engineering and (III) software design. Sections 3-4 cover
some engineering aspects of domain engineering.

Requirements Construction As shown elsewhere [3, 4, 5, 6] domain descriptions, D, can
serve as a firm foundation for requirements engineering. This done is by systematically
“deriving” major part of the requirements from the domain description. The ‘deriva-
tion’ is done in steps of refinements and extensions. Typical steps reflect such ‘algebraic
operations’ as projection, instantiation, determination, extension, fitting, etcetera In
“injecting” a domain description, D, in a requirements prescription, R, the requirements
engineer endeavors to satisfy goals, G, where goals are meta-requirements, that is, are a
kind of higher-order requirements which can be uttered, that is, postulated, but cannot
be formalised in a way from which we can “derive” a software design. For the concept of
‘goal” we refer to [30, Axel van Lamsweerde].

So, to us, domain engineering becomes an indispensable part of software engineering. In
[6] we go as far as suggesting that current requirements engineering (research and practice)
rests on flawed foundations !

Software Design Finally, from the requirements prescription, R, software, S, can be
designed through a series of refinements and transformations such that one can prove

3Engineering is the discipline, art, skill and profession of acquiring and applying scientific, mathematical,
economic, social, and practical knowledge, in order to design and build structures, machines, devices,
systems, materials and processes ... [http://en.wikipedia.org/wiki/Engineering]

May 1, 2012: 16:34 (© Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark DTU Informatics. Bergen 8 May 2012 Mini-course Notes

Research Notes 7

D,S E R, that is, the software design, S, models, i.e., is a correct implementation of the
requirements, R, where the proof makes assumptions about the domain, D.

1.1.2 Domain Studies “In Isolation” 10

But one can pursue developments of domain descriptions whether or not one subsequently
wishes to pursue requirements and software design. Just as physicists study “mother
nature” in order just to understand, so domain scientists cum engineers can study, for ex-
ample, man-made domains — just to understand them. Such studies of man-made domains
seem worthwhile. Health care systems appear to be quite complex, embodying hundreds or
even thousands of phenomena and concepts: parts, actions, events and behaviours. So do
container lines, manufacturing, financial services (banking, insurance, trading in securities
instruments, etc.), liquid and gaseous material distribution (pipelines), etcetera. Proper
studies of each of these entails many, many years of work.

1.2 Additional Preliminary Notions 12

We first dwell on the “twinned” notions ‘type’ and ‘value’, Sect. 1.2.1. And then we
summarise, Sect. 1.2.2, the notions of (universal, or abstract) algebras, heterogeneous
algebras and ‘behavioural’ algebras. The latter notion, behavioural algebra, is a “home-
cooked” term. (Hence the single quotes.) The algebra section, Sect. 1.2.2, is short on
definitions and long on examples.

1.2.1 Types and Values 13

Values (0,1,2,...) have types (integer). We observe values (false, true)), but we speak
of them by their types (Boolean); that is: types are abstract concepts whereas (actual)
values are (usually) concrete phenomena. By a type we shall here, simplifying, mean a
way of characterising a set of entities (of similar “kind”). Entity values and types are
related:when we observe an entity we observe its value; and when we say that an entity
is of a given type, then we (usually) mean that the observed entity is but one of several
entities of that type.

Example 1 (Types and Values of Parts) Three naive examples

When we say, or write, When we say, or write, When we say, or write,
the [or that] net, we the [or that| account, the [or that] container,
mean we mean we mean

1. an entity, a specific 3. an entity, a specific 5. an entity, a specific
value, n, value, a, value, c,

2. of type Het, N. 4. of type aCCOUﬂt, A. 6. of type Contajner’ C.

May 1, 2012: 16:34 © Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark

11

14

15

16

8 Towards a Theory of Domain Descriptions

type type type
2. N 4. A 6. C
value value value
1. n:N 3. a:A 5 «cC

Example 2 (Types and Values of Actions, Events and Behaviours) We continue the ex-
ample above: A set of actions that all insert hubs in a net have the common signature:

value
insert: H - N 5 N

The type expression H—N-N demotes an infinite set of functions from Hubs to partial
functions from Nets

to Nets. The value clause insert: H—N-"N names a function value in that infinite set insert
and non-deterministically selects an arbitrary value in that infinite set. The functions are
partial (—) since an argument Hub may already “be” in the N in which case the insert
function is not defined. A set of events that all result in a link of a net being broken can
be characterised by the same predicate signature:

value
link_disappearance: N x N — Bool

The set of behaviours that focus only on the insertion and removal of hubs and links in a
net have the common signature:

type

Maintain = Insert_H | Remove_H | Insert_L | remove_L
value

maintain_.N: N — Maintain* — N

maintain_N: N — Maintain® — Unit

If insertions and removals continue ad infinitum, i.e., “, then the maintenance behaviour
do likewise: Unit.

Inquiry: Type and Value

The concept of type and its study in the last 50 years, is, perhaps, the finest contribution
that computer science have made to mathematics. It all seems to have started with
Bertrand Russel who needed to impose a type hierarchy on sets in order to understand
the problem posed by the question: “is the set of all sets a member of itself”. Explicit
types were (one may claim) first introduced into programming languages in Algol 60
2l

The two concepts: ‘type’ and ‘value’ go hand-in-hand. | MORE TO COME] o

May 1, 2012: 16:34 (© Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark DTU Informatics. Bergen 8 May 2012 Mini-course Notes

Research Notes 9

1.2.2 Algebras 17

Abstract Algebras By an abstract algebra we shall understand a (finite or infinite) set
of parts (e, ey, ...) called the carrier, A (a type), of the algebra, and a (usually finite)
set of functions, fi, f2, ..., fn, [each] in Q, over these. Writing f;(ej,,e;,,...,€;,.), where
fi is in Q of signature:

signaturew : A" — A

and each e;, (¢ : {l.m}) is in A. The operation f;(ej,,€j,,...,€;,,) is then meant to
designate either chaos (a totally undefined quantity) or some e, in A.

Heterogeneous Algebras A heterogeneous algebra has its carrier set, A, consist of a
number of usually disjoint sets, also referred to as sub-types of A: A, As, ..., A,, and a
set of operations, w:(), such that each operation, w, has a signature:

signaturew : A;xA;jx ---xA;, — A,
where A;, A;, ..., Ay and A, are in {4y, Ay, ..., A}

Example 3 (Heterogeneous Algebras: Platoons) We leave it to the reader to fill in miss-
ing narrative and to decipher the following formalisation.

7. There are vehicles.

8. A platoon is a set of one or more vehicles.

type
7. V

8. P ={|p-p:V-set A p#{} |}

9. A vehicle can join a platoon.
10. A vehicle can leave a platoon.
11. Two platoons can be merged into one platoon.

12. A platoon can be split into two platoons.
9. join0: VxP—P
9. joinO(v,p) =p U {v} pre:v¢&p

10. leave 0: VX P — P
10. leave_0(v,p) = p\{v} pre: veEp

11. merge 0: P x P — P

May 1, 2012: 16:34 © Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark

18

19

20

21

22

23

24

10 Towards a Theory of Domain Descriptions

11. merge O(p,p)=puUp prep#{}#p Apnp ={}

12. split_0: P — P-set
12. split_0(p) = let p',p":P « p’ U p” = p in {p’,p"} end pre: card p > 2

The above formulas define a heterogeneous algebra with types V and P and operations (or
actions) join_0, leave_0, merge_0, and split_0.

Behavioral Algebras An abstract algebra is characterised by the one type, A, of its
parts and by its operations all of whose signatures are of the form AxAx .-+ xA—A. A
heterogeneous algebra is an abstract algebra and is further characterised by two or more
types, Ay, As, ..., A, and by a set of operations of usually distinctly typed signatures.
A behavioral algebra is a heterogeneous algebra and is further characterised by a set of
events and by a set of behaviours where events are like actions and behaviours are sets of
sequences of actions, events and behaviours.

Example 4 (A Behavioural Algebra: A System of Platoons and Vehicles) Our exam-
ple may be a bit contrived. We have yet to unfold, as we do in this paper, enough material
to give more realistic examples.

13. A well-formed platoon/vehicle system consists of a pair:

a convoys which is a varying set of [non-empty] platoons and
b reservoir which is a varying set of vehicles —
¢ such that the convoys platoons are disjoint, no vehicles in common, and

d such that reservoir have no vehicle in common with any platoon in convoys.
14. Platoons are characterised by unique platoon identifiers.

15. These identifiers can be observed from platoons.

16. Vehicles from the reservoir behaviour may join [leave| a platoon whereby they leave
[respectively join| the pool.

17. Two platoons may merge into one, and a platoon may split into two.

18. Finally, vehicles may enter [exit] the system by entering [exiting] reservoir.

type
13. S={](cr):CxRerNnUc={}|}
13a. C = {| c:P-set » wf_C(c) |}

value

May 1, 2012: 16:34 (© Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark DTU Informatics. Bergen 8 May 2012 Mini-course Notes

Research Notes 11

13c. wf.C: C — Bool
13c. wf.C(c) =V p,p"P{p,p'}Cc = p#A{}#£p' ApNp' = {}
type

13b. R = V-set
value

16. join.l: S =S
16. leave.l: S5 S
17. mergel: S = S
17. split.1: S = S
18. enter.l: S5 S
18. exit.1: S5 S

25
19. join_1 selects an arbitrary vehicle in r:R and an arbitrary platoon p in c¢:C| joins v to
p in ¢ and removes v from r.
20. leave_1 selects a platoon p in ¢ and a vehicle v in p, removes v from p in ¢ and joins
v to r.
21. merge_1 selects two distinct platoons p,p’ in ¢, removes them from ¢, takes their union
and adds to c.
22. split_1 selects a platoon p in ¢, one which has at least to vehicles,
23. and partitions p into p’ and p”, removes p from ¢ and joins p’ and p” to c.
24. enter_1 joins a fresh vehicle v to r.
25. exit_1 removes a vehicle v from a non-empty r.
26

19. join_1(c,r) =
19. let v:Vev € r)p:Pep € c in
19 (\{p} U {join 0(v,p)}.r\{v}) end

20. leave_l(c,r) =
20. let v:Vp:PepecAvEpin
20. (c\{p} U {leave_O(v,p)},r U {v}) end

21. merge_1(c,r) =
21. let p,p":Pep#p'A{p,p'}Cc in
21. (c\{p,p'} U {merge_0(p,p’)}.r) end

22, split_1(c,r) =
23. let p:Psp € cAcard p>2 in

May 1, 2012: 16:34 © Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark

27

28

29

30

12 Towards a Theory of Domain Descriptions

23. let p'.p":PspUp =pin
23. (c\{p} U split_0(p),r) end end

w

24. enter_1(c,r) = (clet viVevg r U U cinr U {v} end)
25. exit_1()(c,r) = (c,let v:Vev € rin r\{v} end) pre: r#{}

The r U Uc in enter_1(c,r) expresses the union (with the vehicles of r) of all the vehicles in
all the platoons of c, i.e., the distributed union of ¢ (Uc).

The above model abstracts an essence of the non-deterministic behaviour of a platoon-
ing system. We make no assumptions about which vehicles are joined to or leave which
platoons, which platoons are merged, which platoon is split nor into which sub-platoons,
and which vehicle enters and exits the reservoir state.

26. We model the above system as a behaviour which is composed from a pair of con-
current behaviours:
a a convoys behaviour and
b a reservoir behaviour
¢ where these behaviours interact via a channel cr_ch and
d where the entering of “new” and exiting of “old” vehicles occur on a channel

io_ch

27. Hence the communications between the reservoir behaviour and the convoys be-
haviour are of three kinds: Joining (moving) a vehicle to a (“magically”?) named
platoon from the reservoir behaviour, Removing [moving] a vehicle from a named
platoon to (mkV(v)) the reservoir behaviour

type

27. M == mkJ(v:V) | mkR | mkV(v:V)
channel

26c. cr_ch:M

26d. io_ch:V

value

26. system: S — Unit
26. system(c,r) = convoys(c) || reservoir(r)

28. The convoys behaviour non-deterministically ([]) chooses either to

a merge platoons, or to

“In this example we skip the somewhat ‘technical’ details as to how the reservoir behaviour obtains
knowledge of platoon names.

May 1, 2012: 16:34 (© Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark DTU Informatics. Bergen 8 May 2012 Mini-course Notes

Research Notes 13

b split platoons, or to
¢ Interact with the reservoir behaviour via channel ct_ch
d and based on that interactions

i. to either join a[n arbitrary] vehicle v to a platoon, or
ii. to remove a named vehicle, v, from a platoon

iii. while “moving’ that vehicle to reservoir.

28. convoys: C — in,out crch Unit
28. convoys(c) = convoys(merge(c)) [| convoys(split(c)) [] convoys(interact(c))

28c. interact: C — in,out cr.ch C
28c. interact(c) =

28c. let m =crch? in

28d. case m of

28(d)i. mkJ(v) — join_vehicle(v,c),

28(d)ii. mkR — let (¢,v)=remove_vehicle(c) in
28(d)iii. ct_ch!mkV(v) ; ¢

28c. end end end

29. The merge_platoons behaviour

a non-deterministically chooses two platoons of convoys (p,p’),

b removes the two platoons from convoys and adds the merge of these two platoons
to convoys.

¢ If convoys contain less than two platoons then merge_platoons is undefined.

29. merge_platoons: C — C

29. merge_platoons(c) =

29a. let p,p’,p":P « p#£p'A{p,p’}C c in
29b. c\{p,p'} U {merge_0(p,p’)} end
29b. pre: card c > 2

30. The split_platoons function

a non-deterministically chooses a platoon, p, of two or more vehicles in convoys,

b removes the chosen platoon from convoys and inserts the split platoons into
convoys.

¢ If there are no platoons in ¢ with two or more vehicles then split_platoons is
undefined.

May 1, 2012: 16:34 © Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark

34

35

14 Towards a Theory of Domain Descriptions

30. split_platoons: C = C
30. split_platoons(c) =
30a. let ppPepecAcardp > 2 in

30b. c\{p} U {split_0(p)} end
30c. pre: dp:PepecAcardp > 2

31. The reservoir behaviour interacts with the convoys behaviour and with “an external”,
that is, undefined behaviour through channels ct_ch and io_ch.
The reservoir behaviour [external] non-deterministically chooses between
a importing a vehicle from “the outside”,
b exporting a vehicle to “the outside”,
¢ moving a vehicle to the convoys behaviour, and

d moving a vehicle from the convoys behaviour.

31. reservoir: R — in,out cr_ch, io.ch Unit
31. reservoir(r) =

31la. (r U {ioch?}),

31b. [] let v:V + v € t in io_chlmkV(v) ; reservoir(r\{v}) end
3lc. [] let v:V + v € t in ct_ch!mkJ(v) ; reservoir(r\{v}) end
31d. [] let mkV(v) = ct_ch? in reservoir(r U {v}) end

We may consider Items 31a-31b as designating events.
This example designates a behavioural algebra.

Inquiry: Algebra
Algebra is a mathematical notion. We shall use this notion in seeking to describe domains
as algebras.

[MORE TO COME |

1.3 On ‘Method’ and ‘Methodology’ 36

Inquiry: Method and Methodology
We present our characterisation of the concepts of ‘method’ and ‘methodology’. When
we use these terms then our characterisation is what we mean by their use. There are
other characterisations. Be that as it may. °

By a method we shall understanda set of principles, techniques and tools where the
principles help select and apply these techniques and tools such that an artifact, here a
domain description, can be constructed.

By methodology we shall understand the knowledge and study of one or more methods.

Languages, whether informal, as English, or formal, as RSL, are tools.

May 1, 2012: 16:34 (© Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark DTU Informatics. Bergen 8 May 2012 Mini-course Notes

Research Notes 15

1.4 An Ontology of Descriptions 37

“By ontology we mean the philosophical study of the nature of being, existence, or reality
as such, as well as the basic categories of being and their relations. Traditionally listed
as a part of the major branch of philosophy known as metaphysics, ontology deals with
questions concerning what entities exist or can be said to exist, and how such entities
can be grouped, related within a hierarchy, and subdivided according to similarities and
differences.”

1.4.1 Entities and Properties 38

A main stream of philosophers [34, 20, 18] appear to agree that there are two categories
of discourse: entities® and properties. Once we say that, a number of questions arise: (Q;)
What counts as an entity ? (Q2) What counts as a property ? (Q3) Are properties entities ?
(Q4) Can properties predicate properties ? We shall take no and yes to be answers to @3 and
(4. These lecture notes shall answer)1 and ()

1.4.2 Categories of Entities 39

We shall promulgate the following classes of entities: parts, and operations. where we
further “sub-divide” operations into actions, events and behaviours That is, we can pred-
icate entities, e, as follows: IS PART(e), IS OPERATION(e), that is, IS_ACTION(e),
IS.EVENT (e) and IS BEHVAIOUR (e). We shall justify the above categorisation through
these lecture notes. So parts, actions, events and behaviours form an ontology of descrip-
tions.

1.5 Structure of Paper 20
1. Introduction 6-15
2. Domains 16-24
3. Entities 25-38
4. Describing Domain Entities 39-67
a Parts, Actions, Events 39-54
b Behaviours 54-67
5. Discovering Domain Entities 68-88
6. Conclusion 89-89

°http://en.wikipedia.org/wiki/Ontology
6The literature [31, 10, 11, 34, 20, 18, 41] alternatively refer to entities by the term individuals.

May 1, 2012: 16:34 © Dines Bjgrner 2011, Fredsvej 11, DK-2840 Holte, Denmark

