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Today!

! Presentation and practical details

! Introduction to DG-FEM methods

! Getting setup for hands-on exercises
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Course content

This course is organized and taught by

! Assoc. Prof. Allan Peter Engsig-Karup
Building 321, r. 016
DTU Informatics, Scientific Computing Section, DTU,
Denmark.

! Prof. Jan Hesthaven
Building 321, r. 009
Division of Applied Mathematics, Brown University, USA.

Teaching assistance during afternoons

! Post Doc Ole Lindberg
DTU Informatics, Scientific Computing Section, DTU,
Denmark.
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Course content

This course is an activity of GPUlab, DTU Informatics

D  T  U      I  n  f  o  r  m  a  t  i  c  s

The course is sponsored by the PhD school at Technical University
of Denmark

! DTU Informatics Graduate School ITMAN

and organized with support from

! The Danish Center for Applied Mathematics and Mechanics,
DCAMM
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Course content

The following topics are covered in the course

1 Introduction & DG-FEM in one spatial dimension

2 Implementation and numerical aspects (1D)

3 Insight through theory

4 Nonlinear problems

5 Extensions to two spatial dimensions

6 Introduction to mesh generation

7 Higher-order operators

8 Problem with three spatial dimensions and other advanced
topics
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Course structure

Week 1:

Time Monday Thuesday Wednesday Thursday Friday
08.30-09.00 Breakfast
09.00-11.30 1 2 3 4 Project work
12.30-16.00 Hands-on Hands-on Hands-on Hands-on Project work

Week 2:

Time Monday Thuesday Wednesday Thursday Friday
08.30-09.00 Breakfast
09.00-11.30 5 5+6 7 8 Project work
12.30-16.00 Hands-on Hands-on Hands-on Hands-on Project work

! Lectures: approx. 2.5 h/day, including 15 mins review + 15
mins break.

! Hand-on exercises: approx. 3.5 h/day.
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Learning objectives
A student who has met the objectives of the course will be able to:

! Apply the basic ideas underlying discontinuous Galerkin
methods.

! Apply the building blocks of DG-FEM methods for the
simulation of phenomena described by partial differential
equations.

! Identify and exploit the properties and structure of the
underlying problem.

! Be able to complete basic analysis to formulate a suitable
scheme for a new problem.

! Implement such methods and extensions in Matlab using the
provided Matlab based toolbox.

! Skillfully perform numerical experiments.
! Analyse and explain the observed behavior of the methods

based on a basic theoretical insight.
! Apply important principles underlying the use of modern

numerical methods in selected applications.
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Coursework and assessment
This 2-week course has approx. 70 scheduled hours

! Breakfast and coffee/tee (0.5 hours/day)
! Lectures (approx. 2 hours/day)
! Discussions (as needed)
! Hands-on computer exercises (approx. 4 hours/day)
! Lunch (1 hours/day)

To pass the course and get a diploma the requirements are
! Completing a written report for assessment of work
! Satisfactory completion of assignment problems

(approx. 40 hours)
! Short notes, produced codes and relevant results from

successfully completed exercises during afternoons sessions

The assignment is divided in two parts
! Each part will be available tuesday morning of each week
! It is highly recommended that you Initiate your work on the

assignments after completion of exercises
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Practical details

! Background
! What is your background? Experiences?
! Why are you here?

! Access to the databar terminals, software and Internet

! Access to Matlab codes, http://www.nudg.org

! Access to hands-on exercises/slides/ect.,
http://www2.imm.dtu.dk/~apek/DGFEMCourse/

! General information
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Practical details

! Course material:
Nodal Discontinuous Galerkin Methods - Algorithms, Analysis,
and Applications

By J. S. Hesthaven & T. Warburton (2008), Springer.
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Course work

The work in the course should be carried out in teams

! Two persons per team

! Hands-on exercises and assignment work is made by the team

Everyone is encouraged to take the opportunity to

! Interact!

! Get to know each other!

! Discuss the work!

! Share experiences!
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Introduction

- discussion of numerical
schemes and properties
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Computational Science and Engineering

! Scientific computing has become indispensable for progress
and breakthroughs in science through (cost-efficient)
numerical experiments and validation against real experiments.

! Numerical simulation using modern computers indispensable
today for engineering analysis and prediction of physical
events.

! Interplay between experiments, simulation and theory.
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Our goals

For the application of numerical methods we want

! accuracy at minimal effort

! flexibility to solve classes of problems with same code

! easy problem prototyping and code maintenance
(avoid adhoc solutions)

! ensure that numerical results can be thrusted
(verification and validation)
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Numerical solution of PDEs

To construct a numerical method for solving PDEs we need to
consider

! How to represent the solution u(x , t) by an approximate
solution uh(x , t)?

! In which sense will the approximate solution uh(x , t) satisfy
the PDE?

The two choices separate and define the properties of different
numerical methods...

Bottom line is that we need ways to

! Generate a (coupled) system of algebraic equations from the
well-posed PDE and incorporate boundary conditions

! Solve the system and equations while minimizing unavoidable
errors that are introduced in the process
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Conservation laws
Conservation laws appear in many brances of computational
science and engineering and are typically derived from physical
conservation principles, e.g. conservation of energy, momentum
and mass.

A general nonlinear conservation law (3D) can be stated in
differential form as

∂tu +∇ · F(u) = S(u)

or

∂tu + ∂xF (u) + ∂yG (u) + ∂zH(u) = S(u)

where
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u(x, t) is a vector of conserved variables and F ,G ,H are flux
vectors. S is a source vector.
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Conservation laws

Examples of conservation laws

! Euler equations of compressible gas dynamics (1D)

∂ρ
∂t +

∂ρu
∂x = 0 (Mass)

∂ρu
∂t + ∂(ρu2+p)

∂x = 0 (Momentum)
∂E
∂t + ∂(E+p)u

∂x = 0 (Energy)

p = (γ − 1)
(

E − 1
2ρu

2
)

, c =
√

γp
ρ (Ideal gas low)

! Nonlinear shallow water equations (1D)

∂h
∂t +

∂hu
∂x = 0 (Mass)

∂hu
∂t +

∂(hu2+
1
2gh

2)

∂x = 0 (Momentum)

! and many many more...
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Conservation laws

For now, we restrict ourselves to consider the one-dimensional
scalar conservation law

∂u

∂t
+

∂f

∂x
= g , x ∈ Ω

where f (u) is the flux function, g(x , t) is a source function.

Let’s discuss basic ideas, advantages and disadvantages of different
classical numerical methods for solving this PDE...
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Finite Difference Method

! Domain is represented by a set of collocation points
! Solution is represented locally as a polynomial

x ∈ [xk−1, xk+1] : uh(x , t) =
2

∑

i=0

ai (t)(x − xk)i , fh(x , t) =
2

∑

i=0

bi (t)(x − xk)i

! PDE is satisfied in a point-wise manner

Rh(x
k) =

duh(x
k , t)

dt
+

fh(x
k+1, t) − fh(x

k−1, t)

hk + hk−1
− g(xk , t) = 0

! Local smoothness requirement pose a problem for resolving
complex geometries, internal discontinuities and overall grid
structure.
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Finite Difference Method

Main benefits

! Simple to understand

! Straightforward implementation on structured meshes

! High-order acurate approximations feasible

! Method is local and can be made explicit in time

! Simple techniques for local adaptivity (upwinding)

! Extensive body of theoretical and practical work on these
methods since 1960’s

Main problems

! Implementation complexity increases if geometric flexibility is
needed

! Less well-suited for problems with discontinuities

! Grid smoothness requirements
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Finite Volume Method

! Domain is represented by non-overlapping cells
! Solution is represented locally as a cell average

ūk ≡
1

hk

∫

Ωk
ukdxk

! PDE is satisfied on conservation form

hk
dūk

dt
+ f (xk+1/2, t) − f (xk−1/2, t) = hk ḡk

! The flux function needs to be reconstructed on cell interfaces
xk±1/2

f (xk−1/2, t) = F (ūk−1, ūk), f (xk+1/2, t) = F (ūk , ūk+1)
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Finite Volume Method

Main benefits

! Robust

! Support resolution of complex geometries

! Well-suited for hyperbolic conservation laws (local upwinding)

! Method is local and can be made explicit in time

! Method is locally conservative (due to telescopic property)

! Extensive theoretical framework since 1970’s

Main problems

! Inability to achieve high-order accuracy in a straightforward
way on general grids due to requirement for extended stencils
(flux reconstruction problem)

! Grid smoothness requirements
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Finite Element Method

! Domain is represented by non-overlapping elements
! Solution is represented globally using piecewise continuous

polynomials

uh(x) =
K
∑

k=1

u(xk , t)N
k (x), Ni (xj ) = δij

! PDE is satisfied in a global manner
∫

Ωh

(

∂uh
∂t

+
∂fh
∂x

− gh

)

Nj (x)dx = 0, j = 1, ...,K ⇒ M
duh

dt
+ Sfh = Mgh

! The semi-discrete scheme is implicit by construction and
reduces overall efficiency for explicit time-integration

23 / 45

Finite Element Method

Main benefits

! Robust

! Systematic implementation on unstructured meshes

! High-order accuracy can be combined with complex
geometries

! Well-suited for elliptic problems (global statement)

! Extensive theoretical framework since 1970’s

Main problems

! Not well-suited for problems with direction (global statement)

! Implicit in time reduces overall efficiency
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Properties of numerical methods
Numerical methods for solving PDEs can in general be
characterized by the properties

! Accuracy
Can we reduce the error? and how fast?

! Flexibility
What is the range of problems that can be solved using the
chosen method?

! Robustness
Can we always expect a solution from our numerical model?

! Efficiency
How long does it take to compute our solution?

Note: Very often it is difficult to achieve all properties at once!

⇒ Thus, we need to prioritize!

! Choice is often dictated by domain complexity and required
levels of accuracy.
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General properties of the numerical methods

Assesment of general properties of some classical numerical
methods

Complex High-order accuracy Explicit semi- Conservation Elliptic
geometries and hp-adaptivity discrete form laws problems

FDM × " " " "

FVM " × " " (")
FEM " " × (") "

DG-FEM " " " " (")

We want a scheme which have the properties

! The local high-order elements of FEM.

! The geometric flexbility of FEM and FVM.

! The local statement of the FVM.

These are exactly the components of the

Discontinuous Galerkin Method Finite Element Method
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A first look at DGFEM
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Formulating a DG-FEM scheme

By subdividing the domain Ω ∈ [L,R ] similar to FVM/FEM into a
union of non-overlapping elements Dk

Ω ∼= Ωh =
K
⋃

k=1

Dk

x

Dk−1 Dk Dk+1

hk+1

L = x1l xk−1
r = xkl xkr = xk+1

l xKr = R

we have the basis for geometric flexibility (any type of grid).

Generating the actual grid is a separate problem.
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Formulating a DG-FEM scheme
We seek to represent the global solution using local high-order
polynomial approximations similar to FEM

u(x , t) ∼= uh(x , t) =
K
⊕

k=1

ukh (x , t),

ukh (x , t) =

Np
∑

j=1

ûkj (t)ψj(x) =

Np
∑

j=1

ukh (x
k
j , t)lj(x)

using either a modal or nodal form.

This is the basis for arbitrary high-order accurate approximations.

Note: both low and high-order approximations then an option in
the scheme.

A high-order accurate method has asymptotic behavior O(hp) of
truncation error for h → 0 with p > 2.
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Formulating a DG-FEM scheme

We want to find an approximation uh to the solution u of the
general scalar conservation law

∂tu + ∂x f (u) = g(x , t), x ∈ Ω

To do this, we form the local residual on the k = 1, ..,K elements

x ∈ Dk : Rk
h(x , t) = ∂tu

k
h + ∂x f

k
h − gk

h

and require this to vanish locally in a Galerkin sense
∫

Dk

Rk
h(x , t)l

k
i (x)dx = 0, i = 1, ...,Np , k = 1, ...,K

This is the basis for a nodal DG-FEM scheme.

However, we are not done yet... all elements are disconnected due
to the local statement on the residual.
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Formulating a DG-FEM scheme
To connect elements, we apply Gauss’s Theorem

∫

Dk

Rk
h(x , t)l

k
i (x)dx =

∫

Dk

[

∂tu
k
h l

k
j + ∂xu

k
h l

k
j − gk

h l
k
j

]

dx = 0

to convert the term with a spatial derivative such that
∫

Dk

[

∂tu
k
h l

k
j − ukh∂x l

k
j − gk

h l
k
j

]

dx = −

∮

∂Dk

n̂ · f kh l
k
j dx

where the boundary integral in 1D takes the form
∮

∂Dk

n̂ · f kh l
k
j dx =

[

f kh l
k
j

]xkl

xkr
= f kh (x

k
r )δNpj − f kh (x

k
l )δ1j

The solution is not unique at interfaces between adjacent elements.

Dk−1

Dk

Dk+1

We have multiple solutions! How can we address this problem?
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Formulating a DG-FEM scheme

Similar to FVM, we could introduce a numerical flux f ∗ which
approximate the physical flux, i.e.

n̂ · f ∗ ∼= n̂ · f kh

to address the lack of solution uniqueness at the interfaces. We
require that the numerical flux is somehow defined in terms of
interior (-) and exterior (+) interface states

f ∗ = f ∗(u−h , u
+
h )

Dk−1 uk−1,+
r

uk,−ruk,−l

uk+1,+
l

Dk

Dk+1

Clearly, the choice of the numerical flux must be important!
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Formulating a DG-FEM scheme

So, after having applied Gauss’s Theorem we found
∫

Dk

[

∂tu
k
h l

k
j − ukh∂x l

k
j − gk

h l
k
j

]

dx = −

∮

∂Dk

n̂ · f kh l
k
j dx

With the introduction of a numerical flux f ∗, the local scheme in
the weak form then becomes

∫

Dk

[

∂tu
k
h l

k
j − ukh∂x l

k
j − gk

h l
k
j

]

dx = −

∮

∂Dk

n̂ · f ∗lkj dx
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Formulating a DG-FEM scheme

From the weak form
∫

Dk

[

∂tu
k
h l

k
j − ukh∂x l

k
j − gk

h l
k
j

]

dx = −

∮

∂Dk

n̂ · f ∗lkj dx

we can generate a local linear system by inserting the polynomial
approximation ukh arriving at the compact scheme

Mk du
k
h

dt
− (Sk)T f kh −Mkgk

h = −f ∗δ1j + f ∗δNpj

where δij is Kronecker’s delta and the element mass and stiffness1

matrices have been introduced. These are defined from

Mk
ij =

∫

Dk

lki (x)l
k
j (x)dx , Sk

ij =

∫

Dk

lki (x)
dlkj
dx

dx

1In classical finite element terminology, the discrete operator approximating
the first derivative is called a convection/advection matrix.
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Formulating a DG-FEM scheme

It is also possible to derive yet another scheme from the weak form
∫

Dk

[

∂tu
k
h l

k
j − ukh∂x l

k
j − gk

h l
k
j

]

dx = −

∮

∂Dk

n̂ · f ∗lkj dx

by applying Gauss’s Theorem once more
∫

Dk

[

∂tu
k
h l

k
j + ∂xu

k
h l

k
j − gk

h l
k
j

]

dx =

∮

∂Dk

n̂ · (f kh − f ∗)lkj dx

This is the so-called strong form.

We now have two basic DG-FEM schemes. How will they perform?
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Formulating a DG-FEM scheme

Consider the strong scheme
∫

Dk

[

∂tu
k
h l

k
j + ∂xu

k
h l

k
j − gk

h l
k
j

]

dx =

∮

∂Dk

n̂ · (f kh − f ∗)lkj dx

From this we can generate a local linear system of the form

Mk du
k
h

dt
+ Sk f kh −Mkgk

h = (f kh − f ∗)δ1j − (f kh − f ∗)δNpj

which is clearly a semi-discrete system of the form

dukh
dt

= −(Mk)−1
(

Sk f kh −Mkgk
h = (f kh − f ∗)δ1j − (f kh − f ∗)δNpj

)

which can be solved by an appropriate explicit/implicit ODE solver.

36 / 45



The first examples...
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Examples: error behavior

Consider the simple advection equation on a periodic domain

∂tu − 2π∂xu = 0, x ∈ [0, 2π], u(x , 0) = sin(lx), l = 2π
λ

Exact solution is then u(x , t) = sin(l(x − 2πt))).

Errors at final time T = π.

N\ K 2 4 8 16 32 64 Convergence rate
1 - 4.0E-01 9.1E-02 2.3E-02 5.7E-03 1.4E-03 2.0
2 2.0E-01 4.3E-02 6.3E-03 8.0E-04 1.0E-04 1.3E-05 3.0
4 3.3E-03 3.1E-04 9.9E-06 3.2E-07 1.0E-08 3.3E-10 5.0
8 2.1E-07 2.5E-09 4.8E-12 2.2E-13 5.0E-13 6.6E-13 ∼= 9.0

Error is seen to behave as

||u − uh||Ω,h ≤ ChN+1

Clearly, paths to convergence are based on adjusting the size of
elements (h-convergence), the polynomial order (p-convergence) or
combinations hereof.
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Examples: error behavior
Consider the linear shallow water equations in one horizontal
dimension on a periodic domain

∂

∂t

[

η
u

]

=

[

0 −h
−g 0

]

∂

∂x

[

η
u

]

Tests of h− and p-refinement
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Again, the error behaves as

||u − uh||Ω,h ≤ ChN+1
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Example - High-order makes the difference
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p−version (K=20)
p−version (K=10)

Figure: Optimized CPU-time vs. integration time for a fixed relative error
in amplitude of 5% (assume satisfactory engineering accuracy).

! Conclusion: a significant improvement in performance can be
achieved using high-order elements over long times of
integration. 40 / 45



Numerical solution of PDEs

Important reasons for the interest in DG-FEM methods are

! Need for numerical methods of high accuracy in space and
time

! Support for locally adaptive numerical solutions
hp-adaptivity, meshes can be both non-conforming and
unstructured.

! General and very flexible framework for solving large classes of
PDEs

! Conceptually no difference between 1-D, 2-D or N-D

! The method is local (to the elements) which makes it highly
suitable for parallel computations
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A brief history

! DG-FEM was first proposed by Reed & Hill in 1973 for a
neutron transport equation

σu +∇ · (au) = f

! First analysis by Lesaint & Raviart (1974) showing in general
O(hN) and optimal O(hN+1) for special meshes.

! Sharp analysis by Johnson (1986) showed O(hN+1/2) for
general meshes

! However, the schemes did not enjoy much use until further
developments...
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A brief history

! Extension from scalar conservation laws to systems
1980s-late 1990s, Cockburn/Shu

! Development of limiters and RKDG for problems with
discontinuities
Late 1980s, Shu/Cockburn

! Nodes, modes and large codes
from 1995, Warburton/Karniadakis

! Maxwell’s eqations, MHD, water waves, elasticity, etc.
- last decade has seen an explosion in development and
applications

! Higher order problems
! Interior-Penalty (IP), Arnold (1982)
! Bassi-Rebay (BR), Bassi & Rebay (1997)
! Local Discontinuous Galerkin (LDG), Cockburn & Shu (1998)
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A brief history

The last decade has seen an explosion in activities

! Hamilton-Jacobi equations

! Non-coercive problems and spectral accuracy

! Adaptive solution techniques

! Improved solvers

! Advanced time-integration methods

! Large-scale production codes

! etc.
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Brief summary

We have established a basic understanding of DG-FEM

! How to formulate DG-FEM schemes

! Local expansions to achieve a high-order accurate basis

! Geometric flexibility in the spirit of FEM/FVM

! Explicit scheme and ’problem control’ in the spirit of FVM

However, many questions remains

! How do we choose the numerical flux?

! Is the scheme stable?

! How does the idea generalize to multi-dimensions?

! What is the price?

! etc...

45 / 45


