
Assignment - Part II

Ph.D. Course 2012:

Nodal DG-FEM for solving partial differential equations

This the second part of the mandatory part of the course and completion
of it is required to pass the course with full credit.

This part should, in combination with the results for Assignment part I,
form a report which must be submitted electronically no later than

Friday, August 31, 2012

Mathematical model

We shall consider the BGK approximation of the Boltzmann equation

∂f

∂t
+ ξ · ∂f

∂x
= −1

τ
(f − f eq(ρ,u)) , (x, y) ∈ Ω (1)

which describes statistical behavior of fluid motion at the microscopic level
under the assumption that the fluid is a gas statistically described in terms
of a particle distribution function f(t, ξ,x). ξ = (ξx, ξy) is the microscopic
velocity, x = (x, y) is the spatial Cartesian coordinates and τ the relaxation
time.

Flow properties

The solution for a fluid in uniform state is given by the local equilibrium
distribution function in 2D

f eq =
ρ

2πRT
exp

(

−(ξ − u)2

2RT

)

(2)

where R is the gas constant and T is the temperature. This function is
dependent on the macroscopic flow properties characterized by density ρ
and flow velocity u = (u, v) expressed in terms of horizontal and vertical
components.

The macroscopic flow properties can be derived from the particle distri-
bution. For example density and momentum as

ρ =

∫

∞

−∞

fdξ, ρu =

∫

∞

−∞

ξxfdξ, ρv =

∫

∞

−∞

ξyfdξ (3)

Scientific Computing Section, DTU Informatics, Kgs.-Lyngby, Denmark.



In the following, we will follow the suggested procedure described by
Tölke, Kraftczyk, Schulz & Rank (2000) for deriving a set of governing
equations that can be used to solve Boltzman equation approximately by a
Galerkin formulation.

By assuming absolute equilibrium and setting u = 0, the particle dis-
tribution function can be approximated f̂ ∼ f by introducing a Hermite
expansion of the form

f̂ =
1

2πRT
exp

(

−
ξ̃2x + ξ̃2y

2

)

∞
∑

k=1

ak(t,x)ϕ(ξ̃x, ξ̃y) (4)

where scaled velocity components have been introduced ξ̃ = (ξ̃x, ξ̃y) =
(ξx, ξy)/

√
RT and with the first six trial functions defined in terms of or-

thogonal Hermite polynomials as

ϕ1(x, y) = H1(x)H1(y), ϕ2(x, y) = H2(x)H1(y)

ϕ3(x, y) = H1(x)H2(y), ϕ4(x, y) = H2(x)H2(y)

ϕ5(x, y) = H3(x)H1(y), ϕ6(x, y) = H1(x)H3(y)

Approximations to the macroscopic flow properties can be expressed in
terms of the Hermite coefficients. For example

ρ =

∫

∞

−∞

f̂dξ = a1

ρu =

∫

∞

−∞

ξxf̂dξ = a2
√
RT

ρv =

∫

∞

−∞

ξyf̂ dξ = a3
√
RT

σ11 =

∫

∞

−∞

(ξx − u)2f̂dξ +RTρ = −RT

(√
2a5 −

a2
2

a1

)

σ22 =

∫

∞

−∞

(ξy − v)2f̂dξ +RTρ = −RT

(√
2a6 −

a2
3

a1

)

σ12 =

∫

∞

−∞

(ξx − u)(ξy − v)f̂ dξ = −RT

(

a4 −
a2a3
a1

)

which enables direct conversion between series coefficients and macroscopic
properties.

The kinematic viscosity ν = RTτ can be used to define the Reynolds
Number Re = UL/ν and RT = 1 can be assumed, such that L is a charac-
teristic length. Assume L = 1 in the tests defined below.

Governing equations

A set of governing equation can be obtained by a Galerkin procedure where
residual equation arising when a truncated Hermite expansion with only
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6 terms retained is substituted for f in the Boltzman equation and the
resulting residual equations Rh are required to be orthogonal with respect
to the test functions

∫

∞

−∞

ϕkRhdξ = 0, k = 1, ..., 6 (5)

This procedure generates a set of governing equations that can be expressed
as a coupled set of partial differential equations

∂a1
∂t

+
√
RT

(

∂a2
∂x

+
∂a3
∂y

)

= 0 (6)

∂a2
∂t

+
√
RT

(

∂a1
∂x

+
√
2
∂a5
∂x

+
∂a4
∂y

)

= 0 (7)

∂a3
∂t

+
√
RT

(

∂a4
∂x

+
∂a1
∂y

+
√
2
∂a6
∂y

)

= 0 (8)

∂a4
∂t

+
√
RT

(

∂a3
∂x

+
∂a2
∂y

)

=
1

τ

(

a4 −
a2a3
a1

)

(9)

∂a5
∂t

+
√
2RT

(

∂a2
∂x

)

= −1

τ

(

a5 −
a2
2√
2a1

)

(10)

∂a6
∂t

+
√
2RT

(

∂a3
∂y

)

= −1

τ

(

a6 −
a2
3√
2a1

)

(11)

By closely examining this system it should be clear that it is linear in all
spatial differential operations. The system can be expressed in the general
compact form as a conservation law

∂a

∂t
+∇ · F = c (12)

where the gradient operator is two-dimensional ∇ = (∂/∂x, ∂/∂y), the vec-
tor function F = (A,B)a where A,B ∈ R

6×6, a, c ∈ R
6 and the source

vector c = c(a) defined in terms of nonlinear contributions from Hermite
coefficients appearing on the right hand side of the equations. This forms
the basis for numerical discretization in the time-space domain.

Numerical discretization

1. Formulate a two-dimensional DG-FEM formulation to be used as a
basis for solving the Boltzman equation approximately.

2. Give expressions for A,B and c.

3. Describe how the Lax-Friedrich flux would look like.

4. Detail how you choose the numerical fluxes. Describe how the Lax-
Friedrich flux would look like and derive a proper upwinding scheme
for the DGFEM formulation.
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5. Implement a discrete two-dimensional DG-FEM solver based on the
formulated nodal DG-FEM scheme.

6. Discuss how you decide on the time-step.

7. To test the implemented solver you can setup the test case for steady
Poiseuille flow described. Tölke, Kraftczyk, Schulz & Rank (2000)
presented numerical experiments for Poiseuille flow which should be
reproduced as a first test case using your solver. Confirm that the
solver is stable and make sure the solution is converged.

8. Plot a couple of snap-shots of the computed solution

Now that we have implemented and tested the code, you should be ready
to use it for more complex problems.

CASE 1: Rectangular Driven cavity

Consider a driven cavity defined on (x, y) ∈ Ω([0, 1]2) with a lid at y = 1
(north boundary) suddenly driven at a velocity U = 1 for time t ≥ 0.

Assume no-slip boundary conditions at west, east and south boundaries

u = v = 0

At the north boundary a lid is driven with velocity U = 1 in the horizontal
direction. For computational purposes it may be necessary to smooth the
velocity profile smoothly from 0 to 1 near the corners of the cavity.

As initial conditions you can take all variables to zero except for the
density, ρ = 1. Since these initial conditions lead to a discontinuity at the
upper boundary, you should consider how to start up the problem without
causing too many problems, e.g., one could ramp up the lid-speed in time,
you could use a heavy filter initially and then remove it or some other
approach to avoid problems.

Results of numerical experiments can be used for comparison with com-
puted results are presented in Ghia et al. (1984). See Table I for the
u-velocity and Table II for the v-velocity profiles found for the steady state
solution for different Reynolds numbers. Consider Reynolds numbers Re
corresponding to 100 and 400. See if you can reproduce the velocity pro-
files for the vertical and horizontal cuts through the geometric center of the
cavity as a test of code.

1. Generate different grids to enable a convergence study and test that
the computed solution(s) converge toward a grid-independent solution.

2. Run the code for different values of the Re and discuss your observa-
tions.
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3. Plot a couple of snap-shots of the computed solution - you can plot
velocities, vorticities, streamlines or something else. The references
have plots you can compare with.

CASE 2: Triangular Driven cavity

Consider a driven cavity defined on isosceles triangular domain. Consult the
reference by Erturk & Gokcol (2007) and the example presented in Fig 6 in
that reference.

Reproduce the results for Reynolds numbers 12.5, 25, and 100.

1. Generate different grids to enable a convergence study and test that
the computed solution(s) converge toward a grid-independent solution.

2. Run the code for different values of the Re and discuss your observa-
tions.

3. Plot a couple of snap-shots of the computed solution - you can plot
velocities, vorticities, streamlines or something else. The references
have plots you can compare with.

CASE 3: Driven cavity with internal structure (OPTIONAL)

If time permits, decide on your own experiment with the solver. For example,
try to produce a snapshot of a driven cavity flow with an internal structure
positioned inside the cavity, e.g. a square or circular wall.

Enjoy !
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