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DGFEM 2012 A brief overview of what’s to come

DG-FEM for PDE’s

» Lecture I:Introduction and DG-FEM in ID
Lecture 3

» Lecture 2: Implementation and numerical aspects

» Lecture 3:Insight through theory
Jan S Hesthaven
Brown University

» Lecture 4: Nonlinear problems

» Lecture 5: Extension to two spatial dimensions
» Lecture 6: Introduction to mesh generation
» Lecture 7: Higher order/Global problems

» Lecture 8:3D and advanced topics
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Lecture 3 Let us recall

» Let's briefly recall what we know We already know a lot about the basic DG-FEM
» Why high order methods ? ) Stability is provided by carefully choosing the
» Part |- numerical flux.
' » Accuracy appears to be given by the local solution
representation.
» Approximation theory on the interval » We can utilize major advances on monotone
schemes to design fluxes.
» The scheme generalizes with very few changes to

) very general problems -- multidimensional systems
of conservation laws.

» Constructing fluxes for linear systems

4

4
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Let us recall

We already know a lot about the basic DG-FEM

e Stability is provided by carefully choosing the
numerical flux.
* Accuracy appear to be given by the local solution
representation.
* We can utilize major advances on monotone

schemes to design fluxes.

* The scheme generalizes with very few changes to

very general problems -- multidimensional systems
of conservation laws.

At least in principle -- but what can we actually prove ?
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Why high-order accuracy ?

How do | solve a wave-problem to a given accuracy,
€p, for a specific period of time,V, most efficiently ?

Memory « <1> g , Work o (2m)% <i> o

Ep

d+1

Ep
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2nd order FD

Infinite order FD

Why high-order accuracy ?

Let us just make sure we understand why high-order
accuracy/methods is a good idea

General concerns/criticism:

» High-order accuracy is not needed for real appl.
» The methods are not robust/flexible

» They only work for smooth problems

» They are hard to do in complex geometries

» They are too expensive

After having worked on these methods
for 15 years, | have heard them all
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Why high-order accuracy ?
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High-order is impovrtant if

» High accuracy is required - and it increasingly is !
» Long time integration is needed

» High-dimensional problems (3D) are considered
» Memory restrictions become a bottleneck
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b) H, Component-n =4
5

High-order

takes ‘some’ of
the pain out of
grid generation
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Linear systems and fluxes

Assume first that all coefficients vary smoothly

9 9 9
Q@) +Ai(@) 5 + Axle) 5+ Blapu =0,

The flux along a normal 7 is then

II' = (e Ar() + 71y Az () - n-F = lIu.
Now diagonalize this as N Ao
_1 . _1 1 N x
QT =8SAST, u Y
At A
A= AT+ A7, - "
and we obtain

(- F)* = QS (A*S 'u™ + A~S  ut),
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A bit more on fluxes

Let us briefly look a little more carefully at linear
systems

8u . 0u 8F1 6F2 .
Q(:B)E+V-F = Q(x) 5 + e + 99 =0,

F = [F1, F3] = [Ai(@)u, Ay ()]

Prominent examples are
» Acoustics

» Electromagnetics

» Elasticity

In such cases we can derive exact upwind fluxes
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Linear systems and fluxes

For non-smooth coefficients, it is a little more complex

, ou ou
Consider the problem == - = )
P 8t+)\3x 0, x € la,b
-
A -
a b
Then we clearly have
b
& [ wdr = A1) - w(a,) = fla.t) - 70,0)

d [ d - + -t
i) udxfa(()\tfa)u + (b= M)ut) = Au" —uh).
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Linear systems and fluxes

Hence, by simple mass conservation, we achieve
“Au~ —uh)+(fT=fF)=0.

for a —» a7 ,b— xt

These are the Rankine-Hugoniot conditions

For the general system, these are

Vi: —X\Qu” —ut]+ [(Hu)” — (ITu)"] =
M .
They must hold across each “
wave and can be used to
connect across the interface u u
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Linear systems and fluxes -- an example

Consider

ot Aa =g o) L ) ar o) =0

Following the general approach, we have

a (¢" —q )+ (Ilq)" — (IIq)” =0,
—at(q* —q")+ (IIq)* — (IIq)" =0,

N R + 0 + R +,,+
ottt [§ 2 [1] o [5].

Solving this yields

o = ez (o) -3 6]

with (ITq)*

Intermediate
velocity

2a"at
at +a’

*
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Linear systems and fluxes

So for the 3-wave problem we have
MO (u* —u”) + [([Tu)* — (Tu)”"] =0,
[(ITw)" = (ITu)™] =0,

“AQT(u — wh) + [(Tw)*™ — (Tu)t] =0,

and the numerical flux is given as
(n-F)" = (ITu)" = (ITu)™

This approach is general and yields the exact
upwind fluxes -- but requires that the system
can be solved !
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Linear systems and fluxes -- an example

Consider Maxwell’s equations
e(x) 0 1O [E] [01] 0 [E]
0 o) i |+ [10] s [ 1) <o

The exact same approach leads to

— oz (2 +311) B = o (e + 1)
Now assume smooth materials: 2
+_ (M vyl
) Y . Z Z o Ei (Y ) 5
H = {H} + 1Bl B = {EY + S 1H], e
TR e

We have recovered the LF flux!
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An example

Consider Maxwell’s equations

()CLE__QH ()32__@
% T T M e T T e

On the DG form

dE;, 1 .1 RE-

G D HE = M [ - )

1 o
= JIcEkM lji fu- (HF — H*)e¥(2) da,

with the flux
1
H —H = —__ (ZT[H] - [E
2{{2}}( [H] - [E]),
BB = o (vH[E] - [H]).,

2y}
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An example

% compute time step size

xmin = min(abs(x(1,:)-x(2,:)));

CFL=1.0; dt = CFL*xmin;

Nsteps = ceil(FinalTime/dt); dt = FinalTime/Nsteps;

% outer time step loop
for tstep=1:Nsteps
for INTRK = 1:5
[rhsE, rhsH] = MaxwellRHS1D(E,H,eps,mu);

resE = rk4a(INTRK)*resE + dt*rhsE;
resH = rk4a(INTRK)*resH + dt*rhsH;

E = E+rk4b(INTRK)*resE;
H = H+rk4b(INTRK)*resH;
end
% Increment time
time = time+dt;
end
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An example

MaxwellRHS1D.m

function [rhsE, rhsH] = MaxwellRHS1D(E,H,eps,mu)

% function [rhsE, rhsH] = MaxwellRHS1D(E,H,eps,mu)

% Purpose : Evaluate RHS flux in 1D Maxwell Impedance
GlobalsiD;

% Compute impedance

Zimp = sqrt(mu./eps);

Compute field jumps

% Define field differences at faces
dE = zeros(Nfp*Nfaces,K); dE(:) = E(vmapM)-E(vmapP);

dH = zeros(NfpxNfaces,K); dH(:) = H(vmapM)-H(vmapP); % H
Zimpm = zeros(Nfp*Nfaces,K); Zimpm(:) = Zimp(vmapM); ComPUte Interface
Zimpp = zeros(Nfp*Nfaces,K); Zimpp(:) = Zimp(vmapP); ? impedance

Yimpm = zeros(Nfp*Nfaces,K); Yimpm(:) = 1./Zimpm(:);
Yimpp = zeros(Nfp*Nfaces,K); Yimpp(:) = 1./Zimpp(:);

Boundary conditions

% Homogeneous boundary conditions, Ez=
Ebc = -E(vmapB); dE (mapB) = E(vmapB) -
Hbc = H(vmapB); dH (mapB) = H(vmapB) -

o
g
g8

Complete fluxes

% evaluate upwind fluxes
fluxE = 1./(Zimpm + Zimpp) .*(nx.*Zimpp.*dH - dE);
fluxH = 1./(Yimpm + Yimpp) .*(nx.*Yimpp.*dE - dH);

% compute right hand sides of the PDE’s Complete comPUtatlon
rhsE = (-rx.*(Dr*H) + LIFT*(Fscale.*fluxE))./eps;
rhsH = (-rx.*(Dr*E) + LIFT*(Fscale.*fluxH))./mu;

return
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An example

Test example is cavity problem
Vacuum Material

PEC PEC

1077
10! 102 10°
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Lets move on

At this point we have a good understanding of
stability for linear problems -- through the flux.

Lets now look at accuracy in more detail.

Recall

K
2~0,=JD" u(w, t) = un(w,1) = P (,1),

k=1 k=1
we assume the local solution to be

x e DM = [axf, 2] : Z () (x Zuhx )k (z

modal basis nodal basis
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A second look at approximation

We will need a little more notation

Regular energy norms
K
fulfy = [ wtde = Y el e = [ ol e
Q b1 D
Sobolev norms

q
9 .
lull%.q = E a5, Hul\nqh—E laligye s Nl , = D T,
|a|=0 |a|=0

Semi-norms

K
[ulfoqn =D lulpe o ulpe = D a3
k=1

loa|=q
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Local approximation

To simplify matters, introduce local affine mapping

xEDk:x(r):mf—i—l;Thk, h* =2k — zf, €[-1,1]
We have already introduced the Legendre polynomials
“ = U}L Zun n— 1 ZU
i=1
u=Vva, Ve(r)=P(r), Vi = P;(r).
and r; are the Legendre Gauss Lobatto points:

It is robust -- but is it accurate ?
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Approximation theory

Recall
K

K
Q":th U Dk7 u(x,t)ﬁuh(x,t):@uﬁ(x7t)7
k=1

k=1
we assume the local solution to be

Np Np

ze D’ =z 2k uﬁ(w,t)zz 0k ()i ( Zu (xF )0k ().

n=1 i=1
The question is in what sense is  u(xz,t) ~ uy(z, 1)

We have observed improved accuracy in two ways
» Increase K/decrease h
» Increase N

Wednesday, August 8, 12



Approximation theory

Let us assume all elements have size h and consider

of v o[
v(r) = u(hr) = u(x); 2 b
We consider expansions as A A
N -1 0 1 0 1
~ ~ P,(r) 2 - / -
= AnPn 5 P, = sy Yn = . Up = v(r) (T dr.
vn(r) ;v (), Balr)=—"=" m=5"7 V() (r)

Theorem 4.1. Assume that v € HP(l) and that vy, represents a polynomial
projection of order N. Then

v = nllt,g < N°7Plof) p,

where

and 0 < q < p.
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Approximation theory

We consider . I
interpolation projection
/ ./

N
on(r) =Y 0 Pu(r), On(r) = uPulr), v =V,
n=0

n=0

Compare the two

o] N e}
(V)i = vn(rs) = Z 7771/Pn(7"i) = Z f}npn(ri) + Z f}npn(ri)-,
n=0 n=0

n=N+1
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Approximation theory

A sharper result can be obtained by using

Lemma 4.4. If v € HP(l), p > 1 then

(PR

() _ ,,(@) <
||U Up, Hl,O = (N+1+O'—4q)'

|v‘|,177

where o = min(N + 1,p) and g < p.
Note that in the limit of N>>p we recover
[ = 0Pl < NPy,

A minor issues arises -- these results are based on
projections and we are using interpolations ?
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Approximation theory

Consider this term

oo oo

Plapy Y aabur)= Y o (PT0v Pur),

n=N+1 n=N+1

1=0

Caused by interpolation of high-

frequency unresolved modes

Aliasing

Caused by the grid
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Approximation theory

This has a some impact on the accuracy

Theorem 4.5. Assume that v € HP(l), p >
polynomial interpolation of order N. Then

1

v = vally 4 < N2TPH 2Py,

where 0 < g < p.

To also account for the cell size we have

5, and that v, represents a

Theorem 4.7. Assume that w € HP(D*) and that uy, represents a piecewise

polynomial approximation of order N. Then

Il = wplll@wp £ O™ ) @em

for0< g <o, and 0 = min(N + 1,p).
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Approximation theory

5]
=)

2 9
IS

lluy - Dugll
2 9
s 5

10710
107'2
107

u(z) = exp(sin(mx)),
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1073
107

— Duyll

%1074

lu,

107
107

10771

-1/2
10! M

@
u N-32

8

N-522

o)~ { e

cos(mz),

S [717 1}7

—-1<x<0
0<x <1,

du i+

=49, i=0,1,2,3....

Approximation theory

Combining everything, we have the general result

Theorem 4.8. Assume that u € Hp(Dk), p > 1/2, and that uy, represents a
piecewise polynomial interpolation of order N. Then

o—q
Np72q,1/2 |u|(l,cr,ha

l[w = unll@.qn < C

for0<q<o, and o =min(N + 1,p).

with h = max; h*
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Lets summarize Part |

Fluxes:
» For linear systems, we can derive exact upwind fluxes
using Rankine-Hugonoit conditions.

Accuracy:
» Legendre polynomials are the right basis
» Local accuracy depends on elementwise smoothness
» Aliasing appears due to the grid but is under control
» For smooth problems, we have a spectral method
» Convergence can be recovered in two ways

» Increase N

» Decrease h

Convergence of the solution at all times ?
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Lecture 3

>
>
» Partll:
» Convergence and error estimates
» Dispersive properties
» Discrete stability and how to overcome
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Convergence and all that

Let us introduce the error
e(x,t) = u(x,t) — up(x, t),

What we really seek is convergence

Vit € [0,7T] : dolfiinoo le(®)|le2.n — O.

This is often a little complicated to get to due to
the requirement for all t.

Let us get to it in a different way.
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Lets recall convergence etc

We consider the system

ou ou
n +A£ =0,

which we assume is wellposed in the sense

[u(®)]l2 < Cexp(at)u(0)] -
The semi-discrete scheme is given as

duh
—_— = 0.
7 + Lrup

Inserting the exact solution u into the scheme yields

du
ke =T

truncation error
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Convergence and all that

Let us consider the error equation

d
T + Lpe =T (u(x,t)),

The solution is given as
e(t) —exp (—Lpt)e(0) = /0 exp (Lp(s — 1)) T (u(s))ds,

Now consider

le@llo.n < llexp (=Lat) €(0)llo.n + H/O exp (Ln(s — 1)) T (u(s)) ds

o,

/0 exp (L (s—1)) T (u(s)) ds

< [lexp (Luls=0) lanl T (@) lands
2.h Jo
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Convergence and all that

So if we require consistency

hl’ndof*)oo ||€(O) ,h = O,
1imdof—>oo ||T(u(t))||97h =0

and stability
hm lexp (—Lnt) [l2,n < Chexp(ant), t >0,

dof—

we obtain convergence

vte[0,7]: lim [e@®)en — 0.

This is of course part of the celebrated Lax-Richtmyer
equivalence theorem
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Back to the example

Consider again the simple example

Ju ou 2
5 27T07 =0, z € 0,2n], u(z,0) = sin(lz), = o

\K[| 2 | 4 | 8 | 16 | 32 | 64

Convergence rate ‘ ‘

3.3E-03|3.1E-04| 9.9E-06 |3.2E-07| 1.0E-08 |3.3E-10

- 4.0E-01| 9.1E-02 |2.3E-02|5.7E-03|1.4E-03
2.1E-07 |2.5E-09| 4.8E-12 |2.2E-13| 5.0E-13 |6.6E-13

N
1
2 2.0E-01 |4.3E-02|6.3E-03|8.0E-04| 1.0E-04 |1.3E-05
4
8

The error clearly behaves as

||u il U,h”_(z’h S ChN_H.
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~90

Convergence and all that

Recall
% + a% =0
ot ox
for which we proved stability as
1d

—lunl@n < cllunllgn,
2dt

This generalizes easily to systems when upwinding
is used on the characteristic variables.

Combining this with the accuracy analysis yields

N
|u —unl|on < WWln,p,m
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Back to the example

What about time dependence

Final time (T) ™ 107 1007 10007 20007
(NK)=(2,4) 43E-02  7.8E-02  5.6E-01 >1 >1
(NK)=(4,2) 3.3E-03  4.4E-03  28E-02  2.6E-01  4.8E-01
(NK)=(4,4) 31E-04  33E-04 34E-04 7.7E-04  14E-03

The error behaves as

||u — ’U,hHQ,h < C( )hN+1 (Cl S CQT)hN+1
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Convergence and all that

Recall
8_u + a@ =0
ot ox
for which we proved stability as
1d

S lunle s < cllunlit

This generalizes easily to systems when upwinding
is used on the characteristic variables.

Combining this with the accuracy analysis yields

hN
Hu — UhHQ,h < WluLQ,p,hv

but we observed
[w(T) = un(T) | 2p < BVFHCL + TCy).
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Error estimates

We will now mimic this for the semi-discrete problem
By (un, én) = ((un)e; dn)on+a((un)z, on).n— (- (aup —(au)*), ¢n)oo,n = 0,

Let us use a central flux

(au)" = {{au}},
to obtain

B (un, o) = ((un)e; dn)o,n + a((un)z, on)on — %([[auh]L on)aa,n =0.
Observe
Bh(uy ¢h) =0, * Bh(E7 d’h) =0, e=u—up.
Using

1d
Bh(&:}ugh) = 5@”5}1“?2,]1’

Wednesday, August 8, 12

Error estimates

To get closer to the observed behavior, we need to be
a little more careful.

Define  B(u,¢) = (us, 6)o + alus, v)o = 0

we have  B(u,u) = 0= %%IIUII?); periodic BC

For two different solutions we have

() = ui () — ua(t)

el =0, EEP Do = fui(0) — )
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Error estimates

Now consider

1d
§£H5NH?),h = Bn(Pnu — u,ep),

one proves (with some work)

B — P, 2a)] < 3 (faalh, HaaHomn + nenos)

< Clalh® G pot1s
d 2 20—1 2
== %thuﬁ,h < Clalh 1wl n, 0415
* HE}L(T)H < (Cl + CQT)hN+1/2,

Better -- but not quite there
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Error estimates

The observe full order

[w(T) = un(T) || 2n < RVTHCL + TCy).

is in fact a special case !

It only works when

v When full upwinding on all characteristic variables
are used

v Proof is only valid for the linear case

v Proof relies on | D superconvergence results

In spite of this, optimal convergence is
observed in many problems - why ?
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Dispersive properties

Consider again

o o
ot a@m o = u(z,t) = exp(i(lz — wt)),

The scheme is given as

k
duy

h
M dt

+ aSu” = ey [(auf) — (auﬁ)*]z,’ﬁ — eo [(aup) - (aulfc‘)*]ﬂvf" ’

11—«

(au)* = {{au}} + |a|——[u].

Look for solutions of the form

(¥, 1) = Uy expli(la® — wt)],
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Why often optimal anyway ?

Assume stability

lim |[exp (—Lnt) [l2,n < Chexp(ant), t >0,
dof — oo

Recall
lle@®lle.n <l exp (—Lat) e(0)|l2.n
Error
Error in I.C. accumulation
ho—a
le = unlla.gn < Cxmgmipm lula.on, o =min(N + 1,p).
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Dispersive properties

We recover

28 — aen (el — exp(iL(N +1))el)
+ (2 - a)eg (e} —exp(—iL(N + 1))eX)] Uy = i2MU}.

Where Lo h o, wh
N+1 AN+1 a

-2 = DoF length
P=yin+1 = DoF per wavelengt

So for a fixed L we solve the eigenvalue problem

..and the eigenvalue will tell us how the
wave propagates
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Dispersive properties

Upwind fluxes

5 0
45 =
= -1 N=6
4 N=6
35 -2 N=1
3
a a-3
Z 25 <
a o, S -4
15 N=1 -5
! 6
0.5
0 -7
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
L/n L/n

Central fluxes

QN,

4
3
2
1
0
1
2
3
4

0 0.2 04 0.6 0.8 1
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Discrete stability

So far we have not done anything to discretize time.

ou ou duy,
a‘l—a%—o = W‘i_ﬁhuh_o

We shall consider the use of ERK methods

kY = L (up "),

k? =, (u;; + %Atk“),t” + %At) ,
k® =L, (u;; + %Atk@),t” + %At) :
kD = ¢, (u;; + AR 4 4 At) :

1 f
upt = uf 4 A (k<1> 12k 4 ok® 4 k(4>) ,
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Dispersive properties

There are some analytic results available (upwind)

‘R(Zh) - R(lh)’ o~ % {@NL—LU'} ’ (1h)2V+3,
] = g [y 0o

The dispersive accuracy is excellent!

exp(ilh) — exp(ilh)

Define the relative phase error "V~ exp(ilh)

2N +1 < lh — C(Ih)'/3, no convergence
PN = lh—o(lh)l/3 <2N+1 <lh—‘,—o(lh)1/37 O(N_l/?’) convergence

2N + 1> lh, O(hl/(2N +1))2N*2 convergence

lh _
Convergence for 2=~ =2mp~ Y * p=m

N+1
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Discrete stability

and also a Low Storage form
p¥ =un,

, JED = a4 Ay, (pUD 7+ At
el B ) g ()
p =Dp + bLk )

uz+1 — p(5) )

Consider 3| Unstable
2
us = Au, Real(A) <0, _-
<1§ 0 Stable

The stability region
defines the timestep s

that gives stability. A0
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Discrete stability

Consider
2
Ly = %M’l S €],
We have »? , B 5
@Hl:hm = 12 H::lHP:lﬂﬁhuh\h

IN

IDL + |MTENF +2 sup (Dyun, M~ Euwn),
[lunl=1

< O1N* 4+ C,N? + C3N® < CN*,

So we should expect

a
||£hHDk S CﬁN2

Which would indicate At < C-tb;
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Discrete stability

General guidelines

@—FG% =0, == AtﬁC’iminﬁ(Air),
ot ' ox la] ki 2
ou

ou 1 . Rk
T Ay =0 = A< O min o (),
There are tricks to play to improve on this
» Mappings to improve the scaling
» Covolume filtering techniques
» Local time-stepping

See text for a discussion of other methods
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Discrete stability

The structure also matters

250 250 250
=10 : =05 . =00
125 125 125 .
Z > S 2 e
-125 -125 —125 -
0 -250 —250
-160 -120 -80 -40 0 20 -160 -120 -80 -40 0 20 -160 -120 -80 -40 0 20
Re(l,) Re(h,) Re(hy)
108
/,'a:1
H 3/2 max (A X)]' 2
The estimate 10t Y
h E;
At < (O
£
— alN
is sharp !
0
1010' 102 108
N
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Local time-stepping &/

Problem: Small cells, even just one, cause a very small
global time-step in an explicit scheme.

h
| A< CAT < Cry

A significant problem for large scale complex applications

Old idea: take only time-steps required by local restrictions.

Old problems: accuracy and stability
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‘Local time-stepping (77/

Recall the ERK scheme

.‘;‘ - ‘~_~_“.- -...‘,‘_.

LSERK At

We consider a multi-step scheme

P i T

AB'At LSERK At
- -
Uy =, + %[231:(;4” )=16F (u, ) +5F (u,_,)) . // |
”
NS
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Local time-stepping WT/

Challenge: Achieving this at high-order accuracy

tosr e

bt —

tn t“

12

Loy oy
tn-2

. . At
For all interior cells  “. =un+E[23F(un)—16F(un_1)+5F(u,,_z)]

. At
At interface cells tyope =ty + TP 0,) = TF(,) + 2w, 5)]

This generalizes to many levels and arbitrary time-step fractions
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Local time-stepping

Substantial recent work by

Cohen, Grote, Lanteri, Piperno, Gassner, Munz etc

Most of the recent work is based on LF-like schemes,

restricted to 2nd order in time.

Layout for multi-rate local time-stepping
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Local time-stepping
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Local Time-Stepping Levels
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Four Time-Level Local Time-Stepping
Bistatic RCS for Ogive (nose-on)

1level, at
2levels, 2at
—— Blevels, at
4levels, 8at

-80

o % 180 270 360
. Acimuth (deg)
One time level:

- N, = 23742

Two time levels:

N, = 151 (<1%
- N, = 23591 (99%

Three time levels:

Computations by

- N, = 151 (<1%)
- N, = 1959 (8%) HyperComp Inc
- N, = 21632 (91%)

Four time levels:

151 (<1%)
1959 (8%)
12622 (53%)
9010 (38%)
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‘Local time-stepping @

Segmentation is done in preprocessing

Level distribution 3D cavity
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Level distribution airplane
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Known problems:

No known stability proof
Time-step is not optimal (about 80%)
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A brief summary

We now have a good understanding all key aspects of
the DG-FEM scheme for linear first order problems

» We understand both accuracy and stability and what
we can expect.
» The dispersive properties are excellent.
» The discrete stability is a little less encouraging.
A scaling like .
At < C %=
is the Achilles Heel -- but there are ways!

... but what about nonlinear problems ?
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‘Local time-stepping @

The potential speed up is considerable -- and the
more complex the better !

Example Simulation time with
Adams-Bashford Adams-Bashford LSERK
(global time step) (local time step) (global time step)
Resonator 100% 45%
3dB-Coupler | 100% 45%
Airplane 100% 45%

Computations by Nico Godel, Hamburg
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