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Lecture 7

V' Let’s briefly recall what we know

V' Brief overview of multi-D analysis

v Part I: Time-dependent problems
v Heat equations

v Extensions to higher order problems

v
v
v

A brief overview of what’s to come

* Lecture |:Introduction and DG-FEM in ID

* Lecture 2: Implementation and numerical aspects
* Lecture 3:Insight through theory

* Lecture 4: Nonlinear problems

* Lecture 5: Extension to two spatial dimensions

* Lecture 6: Introduction to mesh generation

* Lecture 7: Higher order/Global problems

* Lecture 8: 3D and advanced topics

Lets summarize

We have a thorough understanding of Ist order
problems

V' For the linear problem, the error analysis and
convergence theory is essentially complete.

v The theoretical support for DG for conservation
laws is very solid.

v Limiting is perhaps the most pressing open problem

v The extension to 2D is fairly straightforward

v ...and we have a nice and flexible way to implement
it all

Time to move beyond the |st order problem



Brief overview of multi-D analysis

In ID we discussed that

lu = unllon < CPN M |ullo,N2.n,
.. but this was a somewhat special case.
Question is -- is it possible in multi-D ?
Answer - No
= unllon < CAN T2l o Nt ns

... but the optimal rate is often observed as
initial error dominates over the accumulated
error

The heat equation

Lets see what happens when we run it

N\K 10 20 40 80 160

1 4.27E-1 4.34E-1 4.37E-1  4.38E-1 4.39E-1
2 5.00E-1 4.58E-1 4.46E-1 4.43E-1 4.42E-1
4 1.68E-1 1.37E-1 1.28E-1 1.26E-1 -
8 7.46E-3  8.60E-3 - -

It does not work!

u(x,0.8)

It is weakly unstable

1.57 3.14 4.71 6.28

The heat equation

Let us consider the heat equation

ou 02
871; - 87:1:;’ T € [OaQW]v u(l’,t) = e_t sin(m).

We can be tempted to write this as

ou 0
ot  Ox

ugy =0,
and then just use our standard approach
vf = D,uf Mk%—‘S’vk:— ﬁ,~(vk—v*)£k(x)dx
h rUh p h 5D h )

Given the nature of the problem, a central flux
seems reasonable v* = {on}}

The heat equation

We need a new idea -- consider

ou 0 ou

o = 0"y
We know that DG is good for Ist order systems.

Since a(x)>0 we can write this as

ou

0 ou
a—%\/a% (1—\/a

%7

Now follow our standard approach

o] =[] -] -



The heat equation

Treating this as a |st order system we have
kd“ﬁ ava k . k ky#\ pk
M = Vg = [ ()~ (vVadk)) €-(e)da,
Mgk =8V Z—/a A (Vauf — (Vaup)*) £5(z) dz,
Dk
or the corresponding weak form
 du; Va\T k - Eyx pk
ML~ (VT [ (V) e o) de
dt JoD*

Mgl = —(SVOTul + /W - (Vaul)*e(z) da.

Here

- dv/a(z) 0k (x daei(x
S = ./Dk ef(x)iv(d:zﬂ() dr, S = /Dk V@@ @ 4,

"
7 (
dx

The heat equation

Given the nature of the heat-equation, a natural flux
could be central fluxes

(Vagn)* = {Vaagn}y, (Vaun)® = {Vaun}}.
But is it stable ?

Computing the local energy in a single element yields
1d
51wl + llanllp + 6, — 60 =0,

O = Vaungn — (Vagn) un — (Vaur) qn.
(Vaan)" = Vallan}), (Vaun)® = Vaf{u,}}. == 0, = ’? (up a5 +uwiiay)

. .
il + ol =0, =B Stability

The heat equation

How do we choose the fluxes?

(\/aqh)* = f((\/aqh)77 (\/aqh)+7 (\/Euh)77 (\/auh)+)7
(ﬁuh)* = g((\/th)77 (\/&Qh)Jrv (\/(;uh)77 (\/auh)+)'

dub -

e [ e ((Vagh) = (Vaak)) € o) .

Megh = SVoul - /6 A (Vauk — (Vaul)*) €4(az) da,
Dk‘,

Problem: Everything couples -- loss of locality

However, if we restrict it as

(Vagn)* = f(Vagn) ™, Vagn) ™, (Vaur)~, (Vau) ™),

(Vaun)* = g((vaun) ™, (Vaun)™),
we can eliminate g-variable locally

The heat equation

So this is stable!

How about boundary conditions

o v === (G S

Neumann  uf =u;, ¢f = —¢; = { Hunl =y, [un] =0

{{an}} =0,
Inhomogeneous BC

uy = —uy +2f(t), ¢ =aq;,

... and likewise for Neumann

[an] =277 ¢,



The heat equation

Back to the example N=1 .
10*2 

N=2
Looks good - 104
_ N=3 o
:.'L 106
..but an even/odd 2 |na ~
108
pattern .
10710
10712
10! 102
Ko 1/h

Theorem 7.3. Let ¢, = up, —u and €4 = q, — q signify the pointwise errors
for the heat equation with periodic boundaries and a constant coefficient a(x),
computed with Eq. (7.1) and central fluzes. Then

a7
lew(@) 30 + / leg(s) %, ds < OBV,

where C' depends on the reqularity of w, T, and N. For N even, C is O(h?).

The heat equation

The heat equation

Back to the example 10°
Looks good - B
.. full order restored El
107"°
10“?01 =
Ko 1/h

Theorem 7.4. Let €, = w — up, and €4 = q — qy, signify the pointwise errors
for the heat equation with periodic boundaries and a constant coefficient a(x),
computed with Eq. (7.1) and LDG fluzes. Then

T
leu(@)l2 0 + / lea(s)% 0 ds < CRIN+2,

where C' depends on the regularity of w, T', and N.

Can we do anything to improve on this?

Recall the stability condition

1d
§a\|uh\|zo+\\%||f)+9r—(”)z:0, .
6, -6;>0

O = Vaung, — (Vagn) un — (Vaup)*qn.
Stable choices
(Vaun)* = {Valu!, (Vagn)" = Vag,.

(Vaun)* = Va~uy,, (Vagn)" = {{Vallay,
{vau ) +B- Vawl, (Vag)” = {Vaa}} - B- [Vaaal,

N

Upwind/downwind - LDG flux B=n

Higher order and mixed problems

We can now mix and match what we know

Consider o ) ) ou

Fn + %f(u) = %a(fﬂ)%>

and rewrite as

%y 0 (fu) - Vag) =0, ——> () = Vaa)
g = Jae —>  (Vaw)*
ox

Now choose fluxes as we know how

Pl = )+ 5l O > mas ()]
(Vaun) = {(vaul, (Vaa)® = Va g



Higher order and mixed problems

Consider viscous Burgers equation

Ou 0 (u_ 0% € [-1,1]
ot "or\2) a2 "

r+05—t
u(z,t) = — tanh (HT> +1.

Higher order and mixed problems

2.25

1.75
1.5

1.25 t=1.5
= t=1.0
1 _
=1 t=00\ =05
0.75
0.5
0.25 1078 N=4
0
-0.25
-1 ~05 0 0.5 1 10’ 10?
X K

Higher order and mixed problems

Write it as a |st order system

ou  Oq _Op ou

ot oz’ q_a?’ P:%-
To choose the fluxes, we consider the energy

1d 2

2dt 2

Central fluxes yields
1 _ _ _ Ld, 1o _
in(u;qh +uhq2'fphp;), » ia‘luhHDk =0

Alternative (un)* =uy, (gn)* =qf, (pn)* =py,
LDG-flux

(un)* =, (qn)* =a,, (pn)* =py.

Consider the 3rd order dispersive equation

o _
ot 0x3’

Which boundary conditions do we need?

1d s | 8%u 1 [(0u .
5@”““9 = [Uaxg -3 <£) ] . must be bounded
Ed]
0%u ou
z=uxz;: Onuor — and —
» : az2 " By
0%u

T =T, : Onuor@.

Higher order and mixed problems

D,
HuhHZDk =0, -6, O =2 —upqgn + un(an)* + an(un)® — palpn)*

Consider
3 .
ou _ 371;, se[-1,1], Convergence behavior
o o exactly as for the 2nd
u(z,t) = cos(m3t + 7). order prObIem
Central flux LDG flux
10° 10°
107"}
1072} Nei
?10*3,
210 N=2
1075} N=3
1078
. ‘
1O1o‘ 10?




Higher order and mixed problems

Few comments

v The reformulation to a system of |st order problems
is entirely general for any order operator

v When combined with other operators, one chooses
fluxes for each operator according to the analysis.

v The biggest problem is cost -- a 2nd order operator
require two derivates rather than one.

v There are alternative ‘direct’ ways but they tend to
be problem specific

Lecture 7

v
v

Part lI: Elliptic problems
v Different formulations
v Stabilization

v Solvers and application examples

What about the time step ?

For Ist order problems we know

At < C L Explicit
- N time-stepping

This gets worse -
sec(L)
p = order of operator
Options :

v Local time stepping
V' Implicit time stepping

Elliptic problems

Now we could consider solving a problem like

ou  0%*u

azw—f@),

However, if we are interested in the steady state we
may be better off considering

0%u

92 f(@),

We can use any of the methods we just derived to
obtain the linear system

Aup, = .fha



Elliptic problems

Assume we use a central flux.

When we try to solve we discover that A is singular!

0.4

0.01
0.3
0.005 0.2
- 01 N: I
2 0 - > 0
£ -0.1 —_
-0.005 _02 K_6
-0.3
0‘0—115 -2 -9 -6 3 0 3 _0'40 157 3.14 471 6.28
real(h) X
0.4 0.4
0.3 0.3
0.2 0.2
N=4 0.1 0.1 N=2
0 > 0
— -0.1 -0.1 —
K=6 = K=6
-0.3 -0.3
0.4 -0.4
0 1.57 3.14 4.71 6.28 0 1.57 3.14 4.71 6.28
Elliptic problems
Does it work?
d*u .
i —sin(z), z € 0,27], u(0) = u(27) = 0.
10° 0
l 10
1% g h?
20
-+l _N=3
_ 10 . %
T N 40
2 §
1078 50
hS 60
107 70
1072 80
10! 102 0 20 40 60 80

Kee 1/h

nz=622

What about the other flux - the LDG flux?

Elliptic problems

What is happening?

The discontinuous basis is too rich -- it allows one
extra null vector:

A local null vector with {{u}}=0

What can we do ?

Change the flux by penalizing this mode

¢ = {aP} —7lul, v ={u}}.
The flexibility of DG shows its strength!

Elliptic problems

Consider the stabilized LDG flux
@ = {anlt + B [an] — 7lunl, wi = {unl} — B [un],

0

P4

o
o
T
N

10~4N=3

flu—unll
T
B

1010

10712

hs

h2

hd

h4

10
20
30
40
50
60
70
80

10
Ke 1/h

Works fine as expected - but we also note
that A is much more sparse!

102

0

20

40
nz=472

60

80



Elliptic problems

Why is one more sparse than the other?

Consider the N=0 case

E  k+1 k  k+1 * k=1  k _
qh(Q}th y Up, Up, )—Qh(%qh Umuh) hfha

uh(”fm uﬁ+1) - uh(u;gu uh ) - hg

Using the central flux yields

an(aqy, » qh Uy, “h) Han}y — 7lunl, wj(uy,, uh) Hunl},

U;i+2 — 2uh + u};_ Tuﬁ+1 — uﬁ ! _ fk / Wide
(2h)? h h

Using the LDG flux yields
+) +

qh,(qh,ﬁqhvuhvu;):qh = rlun], wp(uy, s uy) =y,

k+1 ko k=1 k+1 k-1
up ' — 2up +uy r up U ’k
-

h? h

Elliptic problems

Remaining question: How do you choose 7?

The analysis shows that:

V' For the central flux,r > 0 suffices
V' For the LDG flux, 7 > 0 suffices
v For the IP flux, one must require

2
TEC(N—;;U , C>1,

These suffices to guarantee stability,
but they may not give the best accuracy

(N +1)2

Generally,a good choiceis > ¢ —

C>1,

Elliptic problems

The sparsity is a good thing -- but it comes at a price
k(ALpc) ~ 26(Ac);

We seek a flux balancing sparsity and conditioning?
= H(un)e}t = rlunl, up, = {un}}

Internal penalty flux

10° 0

10’2,\‘:_2\ ;Z k(Ac) ~ k(Arp);

—4

= 1077 Nes e 30

7 40

! 10°® . .

S

=TS 5 Mission
108 h 50

accomplished

5
h 70

80
2
Kee 1/h nz=>586

Elliptic problems

What can we say more generally?
Consider )
—Vu(z) = f(x), = €12,

Discretizedas -V.g=f, g=Vu
K

qh V¢h 2.h Z n - qh ¢h oD+ = (f7 ¢h,)g,} s
k=1

K
(@n:™h) g E (ups - mR)gpr — (Un, V- Th) g 4

Using one of the fluxes

uy, a5
Central flux {urn} {agn}t — 7lunl
Local DG flux (LDG) funt + 8- Tun]l  {an}} — Blan] — 7lunl

Internal penalty flux (IP) {un}} {Vun}} — 7un]




Elliptic problems

For the 3 discrete systems, one can prove (see text)

v They are all symmetric for any N

v The are all invertible provided stabilization is used
v’ The discretization is consistent

v The adjoint problem is consistent

v They have optimal convergence in L2

Many of these results can be extended to more
general problems (saddle-point, non-coercive etc)

There are other less used fluxes also

Solving the systems

Solving the systems

Direct methods are ‘LU’ based
>> [L, U] = lu(A);
>> u = U\(L\f);
Example:
Vu = f(z,y) = ((16 — n2) r? 4+ (n2 —36) 7'4) sin (nf), x?+y? <1,
rn =12, r = y/22 4+ y2,0 = arctan (y, )
K=512

N=4
7680 DoF

After things are discretized, we end up with

Aup, = f,
We can solve this in two different ways
v’ Direct methods

V' Iterative methods

The ‘right’ choice depends on things such as size,
speed, sparsity etc

Solving the systems

Sparsity pattern of A Sparsity pattern of reordered A
0

0
1000 \ 1000 \
2000 2000 X
0N TN N
3000 VNG 3000 X
NN

4000 AN 4000
N

5000 N AN N i“\ 5000
6000 o \\ * L 000
7000 AN . ‘\:-;v 7000
0 2000 4000 6000 0 2000 4000 6000
nz = 300486 nz = 300486
8,7m extra non-zero Cuthill-McKee ordering

entries in (L,U)
3,7m extra non-zero
Reordering is needed ! entries in (L,U)



Solving the systems

Re-ordering: s P — symrcm(A):
>> A = A(P,P);
>> rhs = rhs(P);
>> [L,U] = lu(A);
>> u = U\(L\f);
>> u(P) = u;

..but A is SPD: A=Cc'c Cholesky decomp

>> C = chol(A);
>> u = C\(C'\f);

I,9m extra non-zero
entries in C

Solving the systems

How to choose the preconditioning ?
..more an art than a science !

Example - Incomplete Cholesky Preconditioning

>> ittol = le-8; maxit = 1000; Sparsity
>> Cinc = cholinc(OP, '0") .
>> u = pcg(A, f, ittol, maxit, Cinc’, Cinc); preserving

| 38 iterations - but still 50 times slower

>> ittol = 1e-8; maxit = 1000; droptol = 1le-4;
>> Cinc = cholinc(A, droptol); Drop
>> u = pcg(A, b, ittol, maxit, Cinc’, Cinc); tolerance

|7 iterations - only 2 times slower

Solving the systems

If the problem is too large, iterative methods are
the only choice

>> ittol = le-8; maxit = 1000;
>> u = pcg(A, f, ittol, maxit);

Example requires 818 iterations - 100 times slower
than LU !

Solution: Preconditioning

C\Auy, =C1f,,

Solving the systems

Choosing fast and efficient linear solvers is not
easy -- but there are many options

v  Direct solvers
v MUMPS (multi-frontal parallel solver)
v SuperLU (fast parallel direct solver)

v Iterative solvers
v Trilinos (large solver/precon library)
v PETSc (large solver/precon library)

Very often you have to try several options and
combinations to find the most efficient and robust one(s)



A couple of examples Incompressible fluid flow

So far we have seen lots of theory and “homework” Time-dependent Navier-Stokes equations
prObIems' ou 2 * Water

E'F(U-V)UZ—V])—FVV u, x € 2, Sty
To see that it also works for more complex Vou=0, * Bioflows
problems - but still 2D - let us look at a few Sk
examples Written on conservation form

811/ 2 2
v Incompressible Navier-Stokes ot TV F = =Vp+uvViu, o (p R, = [u uv] :

uv v?
v Boussinesq problems V-u=0,

Solved by stiffly stable time-splitting and pressure
projection

Incompressible fluid flow Incompressible fluid flow

The basics are Kovasznay solution
Saioa x-velocity y-velocity Pressure ! nj2 | b/ |Rate| b | B2 | h/4_|Rate
1T - inflow 1[1:32E-+00(7.05E-011.23E-01 1.71 ||3.13E+00| 1.53E+00|3.48E-01| 1.59
6 2 2 ! == e ) 2| 5.01E-01 |9.67E-02|1.45E-02| 2.55 || 1.47TE+00| 2.54E-01 |2.08E-02| 3.07
N. =V.F u 0 (UU) 0 (ul)) 0 (U ) ! E | -02|1.89E-03|3.49 || 5.02E-01 | 2.79E-02 |2.42E-03| 3.85
z (’LL) - 1= + N Ny (u) =V .F;= + . ! I -03[1.00E-04[4.66 || 9.31E-02 | 8. 87E-03 |2.02E-04 4.42
Ox 3y ox 6y 1! os| | o8 o5 -04]8.96E-06| 5.51 || 6.15E-02 | 1.02E-03 |1.89E-05| 5.84
! = £-07|6.84  1.23 2. 2.63 9
. . . | 0 o o (A3E-03 |1.37E-05|4.03E-08| 7.56 || 4.73E-03 | 4.67E-05 |1.29E-07| 7.58
! 5.91E 2E-06 D 6 52E-03 | 3.54E-06 |1.97E P
.. and then take an INvIscous time Step rrrrrrrrrrrrr N N N 8| 5.91E-04 |1.02E-06|7.17E-09| 8.16 || 1.52E-03 | 3.54E-06 |L.97E-08| 8.12
o5 0 o5 7 o5 0 o5 i o5 o o5 i

@ — opu™ — aqun ~ ' von Karman flow
R — RN (") — BN (). 1o
The pressure is computed to ensure incompressibility : . hl“l
’)/O;ZL _ ’[L _ _vpn_;,_l _v2pn+1 _ _mv . ’l~l/ 1:1/ _ 'I]/ - ﬁvﬁn+l % 0 05 1 15 2
A ' At - : :
.o and the Viscous part is updated 111(5 A;\v it;.lgiHMZ(ifl g‘f’)52914(l ?j(’i742937 (?4!)()'(}074 :lj)pli)t‘)?(yil 05 o i i

05
460 | 6 |[3.9363751|2.9509030 ||5.6930431|0.4778757|-0.1116310 i

utl — g 5 ] 236| 8 [3.9343505[2.0417190 [5.6990205(0.4879853]-0.1119122 J \w o
Y| ——— | =vV e , 236 | 10 [[3.9370396]2.9545659 _||5.6927772|0.4789706-0.1116177 | os

[189]|N/A[[3.93625 [2.950921575(|5.693125 [0.47795 |[-0.1116 08 .




Fluid-structure interaction

Boussinesq modeling

The basis assumption of this approach is to approximate the vertical
variation using an expansion in z.

z
A —~
W Free surface

swf/?”\%' ”

A | e e,
T ™ bt L TR

Expansion level

Bottom

(X E Dy aTTeY

Fluid-structure interaction

Where we have high-order derivates since

Aot = 20; + 132 (Orze HOrgg) + 52 (Vs H2Ommayy + Orgyy)

A =1 - ap(0pe + ayy) + @4 (Oraz + 28myy + ayyyy)v

BO =1 + 72/\2(azw + ayy) + 74)‘4(arrxr + 28xmyy + ayyyy)7
Bll = /61613 - /83 (8mmc + 8acyy) + ﬁ5 (awma:zx + Qaw:czyy + awyyyy);
Bi2 = 310y — B3 @zay)+ Oyyy) + B (Ozazay + 20zayyy) + Oyyyyy)

81 == 8Zd . Cl,
Sy = d,d-Cy,

A bit on the complicated side !

Cl =1~ 02)\2(8$z =+ ayy) + 04)‘4(arxx$ + anxyy + ayyyy)

n (m)

Fluid-structure interaction

Under certain assumptions, the proper model (a high-
order Boussinesq model) becomes

2 e gt
(?tU+V<gn+2(U-U—w2(1+V17-V77))) = (.

am—w+vn~(ﬁ—wvn)=0,

[:J Ay — 0.m - By —0.m - Bia Bii + 0yn - Ay i
4 = —Oyn - 611 .Al = 6y77 e 812 612 aF 8y77 4 Al *
0 Aor + S1 Az + S2 By + Soz w*

W = —B10* — Bat™ + A",

A couple of 2D(ID) tests

Submerged bar (K=110, P=8) - comparison
with experimental data :

Source region
0.0

x=10.5 E 0.14 //// i
0.025 EXP w024 Sponge layer; 1:20 1:10 ;Spongelayer
. DG 034 L 7

0.015 D4

~0.015 001

| [ / | 3‘\ -10 ] 10 E] Eil
|

0.005 | j | x=17.3

|

AW A A - =y Il

—0.008| b \-fi\of f ) ' —DG

\ \ j \/ \ J *\ / \\ \

0 32 34 36 I [

[

= |
3 () 38 40 5 0.005 | [
s = . A A o Wave harmonics
135 I ! \ \ /
=F ~0.005 !tt k’f l\[ / i 0.012 t_/\‘ md
0.025 ~ TR 2n
I \;D?—‘ -0.015 ! } ! if' = 0.01 AR Vol \ 3rd
0.015 ‘ | ’ \ H ' E Y 4rd
’ | | | | 30 @32 3¢ 3 38 40 80008 \ 5th
B k Lo M t(s) 2 1st
£ 0.005] a 2nd
q 0.006 n
= \ \ v E
0.005 \ \/ \f“ \/“‘ } 4 < i:j
N \ AVERNERN 3 0004 ird
~0.015 0.002
30 32 34 36 38 40 o) e - S 1L
t(s)




A couple of 3D(2D) tests Remarks

We are done with all the basic now ! -- and we have
started to see it work for us

McCamy & Fuchs (1954)

What we need to worry about is:

V' The need for 3D
v The need for speed
v Software beyond Matlab

DG-FEM solution:
ka=pi, kd=1.0,
P=4, K=1261,
t=0.03s

Tomorrow !

Compressible fluid flow Comepressible fluid flow

Time-dependent Euler equations

K

vsnwrém‘vg«“ggmEVAVAVAVAVAVAVAVL‘

YAV ATAYAVAVAva )

+ 4+ — = 07 REETAAKRRNEKI,
NI NN
ot oz Oy * Gas e
SN VAV A va LNy A
< 7\ A SAARK
N S AVAAVAV: VAVAV, APV vATaVAa NiZaVi SN
\VaY)

* High speed

P pu py * etc
q= U F— pu +p G- puUv

pv |’ puv ’ p?+p |’

E u (E 4+ p) v(E+p)

Formulation is straigshtforward DN
g i(///f%))d@
P P P ' . Lo a "
/ N ( ;h ¢h - Fh% - Ghi(;:) dx + fi‘)Dk (fleh + ﬁyGh) ¢hd$ =0. * g Dansity

.. Entropy

(1B -+ 7y Gn)” = (B} + g (G} + 5 - T,

Challenge: Shocks -- this requires
limiting/filtering



