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DGFEM 2012 A brief overview of what’s to come

DG-FEM for PDFE’s

* Lecture |:Introduction and DG-FEM in ID
Lecture 8

* Lecture 2: Implementation and numerical aspects

* Lecture 3:Insight through theory
Jan S Hesthaven
Brown University

* Lecture 4: Nonlinear problems

* Lecture 5: Extension to two spatial dimensions

* Lecture 6: Introduction to mesh generation
* Lecture 7: Higher order/Global problems

* Lecture 8:3D and advanced topics

Lecture 8 Lets summarize

v Let’s briefly recall what we know We are done with all the basics -- and we have started

/ Part I: 3D problems and extensions to see it work for us -- we know how to do

v Formulations and examples v |D/2D problems

V' Adaptivity and curvilinear elements V Linear/nonlinear problems
v First and higher operators
v Complex geometries
v v ...and we have insight into theory
4
v All we need is 3D -- and with that comes

, the need for speed !



Extension to 3D ?

Extension to 3D

It is really simple at this stage !

Weak form:

/ {a;th & (x)— ¥ vt (@ )] dm:—yngﬁf*fﬁ(w)dw’

Strong form:

/ |:86Uth +V. fh]gk( )dm:?{?Dkﬁ.[fi_f*}gﬁ(m)dm

. Of
()l

Nothing is essential new
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Extension to 3D

For other element
types, one simply
need to define
nodes and modes
for that elements

Apart from the ‘logistics’ all we need to worry about
is to choose our element and how to represent the

solution
NP

u(r Zumﬁn(r :Z (ra)li(r),

w="Va, VIe(r) =), Vi =1v;r).

We need points (N + 1)(N + 2)(N +3)

6 )

N, =

We need an orthonormal basis

Yiu(r, 5,t) = 2V2P 0 () PO () PETE20 (5) (1 — ) (1 - ¢)7H,

Extension to 3D

Everything is identical in spirit

Mass matrix ME = JEpyT)t
Diff matrix DYV =YV,., DV =V, DV=V,
0 or 0s ot
TR P e
Derivative 9 _Ory  Os ot
ay "oyl Tyt gt
2 87"D 8$D9+ 8tDt,

0z 0Oz 3z ST 0z

Stiffness matrix S, =MD, S;=M"1'D,, S =MD,



Example - Maxwell’s equations &/

Consider Maxwell’s equations
e —V x H=—}, worH +V x E =0,

Write it on conservation form as

Jq _ —ex H
§+V-F_—J F_[ i B

- (3]

Represent the solution as
Q= Z DF qn = ZQ(Xiat>Li(X)
k =1

and assume

An example - Maxwell’s equations

Simple wave propagation

Example - Maxwell’s equations

On each element we then define

M,‘j = L,Lj dx, Sij = / VLJLZ dx, i?ij = %LILJ d.x7
D D
oD

With the numerical flux given as

nx (yn x [E| —[B]),

;,.[F—F*]={,,X(y,,x[B]HE]),

Q=@ -QF

To obtain the local matrix based scheme

One then typically uses an explicit Runge-Kutta
to advance in time - just like 1D/2D.

An example - Maxwell’s equations

RCS (dB)




An example - Maxwell’s equations

Ey (V/m)
-1.50 -0.750 0.000 0.750 1.50
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Animations by Nico Godel (Hamburg)

Kinetic Plasma Physics

In high-speed plasma problems dominated by kinetic
effects, one needs to solve for f(x,p,t) - 6D+

Vlasov/Boltzmann equation
Ocf + v - Of + q(E + v x B) - 95f = (Sources) — (Sinks}).
Maxwell’s equations e lv S el
&
8tH 1= lV S 0,
o
N e A e

Coupled through pr:/f dv, j:=/vf dv.

Kinetic Plasma Physics

Important applications
v High-power/High-frequency microwave generation
V' Particle accelerators

v Laser-matter interaction

v Fusion applications, e.g., plasma edge

V etc

Particle-in-Cell (PIC) Methods

This is an attempt to solve the Vlasov/Boltzmann
equation by sampling with P particles
P

f(sc,p, t) = Z (ZnS(x - l‘n(t))d(p _pn(t))a

n=1

P P
p(iE, t) = Z Q’nS(x - xn(t))7 ](ﬂ?, t) = Z 'UnQnS(x - xn(t))
n=1 n=1
Ideally we have
S(z) =d(z) «—— a point particle

However, this is not practical, nor reasonable - so
S(x) is a shape-function



Particle-in-Cell Methods Kinetic Plasma Physics

Magnetron

Maxwell’s equations modeling " Linear accelerator
EatE—VXH:—j, u@tH—}—VxE:O

V-(eE)=p, V-(pH)=0,

e P vt e Kap o i

Particle/Phase dynamics

dx dmuv 1
a vn(t) i @n(E + vy, X H) 1— (vn/c)?

Particles-to-fields

pl@,) =) auS(x —aa(t)), j@,8) =) vagaS(z — za(?))

Magnetic

Fields-to-particles  p@,) H(a,)

Particle gun Compressible fluid flow
Time-dependent Euler equations
DB: gun.vtk
dq OF 0G
ot tor Ty =0 v Gas
— V' High speed
) p pu pv v etc
| pu - pu”+p _ puv
, 9= po | F= puv G ey
‘«f,;‘ﬁ"{mr’ ‘ . E u(E +p) v(E+p)
i 3 o Formulation is straightforward
‘:im / ) (agth ¢h, — Fh% — Gh%> dx + %aDk (’fLth + ﬁyGh)* qﬁhdw =0.
7 *_ 5 A A
\\ %t( Axis” (2 Fp + 1y Gr)™ = na{Fr ) + 2, {Gr}} + 5 [ax].
N . e Challenge: Shocks -- this requires

limiting/filtering



Comepressible fluid flow The list goes on ..

The same DG-FEM computation platform has been used
for all examples and many other problem types

N AR AVAVAVAVAVAVY 2 R R
QOKRRRDAIX 2
7Avava) 4%&;}%

v Flow mixing and control
v Poisson/Helmholtz equations
v Shallow water flows on the sphere

3D Extension Adaptivity/non-conformity
Nothing special ! Question: Do element faces always have to match ?
Everything you have done in 1D/2D you can i
do in 3D in exactly the same way. Answer:No s
’ h- f
v Linear/nonlinear problems -0 nonconiorm
v First order/higher order operators s

-1 -05 0 05 1

v Complex geometries
. Question: Can one use different order in each element ?
Further extensions

Answer:Yes o
v Adaptivity/non-conforming elements SRRNVI/SER p-nonconform
v Curvilinear elements i\/




Example - Adaptive solution Example - Adaptive solution

1.95E-06

We consider a standard test case

V2U(X) = f(x) u=0,x € 9N

Domain is L-shaped

RHS so that the exact solution is o T T
u(r,0) = r2/3 sin(27/36) WLt wms=mi | Spectral convergence
Solution is singular A ! even for a singular
olution is singular ! w  77e. | solution
Solved using full hp-adaptive solution .
Example - Adaptive solution - Maxwell’s Curvilinear elements
VXVXE+WE=fnxE=0,x€c What: Elements that conform exactly to a

curved boundary

Why:Accuracy !

This is a unique feature to high-order elements

Original Element One Face Made Curvilinear Deformation Blended Into Element
0.9 0.9 09
08 0.8 08
07 0.7 07

-0. 0.
0 02 04 06 08 1 0 02 04 06 08 1 0 02 02 06 08 1



Example - Maxwell’s equations

H" (z,y,t=0) =0, H(z,y,t=0)=0,
E? (z,y,t = 0) = Js(agr) cos(66) cos(agt),

1
N
, AV
il
N h h/2 h/4 Rate 05 ol
1 1.09E-01 3.78E-02 8.96E-03 1.80 “
2 237E-02  2.70E-03  3.58E-04  3.02 0
3 5.77E-03  1.09E-03  2.70B-04  2.21
4 4.39E-03  1.09E-03  2.72E-04 2,01
5 438E-03  LO9E-03 27204 200  —05
6 4.40E-03 1.09E-03 2.72E-04 2.01
7 441E-03  1.09E-03  273E-04 201 1
-1 -05 0 05 1
11 1.1
N h h/2 h/4 Rate
1 1 1O09E-01 3.78E-02  896E-03  1.80 1
2 221E-02 223E-03  205E-04  3.38
2.9 3 312E-03 1.92E-04  128E-05  3.97 0.9
4 6.0IE-04 1.95E-05  5.88E-07  5.00
)8 5  9.89E-05 1.69E-06  2.72E-08  5.92 0.8
.- 6  1.74E-05 131E-07 9.81E-10  7.06 07
0201 0 04 02 7 208E-06  B8.9TE-09 T7.93E-11*  7.34 0201 0 o1 o2

This is essential to fully benefit for complex problems

Example - Spherical Shallow Water equ

Dynamics of a thin layer of fluids on a sphere

ow
¢ " 7 L (g -z )+ e
I lou| oo+’ o WU a| o a
— +— 27+ L 1Lt g | i( )
ot |gv| ox quv ay v +E¢ 0z . ZQu — Xpw )+ Uy
2 2
oW + =g
o quw pw 2 —g(wv—yw%m

0P -
L IV-F=58
Py (@)

Stardard benchmark (Williamsson) in geophysical
flow modeling

Example - Boussinesq equations

3

The correct representation
of the boundary is essential | 2
for accuracy and speed

Case |:Rotation of
cosine wave

o

N

1D'm 8 16 32
Case |I: Zonal P
Geostrophic Flow

v

Case |ll: Zonal flow w/
compact support




Example - Spherical Shallow Water equ An easy path to curvilinear elements

Rotation of cylinder There are several good reasons for adding the support

for curvilinear elements
This is work by

JH|gher accuracy PrOf-r. Warburton

v Resolution set by solution, not geometry

v Often essential to make high-order competitive

u™)
i

|| g | .. but classic/general approach is expensive in work and
| . memory due to local operators

% % We present a special approach for linear problems
S

Classic curvilinear elements Another way

Ignoring the problem is not a good idea The idea is to define

H =

Q=

H
_7E
VJ

and the corresponding test function

These are non-polynomial functions

/HLjdx:/ J—lﬁfijdx:/ﬁnij dr
D D 1

Mass matrix is unchanged




Another way

The scheme becomes

(9
7

RS R RO e s ST ) ——
Maxwell's equations on reference element Distributional derivative contribution

.an)

aT

Stability can still be established by standard means
This is a low-storage curvilinear formulation

..only for linear problems

Another way

Another way

-

R ) e e )

43|E-05 | 1.43E-06 | 2.52E-08 | 2.81E-10
2.44E-04 | 8.03E-06 | 2.55E-05 | 5.22E-09
Low

storage 4.29E-05 | .43E-06 | 2.52E-08 | 2.79E-10

No loss in accuracy

Summary of Part |

We have generalized everything to 3D

v Linear/nonlinear problems

v First order/higher order operators
v Complex geometries

v Apaptivity

v Curvilinear elements

There is only one significant obstacle to
solving large problems

SPEED !



Lecture 8 The need for speed !

v So far, we have focused on ‘simple’ serial computing
using Matlab based model.
4
v However, this will not suffice for many applications
v

v Part ll: The need for speed

v Parallel computing

v GPU computing

v Software beyond Matlab

N
o

The need for speed The need for speed
Let us first understand where we spend the time The locality suggest that parallel computing
’—>|F1ux Gather|—>|Flux Liftingl—l will be beneficial
o Dot v Using OpenMP, the local work can be
L F(u) || Local Differentiation |1 distributed over elements through loops.
100
. Test case is v Using !"IPI'the Iocdalllty ensures a surface
. 3D Maxwells communication model.
§ o =it
: m it v Mixed OpenMP/MPI models also possible

3 Rk4 . .
The majority of o
‘ work is local V' A similar line of arguments can be used for

N
=]

iterative solvers.

0

4 6
Polynomial Order N



Bandwidt_h GB /s

Parallel performance

# Processors 64 128 256 512
Scaled RK time 1.00 | 0.48 0.24 0.14
Ideal time 1.00 | 0.50 0.25 0.13

High performance is achieved through -
v’ Local nature of scheme
v Pure matrix-matrix operations
V' Local bandwidth minimization
v Very efficient on-chip performance (~75%)

Challenges -

v Efficient parallel preconditioning

CPUs vs GPUs

Notice the following

170

GB0
Ultra
100 -

a0 #

60 f,l{(

) Vs

L] v .
2003 2004 2005 2005 2007

V40
Harpertown
‘Wooderest.
20 [ NV30 B EE

Peak GFlops / s

E

E

2 Nvas  NV4D

Jan Jun  Apr

G71
G70

aeo  Ge2
Ultra.

32GHz

30GHz

NV30 - ‘Core2 Duo
. i ————9 ®

Jun Max Nov May Jun.
2003 2004 2005 2006

2007 2008

692 = GeForce 9800 GTX
680 = GeForoa 8800 GTX

GT200 = GeForce GTX 280 671 = GeForce 7300 GTX

70 = GeForce 7800 GTX
NV40 = GeForce 6200 Ultra

135 = GeForoe X 5950 Uitra
N30 = GeForoe X 5300

The memory bandwidth and the peak performance on Graphics
cards (GPU’s) is developing MUCH faster than on CPU’s

At the same time, the mass-marked for gaming drives the
prices down -- we have to find a way to exploit this !

Parallel computing

DG-FEM maps very well to classic multi-processor
computing clusters and result in excellent speed-up.

... but such machines are expensive to buy and run.

Ex:To get on the Top500 list, requires about $3m to
purchase a cluster with 50Tflop/s performance.

What we need is supercomputing on the desktop

For FREE !

...or at least at a fraction of the price

But why is this ? @

Target for CPU:

v Single thread very fast

inte])

v lLarge caches to hide latency o2ey,,
W&?o’-(a,z,

v Predict, speculate etc

Lots of very complex logic
to predict behavior




But why is this ? @

For streaming/graphics cards it is different

V' Throughput is what matters
v Hide latency through parallelism

v Push hierarchy onto programmer

GPUs 101

DDR5 Memory Interface -

_‘ o ‘ Much simpler logic with

Units

a focus on performance

v Genuine multi-tiered parallelism

Computational Grid

Vv Grids
v blocks
V/ threads

v Only threads within a block can talk
v/ Blocks must be executed in order

v Grids/blocks/threads replace loops
v Until recently, only single precision

v Code-able with CUDA (C-extension)

But why is this ? @

2007: G80 2008: GT200

128 Cores @ ~1.2 GHz 240 Cores @ ~1.3 GHz 480 Cores @ |.4 GHz

Streams: 103 GB/s Streams: 140 GB/s Streams: |77 GB/s

Core numbers grow faster than bandwidth

CPUs vs GPUs 4

The CPU is mainly the traffic controller
... although it need not be

v The CPU and GPU runs
asynchronously

v/ CPU submits to GPU queue cPy

v CPU synchronizes GPUs U

v Explicitly controlled concurrency
is possible




GPUs overview

v GPUs exploit multi-layer concurrency

4
4

<A<«

‘Nodal DG on GPU'’s

The memory hierarchy is deep

Memory padding is often needed to get optimal

performance

Several types of memory must be used for

performance

First factor of 5 is not too hard to get
Next factor of 5 requires quite some work

Additional factor of 2-3 requires serious work

Nodes in threads, elements for blocks

toa
CUDA Block

Grid 0

Block (0, 0)

Block (1, 0)

Block (2, 0)

Block (0, 1)

Block (1, 1)

Block (2, 1)

Other choices:

v'D-matrix in shared, data in global (small N)
v Data in shared, D-matrix is global (large N)

Nodal DG on GPU's e

So what does all this mean ?

v GPU’s has deep memory hierarchies so local is good
= The majority of DG operations are local

v Compute bandwidth >> memory bandwidth
*»High-order DG is arithmetically intense

v GPU global memory favors dense data

"»Local DG operators are all dense
’_>| Flux Gather |_>| Flux Lifting

uk Ayu”

\—>| F(uF) |—>| Local Differentiation }—T

With proper care we should be able to obtain excellent
performance for DG-FEM on GPU’s

Computing without the CPU (f/l
DG-FEM on one GPU Where you need it most
300 60 "
= GPU 60
== CPU 55
250 sof
/ 50 Y
200| 5 '740)
" 453 8
7 < &30
E 150 40 32
100 v
30 10
50 25 0 2 4 6 8
o > % 3 S 20 120(()EPU and CPU Flop Rates and Speedups: 4 Nodes
Polynomial Order N @,\ o
1000 | HEE O
40
800| s
DG-FEM on four GPU Eg 600 / 30§
one card o 08

=
=)

200

[S)

0



Iterations/s

' 7 Combined GPU/ i 7
Nodal DG on GPU’s rel ombined GPU/MPI solution &
Similar results for DG-FEM Poisson solver with CG MPI across network GPUICPU Weak Scaling: DG Order 4
2500f-{ Il GPU «—e Speedup
Performance: Single Precision Poisson Solver B CPU ; 25
Unpreconditioned CG with IP DG on K =18068 elements © e
70 T
Flop Rates and Speedups: 16 GPUs vs 64 CPU cores S 20,
. 5
300) 60 B GPU e—e Speedup %_150 - 155
4000 5 25 i 3
250| 50 I CPU 2 RICI 5 H
/o——# 105
rf : I ision Poi |
=[S e D S o PO eerenes 3000 20, ;
crul| & 35 s
150 300 g o o
3 150 o174 ar1s 8/32  12/48  16/68 °
= 3 Rank Count (GPU / CPU)
100) 20 © 2000 [
10 g GPU/CPU Weak Scaling: DG Order 9
2]
50) 10 N E GPU «—= Speedup 2
£ 1000| 200 H CPU o
0 y 2 B
Polynomial order N h g // 155
a o 8
a . <
4 ) 6 H 10fgL
Polynomial Order N © g,l’
. .. . &
Note: No preconditioning
. 100 5
o Good scaling when problem
Polynomial order N - B - ----
M 0 — 0
1/4 4/16 8/32 12/48 16/64
is large

Example - a Mac Mini /l Example: Military aircraft @I

K=130413 elements

&

3rd order elements
|5.6E6 DoF

aﬂﬂ(‘ __14 GPUs - 960 SP cores ‘_Gpu_cpu speedup o7 \
& 800 MICPU - 16 cores P wm o AR e e —— —
& 700 _ N 0 L | "?LA /~ Computation by N. Godel
5600 ; h5g -’
3 3
§ 500 &
§400 102 K=201765 elements
%300 t E‘ 3rd order elements CPU glObal 29 h 6 min 46 S 1.0
S 200 5 © .
E 100 GPU global 39min 1s 44.8
© 'm W

0 ) . .

2 ®polynomial order e Computation by N. Godel ¢ GPU multirate 11 min 50s 147.6




‘Nodal DG on GPU'’s

Not just for toy problems

228K elements
5th order elements

78m DOF

68k time-steps

Time ~ 6 hours

711.9 GFlop/s on one card

Beyond Maxwell’s equations +

Computation by N. Godel

2D Navier-Stokes test case
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Y axis§:§
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Beyond Maxwell’s equations

2D Euler test case

S 0008 SISO N

w2

me per Siep (5)

I

Specdup Factor

CUDA ZONE

DOWNLOADCUDA  WHATIS CUDA

NVIDIA

Get the Next 20x Performance

ol Usa - unites states 1+

DEVELOPINGWITHCUDA ~ FORUMS

NEWS AND EVENTS

ign Up for Advanced CUDA Training Boot Camp @ NVISION 2008

Shoot3D Markerless Motion
Capture
70x

Program="-- si~nrithms-by-
~ ock Made easy

Code MIDG available at http://nvidia.com/cuda

m\‘.

Concurrent Number
Cruncher

Real-time Digital Holographic
Microscopy

? olecular Dynamics of DNA
and Liquids.
18

6PUAVision

Wait-free Programming for
Computations on Graphics
Processors

GPUGRID NET

Effcient Computation of Sum
Products on GPUS

W

E\ [

| b
Reakime Visual rackrby
Sream Procsig

2nx

10x

Mixed Precision Linear
Solvers

Low Viscasity Flow
Simulations for Animation

Ray Casting Deformable
Models.

Accelerating Density
Functonal Calculations with
U 40x

Specdup Factor




Nodal DG on GPU’s @

Several GPU cards can be coupled over MPI at minimal
overhead (demonstrated). Lets do the numbers

One | TF/s/4GB mem card costs ~$8k
So $250k will buy you 40TFlop/s sustained

This is the entry into Top500 Supercomputer list !

we at 5%=10% of a CPU based machine

This is a game changer -- and the local nature of DG-FEM
makes it very well suited to take advantage of this

Do we have to write it all ?

No :-)

v Book related codes - all at www.nudg.org

v Matlab codes
V' NUDG++ - a C++ version of 2D/3D codes (serial)

v hedge - a Python based meta-programming code.
Support for serial/parallel/GPU

v MIDG - a bare bones parallel/GPU code for
Maxwell’s equations

Combining all the pieces

By T. Warburton

Do we have to write it all ?

Other codes

v Slegde++ - C++ operator code. Interfaced
with parallel solvers (Trilinos and Mumps) and
support for adaptivity and non-conformity.
Contact Lucas Wilcox (NPS Monterey)

v deal.ll - a large code with support for fully
non-conforming DG with adaptivity etc. Only for
squares/cubes. www.dealii.org

v Nektar++ - a C++ code for both spectral
elements/hp and DG. Mainly for CFD. Contact
Prof Spencer Sherwin (Imperial College, London)




Progress ? Thanks !

Many people have contributed to this with material,

Year 2001 figures, examples etc

250k tets, 4th order

50m dof, 100k timesteps v Tim Warburton (Rice University)
v Lucas Wilcox (NPS Monterey)

24 hours on 512 procs v Andreas Kloeckner (NYU/Courant)

V' Nico Goedel (Hamburg)

v Hendrick Riedmann (Stuttgart)
v Francis Giraldo (NPS Monterrey)
v Per-Olof Persson (UC Berkeley)

Year 2008

82k tets, 4th order
| 7m dof, 60k timesteps

Few hours on GPU ...and to you for hanging in there !




