
Jan S Hesthaven
Brown University
Jan.Hesthaven@Brown.edu

DG-FEM for PDE’s
Lecture 8

DGFEM 2012 A brief overview of what’s to come

• Lecture 1: Introduction and DG-FEM in 1D

• Lecture 2: Implementation and numerical aspects

• Lecture 3: Insight through theory

• Lecture 4: Nonlinear problems

• Lecture 5: Extension to two spatial dimensions

• Lecture 6: Introduction to mesh generation

• Lecture 7: Higher order/Global problems

• Lecture 8: 3D and advanced topics

Lecture 8

✓ Let’s briefly recall what we know

✓ Part I: 3D problems and extensions

✓ Formulations and examples

✓ Adaptivity and curvilinear elements

✓ Part II: The need for speed

✓ Parallel computing

✓ GPU computing

✓ Software beyond Matlab

Lets summarize

We are done with all the basics -- and we have started
to see it work for us -- we know how to do

✓1D/2D problems
✓Linear/nonlinear problems
✓First and higher operators
✓Complex geometries
✓... and we have insight into theory

All we need is 3D -- and with that comes
the need for speed !

Extension to 3D ?

It is really simple at this stage !

Extensions

The development then follows the 1D discussion

28 2 The key ideas

no essentially new component is introduced to obtain the semi-discrete schemes. In this case, u =
[u1(x, t), . . . , um(x, t)]T is an m-vector and the vector-valued flux f : Rm → Rm.

The question of boundary conditions, and, ultimately, the choice of the numerical flux, is more
complicated for the system than for the scalar problem. In general terms, the boundary conditions
are

BLu(L, t) = g1(t) at x = L,
BRu(R, t) = g2(t) at x = R,

where the sum of the rank of the boundary operator, BL and BR, equals the required number of
inflow conditions.

To construct the numerical fluxes, one can use the Lax-Friedrichs fluxes as above. The only
difference from the scalar case to the system case is that the constant, C, is determined by the
maximum eigenvalue of the flux Jacobian

fu =
∂f

∂u
.

The final extension of the formulation to multidimensional systems is entirely straightforward;
that is, we assume that the solution, u(x, t), is approximated by a multidimensional piecewise
polynomial, uh. Proceeding as above, we recover the weak formulation

�

Dk

�
∂uk

h

∂t
φk

h − fk
h(uk

h) ·∇φk
h

�
dx = −

�

∂Dk
n̂ · f∗φk

h dx, (2.17)

and the strong form
�

Dk

�
∂uk

h

∂t
+∇ · fk

h(uk
h)

�
φk

h dx =
�

∂Dk
n̂ ·

�
fk

h(uk
h)− f∗

�
φk

h dx. (2.18)

for all locally defined test functions, φk
h ∈ Vk

h. Naturally, uk
h and the test functions, φk

h, are now
multidimensional functions of x ∈ Rd. The semi-discrete formulation then follows immediately by
expressing the local test functions as in Eq. (2.13).

The definition of the numerical fluxes follows the path discussed in the above, e.g., the Lax-
Friedrichs flux along the normal, n̂, is

f∗ = {{fh(uh)}} +
C

2
[[uh]].

Alternatives are possible, but this flux generally leads to both efficient, accurate, and robust meth-
ods. The constant in the Lax-Friedrichs flux is given as

C = max
u

����λ
�

n̂ · ∂f

∂u

����� ,

where λ(·) indicates the eigenvalue of the matrix.

28 2 The key ideas

no essentially new component is introduced to obtain the semi-discrete schemes. In this case, u =
[u1(x, t), . . . , um(x, t)]T is an m-vector and the vector-valued flux f : Rm → Rm.

The question of boundary conditions, and, ultimately, the choice of the numerical flux, is more
complicated for the system than for the scalar problem. In general terms, the boundary conditions
are

BLu(L, t) = g1(t) at x = L,
BRu(R, t) = g2(t) at x = R,

where the sum of the rank of the boundary operator, BL and BR, equals the required number of
inflow conditions.

To construct the numerical fluxes, one can use the Lax-Friedrichs fluxes as above. The only
difference from the scalar case to the system case is that the constant, C, is determined by the
maximum eigenvalue of the flux Jacobian

fu =
∂f

∂u
.

The final extension of the formulation to multidimensional systems is entirely straightforward;
that is, we assume that the solution, u(x, t), is approximated by a multidimensional piecewise
polynomial, uh. Proceeding as above, we recover the weak formulation

�

Dk

�
∂uk

h

∂t
φk

h − fk
h(uk

h) ·∇φk
h

�
dx = −

�

∂Dk
n̂ · f∗φk

h dx, (2.17)

and the strong form
�

Dk

�
∂uk

h

∂t
+∇ · fk

h(uk
h)

�
φk

h dx =
�

∂Dk
n̂ ·

�
fk

h(uk
h)− f∗

�
φk

h dx. (2.18)

for all locally defined test functions, φk
h ∈ Vk

h. Naturally, uk
h and the test functions, φk

h, are now
multidimensional functions of x ∈ Rd. The semi-discrete formulation then follows immediately by
expressing the local test functions as in Eq. (2.13).

The definition of the numerical fluxes follows the path discussed in the above, e.g., the Lax-
Friedrichs flux along the normal, n̂, is

f∗ = {{fh(uh)}} +
C

2
[[uh]].

Alternatives are possible, but this flux generally leads to both efficient, accurate, and robust meth-
ods. The constant in the Lax-Friedrichs flux is given as

C = max
u

����λ
�

n̂ · ∂f

∂u

����� ,

where λ(·) indicates the eigenvalue of the matrix.

158 6 Beyond one dimension

u(x, t) � uh(x, t) =

K�

k=1

uk
h(x, t) ∈ Vh =

K�

k=1

�
ψn(Dk

)

�Np

n=1
.

Here ψn(Dk
) is a two-dimensional polynomial basis defined on element Dk

. The local function,

uk
h(x, t), can be expressed by

x ∈ Dk
: uk

h(x, t) =

Np�

i=1

uk
h(xk

i , t)�k
i (x),

where �i(x) is the multidimensional Lagrange polynomial defined by some grid points, xi, on the

element Dk
.

Recalling the general discussion in Chapter 2 we require the residual to be orthogonal to all test

functions, φh ∈ Vh, resulting in the local statements

�

Dk

�
∂uk

h

∂t
�k
n(x)− fk

h ·∇�k
n(x)

�
dx = −

�

∂Dk
n̂ · f∗�k

n(x) dx,

and

�

Dk

�
∂uk

h

∂t
+∇ · fk

h

�
�k
n(x) dx =

�

∂Dk
n̂ ·

�
fk

h − f∗
�
�k
n(x) dx,

as the weak and strong form, respectively, of the nodal discontinuous Galerkin method in two spatial

dimensions.

As we have already discussed, the missing piece is the specification of the numerical flux, f∗
. In

most of the subsequent discussion, we primarily consider the local Lax-Friedrichs flux

f∗
(a, b) =

f(a) + f(b)

2
+

C

2
n̂(a− b),

where (a, b) are the interior and exterior solution value, respectively, C is the local maximum of the

directional flux Jacobian; that is,

C = max
u∈[a,b]

����n̂x
∂f1

∂u
+ n̂y

∂f2

∂u

���� ,

where f = (f1, f2). As for the one-dimensional case, many details remain to be discussed for special

problems and we will return to these later. However, at this point, the generic framework is settled

and we can begin to consider how to actually transform this into an efficient computational method.

6.1 Modes and nodes in two dimensions

By leaning on the experience gained for the one-dimensional approximation in Section 3.1, we

continue to develop the tools needed for the polynomial interpolation on triangles.

We assume the local solution to be expressed as

x ∈ Dk
: uk

h(x, t) =

Np�

i=1

uk
h(xi, t)�

k
i (x) =

Np�

n=1

ûk
n(t)ψn(x).

158 6 Beyond one dimension

u(x, t) � uh(x, t) =

K�

k=1

uk
h(x, t) ∈ Vh =

K�

k=1

�
ψn(Dk

)

�Np

n=1
.

Here ψn(Dk
) is a two-dimensional polynomial basis defined on element Dk

. The local function,

uk
h(x, t), can be expressed by

x ∈ Dk
: uk

h(x, t) =

Np�

i=1

uk
h(xk

i , t)�k
i (x),

where �i(x) is the multidimensional Lagrange polynomial defined by some grid points, xi, on the

element Dk
.

Recalling the general discussion in Chapter 2 we require the residual to be orthogonal to all test

functions, φh ∈ Vh, resulting in the local statements

�

Dk

�
∂uk

h

∂t
�k
n(x)− fk

h ·∇�k
n(x)

�
dx = −

�

∂Dk
n̂ · f∗�k

n(x) dx,

and

�

Dk

�
∂uk

h

∂t
+∇ · fk

h

�
�k
n(x) dx =

�

∂Dk
n̂ ·

�
fk

h − f∗
�
�k
n(x) dx,

as the weak and strong form, respectively, of the nodal discontinuous Galerkin method in two spatial

dimensions.

As we have already discussed, the missing piece is the specification of the numerical flux, f∗
. In

most of the subsequent discussion, we primarily consider the local Lax-Friedrichs flux

f∗
(a, b) =

f(a) + f(b)

2
+

C

2
n̂(a− b),

where (a, b) are the interior and exterior solution value, respectively, C is the local maximum of the

directional flux Jacobian; that is,

C = max
u∈[a,b]

����n̂x
∂f1

∂u
+ n̂y

∂f2

∂u

���� ,

where f = (f1, f2). As for the one-dimensional case, many details remain to be discussed for special

problems and we will return to these later. However, at this point, the generic framework is settled

and we can begin to consider how to actually transform this into an efficient computational method.

6.1 Modes and nodes in two dimensions

By leaning on the experience gained for the one-dimensional approximation in Section 3.1, we

continue to develop the tools needed for the polynomial interpolation on triangles.

We assume the local solution to be expressed as

x ∈ Dk
: uk

h(x, t) =

Np�

i=1

uk
h(xi, t)�

k
i (x) =

Np�

n=1

ûk
n(t)ψn(x).

Weak form:

Strong form:

Nothing is essential new

Extension to 3D

Apart from the ‘logistics’ all we need to worry about
is to choose our element and how to represent the
solution

10.1 Modes and nodes in three dimensions 409

10.1 Modes and nodes in three dimensions

By leaning on the knowledge gained for the one dimensional approximation in
Section 3.1, we now develop the tools needed for the polynomial interpolation
on a tetrahedron.

We assume a local solution of the form

x ∈ Dk : uk
h(x, t) =

Np∑

i=1

uk
h(xi, t)!k

i (x) =
Np∑

n=1

ûn(t)ψn(x),

where !k
i (x) is the multidimensional Lagrange polynomial based on the grid

points, xi, and ψn(x) is a three-dimensional polynomial basis.
Recall that Np does not represent the order, N , of the polynomial, uk

h, but,
rather, the number of terms in the local expansion. These two are related as

Np =
(N + 1)(N + 2)(N + 3)

6
,

for a polynomial of order N in three variables.
To simplify matters, we introduce a mapping, Ψ , which connects the gen-

eral straight-sided tetrahedron, x ∈ Dk, with the standard tetrahedron, de-
fined by

I = {r = (r, s, t)|(r, s, t) ≥ −1; r + s + t ≤ −1 }.

To connect the two tetrahedra, we first assume that Dk is spanned by the
four vertices, (v1,v2,v3,v4), numbered counterclockwise and introduce the
barycentric coordinates, (λ1,λ2,λ3,λ4) with the properties that

0 ≤ λi ≤ 1, λ1 + λ2 + λ3 + λ4 = 1. (10.2)

Any point in the tetrahedron, spanned by the four vertices, can be expressed as

x = λ3v1 + λ4v2 + λ2v3 + λ1v4.

In a similar fashion, we can naturally express



r
s
t



 = λ3




−1
−1
−1



 + λ4




1
−1
−1



 + λ2




−1
1
−1



 + λ1




−1
−1
1



 .

Combining this with Eq. (10.2), we recover

λ1 =
t + 1

2
, λ2 = −s + 1

2
, λ3 = −r + s + t + 1

2
, λ4 =

r + 1
2

,

and the direct mapping

x = −r + s + t + 1
2

v1 +
r + 1

2
v2 − s + 1

2
v3 +

t + 1
2

v4 = Ψ(r). (10.3)

10.1 Modes and nodes in three dimensions 417

xyztorst.m

function [r, s, t] = xyztorst(X, Y, Z)

% function [r,s,t] = xyztorst(x, y, z)
% Purpose : Transfer from (x,y,z) in equilateral tetrahedron
% to (r,s,t) coordinates in standard tetrahedron

v1 = [-1,-1/sqrt(3), -1/sqrt(6)]; v2 = [1,-1/sqrt(3), -1/sqrt(6)];
v3 = [0, 2/sqrt(3), -1/sqrt(6)]; v4 = [0, 0/sqrt(3), 3/sqrt(6)];

% back out right tet nodes
rhs = [X’;Y’;Z’] - 0.5*(v2’+v3’+v4’-v1’)*ones(1,length(X));
A = [0.5*(v2-v1)’,0.5*(v3-v1)’,0.5*(v4-v1)’];
RST = A\[rhs];
r = RST(1,:)’; s = RST(2,:)’; t = RST(3,:)’;
return;

This completes the required developments; that is, we have identified both
an orthonormal basis and a way to construct nodal sets, which are suitable for
interpolation on the tetrahedron. With this, we can construct a well-behaved
Vandermonde matrix for operations on the tetrahedron and generalize this
to general tetrahedra by an affine mapping. Hence, as in the one-dimensional
case, we can construct local approximations as

u(r) ! uh(r) =
Np∑

n=1

ûnψn(r) =
Np∑

i=1

u(ri)"i(r),

where ri is the three-dimensional nodal set, and ψn(r) is the orthonormal
three-dimensional polynomial basis. We recall that the number of terms in
the expansion is

Np =
(N + 1)(N + 2)(N + 3)

6
,

for an N -th-order polynomial in three variables.
A result of this discussion is the stable construction of the Vandermonde

matrix, V, which establishes the connections

u = Vû, VT !(r) = ψ(r), Vij = ψj(ri).

A script for initializing V is given in Vandermonde3D.m.

Vandermonde3D.m

function [V3D] = Vandermonde3D(N, r, s, t);

% function [V3D] = Vandermonde3D(N, r, s, t);
% Purpose : Initialize the 3D Vandermonde Matrix,
% V_{ij} = phi_j(r_i, s_i, t_i);

10.1 Modes and nodes in three dimensions 417

xyztorst.m

function [r, s, t] = xyztorst(X, Y, Z)

% function [r,s,t] = xyztorst(x, y, z)
% Purpose : Transfer from (x,y,z) in equilateral tetrahedron
% to (r,s,t) coordinates in standard tetrahedron

v1 = [-1,-1/sqrt(3), -1/sqrt(6)]; v2 = [1,-1/sqrt(3), -1/sqrt(6)];
v3 = [0, 2/sqrt(3), -1/sqrt(6)]; v4 = [0, 0/sqrt(3), 3/sqrt(6)];

% back out right tet nodes
rhs = [X’;Y’;Z’] - 0.5*(v2’+v3’+v4’-v1’)*ones(1,length(X));
A = [0.5*(v2-v1)’,0.5*(v3-v1)’,0.5*(v4-v1)’];
RST = A\[rhs];
r = RST(1,:)’; s = RST(2,:)’; t = RST(3,:)’;
return;

This completes the required developments; that is, we have identified both
an orthonormal basis and a way to construct nodal sets, which are suitable for
interpolation on the tetrahedron. With this, we can construct a well-behaved
Vandermonde matrix for operations on the tetrahedron and generalize this
to general tetrahedra by an affine mapping. Hence, as in the one-dimensional
case, we can construct local approximations as

u(r) ! uh(r) =
Np∑

n=1

ûnψn(r) =
Np∑

i=1

u(ri)"i(r),

where ri is the three-dimensional nodal set, and ψn(r) is the orthonormal
three-dimensional polynomial basis. We recall that the number of terms in
the expansion is

Np =
(N + 1)(N + 2)(N + 3)

6
,

for an N -th-order polynomial in three variables.
A result of this discussion is the stable construction of the Vandermonde

matrix, V, which establishes the connections

u = Vû, VT !(r) = ψ(r), Vij = ψj(ri).

A script for initializing V is given in Vandermonde3D.m.

Vandermonde3D.m
function [V3D] = Vandermonde3D(N, r, s, t);

% function [V3D] = Vandermonde3D(N, r, s, t);
% Purpose : Initialize the 3D Vandermonde Matrix,
% V_{ij} = phi_j(r_i, s_i, t_i);

A.1 Orthonormal polynomials beyond one dimension 449

uh(x, y) =
N∑

i,j=0

ûijPi(x)Pj(y).

Note that this basis has (N +1)2 terms, while only 1
2 (N +1)(N +2) terms are

needed for completeness in two dimensions. Orthonormality is clearly main-
tained in a dimension-by-dimension fashion.

For more complex elements (e.g., simplices), the construction of an ortho-
normal basis of order N is a bit more complicated. To ensure good approxi-
mation properties in finite domains, the polynomials should be orthonormal
eigensolutions to a multidimensional singular Sturm-Liouville problem.

The construction of such polynomials has been pursued by several authors
[103, 201, 261]. For the two-dimensional simplex

T2 = {(r, s)|r, s ≥ −1; r + s ≤ 0},

the N -th-order orthonormal basis is given as

∀(i, j) ≥ 0; i + j ≤ N : ψij(r, s) =
√

2P (0,0)
i (a)P (2i+1,0)

j (b)(1 − b)i,

where the extended coordinates (a, b) ∈ [−1, 1]2 relates to (r, s) ∈ T2 as

a = 2
1 + r

1 − s
− 1, b = s.

Note that there are exactly 1
2 (N + 1)(N + 2) terms in the polynomial basis

of order N . A script to evaluate the basis in the (a, b) coordinates is shown in
Simplex2DP.m.

Simplex2DP.m

function [P] = Simplex2DP(a,b,i,j);

% function [P] = Simplex2DP(a,b,i,j);
% Purpose : Evaluate 2D orthonormal polynomial
% on simplex at (a,b) of order (i,j).

h1 = JacobiP(a,0,0,i); h2 = JacobiP(b,2*i+1,0,j);
P = sqrt(2.0)*h1.*h2.*(1-b).^i;
return;

Similarly, one can derive an orthonormal basis for the three-dimensional
simplex,

T3 = {(r, s, t)|r, s, t ≥ −1; r + s + t ≤ −1},

with the N -th-order orthonormal basis being

∀(i, j, k) ≥ 0; i + j + k ≤ N :

ψijk(r, s, t) = 2
√

2P (0,0)
i (a)P (2i+1,0)

j (b)P (2i+2j+2,0)
k (b)(1 − b)i(1 − c)i+j ,

We need points

We need an orthonormal basis

Extension to 3D

Extensions

The extension to 2D/3D is ‘simple’

All we need is a stable high-order local basis for
high-order interpolation

6.1 Modes and nodes in two dimensions 169

Fig. 6.6. Examples of α-optimized nodal sets on the equilateral triangle. Top row is for orders 4, 6, and 8
and the bottom row has orders 10, 12, and 14.

where i is a two-dimensional nodal set and ψn() is the orthonormal two-dimensional polynomial
basis. We recall that the number of terms in the expansions is

Np =
(N + 1)(N + 2)

2
,

for an N -th-order polynomial in two variables.
A central result of all this work is the stable construction of the Vandermonde matrix, V, which

establishes the connections

= V ˆ , VT () = ψ̃(), Vij = ψj(i).

A script for initializing V like this is given in Vandermonde2D.m
With V, we can transform directly between the modal representation, using ûn as the unknowns,

and the nodal form, using u(i). Furthermore, this offers a way of evaluating the genuinely two-
dimensional Lagrange polynomials, �i(), for which no explicit expression is known. An example of
how these may look is shown in Fig. 6.7 for the order N = 4 with a total of 15 basis functions.

390 10 Into the third dimension

As with the triangle, we can increase the clustering of nodes near the boundary faces by modifying
the blending functions

g
�
λ1, λ2, λ3, λ4

�
=

�
1 +

�
αλ1

�2
�

b1w1 +
�
1 +

�
αλ2

�2
�

b2w2

+
�
1 +

�
αλ3

�2
�

b3w3 +
�
1 +

�
αλ4

�2
�

b4w4

for some parameter α.
The number of different node distribution types available for the tetrahedron is markedly smaller

than for the triangle. In Table 10.1 we show Lebesgue constants for equally spaced nodes, our
unoptimized and optimized nodes [55, 163]. We note that the new nodes are competitive with
alternative nodal sets.

N = 6 N = 8

N = 10 N = 12

Fig. 10.1. α-Optimized tetrahedral node distribution for N = 6, 8, 10, 12.

For other element
types, one simply
need to define
nodes and modes
for that elements

Extension to 3D

Everything is identical in spirit

418 10 Into the third dimension

V3D = zeros(length(r),(N+1)*(N+2)*(N+3)/6);

% Transfer to (a,b) coordinates
[a, b, c] = rsttoabc(r, s, t);

% build the Vandermonde matrix
sk = 1;

for i=0:N % old ordering
for j=0:N - i
for k=0:N - i - j
V3D(:,sk) = Simplex3DP(a,b,c,i,j,k);
sk = sk+1;

end
end

end
return;

With V, we can transform directly between a modal representation, using
ûn as the unknowns, and a nodal form, using u(ri). Furthermore, this sup-
plies a way to evaluate the genuinely three-dimensional Lagrange polynomials,
!i(x), for which no explicit expression is known.

10.2 Elementwise operations

With the fundamental tools in place, we continue the development of the key
computational components. Following the two-dimensional approach, we need
the mass-matrix

Mk
ij =

∫

Dk
!k
i (xk)!k

j (xk) dxk = Jk

∫

I
!i(r)!j(r) dr,

where we have utilized that the transformation Jacobian, J , is a constant
provided that Dk is a straight-sided tetrahedron, see Eq.(10.5).

Since V is constructed using an orthonormal basis, we recover

Mk = Jk(VVT)−1.

The evaluation of the stiffness matrices follows the approach in Section 3.2
using the differentiation matrices. From the chain rule we immediately have

∂

∂x
=

∂r

∂x
Dr +

∂s

∂x
Ds +

∂t

∂x
Dt,

∂

∂y
=

∂r

∂y
Dr +

∂s

∂y
Ds +

∂t

∂y
Dt,

∂

∂z
=

∂r

∂z
Dr +

∂s

∂z
Ds +

∂t

∂z
Dt,

418 10 Into the third dimension

V3D = zeros(length(r),(N+1)*(N+2)*(N+3)/6);

% Transfer to (a,b) coordinates
[a, b, c] = rsttoabc(r, s, t);

% build the Vandermonde matrix
sk = 1;

for i=0:N % old ordering
for j=0:N - i
for k=0:N - i - j
V3D(:,sk) = Simplex3DP(a,b,c,i,j,k);
sk = sk+1;

end
end

end
return;

With V, we can transform directly between a modal representation, using
ûn as the unknowns, and a nodal form, using u(ri). Furthermore, this sup-
plies a way to evaluate the genuinely three-dimensional Lagrange polynomials,
!i(x), for which no explicit expression is known.

10.2 Elementwise operations

With the fundamental tools in place, we continue the development of the key
computational components. Following the two-dimensional approach, we need
the mass-matrix

Mk
ij =

∫

Dk
!k
i (xk)!k

j (xk) dxk = Jk

∫

I
!i(r)!j(r) dr,

where we have utilized that the transformation Jacobian, J , is a constant
provided that Dk is a straight-sided tetrahedron, see Eq.(10.5).

Since V is constructed using an orthonormal basis, we recover

Mk = Jk(VVT)−1.

The evaluation of the stiffness matrices follows the approach in Section 3.2
using the differentiation matrices. From the chain rule we immediately have

∂

∂x
=

∂r

∂x
Dr +

∂s

∂x
Ds +

∂t

∂x
Dt,

∂

∂y
=

∂r

∂y
Dr +

∂s

∂y
Ds +

∂t

∂y
Dt,

∂

∂z
=

∂r

∂z
Dr +

∂s

∂z
Ds +

∂t

∂z
Dt,

420 10 Into the third dimension

% normalize
V3Dr = V3Dr*(2^(2*id+jd+1.5));
V3Ds = V3Ds*(2^(2*id+jd+1.5));
V3Dt = V3Dt*(2^(2*id+jd+1.5));
return

GradVandermonde3D.m

function [V3Dr,V3Ds,V3Dt] = GradVandermonde3D(N,r,s,t)

% function [V3Dr,V3Ds,V3Dt] = GradVandermonde3D(N,r,s,t)
% Purpose : Initialize the gradient of the modal basis (i,j,k)
% at (r,s,t) at order N

V3Dr = zeros(length(r),(N+1)*(N+2)*(N+3)/6);
V3Ds = zeros(length(r),(N+1)*(N+2)*(N+3)/6);
V3Dt = zeros(length(r),(N+1)*(N+2)*(N+3)/6);

% find tensor-product coordinates
[a,b,c] = rsttoabc(r,s,t);

% Initialize matrices

sk = 1;
for i=0:N
for j=0:N-i
for k=0:N-i-j
[V3Dr(:,sk),V3Ds(:,sk),V3Dt(:,sk)] = GradSimplex3DP(a,b,c,i,j,k);
sk = sk+1;

end
end

end
return;

We can now finally define the required differentiation matrices

DrV = Vr, DsV = Vs, DtV = Vt,

with the corresponding stiffness matrices given by

Sr = M−1Dr, Ss = M−1Ds, St = M−1Dt.

The differentiation matrices are initialized using Dmatrices3D.m.

420 10 Into the third dimension

% normalize
V3Dr = V3Dr*(2^(2*id+jd+1.5));
V3Ds = V3Ds*(2^(2*id+jd+1.5));
V3Dt = V3Dt*(2^(2*id+jd+1.5));
return

GradVandermonde3D.m

function [V3Dr,V3Ds,V3Dt] = GradVandermonde3D(N,r,s,t)

% function [V3Dr,V3Ds,V3Dt] = GradVandermonde3D(N,r,s,t)
% Purpose : Initialize the gradient of the modal basis (i,j,k)
% at (r,s,t) at order N

V3Dr = zeros(length(r),(N+1)*(N+2)*(N+3)/6);
V3Ds = zeros(length(r),(N+1)*(N+2)*(N+3)/6);
V3Dt = zeros(length(r),(N+1)*(N+2)*(N+3)/6);

% find tensor-product coordinates
[a,b,c] = rsttoabc(r,s,t);

% Initialize matrices

sk = 1;
for i=0:N
for j=0:N-i
for k=0:N-i-j
[V3Dr(:,sk),V3Ds(:,sk),V3Dt(:,sk)] = GradSimplex3DP(a,b,c,i,j,k);
sk = sk+1;

end
end

end
return;

We can now finally define the required differentiation matrices

DrV = Vr, DsV = Vs, DtV = Vt,

with the corresponding stiffness matrices given by

Sr = M−1Dr, Ss = M−1Ds, St = M−1Dt.

The differentiation matrices are initialized using Dmatrices3D.m.

Mass matrix

Diff matrix

Derivative

Stiffness matrix

Example - Maxwell’s equations

Consider Maxwell’s equations

ε∂tE −∇×H = −j, µ∂tH +∇× E = 0,

Write it on conservation form as
∂q

∂t
+∇ · F = −J q =

�
E

H

�
F =

�
−ê×H

ê× E

�

Represent the solution as

Ω =
�

k

Dk

and assume

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F(signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 99

qN =
N�

i=1

q(xi, t)Li(x)

EMF 2009, May 28 2009, Mondovi 42

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens

!"#$%&'(")%

*#+,)%-.&/012

34567

EM Plane Wave on Airplane:

Mesh: 228K tetrahedra

• 5th order polynomials

• 76 Mio. degrees of freedom

• 68K time steps (global)

• Computation time: 19.558 secs = ~5.4 h

! 711.9 Gigaflops on a Tesla S1070.

(Not taking into accout small number of small elements ! small CFL-time step)

Simulation: NUDG++, N. Gödel

Example - Maxwell’s equations

On each element we then define

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F(signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 99

With the numerical flux given as

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F(signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 99

[Q] = Q− −Q+

To obtain the local matrix based scheme

an Eulerian frame while the charge dynamics more naturally is discussed in a purely Lagrangian setting. A
computational approach will need to effectively connect these two essentially different pictures. In the follow-
ing, we shall discuss in some detail the individual components of the algorithm.

3.1. The field solver

To advance Maxwell!s equations, Eq. (1), in time we shall use a nodal high-order discontinuous Galerkin
method, described in detail in [10]. In this approach, the computational domain, X, is subdivided into non-
overlapping triangular elements, D, to ensure geometric flexibility. On each element, we assume that the local
solution can be represented as an nth order polynomial of the form

qN ðx; tÞ ¼
XN

j¼1

qðxj; tÞLjðxÞ ¼
XN

j¼1

q̂jðtÞLjðxÞ; ð7Þ

where Lj is the genuine multi-dimensional Lagrange interpolant associated with the N grid points, xj, on the
triangular element. In this work, we use the nodes given in [11]. For an nth order polynomial, we have

N ¼ ðnþ 1Þðnþ 2Þ
2

as the number of local grid points or degrees of freedom on each element for each variable.
To seek equations for these N local unknowns, we require the local approximate solution, qN, to Maxwell!s

equations to satisfy
Z

D

oqN
ot

þr % FN & JN

! "
LiðxÞ dx ¼

I

oD

LiðxÞn̂ % ½FN & F() dx. ð8Þ

Here, F(signifies a numerical flux and n̂ is an outward pointing unit vector defined at the boundary of the
element. The role of the numerical flux is to connect the elements and ensure stability of the computational
scheme. If the numerical flux is consistent, the scheme is clearly consistent. On the other hand, boundary/inter-
face conditions are not imposed exactly but rather weakly through the penalizing surface integral. Within this
multi-element context, the formulation is inherently discontinuous and yields, through its very construction, a
highly parallel local scheme.

With the operators,

M̂ ij ¼
Z

D
LiLj dx; Ŝij ¼

Z

D
rLjLi dx; F̂ ij ¼

I

oD

LiLj dx; ð9Þ

we recover from Eq. (8) the fully explicit local scheme,

M̂
dq̂

dt
þ Ŝ % F̂ & M̂ Ĵ ¼ F̂ n̂ % ½F̂ & F̂

(
); ð10Þ

where q̂ represents the 3N-vector of nodal values, qN, at D. Similarly, F̂; Ĵ, and F̂
(
denote nodal values for the

flux, the current density, and the numerical flux, respectively.
To finalize the formulation of the scheme, we must specify the numerical flux F(, which is responsible for

passing information between the elements and imposing the boundary conditions. Given the linearity of Max-
well!s equations, we use a flux like

n̂ % ½F & F() ¼
n* ðcn* ½E) & ½B)Þ;
n* ðcn* ½B) þ ½E)Þ;

#
ð11Þ

where [Q] = Q& & Q+ measures the jump in the values across an interface. Superscript "+! refers to the value
from the neighbor element while superscript "&! refers to field value local to the element. Note that by taking
c = 1, one recovers the classic, dissipative, upwind flux [12], while c = 0 leads to a purely dispersive central
flux. Clearly one is free to take values in between these two extremes with a controlling the amount of dissi-
pation added. A complete analysis in terms of accuracy and stability of the scheme above can be found in [10]
with further details in [9].

G.B. Jacobs, J.S. Hesthaven / Journal of Computational Physics 214 (2006) 96–121 99

One then typically uses an explicit Runge-Kutta
to advance in time - just like 1D/2D.

An example - Maxwell’s equationsApplications and examples

Simple wave propagation

A sanity check

X Y

Z

time

||
H
x
||

∝

0 5 10 15
10

-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

n=2

n=8

n=4

n=6

n=10

Simple plane wave propagation through a prism.

Darmstadt International Workshop, October 2004 – p.24

Note: All examples to come done in same framework

An example - Maxwell’s equationsMaxwell’s equations

PEC business card

Test of surface wave propagation.

3.5 λ

2 λ

10°

φ

k
iE

H

a)

φ

R
C
S
(d
B

λ2
)

0 15 30 45 60 75 90
-25

-20

-15

-10

-5

0

5

b)

Darmstadt International Workshop, October 2004 – p.32

PEC business card

Test of surface wave propagation.

3.5 λ

2 λ

10°

φ

k
iE

H

a)

φ

R
C
S
(d
B

λ2
)

0 15 30 45 60 75 90
-25

-20

-15

-10

-5

0

5

b)

Darmstadt International Workshop, October 2004 – p.32

An example - Maxwell’s equations

Animations by Nico Godel (Hamburg)

Kinetic Plasma Physics

Important applications
✓ High-power/High-frequency microwave generation
✓ Particle accelerators
✓ Laser-matter interaction
✓ Fusion applications, e.g., plasma edge
✓ etc

Kinetic Plasma Physics

In high-speed plasma problems dominated by kinetic
effects, one needs to solve for f(x,p,t) - 6D+1

Ω :=
�

(,) (,) Ω

∂ −
ε
∇× = −

ε
,

∂ +
µ
∇× = ,

∇ · = , ∇ · =
ρ

ε
.

(, ,)

∂ + · ∂ + (+ ×) · ∂ = � � − � �.

ρ :=

ˆ
, :=

ˆ
.

Ω :=
�

(,) (,) Ω

∂ −
ε
∇× = −

ε
,

∂ +
µ
∇× = ,

∇ · = , ∇ · =
ρ

ε
.

(, ,)

∂ + · ∂ + (+ ×) · ∂ = � � − � �.

ρ :=

ˆ
, :=

ˆ
.

Vlasov/Boltzmann equation

Maxwell’s equations

Coupled through

Kinetic Plasma Physics

In high-speed plasma problems dominated by kinetic
effects, one needs to solve for f(x,p,t)

Ω :=
�

(,) (,) Ω

∂ −
ε
∇× = −

ε
,

∂ +
µ
∇× = ,

∇ · = , ∇ · =
ρ

ε
.

(, ,)

∂ + · ∂ + (+ ×) · ∂ = � � − � �.

ρ :=

ˆ
, :=

ˆ
.

Ω :=
�

(,) (,) Ω

∂ −
ε
∇× = −

ε
,

∂ +
µ
∇× = ,

∇ · = , ∇ · =
ρ

ε
.

(, ,)

∂ + · ∂ + (+ ×) · ∂ = � � − � �.

ρ :=

ˆ
, :=

ˆ
.

Ω :=
�

(,) (,) Ω

∂ −
ε
∇× = −

ε
,

∂ +
µ
∇× = ,

∇ · = , ∇ · =
ρ

ε
.

(, ,)

∂ + · ∂ + (+ ×) · ∂ = � � − � �.

ρ :=

ˆ
, :=

ˆ
.

Vlasov/Boltzmann equation

Maxwell’s equations

Coupled through

Particle-in-Cell (PIC) Methods

This is an attempt to solve the Vlasov/Boltzmann
equation by sampling with P particles

ρ(x, t) =
P�

n=1

qnS(x− xn(t)), j(x, t) =
P�

n=1

vnqnS(x− xn(t))

f(x, p, t) =
P�

n=1

qnS(x− xn(t))δ(p− pn(t)),

Ideally we have

S(x) = δ(x) a point particle

However, this is not practical, nor reasonable - so
S(x) is a shape-function

Particle-in-Cell Methods

ε∂tE −∇×H = −j, µ∂tH +∇× E = 0,

∇ · (εE) = ρ, ∇ · (µH) = 0,

dxn

dt
= vn(t)

dmvn

dt
= qn(E + vn ×H) m =

1�
1− (vn/c)2

ρ(x, t) =
P�

n=1

qnS(x− xn(t)), j(x, t) =
P�

n=1

vnqnS(x− xn(t))

E(xn),H(xn)

Maxwell’s equations

Particle/Phase dynamics

Particles-to-fields

Fields-to-particles

Kinetic Plasma Physics
Magnetron
modeling Linear accelerator

Magnetic
reconnection

Particle gun Compressible fluid flow

Time-dependent Euler equations

✓ Gas
✓ High speed
✓ etc

Formulation is straightforward

Challenge: Shocks -- this requires
limiting/filtering

Compressible fluid flow

Time-dependent Euler equations

• Gas

• High speed

• etc

192 6 Beyond one dimension

10
0

10
1

10
2

10
!8

10
!7

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

K
1/2

||
E
!
E
h
||

N=1

N=2

N=3

N=4

N=5

10
0

10
1

10
2

10
!8

10
!7

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

K
1/2

||
E
!
E
h
||

N=1

N=2

N=3

N=4

N=5

Fig. 6.9. On the left is shown the discrete L2
-error for Ez

h at T = 10, obtained using a DG-FEM with

central fluxes, for different values of N and K. As a measure of average cell size, we use
√

K. On the right

we show similar results obtained using an upwind flux.

∂ρu

∂t
+

∂ρu2 + p

∂x
+

∂ρuv

∂y
= 0,

∂ρv

∂t
+

∂ρuv

∂x
+

∂ρv2 + p

∂y
= 0,

∂E

∂t
+

∂u (E + p)
∂x

+
∂v (E + p)

∂y
= 0,

where ρ is the density of the gas, (ρu, ρv) are the x- and y-components of the momentum, p is
the internal pressure of the gas, and E is the total energy of the gas. The total energy of the gas
is the sum of the potential energy due to the internal pressure and the kinetic energy due to its
momentum, given by

E =
p

γ − 1
+

ρ

2
�
u2 + v2

�
,

where γ is a constant dependent on the type of gas. For this example, we will consider a monoatomic
gas with γ = 1.4. The above equations neglect the effects of viscosity and thermal diffusion, which
we will be incorporated into a later example that concerns the Navier-Stokes equations for a com-
pressible fluid (see Section 7.5).

To provide some insight into a relatively general numerical discretization for a wide class of
nonlinear conservation laws, with Euler’s equations as the guiding example, we rewrite the equations
in vector form:

∂q
∂t

+
∂F
∂x

+
∂G
∂y

= 0,

where

q =





ρ
ρu
ρv
E



 , F =





ρu
ρu2 + p

ρuv
u (E + p)



 , G =





ρv
ρuv

ρv2 + p
v (E + p)



 ,

6.6 Compressible gas dynamics 193

represent the state vector and the two nonlinear fluxes, respectively. These vector flux functions
are implemented in a straightforward manner by first extracting the primitive variables (ρ, u, v, p)
from the conserved variable state vector q at each volume element node in EulerFluxes2D.m. We
have chosen to store the state vector as a three-dimensional array, Q, of size Np ×K × 4, with the
last dimension being the number of conserved variables.

EulerFluxes2D.m

6 % extract conserved variables
7 rho = Q(:,:,1); rhou = Q(:,:,2); rhov = Q(:,:,3); Ener = Q(:,:,4);
8

9 % compute primitive variables
10 u = rhou./rho; v = rhov./rho; p = (gamma-1)*(Ener - 0.5*(rhou.*u + rhov.*v));

Combinations of the primitive and conserved variables are then used to evaluate the vector flux
functions F and G in a straightforward manner.

EulerFluxes2D.m

12 % compute flux functions
13 F = zeros(size(Q));
14 F(:,:,1) = rhou; F(:,:,2) = rhou.*u + p; F(:,:,3) = rhov.*u; F(:,:,4) = u.*(Ener+p);
15

16 G = zeros(size(Q));
17 G(:,:,1) = rhov; G(:,:,2) = rhou.*v; G(:,:,3) = rhov.*v + p; G(:,:,4) = v.*(Ener+p);

Following the previous discussions, we represent the state vector as a piecewise N -th-order
polynomial, qh, and require it to satisfy a DG statement on weak form for all test functions φh ∈ Vh,
as �

Dk

�
∂qh

∂t
φh − Fh

∂φh

∂x
−Gh

∂φh

∂y

�
dx +

�

∂Dk
(n̂xFh + n̂yGh)∗ φhdx = 0.

For the numerical flux, we use the local Lax-Friedrichs flux

(n̂xFh + n̂yGh)∗ = n̂x{{Fh}} + n̂y{{Gh}} +
λ

2
· [[qh]].

The dissipative nature of this flux will smear shocks in strongly supersonic and transitional flows but
will serve adequately for most subsonic and weakly supersonic flows. To complete the computation
of the fluxes, we recover an approximate local maximum linearized acoustic wave speed

λ = max
s∈[q−h ,q+

h]

�
|u(s)| +

�����
γp(s)
ρ(s)

����

�
.

EulerRHS2D.m contains an implementation of the right-hand-side terms. First, we compute the
volume terms for each component of the state vector, taking advantage of the local differentiation
matrices common to all elements and applying the chain rule to compute the Cartesian derivatives
of the fields.

6.6 Compressible gas dynamics 193

represent the state vector and the two nonlinear fluxes, respectively. These vector flux functions
are implemented in a straightforward manner by first extracting the primitive variables (ρ, u, v, p)
from the conserved variable state vector q at each volume element node in EulerFluxes2D.m. We
have chosen to store the state vector as a three-dimensional array, Q, of size Np ×K × 4, with the
last dimension being the number of conserved variables.

EulerFluxes2D.m

6 % extract conserved variables
7 rho = Q(:,:,1); rhou = Q(:,:,2); rhov = Q(:,:,3); Ener = Q(:,:,4);
8

9 % compute primitive variables
10 u = rhou./rho; v = rhov./rho; p = (gamma-1)*(Ener - 0.5*(rhou.*u + rhov.*v));

Combinations of the primitive and conserved variables are then used to evaluate the vector flux
functions F and G in a straightforward manner.

EulerFluxes2D.m

12 % compute flux functions
13 F = zeros(size(Q));
14 F(:,:,1) = rhou; F(:,:,2) = rhou.*u + p; F(:,:,3) = rhov.*u; F(:,:,4) = u.*(Ener+p);
15

16 G = zeros(size(Q));
17 G(:,:,1) = rhov; G(:,:,2) = rhou.*v; G(:,:,3) = rhov.*v + p; G(:,:,4) = v.*(Ener+p);

Following the previous discussions, we represent the state vector as a piecewise N -th-order
polynomial, qh, and require it to satisfy a DG statement on weak form for all test functions φh ∈ Vh,
as �

Dk

�
∂qh

∂t
φh − Fh

∂φh

∂x
−Gh

∂φh

∂y

�
dx +

�

∂Dk
(n̂xFh + n̂yGh)∗ φhdx = 0.

For the numerical flux, we use the local Lax-Friedrichs flux

(n̂xFh + n̂yGh)∗ = n̂x{{Fh}} + n̂y{{Gh}} +
λ

2
· [[qh]].

The dissipative nature of this flux will smear shocks in strongly supersonic and transitional flows but
will serve adequately for most subsonic and weakly supersonic flows. To complete the computation
of the fluxes, we recover an approximate local maximum linearized acoustic wave speed

λ = max
s∈[q−h ,q+

h]

�
|u(s)| +

�����
γp(s)
ρ(s)

����

�
.

EulerRHS2D.m contains an implementation of the right-hand-side terms. First, we compute the
volume terms for each component of the state vector, taking advantage of the local differentiation
matrices common to all elements and applying the chain rule to compute the Cartesian derivatives
of the fields.

Formulation is straightforward

Challenge: Shocks -- this requires
limiting/filtering

Compressible fluid flow

Time-dependent Euler equations

• Gas

• High speed

• etc

192 6 Beyond one dimension

10
0

10
1

10
2

10
!8

10
!7

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

K
1/2

||
E
!
E
h
||

N=1

N=2

N=3

N=4

N=5

10
0

10
1

10
2

10
!8

10
!7

10
!6

10
!5

10
!4

10
!3

10
!2

10
!1

10
0

K
1/2

||
E
!
E
h
||

N=1

N=2

N=3

N=4

N=5

Fig. 6.9. On the left is shown the discrete L2
-error for Ez

h at T = 10, obtained using a DG-FEM with

central fluxes, for different values of N and K. As a measure of average cell size, we use
√

K. On the right

we show similar results obtained using an upwind flux.

∂ρu

∂t
+

∂ρu2 + p

∂x
+

∂ρuv

∂y
= 0,

∂ρv

∂t
+

∂ρuv

∂x
+

∂ρv2 + p

∂y
= 0,

∂E

∂t
+

∂u (E + p)
∂x

+
∂v (E + p)

∂y
= 0,

where ρ is the density of the gas, (ρu, ρv) are the x- and y-components of the momentum, p is
the internal pressure of the gas, and E is the total energy of the gas. The total energy of the gas
is the sum of the potential energy due to the internal pressure and the kinetic energy due to its
momentum, given by

E =
p

γ − 1
+

ρ

2
�
u2 + v2

�
,

where γ is a constant dependent on the type of gas. For this example, we will consider a monoatomic
gas with γ = 1.4. The above equations neglect the effects of viscosity and thermal diffusion, which
we will be incorporated into a later example that concerns the Navier-Stokes equations for a com-
pressible fluid (see Section 7.5).

To provide some insight into a relatively general numerical discretization for a wide class of
nonlinear conservation laws, with Euler’s equations as the guiding example, we rewrite the equations
in vector form:

∂q
∂t

+
∂F
∂x

+
∂G
∂y

= 0,

where

q =





ρ
ρu
ρv
E



 , F =





ρu
ρu2 + p

ρuv
u (E + p)



 , G =





ρv
ρuv

ρv2 + p
v (E + p)



 ,

6.6 Compressible gas dynamics 193

represent the state vector and the two nonlinear fluxes, respectively. These vector flux functions
are implemented in a straightforward manner by first extracting the primitive variables (ρ, u, v, p)
from the conserved variable state vector q at each volume element node in EulerFluxes2D.m. We
have chosen to store the state vector as a three-dimensional array, Q, of size Np ×K × 4, with the
last dimension being the number of conserved variables.

EulerFluxes2D.m

6 % extract conserved variables
7 rho = Q(:,:,1); rhou = Q(:,:,2); rhov = Q(:,:,3); Ener = Q(:,:,4);
8

9 % compute primitive variables
10 u = rhou./rho; v = rhov./rho; p = (gamma-1)*(Ener - 0.5*(rhou.*u + rhov.*v));

Combinations of the primitive and conserved variables are then used to evaluate the vector flux
functions F and G in a straightforward manner.

EulerFluxes2D.m

12 % compute flux functions
13 F = zeros(size(Q));
14 F(:,:,1) = rhou; F(:,:,2) = rhou.*u + p; F(:,:,3) = rhov.*u; F(:,:,4) = u.*(Ener+p);
15

16 G = zeros(size(Q));
17 G(:,:,1) = rhov; G(:,:,2) = rhou.*v; G(:,:,3) = rhov.*v + p; G(:,:,4) = v.*(Ener+p);

Following the previous discussions, we represent the state vector as a piecewise N -th-order
polynomial, qh, and require it to satisfy a DG statement on weak form for all test functions φh ∈ Vh,
as �

Dk

�
∂qh

∂t
φh − Fh

∂φh

∂x
−Gh

∂φh

∂y

�
dx +

�

∂Dk
(n̂xFh + n̂yGh)∗ φhdx = 0.

For the numerical flux, we use the local Lax-Friedrichs flux

(n̂xFh + n̂yGh)∗ = n̂x{{Fh}} + n̂y{{Gh}} +
λ

2
· [[qh]].

The dissipative nature of this flux will smear shocks in strongly supersonic and transitional flows but
will serve adequately for most subsonic and weakly supersonic flows. To complete the computation
of the fluxes, we recover an approximate local maximum linearized acoustic wave speed

λ = max
s∈[q−h ,q+

h]

�
|u(s)| +

�����
γp(s)
ρ(s)

����

�
.

EulerRHS2D.m contains an implementation of the right-hand-side terms. First, we compute the
volume terms for each component of the state vector, taking advantage of the local differentiation
matrices common to all elements and applying the chain rule to compute the Cartesian derivatives
of the fields.

6.6 Compressible gas dynamics 193

represent the state vector and the two nonlinear fluxes, respectively. These vector flux functions
are implemented in a straightforward manner by first extracting the primitive variables (ρ, u, v, p)
from the conserved variable state vector q at each volume element node in EulerFluxes2D.m. We
have chosen to store the state vector as a three-dimensional array, Q, of size Np ×K × 4, with the
last dimension being the number of conserved variables.

EulerFluxes2D.m

6 % extract conserved variables
7 rho = Q(:,:,1); rhou = Q(:,:,2); rhov = Q(:,:,3); Ener = Q(:,:,4);
8

9 % compute primitive variables
10 u = rhou./rho; v = rhov./rho; p = (gamma-1)*(Ener - 0.5*(rhou.*u + rhov.*v));

Combinations of the primitive and conserved variables are then used to evaluate the vector flux
functions F and G in a straightforward manner.

EulerFluxes2D.m

12 % compute flux functions
13 F = zeros(size(Q));
14 F(:,:,1) = rhou; F(:,:,2) = rhou.*u + p; F(:,:,3) = rhov.*u; F(:,:,4) = u.*(Ener+p);
15

16 G = zeros(size(Q));
17 G(:,:,1) = rhov; G(:,:,2) = rhou.*v; G(:,:,3) = rhov.*v + p; G(:,:,4) = v.*(Ener+p);

Following the previous discussions, we represent the state vector as a piecewise N -th-order
polynomial, qh, and require it to satisfy a DG statement on weak form for all test functions φh ∈ Vh,
as �

Dk

�
∂qh

∂t
φh − Fh

∂φh

∂x
−Gh

∂φh

∂y

�
dx +

�

∂Dk
(n̂xFh + n̂yGh)∗ φhdx = 0.

For the numerical flux, we use the local Lax-Friedrichs flux

(n̂xFh + n̂yGh)∗ = n̂x{{Fh}} + n̂y{{Gh}} +
λ

2
· [[qh]].

The dissipative nature of this flux will smear shocks in strongly supersonic and transitional flows but
will serve adequately for most subsonic and weakly supersonic flows. To complete the computation
of the fluxes, we recover an approximate local maximum linearized acoustic wave speed

λ = max
s∈[q−h ,q+

h]

�
|u(s)| +

�����
γp(s)
ρ(s)

����

�
.

EulerRHS2D.m contains an implementation of the right-hand-side terms. First, we compute the
volume terms for each component of the state vector, taking advantage of the local differentiation
matrices common to all elements and applying the chain rule to compute the Cartesian derivatives
of the fields.

Formulation is straightforward

Challenge: Shocks -- this requires
limiting/filtering

Compressible fluid flow

218 6 Beyond one dimension

Density

Density

Density

Density

Fig. 6.14. Sequence of solutions to the Mach 3 forward facing step test case (with uniformly refined meshes
of size K=381, 1524, 6096, and 24384) using the Tu and Aliabadi limiter with an N = 1 DG method. Thirty
equally spaced Mach contours are plotted in the range [0.090388, 6.2365].

extension of this result to the multidimensional case is, as it turns out, technically more complex
than the one-dimensional case, but the main results remain unchanged with one essential exception.

The analysis of the error estimates for linear problems is typically done for the equation

α ·∇u + βu = f, x ∈ Ω ⊂ R2,

which is in fact the neutron transport equation for which the first DG-FEM was introduced in [269].
In early work [217], it was shown that if u is smooth and Ω is tiled with rectangular elements, each
using an N -th-order tensor basis, the scheme exhibits optimal convergence; that is,

The list goes on ..

The same DG-FEM computation platform has been used
for all examples and many other problem types

✓ Flow mixing and control
✓ Poisson/Helmholtz equations
✓ Shallow water flows on the sphere
✓ Adjoint based adaptive solution/design

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.203

1.142

1.081

1.019

0.958

0.896

0.835

0.774

0.712

0.651

0.590

0.528

0.467

0.405

0.344

0.283

0.221

0.160

0.099

0.037

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.0028

-0.0072

-0.0117

-0.0162

-0.0207

-0.0252

-0.0297

-0.0342

-0.0387

-0.0432

-0.0477

-0.0522

-0.0567

-0.0612

-0.0657

-0.0702

-0.0747

-0.0791

-0.0836

-0.0881

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

10

9

8

7

6

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.95E-06

1.70E-06

1.45E-06

1.20E-06

9.45E-07

6.94E-07

4.43E-07

1.92E-07

-5.90E-08

-3.10E-07

-5.61E-07

-8.12E-07

-1.06E-06

-1.31E-06

-1.57E-06

Darmstadt International Workshop, October 2004 – p.79

3D Extension

Nothing special !

Everything you have done in 1D/2D you can
do in 3D in exactly the same way.

✓Linear/nonlinear problems
✓First order/higher order operators
✓Complex geometries

Further extensions

✓Adaptivity/non-conforming elements
✓Curvilinear elements

Adaptivity/non-conformity

Question: Do element faces always have to match ?

Answer: No

9.2 Nonconforming discretizations 395

22 neigh = neighbors{n};
23

24 % 2.1 Extract information about this non-conforming face fragment
25 k1 = neigh.elmtM; gVM = neigh.gVM;
26 k2 = neigh.elmtP; gVP = neigh.gVP;
27 lnx = neigh.nx; lny = neigh.ny;
28

29 % 2.2 Compute difference of traces at Gauss nodes on face fragment
30 ldHx = gVM*Hx(:,k1) - gVP*Hx(:,k2);
31 ldHy = gVM*Hy(:,k1) - gVP*Hy(:,k2);
32 ldEz = gVM*Ez(:,k1) - gVP*Ez(:,k2);
33

34 % 2.3 Compute flux terms at Gauss nodes on face fragment
35 lndotdH = lnx.*ldHx+lny.*ldHy;
36 fluxHx = lny.*ldEz + lndotdH.*lnx-ldHx;
37 fluxHy = -lnx.*ldEz + lndotdH.*lny-ldHy;
38 fluxEz = -lnx.*ldHy + lny.*ldHx -ldEz;
39

40 % 2.4 Lift fluxes for non-conforming face fragments and update
41 % residuals
42 lift = neigh.lift;
43 rhsHx(:,k1) = rhsHx(:,k1) + lift*fluxHx/2;
44 rhsHy(:,k1) = rhsHy(:,k1) + lift*fluxHy/2;
45 rhsEz(:,k1) = rhsEz(:,k1) + lift*fluxEz/2;
46 end

This completes the modification required to handle nonconforming element
interfaces in the DG-FEM used to solve the two-dimensional TM Maxwell’s
equations (see Section 6.5).

To show this in action, we repeat a convergence study for a single mode
of a square perfectly electrically conducting (PEC) cavity but this time with
a mesh that has some elements refined by Hrefine2D.m, leaving some non-
conforming interfaces. The sequence of meshes are shown in Fig. 9.6 and the
estimated order of convergence for N = 1, ..., 8 is shown in Table 9.3. The

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

Fig. 9.6. Sequence of meshes used in convergence test for DG time-domain solution
of the two-dimensional Maxwell’s equations on non-conforming meshes.Question: Can one use different order in each element ?

Answer: Yes

h-nonconform
9.2 Nonconforming discretizations 397

N=1
N=2
N=3
N=4
N=5
N=6

N=1

N=2

N=3

N=4

N=5

N=6

NG=3
NG=4
NG=5
NG=6
NG=7
NG=7

Fig. 9.7. Top left: Original six-element mesh. Top right: Exploded view. Bottom
left: Basis nodes used on each element. Bottom right: Gauss nodes used for surface
integrals on each element-element interface.

polynomial order is allowed to vary by element. We thus consider an element
centric degree vector; that is, there is a vector of length K with the k-th entry
holding the polynomial order to be used in that element. An example mesh
of six elements with orders ranging from one to six is shown in Fig. 9.7.

We should point out to those readers familiar with the continuous finite el-
ement methods that there is no need in the DG-FEM to create a basis that has
a degree vector that assigns polynomial orders to each edge, face, and element
interior and furthermore require that the degree vector be continuous between
these facets. Rather, because we are using broken spaces of polynomials, we
merely require that the integrals used to evaluate the fluxes, transferring in-
formation between elements in the variational statement, are computed with
sufficient accuracy. Thus the main considerations of the order nonconforming
formulation are that we are able to handle the variable (elemental) degree
vector and to compute the flux terms accurately at all interfaces.

In the following implementation examples, we outline the changes to the
previously introduced implementations needed to handle nonconformity in
the local order of approximation. The alert reader will notice that the imple-
mentations are somewhat more complicated and perhaps not suitable or rele-
vant for the casual reader. Although each element uses a standard polynomial

p-nonconform

Example - Adaptive solution

We consider a standard test case

∇2u(x) = f(x) u = 0,x ∈ ∂Ω

Domain is L-shaped

RHS so that the exact solution is

u(r, θ) = r2/3 sin(2π/3θ)

Solution is singular !

Solved using full hp-adaptive solution

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.203

1.142

1.081

1.019

0.958

0.896

0.835

0.774

0.712

0.651

0.590

0.528

0.467

0.405

0.344

0.283

0.221

0.160

0.099

0.037

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.0028

-0.0072

-0.0117

-0.0162

-0.0207

-0.0252

-0.0297

-0.0342

-0.0387

-0.0432

-0.0477

-0.0522

-0.0567

-0.0612

-0.0657

-0.0702

-0.0747

-0.0791

-0.0836

-0.0881

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

10

9

8

7

6

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.95E-06

1.70E-06

1.45E-06

1.20E-06

9.45E-07

6.94E-07

4.43E-07

1.92E-07

-5.90E-08

-3.10E-07

-5.61E-07

-8.12E-07

-1.06E-06

-1.31E-06

-1.57E-06

ONERA, April 2006 – p.28

Example - Adaptive solution

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.203

1.142

1.081

1.019

0.958

0.896

0.835

0.774

0.712

0.651

0.590

0.528

0.467

0.405

0.344

0.283

0.221

0.160

0.099

0.037

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.0028

-0.0072

-0.0117

-0.0162

-0.0207

-0.0252

-0.0297

-0.0342

-0.0387

-0.0432

-0.0477

-0.0522

-0.0567

-0.0612

-0.0657

-0.0702

-0.0747

-0.0791

-0.0836

-0.0881

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

10

9

8

7

6

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.95E-06

1.70E-06

1.45E-06

1.20E-06

9.45E-07

6.94E-07

4.43E-07

1.92E-07

-5.90E-08

-3.10E-07

-5.61E-07

-8.12E-07

-1.06E-06

-1.31E-06

-1.57E-06

ONERA, April 2006 – p.28

 1e-07

 1e-06

 1e-05

 0.0001

 0.001

 0.01

 10 20 30 40 50 60 70 80 90 100

|J
(u

)-
J
(u

h
)|

DOF
1/2

hp TOL=10
-7

hp TOL=10
-7

 coarfrac 0.1

h p=1 TOL=10
-5

h p=2 TOL=10
-5

h p=3 TOL=10
-5

hp refper 20

hp refper 20 coarper 10

ONERA, April 2006 – p.29

Spectral convergence
even for a singular
solution

Example - Adaptive solution - Maxwell’s

Similar results for Maxwell’s

x

y

-1 -0.5 0 0.5 1
-1

-0.5

0

0.5

1

7.5

6.5

5.5

4.5

3.5

2.5

Order

2

8

ONERA, April 2006 – p.31

∇×∇×E + ω2E = f ,n×E = 0,x ∈ Ω

Curvilinear elements

What: Elements that conform exactly to a
curved boundary

Why: Accuracy !

The list goes on ..

The same DG-FEM computation platform has been used
for all examples and many other problem types

• Flow mixing and control
• Poisson/Helmholtz equations
• Shallow water flows on the sphere
• Adjoint based adaptive solution/design

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.203

1.142

1.081

1.019

0.958

0.896

0.835

0.774

0.712

0.651

0.590

0.528

0.467

0.405

0.344

0.283

0.221

0.160

0.099

0.037

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.0028

-0.0072

-0.0117

-0.0162

-0.0207

-0.0252

-0.0297

-0.0342

-0.0387

-0.0432

-0.0477

-0.0522

-0.0567

-0.0612

-0.0657

-0.0702

-0.0747

-0.0791

-0.0836

-0.0881

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

10

9

8

7

6

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.95E-06

1.70E-06

1.45E-06

1.20E-06

9.45E-07

6.94E-07

4.43E-07

1.92E-07

-5.90E-08

-3.10E-07

-5.61E-07

-8.12E-07

-1.06E-06

-1.31E-06

-1.57E-06

Darmstadt International Workshop, October 2004 – p.79

It appears to achieve the flexibility, accuracy, efficiency,
and robustness we need to move forward

The list goes on ..

The same DG-FEM computation platform has been used
for all examples and many other problem types

• Flow mixing and control
• Poisson/Helmholtz equations
• Shallow water flows on the sphere
• Adjoint based adaptive solution/design

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.203

1.142

1.081

1.019

0.958

0.896

0.835

0.774

0.712

0.651

0.590

0.528

0.467

0.405

0.344

0.283

0.221

0.160

0.099

0.037

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.0028

-0.0072

-0.0117

-0.0162

-0.0207

-0.0252

-0.0297

-0.0342

-0.0387

-0.0432

-0.0477

-0.0522

-0.0567

-0.0612

-0.0657

-0.0702

-0.0747

-0.0791

-0.0836

-0.0881

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

10

9

8

7

6

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.95E-06

1.70E-06

1.45E-06

1.20E-06

9.45E-07

6.94E-07

4.43E-07

1.92E-07

-5.90E-08

-3.10E-07

-5.61E-07

-8.12E-07

-1.06E-06

-1.31E-06

-1.57E-06

Darmstadt International Workshop, October 2004 – p.79

It appears to achieve the flexibility, accuracy, efficiency,
and robustness we need to move forward

This is a unique feature to high-order elements376 9 Curvilinear elements and nonconforming discretizations

0 0.2 0.4 0.6 0.8 1
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Original Element

0 0.2 0.4 0.6 0.8 1
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

One Face Made Curvilinear

0 0.2 0.4 0.6 0.8 1
−0.1

0
0.1
0.2
0.3
0.4
0.5
0.6
0.7
0.8
0.9

Deformation Blended Into Element

Fig. 9.2. Left: Original straight-sided element. Central: Nodes on the face are de-
formed to a circle. Right: The deformation is blended to the interior nodes.

curvilinear boundary, which, in this example, amounts to the radius and center
of the cylinder.

MakeCylinder2D.m

1 function MakeCylinder2D(faces, ra,xo,yo)
2

3 % Function: MakeCylinder2D(faces, ra, xo, yo)
4 % Purpose: Use Gordon-Hall blending with an isoparametric map to
5 % modify a list of faces so they conform to a cylinder
6 % of radius r centered at (xo,yo)
7 Globals2D;
8

9 NCurveFaces = size(faces,1);
10 vflag = zeros(size(VX));
11 for n=1:NCurveFaces
12

13 % move vertices of faces to be curved onto circle
14 k = faces(n,1); f = faces(n,2);
15 v1 = EToV(k, f); v2 = EToV(k, mod(f,Nfaces)+1);
16 theta1 = atan2(VY(v1),VX(v1)); theta2 = atan2(VY(v2),VX(v2));
17 newx1 = xo + ra*cos(theta1); newy1 = yo + ra*sin(theta1);
18 newx2 = xo + ra*cos(theta2); newy2 = yo + ra*sin(theta2);
19

20 % update mesh vertex locations
21 VX(v1) = newx1; VX(v2) = newx2; VY(v1) = newy1; VY(v2) = newy2;
22

23 % store modified vertex numbers
24 vflag(v1) = 1; vflag(v2) = 1;
25 end

Once the finite element vertex nodes are correctly positioned, a list of
elements containing these nodes is defined, and the volume node positions of
the elements are adjusted to correctly match with the finite element mesh, as
demonstrated in

Example - Maxwell’s equations

9

Curvilinear elements and nonconforming
discretizations

All previous chapters have focused almost exclusively on the simplest cases
of geometric discretizations where all boundaries are assumed to be piecewise
linear and all elements share faces of equal size and order of approximation.
However, one of the major advantages of discontinuous Galerkin (DG) meth-
ods lies in their flexibility to go beyond these cases and support more complex
situation.

In this chapter we discuss the modifications required to extend the linear
conforming elements to include the treatment of meshes containing curvilin-
ear elements and/or non-conforming elements. As we will see, the required
changes are limited, but the advantages of doing so can be dramatic in terms
of improvements in accuracy and reductions in computational effort.

9.1 Isoparametric curvilinear elements

Let us begin with an example to illustrate the advantages of using curvilinear
elements.

Example 9.1. We will seek the solution of the TM form of Maxwell’s equations
(see Section 6.5) in a in a unit radius, cylindrical, metallic cavity. One of the
exact resonant modes is given by

Hx (x, y, t = 0) = 0, Hy (x, y, t = 0) = 0,
Ez (x, y, t = 0) = J6(α6r) cos(6θ) cos(α6t),

where

α6 = 13.589290170541217,
r =

√
x2 + y2, θ = atan2 (y, x) ,

374 9 Curvilinear elements and nonconforming discretizations

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

Fig. 9.1. Top: Sequence of meshes used in convergence test for time-domain
Maxwell’s equations solved using a DG method with straight-sided elements. Bot-
tom: Zoom of top part of sequence of meshes.

Table 9.1. L2-error in the electric field, Ez, and convergence rates for the sequence
of meshes in Fig. 9.1 and a range of polynomial orders used to discretize a cylindrical
cavity. Straight-sided elements are used to represent the geometry.

N h h/2 h/4 Rate

1 1.09E-01 3.78E-02 8.96E-03 1.80
2 2.37E-02 2.70E-03 3.58E-04 3.02
3 5.77E-03 1.09E-03 2.70E-04 2.21
4 4.39E-03 1.09E-03 2.72E-04 2.01
5 4.38E-03 1.09E-03 2.72E-04 2.00
6 4.40E-03 1.09E-03 2.72E-04 2.01
7 4.41E-03 1.09E-03 2.73E-04 2.01

and J6(z) is the sixth Bessel function of the first kind. This mode has six
periods in the azimuthal direction. Homogeneous Dirichlet data are assumed
for the electric field component.

In a simple numerical experiment we use meshes consisting of straight-
sided elements as shown in Fig. 9.1, and integrated until final time T = 0.5,
at which point we measure the L2-error in the electric field. The estimated
convergence rates are shown in Table 9.1 and it is evident that the solver from
Section 6.5 achieves a sub optimal second-order rate of convergence.

374 9 Curvilinear elements and nonconforming discretizations

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

Fig. 9.1. Top: Sequence of meshes used in convergence test for time-domain
Maxwell’s equations solved using a DG method with straight-sided elements. Bot-
tom: Zoom of top part of sequence of meshes.

Table 9.1. L2-error in the electric field, Ez, and convergence rates for the sequence
of meshes in Fig. 9.1 and a range of polynomial orders used to discretize a cylindrical
cavity. Straight-sided elements are used to represent the geometry.

N h h/2 h/4 Rate

1 1.09E-01 3.78E-02 8.96E-03 1.80
2 2.37E-02 2.70E-03 3.58E-04 3.02
3 5.77E-03 1.09E-03 2.70E-04 2.21
4 4.39E-03 1.09E-03 2.72E-04 2.01
5 4.38E-03 1.09E-03 2.72E-04 2.00
6 4.40E-03 1.09E-03 2.72E-04 2.01
7 4.41E-03 1.09E-03 2.73E-04 2.01

and J6(z) is the sixth Bessel function of the first kind. This mode has six
periods in the azimuthal direction. Homogeneous Dirichlet data are assumed
for the electric field component.

In a simple numerical experiment we use meshes consisting of straight-
sided elements as shown in Fig. 9.1, and integrated until final time T = 0.5,
at which point we measure the L2-error in the electric field. The estimated
convergence rates are shown in Table 9.1 and it is evident that the solver from
Section 6.5 achieves a sub optimal second-order rate of convergence.

386 9 Curvilinear elements and nonconforming discretizations

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

−0.2−0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

Fig. 9.3. Top: Sequence of meshes used in convergence test of Maxwell’s equations
with curvilinear elements. Bottom: Zoom of top part of meshes.

Table 9.2. L2-error in the electric field, Ez, and convergence rates for a sequence of
meshes in Fig. 9.3 and the range of polynomial orders used to discretize a cylindrical
cavity. Curvilinear elements are used to represent the geometry. An ∗ marks that
the accuracy is impacted by finite precision effects.

N h h/2 h/4 Rate

1 1.09E-01 3.78E-02 8.96E-03 1.80
2 2.21E-02 2.23E-03 2.05E-04 3.38
3 3.12E-03 1.92E-04 1.28E-05 3.97
4 6.01E-04 1.95E-05 5.88E-07 5.00
5 9.89E-05 1.69E-06 2.72E-08 5.92
6 1.74E-05 1.31E-07 9.81E-10 7.06
7 2.08E-06 8.97E-09 7.93E-11* 7.34*

9.2 Nonconforming discretizations

In many applications, it can be necessary to adjust the numerical resolution
in a subset of the elements to control the global error of the computation. For
the DG-FEM, this can be achieved by changing the local order of the approx-
imation, known as order refinement, or by locally modifying the element size.
In both cases, however, we have a situation where the order of approxima-
tion and/or the element sizes do not conform. This requires some additional
attention to the construction of the numerical fluxes and the connectivity of
the global grid.

Identifying which elements in a computational grid should be modified to
increase the overall accuracy is the subject of error estimation. This is another
very interesting area of research that is just now coming into maturity in the

386 9 Curvilinear elements and nonconforming discretizations

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−1 −0.5 0 0.5 1

−1

−0.5

0

0.5

1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

−0.2 −0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

−0.2−0.1 0 0.1 0.2
0.7

0.8

0.9

1

1.1

Fig. 9.3. Top: Sequence of meshes used in convergence test of Maxwell’s equations
with curvilinear elements. Bottom: Zoom of top part of meshes.

Table 9.2. L2-error in the electric field, Ez, and convergence rates for a sequence of
meshes in Fig. 9.3 and the range of polynomial orders used to discretize a cylindrical
cavity. Curvilinear elements are used to represent the geometry. An ∗ marks that
the accuracy is impacted by finite precision effects.

N h h/2 h/4 Rate

1 1.09E-01 3.78E-02 8.96E-03 1.80
2 2.21E-02 2.23E-03 2.05E-04 3.38
3 3.12E-03 1.92E-04 1.28E-05 3.97
4 6.01E-04 1.95E-05 5.88E-07 5.00
5 9.89E-05 1.69E-06 2.72E-08 5.92
6 1.74E-05 1.31E-07 9.81E-10 7.06
7 2.08E-06 8.97E-09 7.93E-11* 7.34*

9.2 Nonconforming discretizations

In many applications, it can be necessary to adjust the numerical resolution
in a subset of the elements to control the global error of the computation. For
the DG-FEM, this can be achieved by changing the local order of the approx-
imation, known as order refinement, or by locally modifying the element size.
In both cases, however, we have a situation where the order of approxima-
tion and/or the element sizes do not conform. This requires some additional
attention to the construction of the numerical fluxes and the connectivity of
the global grid.

Identifying which elements in a computational grid should be modified to
increase the overall accuracy is the subject of error estimation. This is another
very interesting area of research that is just now coming into maturity in the

This is essential to fully benefit for complex problems

Example - Boussinesq equations

The correct representation
of the boundary is essential
for accuracy and speed

A couple of 3D(2D) tests

Linear cylinder diffraction in
open water

• Complex geometry
• Linear model
• Fully curvilinear boundary

-2 0 2 4
0

1

2

3

x/L

y
/
L

8.3 Scattering of linear waves about a vertical cylinder in open water 145

a good agreement with the analytical results. Also, oscillatory patterns are seen extending
out toward the corners in the western end. These discrepancies are believed to be caused by
reflections (less than 1%) from the relaxation zones. Further in Figure 8.10 a snapshot at
time t = 25s for the computed wave fields in the two cases considered, has been shown using
the ”quiver” command in Matlab. Note that the vector fields are automatically scaled to
fit in the figure windows. From these figures, it is seen how the symmetry boundary condi-
tions results in tangential flow to the solid wall faces. To better test if these conditions are
consistent we consider the problem of scattering by a cylinder inside a finite-width channel.

a)

!1 !0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x/L

y
/L

b)

!1 !0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x/L

y
/L

Figure 8.10: Snapshot of computed wave fields in the near-region of the solid surface-piercing
cylinder. The cylinder surface is represented using a) a polygonal approximation and b) a
curvilinear approximation.

A couple of 3D(2D) tests

Linear cylinder diffraction in
open water

• Complex geometry
• Linear model
• Fully curvilinear boundary

-2 0 2 4
0

1

2

3

x/L

y
/
L

8.3 Scattering of linear waves about a vertical cylinder in open water 145

a good agreement with the analytical results. Also, oscillatory patterns are seen extending
out toward the corners in the western end. These discrepancies are believed to be caused by
reflections (less than 1%) from the relaxation zones. Further in Figure 8.10 a snapshot at
time t = 25s for the computed wave fields in the two cases considered, has been shown using
the ”quiver” command in Matlab. Note that the vector fields are automatically scaled to
fit in the figure windows. From these figures, it is seen how the symmetry boundary condi-
tions results in tangential flow to the solid wall faces. To better test if these conditions are
consistent we consider the problem of scattering by a cylinder inside a finite-width channel.

a)

!1 !0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x/L

y
/L

b)

!1 !0.5 0 0.5 1
0

0.2

0.4

0.6

0.8

1

x/L

y
/L

Figure 8.10: Snapshot of computed wave fields in the near-region of the solid surface-piercing
cylinder. The cylinder surface is represented using a) a polygonal approximation and b) a
curvilinear approximation.

Example - Spherical Shallow Water equ

Dynamics of a thin layer of fluids on a sphere

Stardard benchmark (Williamsson) in geophysical
flow modeling

Example - Spherical Shallow Water equ

Case 1: Rotation of
cosine wave

Case 1I: Zonal
Geostrophic Flow

Case 1II: Zonal flow w/
compact support

Example - Spherical Shallow Water equ

Rotation of cylinder

SEM DG-FEM

N=8

An easy path to curvilinear elements

There are several good reasons for adding the support
for curvilinear elements

✓Higher accuracy

✓ Resolution set by solution, not geometry

✓Often essential to make high-order competitive

.. but classic/general approach is expensive in work and
memory due to local operators

We present a special approach for linear problems

This is work by
Prof T. Warburton

Classic curvilinear elements

Ignoring the problem is not a good idea

Another way

The idea is to define

H =
H̃√
J

,E =
Ẽ√
J

Lj(x) =
Lj(x)√

J

�

D
HLj dx =

�

D
J
−1

H̃L̃j dx =
�

I
H̃L̃j dr

and the corresponding test function

These are non-polynomial functions

Mass matrix is unchanged

Another way

The scheme becomes

0 = !!, "µ
!H

"t
#

$%
&

'(T̂
+ !!,)* !E()T̂ +

!!
J

,n * E
*

+ E()#

$%
&

'(
"T

+ !!,)J
2J

* !E#
$%

&
'(T̂

0 = !, , "-
!E

"t
#

$%
&

'(T̂
+) * !, , !H()T̂

Maxwell's equations on reference element
" #$$$$ %$$$$

+
!,
J

,n * H
*#

$%
&
'(
"T

Distributional derivative contribution
" #$$$ %$$$

+ !, ,)J
2J

* !H#
$%

&
'(T̂

Transform terms
" #$$ %$$

Stability can still be established by standard means

This is a low-storage curvilinear formulation

.. only for linear problems

Another way

Method N Est. Order

DGTD
5 2.45E-04 8.06E-06 2.56E-05 5.24E-09 5.61

DGTD
6 4.31E-05 1.43E-06 2.52E-08 2.81E-10 6.49

Low
storage

5 2.44E-04 8.03E-06 2.55E-05 5.22E-09 5.61
Low

storage 6 4.29E-05 1.43E-06 2.52E-08 2.79E-10 6.50

No loss in accuracy

Another way Summary of Part I

We have generalized everything to 3D

✓Linear/nonlinear problems
✓First order/higher order operators
✓Complex geometries
✓Apaptivity
✓Curvilinear elements

There is only one significant obstacle to
solving large problems

SPEED !

Lecture 8

✓ Let’s briefly recall what we know

✓ Part I: 3D problems and extensions

✓ Formulations and examples

✓ Adaptivity and curvilinear elements

✓ Part II: The need for speed

✓ Parallel computing

✓ GPU computing

✓ Software beyond Matlab

The need for speed !

So far, we have focused on ‘simple’ serial computing
using Matlab based model.

However, this will not suffice for many applications

Maxwell’s equations

Scattering by aircraft

X

Y

Z

Darmstadt International Workshop, October 2004 – p.33

Darmstadt International Workshop, October 2004 – p.34

Animations
by Nico Godel
Hamburg
using NuDG

The list goes on ..

The same DG-FEM computation platform has been used
for all examples and many other problem types

• Flow mixing and control
• Poisson/Helmholtz equations
• Shallow water flows on the sphere
• Adjoint based adaptive solution/design

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.203

1.142

1.081

1.019

0.958

0.896

0.835

0.774

0.712

0.651

0.590

0.528

0.467

0.405

0.344

0.283

0.221

0.160

0.099

0.037

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

-0.0028

-0.0072

-0.0117

-0.0162

-0.0207

-0.0252

-0.0297

-0.0342

-0.0387

-0.0432

-0.0477

-0.0522

-0.0567

-0.0612

-0.0657

-0.0702

-0.0747

-0.0791

-0.0836

-0.0881

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

10

9

8

7

6

x

y

-0.03 -0.02 -0.01 0 0.01 0.02 0.03

-0.03

-0.02

-0.01

0

0.01

0.02

x

y

-1 -0.5 0 0.5 1
-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

1.95E-06

1.70E-06

1.45E-06

1.20E-06

9.45E-07

6.94E-07

4.43E-07

1.92E-07

-5.90E-08

-3.10E-07

-5.61E-07

-8.12E-07

-1.06E-06

-1.31E-06

-1.57E-06

Darmstadt International Workshop, October 2004 – p.79

It appears to achieve the flexibility, accuracy, efficiency,
and robustness we need to move forward

The need for speed

Let us first understand where we spend the time

Test case is
3D Maxwells

uk

Flux Gather Flux Lifting

F (uk) Local Differentiation

∂tuk

(a) Decomposition of a DG operator into subtasks.
Element-local operations are drawn in green, commu-
nicating ones in red. The majority of the DG operator
is applied in an element-local fashion, making it it par-
ticularly suitable for GPUs among the group of finite-
element-based PDE solvers.

(b) A sample scattering problem solved on a GTX
280 GPU using our methods. The incident plane-wave
electric field is shown as pseudocolor values on the scat-
terer, while the scattered electric field is shown as ar-
rows. The computation was performed at order N = 4
on a mesh of K = 78745 elements. It achieved and
sustained more than 160 GFlops/s.

Figure 1: DG: Basic Sequence of Operations and Sample Computation.

requirements? And third, when will what piece of the data be fetched from main into the very
limited on-chip memory? The answers to these questions depend on a complex interplay between
various granularities dictated by the shape of the reference element, the mesh, the order of the DG
discretization and the hardware. Often, large amounts of development time for a high-performance
computational code are devoted to such profiling and optimization tasks. Unfortunately, this tuning
is often a very repetitive task, the outcome of which is strongly hardware-dependent.

This repetitiveness makes it desirable to automate the search for optimally-tuned codes within
a certain parameter space of, e.g., algorithm variants, memory layouts, and CUDA computation
layouts. This is metaprogramming : instead of writing a program to get a result, one writes a
program that writes a program that obtains the result. To enable metaprogramming in our DG
solver, our group has built PyCuda. PyCuda achieves two goals: First, it makes all of CUDA
accessible from Python, a high-level scripting language. Second and more importantly, it allows
the generation, compilation, and invocation of CUDA code at run time of the driving script. This
yields not only a friendly prototyping environment for CUDA, but also a powerful tool that can
help generate highly-tuned codes. PyCuda is available under a liberal open-source license and has
found a vibrant community of users, among them researchers from the DiCarlo neuroscience lab at
MIT and the Rowland Institute at Harvard.

Applying the principle of metaprogramming, our DG implementation writes, compiles and mea-
sures execution time for a moderate number of different versions of each required component at
run time, before the actual DG computation is launched. It determines an empirically optimal
combination of alignment block sizes, parallel work distribution constants, and algorithm variants.
An article [4] in which we describe the exact details of our methods is currently under review for
publication.

2

The majority of
work is local

The need for speed

The locality suggest that parallel computing
will be beneficial

✓ Using OpenMP, the local work can be
distributed over elements through loops.

✓Using MPI the locality ensures a surface
communication model.

✓Mixed OpenMP/MPI models also possible

✓A similar line of arguments can be used for
iterative solvers.

Parallel performanceEfficiency

Processors 64 128 256 512

Scaled RK time 1.00 0.48 0.24 0.14

Ideal time 1.00 0.50 0.25 0.13

High performance is derived from
• Local nature of scheme
• Pure matrix-matrix based nature of formulation
• Very high single-processor performance

A major challenge remains in solvers
• Global (larger) systems
• Implicit time-stepping

High performance is achieved through -
✓ Local nature of scheme
✓ Pure matrix-matrix operations
✓ Local bandwidth minimization
✓ Very efficient on-chip performance (~75%)

Challenges -
✓Efficient parallel preconditioning

Parallel computing

DG-FEM maps very well to classic multi-processor
computing clusters and result in excellent speed-up.

... but such machines are expensive to buy and run.

Ex: To get on the Top500 list, requires about $3m to
purchase a cluster with 50Tflop/s performance.

What we need is supercomputing on the desktop

For FREE !
... or at least at a fraction of the price

CPUs vs GPUs

Notice the following

The memory bandwidth and the peak performance on Graphics
cards (GPU’s) is developing MUCH faster than on CPU’sEMF 2009, May 28 2009, Mondovi 31

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens

!"#$%&&'(')*+',

-./01+234

B
a

n
d

w
id

th
G

B
 /

s

P
e

a
k

G
F

lo
p

s
/
s

Reference: www.nvidia.com

At the same time, the mass-marked for gaming drives the
prices down -- we have to find a way to exploit this !

But why is this ?

Target for CPU:

✓ Single thread very fast

✓ Large caches to hide latency

✓ Predict, speculate etc

HPC SUMMER

INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Architectures

CPU Chip Real Estate

Die floorplan: VIA Isaiah (2008).
65 nm, 4 SP ops at a time, 1 MiB L2.

Andreas Klöckner, Applied Math, Brown Accelerated Computing

Lots of very complex logic
to predict behavior

But why is this ?

For streaming/graphics cards it is different

✓ Throughput is what matters

✓ Hide latency through parallelism

✓ Push hierarchy onto programmer

HPC SUMMER

INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Architectures

GPU Chip Real Estate

Die floorplan: AMD RV770 (2008).
55 nm, 800 SP ops at a time.

Andreas Klöckner, Applied Math, Brown Accelerated Computing

Much simpler logic with
 a focus on performance

But why is this ?
 Moore’s Law & GPU Evolution

240 Cores @ ~1.3 GHz 480 Cores @ 1.4 GHz128 Cores @ ~1.2 GHz

2007: G80 2008: GT200 2010: GF100

Streams: 103 GB/s Streams: 177 GB/sStreams: 140 GB/s

Tuesday, June 1, 2010

Core numbers grow faster than bandwidth

GPUs 101
Introduction Programming GPUs GPU Scripting Discontinuous Galerkin on GPUs

Overview

GPUs: Execution Model

Computational Grid

Block
(0, 0)

Block
(0, 1)

Block
(1, 0)

Block
(1, 1)

Block
(2, 0)

Block
(2, 1)

Block (1, 0)

Thread
(0, 0)

Thread
(0, 1)

Thread
(0, 2)

Thread
(0, 3)

Thread
(1, 0)

Thread
(1, 1)

Thread
(1, 2)

Thread
(1, 3)

Thread
(2, 0)

Thread
(2, 1)

Thread
(2, 2)

Thread
(2, 3)

Thread
(3, 0)

Thread
(3, 1)

Thread
(3, 2)

Thread
(3, 3)

Multi-tiered Parallelism

Grid

Block

Only threads within a block can

communicate

Each Block is assigned to

physical execution unit.

Grids and Blocks replace outer

loops in an algorithm.

Indices available at run time

Blocks segmented into

groups of 32 (“warps”)

Image Credit: Johan S. Seland, Sintef

Andreas Klöckner Applied Math, Brown

GPUs: How to Compute 10 Times Faster on Hardware You May Already Own

✓Genuine multi-tiered parallelism
✓Grids
✓blocks
✓threads

✓Only threads within a block can talk
✓Blocks must be executed in order

✓Grids/blocks/threads replace loops

✓Until recently, only single precision

✓Code-able with CUDA (C-extension)

CPUs vs GPUs

The CPU is mainly the traffic controller
... although it need not be

HPC SUMMER

INSTITUTE

2009

Intro Programming GPUs Scripting Example Overview Memory Synchronization Advanced Optimizing

Relationship CPU ↔ GPU

CPU and GPU run
asynchronously.

CPU submits to GPU’s queue:
Grid launches
Transfers
Sync primitives
. . .

cudaThreadSynchronize():
“CPU, wait for empty queue!”

Transfers synchronize implicitly.
(unless explicitly told not to)

CPUCPU

GPUGPU

QueueQueue

Andreas Klöckner, Applied Math, Brown Accelerated Computing

✓The CPU and GPU runs
 asynchronously

✓CPU submits to GPU queue

✓CPU synchronizes GPUs

✓Explicitly controlled concurrency
 is possible

GPUs overview

✓ GPUs exploit multi-layer concurrency

✓ The memory hierarchy is deep

✓ Memory padding is often needed to get optimal
performance

✓ Several types of memory must be used for
performance

✓ First factor of 5 is not too hard to get

✓ Next factor of 5 requires quite some work

✓ Additional factor of 2-3 requires serious work

Nodal DG on GPU’s

So what does all this mean ?

✓GPU’s has deep memory hierarchies so local is good
!The majority of DG operations are local

✓Compute bandwidth >> memory bandwidth
!High-order DG is arithmetically intense

✓GPU global memory favors dense data
!Local DG operators are all dense

uk

Flux Gather Flux Lifting

F (uk) Local Differentiation

∂tuk

(a) Decomposition of a DG operator into subtasks.
Element-local operations are drawn in green, commu-
nicating ones in red. The majority of the DG operator
is applied in an element-local fashion, making it it par-
ticularly suitable for GPUs among the group of finite-
element-based PDE solvers.

(b) A sample scattering problem solved on a GTX
280 GPU using our methods. The incident plane-wave
electric field is shown as pseudocolor values on the scat-
terer, while the scattered electric field is shown as ar-
rows. The computation was performed at order N = 4
on a mesh of K = 78745 elements. It achieved and
sustained more than 160 GFlops/s.

Figure 1: DG: Basic Sequence of Operations and Sample Computation.

requirements? And third, when will what piece of the data be fetched from main into the very
limited on-chip memory? The answers to these questions depend on a complex interplay between
various granularities dictated by the shape of the reference element, the mesh, the order of the DG
discretization and the hardware. Often, large amounts of development time for a high-performance
computational code are devoted to such profiling and optimization tasks. Unfortunately, this tuning
is often a very repetitive task, the outcome of which is strongly hardware-dependent.

This repetitiveness makes it desirable to automate the search for optimally-tuned codes within
a certain parameter space of, e.g., algorithm variants, memory layouts, and CUDA computation
layouts. This is metaprogramming : instead of writing a program to get a result, one writes a
program that writes a program that obtains the result. To enable metaprogramming in our DG
solver, our group has built PyCuda. PyCuda achieves two goals: First, it makes all of CUDA
accessible from Python, a high-level scripting language. Second and more importantly, it allows
the generation, compilation, and invocation of CUDA code at run time of the driving script. This
yields not only a friendly prototyping environment for CUDA, but also a powerful tool that can
help generate highly-tuned codes. PyCuda is available under a liberal open-source license and has
found a vibrant community of users, among them researchers from the DiCarlo neuroscience lab at
MIT and the Rowland Institute at Harvard.

Applying the principle of metaprogramming, our DG implementation writes, compiles and mea-
sures execution time for a moderate number of different versions of each required component at
run time, before the actual DG computation is launched. It determines an empirically optimal
combination of alignment block sizes, parallel work distribution constants, and algorithm variants.
An article [4] in which we describe the exact details of our methods is currently under review for
publication.

2

With proper care we should be able to obtain excellent
performance for DG-FEM on GPU’s

Nodal DG on GPU’s

EMF 2009, May 28 2009, Mondovi 34

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens

Map every

!"#$%&'&()

to a

*+!,-.%/01

Map every

!"#$%&'&()

to a

*+!,-.%/01

Map every

2/3&

to a

*+!,-456&73

Map every

2/3&

to a

*+!,-456&73

!"#8$9-7(3-*+!,

Other choices:
✓D-matrix in shared, data in global (small N)
✓Data in shared, D-matrix is global (large N)

Nodes in threads, elements for blocks

Computing without the CPU

DG-FEM on one GPU

DG-FEM on four GPU
one card

Where you need it most

Nodal DG on GPU’s

Similar results for DG-FEM Poisson solver with CG

Note: No preconditioning

Combined GPU/MPI solution

MPI across network

Good scaling when problem
is large

Example - a Mac Mini

Computation by N. Godel

EMF 2009, May 28 2009, Mondovi 40

Chair for Theory of Electrical Engineering and Computational Electromagnetics

Markus Clemens

!"#$!%&%'(

)*+',-.'/*+

CPU Compiler options

• Intel ICPC 11 (–O2 –xhost)

• Vectorization enabled

CPU Compiler options

• Intel ICPC 11 (–O2 –xhost)

• Vectorization enabled

Simulation on Teramite@RICE.edu (T.Warburton)

K=201765 elements
3rd order elements

Example: Military aircraft

PRIMARY: NUMERICAL TECHNIQUES, SECONDARY: WAVE PROPAGATION 2

costs. Eqn. (4) highlights the splitting configuration for the
discretized Ampère’s law.

d
dt

�
EF

EC

�
=

�
LFF LFC

LCF LCC

� �
HF

HC

�
(4)

The linear operator L represents the right hand side compu-
tation in (1). The indices C and F denote coarse and fine
elements, CF and FC coarse-fine interactions, respectively.

Fig. 1. Multirate scheme for a
timestep ratio 4.

The benefit of this multirate
approach is that all evalu-
ations of the LCC operator
have to be executed only every
2sth timestep, as highlighted
in Fig.1 for s = 2. Regard-
ing stability, the intermediate
zones are of special interest.
With this configuration, the
Courant number has to be cho-
sen slightly smaller than in the
global scheme.

This behaviour has already been reported in [7] and will be
investigated in the full paper in detail.

IV. FIRST NUMERICAL RESULTS

As a first numerical benchmark, a cavity discretized with
398 tetrahedra was excited with its fundamental mode. Regard-
ing the different element sizes of the mesh, a level separation
with a timestep ratio 4 was chosen. This corresponds to 182
fine elements having an individual stable timestep lower than
4 · ∆tmin and 216 coarse elements having a larger stable
timestep. Computations were carried out on a AMD Opteron
8356 CPU at 2.3 GHz and on one of the four NVIDIA TESLA
S 1070 GPUs. Table I is listing computation time and speedup

TABLE I
COMPARISON OF GLOBAL CPU, GLOBAL GPU AND MULTIRATE GPU

Example Implementation Computation
time

Speedup compared
to CPU global

CPU global 4 h 56 min 54 s 1.0

GPU global 10 min 51 s 27.4

GPU multirate 8 min 6 s 36.7

CPU global 29 h 6 min 46 s 1.0

GPU global 39 min 1 s 44.8

GPU multirate 11 min 50 s 147.6

for CPU-GPU acceleration and in a second step with enabled
multirate. Although this academic example is not providing
large aspect ratios, the efficiency can benefit from the multirate
scheme. Regarding accuracy, Fig. 2 highlights the maximum
error of the electric field during several computations, each
evaluating 200 periods of the cavity mode with a maximum
of 1 577 781 micro-timesteps. The error of the computation
with DG-FEM of order 4 is below 10−3 for all compuations.
In detail, there is almost no difference in accuracy between
the GPU multirate and the GPU global scheme.

Regaring efficiency of the multirate scheme, a scattering
object as presented in Fig. 3 is discretized with 130 413

Fig. 2. Maximum relative error of the electric field computed in a 3D cavity
with multirate and global schemes on GPU and CPU.

Fig. 3. Scattering object - CAD
model.

Fig. 4. Scattering object - mesh
with 130 413 tetrahedra.

tetrahedra, as shown in Fig. 4. The optimum timestep ratio
is 4, separating the mesh into 2737 fine and 127 676 coarse
elements. The fine elements are situated at the engine intake.
The global GPU computation was accelerated by a factor
of 44.8 compared to the CPU implementation and could be
further accelerated by a factor of 3.3 using the multirate
scheme as presented in Table I. The electric field at the surface
of the scattering object (y-component) is presented in Fig. 5.

Fig. 5. Electric field of a scatterer hit by a TEM wave, computed with
15.6 · 106 unknowns at 52 043 microsteps.

V. CONCLUSION

A multirate GPU accelerated DG-FEM algorithm was pre-
sented. The multirate timestepping scheme can further accel-
erate GPU computations, especially when high aspect ratios
of multiscale problems are of concern. The full paper will
provide more detailed information about the theory as well as
the stability and accuracy of the timestepping scheme.

REFERENCES

[1] C. Gear and D. Wells, “Multirate linear multistep methods,” BIT, vol. 24,
pp. 484–502, 1984.

[2] S. Piperno, “DGTD methods using modal basis functions and symplectic
local time-stepping application to wave propagation problems,” M2AN,
vol. 40, no. 5, pp. 815–841, 2008.

[3] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Meth-
ods. Springer, 2008.

[4] E. Montseny, S. Pernet, X. Ferrires, M. Zweers, G. Cohen, and B. Pec-
queux, “A discontinuous Galerkin method to solve maxwell equations in
time domain,” ACES-Conference, 2007.

[5] N. Gödel, T. Warburton, and M. Clemens, “GPU accelerated discontinu-
ous Galerkin FEM for electromagnetic radio frequency problems,” IEEE
APS – Full paper accepted for publication, 2009.

[6] N. Gödel, S. Schomann, T. Warburton, and M. Clemens, “Local timestep-
ping discontinuous Galerkin methods for electromagnetic RF field prob-
lems,” EUCAP 2009 – Full paper accepted for publication, 2009.

[7] E. Montseny, S. Pernet, X. Ferriéres, and G. Cohen, “Dissipative terms
and local time-stepping improvements in a spatial high order discon-
tinuous galerkin scheme for the time-domain maxwell’s equations,” J.
Comput. Phys., vol. 227, no. 14, pp. 6795–6820, 2008.

PRIMARY: NUMERICAL TECHNIQUES, SECONDARY: WAVE PROPAGATION 2

costs. Eqn. (4) highlights the splitting configuration for the
discretized Ampère’s law.

d
dt

�
EF

EC

�
=

�
LFF LFC

LCF LCC

� �
HF

HC

�
(4)

The linear operator L represents the right hand side compu-
tation in (1). The indices C and F denote coarse and fine
elements, CF and FC coarse-fine interactions, respectively.

Fig. 1. Multirate scheme for a
timestep ratio 4.

The benefit of this multirate
approach is that all evalu-
ations of the LCC operator
have to be executed only every
2sth timestep, as highlighted
in Fig.1 for s = 2. Regard-
ing stability, the intermediate
zones are of special interest.
With this configuration, the
Courant number has to be cho-
sen slightly smaller than in the
global scheme.

This behaviour has already been reported in [7] and will be
investigated in the full paper in detail.

IV. FIRST NUMERICAL RESULTS

As a first numerical benchmark, a cavity discretized with
398 tetrahedra was excited with its fundamental mode. Regard-
ing the different element sizes of the mesh, a level separation
with a timestep ratio 4 was chosen. This corresponds to 182
fine elements having an individual stable timestep lower than
4 · ∆tmin and 216 coarse elements having a larger stable
timestep. Computations were carried out on a AMD Opteron
8356 CPU at 2.3 GHz and on one of the four NVIDIA TESLA
S 1070 GPUs. Table I is listing computation time and speedup

TABLE I
COMPARISON OF GLOBAL CPU, GLOBAL GPU AND MULTIRATE GPU

Example Implementation Computation
time

Speedup compared
to CPU global

CPU global 4 h 56 min 54 s 1.0

GPU global 10 min 51 s 27.4

GPU multirate 8 min 6 s 36.7

CPU global 29 h 6 min 46 s 1.0

GPU global 39 min 1 s 44.8

GPU multirate 11 min 50 s 147.6

for CPU-GPU acceleration and in a second step with enabled
multirate. Although this academic example is not providing
large aspect ratios, the efficiency can benefit from the multirate
scheme. Regarding accuracy, Fig. 2 highlights the maximum
error of the electric field during several computations, each
evaluating 200 periods of the cavity mode with a maximum
of 1 577 781 micro-timesteps. The error of the computation
with DG-FEM of order 4 is below 10−3 for all compuations.
In detail, there is almost no difference in accuracy between
the GPU multirate and the GPU global scheme.

Regaring efficiency of the multirate scheme, a scattering
object as presented in Fig. 3 is discretized with 130 413

Fig. 2. Maximum relative error of the electric field computed in a 3D cavity
with multirate and global schemes on GPU and CPU.

Fig. 3. Scattering object - CAD
model.

Fig. 4. Scattering object - mesh
with 130 413 tetrahedra.

tetrahedra, as shown in Fig. 4. The optimum timestep ratio
is 4, separating the mesh into 2737 fine and 127 676 coarse
elements. The fine elements are situated at the engine intake.
The global GPU computation was accelerated by a factor
of 44.8 compared to the CPU implementation and could be
further accelerated by a factor of 3.3 using the multirate
scheme as presented in Table I. The electric field at the surface
of the scattering object (y-component) is presented in Fig. 5.

Fig. 5. Electric field of a scatterer hit by a TEM wave, computed with
15.6 · 106 unknowns at 52 043 microsteps.

V. CONCLUSION

A multirate GPU accelerated DG-FEM algorithm was pre-
sented. The multirate timestepping scheme can further accel-
erate GPU computations, especially when high aspect ratios
of multiscale problems are of concern. The full paper will
provide more detailed information about the theory as well as
the stability and accuracy of the timestepping scheme.

REFERENCES

[1] C. Gear and D. Wells, “Multirate linear multistep methods,” BIT, vol. 24,
pp. 484–502, 1984.

[2] S. Piperno, “DGTD methods using modal basis functions and symplectic
local time-stepping application to wave propagation problems,” M2AN,
vol. 40, no. 5, pp. 815–841, 2008.

[3] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Meth-
ods. Springer, 2008.

[4] E. Montseny, S. Pernet, X. Ferrires, M. Zweers, G. Cohen, and B. Pec-
queux, “A discontinuous Galerkin method to solve maxwell equations in
time domain,” ACES-Conference, 2007.

[5] N. Gödel, T. Warburton, and M. Clemens, “GPU accelerated discontinu-
ous Galerkin FEM for electromagnetic radio frequency problems,” IEEE
APS – Full paper accepted for publication, 2009.

[6] N. Gödel, S. Schomann, T. Warburton, and M. Clemens, “Local timestep-
ping discontinuous Galerkin methods for electromagnetic RF field prob-
lems,” EUCAP 2009 – Full paper accepted for publication, 2009.

[7] E. Montseny, S. Pernet, X. Ferriéres, and G. Cohen, “Dissipative terms
and local time-stepping improvements in a spatial high order discon-
tinuous galerkin scheme for the time-domain maxwell’s equations,” J.
Comput. Phys., vol. 227, no. 14, pp. 6795–6820, 2008.

PRIMARY: NUMERICAL TECHNIQUES, SECONDARY: WAVE PROPAGATION 2

costs. Eqn. (4) highlights the splitting configuration for the
discretized Ampère’s law.

d
dt

�
EF

EC

�
=

�
LFF LFC

LCF LCC

� �
HF

HC

�
(4)

The linear operator L represents the right hand side compu-
tation in (1). The indices C and F denote coarse and fine
elements, CF and FC coarse-fine interactions, respectively.

Fig. 1. Multirate scheme for a
timestep ratio 4.

The benefit of this multirate
approach is that all evalu-
ations of the LCC operator
have to be executed only every
2sth timestep, as highlighted
in Fig.1 for s = 2. Regard-
ing stability, the intermediate
zones are of special interest.
With this configuration, the
Courant number has to be cho-
sen slightly smaller than in the
global scheme.

This behaviour has already been reported in [7] and will be
investigated in the full paper in detail.

IV. FIRST NUMERICAL RESULTS

As a first numerical benchmark, a cavity discretized with
398 tetrahedra was excited with its fundamental mode. Regard-
ing the different element sizes of the mesh, a level separation
with a timestep ratio 4 was chosen. This corresponds to 182
fine elements having an individual stable timestep lower than
4 · ∆tmin and 216 coarse elements having a larger stable
timestep. Computations were carried out on a AMD Opteron
8356 CPU at 2.3 GHz and on one of the four NVIDIA TESLA
S 1070 GPUs. Table I is listing computation time and speedup

TABLE I
COMPARISON OF GLOBAL CPU, GLOBAL GPU AND MULTIRATE GPU

Example Implementation Computation
time

Speedup compared
to CPU global

CPU global 4 h 56 min 54 s 1.0

GPU global 10 min 51 s 27.4

GPU multirate 8 min 6 s 36.7

CPU global 29 h 6 min 46 s 1.0

GPU global 39 min 1 s 44.8

GPU multirate 11 min 50 s 147.6

for CPU-GPU acceleration and in a second step with enabled
multirate. Although this academic example is not providing
large aspect ratios, the efficiency can benefit from the multirate
scheme. Regarding accuracy, Fig. 2 highlights the maximum
error of the electric field during several computations, each
evaluating 200 periods of the cavity mode with a maximum
of 1 577 781 micro-timesteps. The error of the computation
with DG-FEM of order 4 is below 10−3 for all compuations.
In detail, there is almost no difference in accuracy between
the GPU multirate and the GPU global scheme.

Regaring efficiency of the multirate scheme, a scattering
object as presented in Fig. 3 is discretized with 130 413

Fig. 2. Maximum relative error of the electric field computed in a 3D cavity
with multirate and global schemes on GPU and CPU.

Fig. 3. Scattering object - CAD
model.

Fig. 4. Scattering object - mesh
with 130 413 tetrahedra.

tetrahedra, as shown in Fig. 4. The optimum timestep ratio
is 4, separating the mesh into 2737 fine and 127 676 coarse
elements. The fine elements are situated at the engine intake.
The global GPU computation was accelerated by a factor
of 44.8 compared to the CPU implementation and could be
further accelerated by a factor of 3.3 using the multirate
scheme as presented in Table I. The electric field at the surface
of the scattering object (y-component) is presented in Fig. 5.

Fig. 5. Electric field of a scatterer hit by a TEM wave, computed with
15.6 · 106 unknowns at 52 043 microsteps.

V. CONCLUSION

A multirate GPU accelerated DG-FEM algorithm was pre-
sented. The multirate timestepping scheme can further accel-
erate GPU computations, especially when high aspect ratios
of multiscale problems are of concern. The full paper will
provide more detailed information about the theory as well as
the stability and accuracy of the timestepping scheme.

REFERENCES

[1] C. Gear and D. Wells, “Multirate linear multistep methods,” BIT, vol. 24,
pp. 484–502, 1984.

[2] S. Piperno, “DGTD methods using modal basis functions and symplectic
local time-stepping application to wave propagation problems,” M2AN,
vol. 40, no. 5, pp. 815–841, 2008.

[3] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Meth-
ods. Springer, 2008.

[4] E. Montseny, S. Pernet, X. Ferrires, M. Zweers, G. Cohen, and B. Pec-
queux, “A discontinuous Galerkin method to solve maxwell equations in
time domain,” ACES-Conference, 2007.

[5] N. Gödel, T. Warburton, and M. Clemens, “GPU accelerated discontinu-
ous Galerkin FEM for electromagnetic radio frequency problems,” IEEE
APS – Full paper accepted for publication, 2009.

[6] N. Gödel, S. Schomann, T. Warburton, and M. Clemens, “Local timestep-
ping discontinuous Galerkin methods for electromagnetic RF field prob-
lems,” EUCAP 2009 – Full paper accepted for publication, 2009.

[7] E. Montseny, S. Pernet, X. Ferriéres, and G. Cohen, “Dissipative terms
and local time-stepping improvements in a spatial high order discon-
tinuous galerkin scheme for the time-domain maxwell’s equations,” J.
Comput. Phys., vol. 227, no. 14, pp. 6795–6820, 2008.

K=130413 elements
3rd order elements

15.6E6 DoF

Computation by N. Godel

PRIMARY: NUMERICAL TECHNIQUES, SECONDARY: WAVE PROPAGATION 2

costs. Eqn. (4) highlights the splitting configuration for the
discretized Ampère’s law.

d
dt

�
EF

EC

�
=

�
LFF LFC

LCF LCC

� �
HF

HC

�
(4)

The linear operator L represents the right hand side compu-
tation in (1). The indices C and F denote coarse and fine
elements, CF and FC coarse-fine interactions, respectively.

Fig. 1. Multirate scheme for a
timestep ratio 4.

The benefit of this multirate
approach is that all evalu-
ations of the LCC operator
have to be executed only every
2sth timestep, as highlighted
in Fig.1 for s = 2. Regard-
ing stability, the intermediate
zones are of special interest.
With this configuration, the
Courant number has to be cho-
sen slightly smaller than in the
global scheme.

This behaviour has already been reported in [7] and will be
investigated in the full paper in detail.

IV. FIRST NUMERICAL RESULTS

As a first numerical benchmark, a cavity discretized with
398 tetrahedra was excited with its fundamental mode. Regard-
ing the different element sizes of the mesh, a level separation
with a timestep ratio 4 was chosen. This corresponds to 182
fine elements having an individual stable timestep lower than
4 · ∆tmin and 216 coarse elements having a larger stable
timestep. Computations were carried out on a AMD Opteron
8356 CPU at 2.3 GHz and on one of the four NVIDIA TESLA
S 1070 GPUs. Table I is listing computation time and speedup

TABLE I
COMPARISON OF GLOBAL CPU, GLOBAL GPU AND MULTIRATE GPU

Example Implementation Computation
time

Speedup compared
to CPU global

CPU global 4 h 56 min 54 s 1.0

GPU global 10 min 51 s 27.4

GPU multirate 8 min 6 s 36.7

CPU global 29 h 6 min 46 s 1.0

GPU global 39 min 1 s 44.8

GPU multirate 11 min 50 s 147.6

for CPU-GPU acceleration and in a second step with enabled
multirate. Although this academic example is not providing
large aspect ratios, the efficiency can benefit from the multirate
scheme. Regarding accuracy, Fig. 2 highlights the maximum
error of the electric field during several computations, each
evaluating 200 periods of the cavity mode with a maximum
of 1 577 781 micro-timesteps. The error of the computation
with DG-FEM of order 4 is below 10−3 for all compuations.
In detail, there is almost no difference in accuracy between
the GPU multirate and the GPU global scheme.

Regaring efficiency of the multirate scheme, a scattering
object as presented in Fig. 3 is discretized with 130 413

Fig. 2. Maximum relative error of the electric field computed in a 3D cavity
with multirate and global schemes on GPU and CPU.

Fig. 3. Scattering object - CAD
model.

Fig. 4. Scattering object - mesh
with 130 413 tetrahedra.

tetrahedra, as shown in Fig. 4. The optimum timestep ratio
is 4, separating the mesh into 2737 fine and 127 676 coarse
elements. The fine elements are situated at the engine intake.
The global GPU computation was accelerated by a factor
of 44.8 compared to the CPU implementation and could be
further accelerated by a factor of 3.3 using the multirate
scheme as presented in Table I. The electric field at the surface
of the scattering object (y-component) is presented in Fig. 5.

Fig. 5. Electric field of a scatterer hit by a TEM wave, computed with
15.6 · 106 unknowns at 52 043 microsteps.

V. CONCLUSION

A multirate GPU accelerated DG-FEM algorithm was pre-
sented. The multirate timestepping scheme can further accel-
erate GPU computations, especially when high aspect ratios
of multiscale problems are of concern. The full paper will
provide more detailed information about the theory as well as
the stability and accuracy of the timestepping scheme.

REFERENCES

[1] C. Gear and D. Wells, “Multirate linear multistep methods,” BIT, vol. 24,
pp. 484–502, 1984.

[2] S. Piperno, “DGTD methods using modal basis functions and symplectic
local time-stepping application to wave propagation problems,” M2AN,
vol. 40, no. 5, pp. 815–841, 2008.

[3] J. S. Hesthaven and T. Warburton, Nodal Discontinuous Galerkin Meth-
ods. Springer, 2008.

[4] E. Montseny, S. Pernet, X. Ferrires, M. Zweers, G. Cohen, and B. Pec-
queux, “A discontinuous Galerkin method to solve maxwell equations in
time domain,” ACES-Conference, 2007.

[5] N. Gödel, T. Warburton, and M. Clemens, “GPU accelerated discontinu-
ous Galerkin FEM for electromagnetic radio frequency problems,” IEEE
APS – Full paper accepted for publication, 2009.

[6] N. Gödel, S. Schomann, T. Warburton, and M. Clemens, “Local timestep-
ping discontinuous Galerkin methods for electromagnetic RF field prob-
lems,” EUCAP 2009 – Full paper accepted for publication, 2009.

[7] E. Montseny, S. Pernet, X. Ferriéres, and G. Cohen, “Dissipative terms
and local time-stepping improvements in a spatial high order discon-
tinuous galerkin scheme for the time-domain maxwell’s equations,” J.
Comput. Phys., vol. 227, no. 14, pp. 6795–6820, 2008.

Nodal DG on GPU’s

Not just for toy problems

Jan S Hesthaven

Brown University, RI, USA
Jan.Hesthaven@Brown.edu

High-order discontinuous Galerkin methods
for computational electromagnetics and
uncertainty quantification

SCEE 2008

1Sunday, October 5, 2008

228K elements
5th order elements
78m DOF
68k time-steps

Time ~ 6 hours

711.9 GFlop/s on one card
Computation by N. Godel

Beyond Maxwell’s equations

2D Euler test case

Figure 3: Computation time and speedup factor for the Euler vortex test case with
gridsize h/2

Figure 4: Computation time and speedup factor for the Euler vortex test case with
gridsize h/4

3

Figure 3: Computation time and speedup factor for the Euler vortex test case with
gridsize h/2

Figure 4: Computation time and speedup factor for the Euler vortex test case with
gridsize h/4

3

Figure 10: Medium mesh for the Euler vortex test case, cell width h/2

Figure 11: Fine mesh for the Euler vortex test case, cell width h/4

9

Figure 14: Solution for the density rho of the Euler vortex test case convergence tests,
t = 0.6s, N = 3, fine grid

Figure 15: Solution for the momentum ρu of the Euler vortex test case convergence tests,
t = 0.6s, N = 3, fine grid

11

Beyond Maxwell’s equations

2D Navier-Stokes test case

.2 CNS Shearflow Pictures

Figure 16: Coarse mesh for the Navier-Stokes shearflow test case, cell width h

Figure 17: Medium mesh for the Navier-Stokes shearflow test case, cell width h/2

Figure 18: Fine mesh for the Navier-Stokes shearflow test case, cell width h/4

12

Figure 19: Solution for the total energy E of the Navier-Stokes shearflow test case con-
vergence tests, t = 0.02s, N = 3, fine grid

Figure 20: Solution for the pressure p of the Navier-Stokes shearflow test case conver-
gence tests, t = 0.02s, N = 3, fine grid

Figure 21: Solution for the x-momentum ρu of the Navier-Stokes shearflow test case
convergence tests, t = 0.02s, N = 3, fine grid

13

Figure 7: Computation time and speedup factor for the Navier-Stokes shearflow test case
with gridsize h/2

Figure 8: Computation time and speedup factor for the Navier-Stokes shearflow test case
with gridsize h/4

6

Figure 7: Computation time and speedup factor for the Navier-Stokes shearflow test case
with gridsize h/2

Figure 8: Computation time and speedup factor for the Navier-Stokes shearflow test case
with gridsize h/4

6

Want to play yourself ?

Code MIDG available at http://nvidia.com/cuda

Nodal DG on GPU’s

Several GPU cards can be coupled over MPI at minimal
overhead (demonstrated). Lets do the numbers

 One 1TF/s/4GB mem card costs ~$8k

 So $250k will buy you 40TFlop/s sustained

 This is the entry into Top500 Supercomputer list !

... at 5%-10% of a CPU based machine

This is a game changer -- and the local nature of DG-FEM
makes it very well suited to take advantage of this

Combining all the pieces

By T. Warburton

Do we have to write it all ?

No :-)

✓Book related codes - all at www.nudg.org

✓Matlab codes

✓NUDG++ - a C++ version of 2D/3D codes (serial)

✓hedge - a Python based meta-programming code.
Support for serial/parallel/GPU

✓MIDG - a bare bones parallel/GPU code for
Maxwell’s equations

Do we have to write it all ?

✓Slegde++ - C++ operator code. Interfaced
with parallel solvers (Trilinos and Mumps) and
support for adaptivity and non-conformity.
Contact Lucas Wilcox (NPS Monterey)

✓deal.II - a large code with support for fully
non-conforming DG with adaptivity etc. Only for
squares/cubes. www.dealii.org

✓Nektar++ - a C++ code for both spectral
elements/hp and DG. Mainly for CFD. Contact
Prof Spencer Sherwin (Imperial College, London)

Other codes

Progress ?

250k tets, 4th order
50m dof,100k timesteps

82k tets, 4th order
17m dof, 60k timesteps

Year 2001

Year 2008

24 hours on 512 procs

Few hours on GPU

Maxwell’s equations

Scattering by aircraft

X

Y

Z

Darmstadt International Workshop, October 2004 – p.33

Darmstadt International Workshop, October 2004 – p.34

Animations
by Nico Godel
Hamburg
using NuDG

Thanks !
Many people have contributed to this with material,
figures, examples etc

✓ Tim Warburton (Rice University)
✓ Lucas Wilcox (NPS Monterey)
✓ Andreas Kloeckner (NYU/Courant)
✓ Nico Goedel (Hamburg)
✓ Hendrick Riedmann (Stuttgart)
✓ Francis Giraldo (NPS Monterrey)
✓ Per-Olof Persson (UC Berkeley)

... and to you for hanging in there !

